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We revisit the Coleman-Hill theorem in the context of reduced planar QED. Using the global U(1) Ward
identity for this nonlocal but still gauge-invariant theory, we can confirm that the topological piece of the
photon self-energy at zero momentum does not receive further quantum corrections apart from the potential
one-loop contribution, even when considering the Lorentz-noninvariant case due to the Fermi velocity
vF < c. This is of relevance to probe possible time parity odd dynamics in a planar sheet of graphene which
has an effective description in terms of (2þ 1)-dimensional planar reduced QED.

DOI: 10.1103/PhysRevD.98.065008

I. CONTEXT AND MOTIVATION

Quantum electrodynamics in (2þ1) dimensions (QED3)
has been widely used as a toy model for quantum
chromodynamics (QCD). This is due to the fact that
although it is Abelian, QED3 exhibits similar features as
non-Abelian gauge theories, making it possible, for in-
stance, to map and investigate chiral symmetry breaking
and confinement into it [1–5]. The similarity is reinforced
by the fact that a non-Abelian gauge theory at high
temperature suffers a dimensional reduction and, if coupled
to Nf fermion families, the non-Abelian interactions are
suppressed by a factor of N−1

f , so that in the large Nf limit
the theory can be considered approximately Abelian.
Recently, the emergence of the so-called Dirac and Weyl

planar materials [6] converted QED3 into a playground in
which a potential link between high energy physics
(including quantum fields in curved spacetimes) and
condensed matter can emerge [7–13]. Those are materials
in which, due to the specific structure of their underlying
lattice, the charge carriers present a relativistic-like behav-
ior, correctly described by a Dirac-like equation in some

regimes. Particularly, the physical realization of graphene
and other materials in two space dimensions, which are
proven to contain a priori massless Dirac spinors, naturally
yields the fermionic part of QED3 [14,15] through the
continuum limit of the tight-binding theory, usually applied
to describe their conduction electrons, which in turn
implies a direct connection to QCD, as discussed above.
Nevertheless, even though in these systems the fermions

are constrained to remain in-plane and therefore are
correctly described by a theory in (2þ 1) dimensions,
the gauge fields responsible for the interaction between
these electrons are not subject to the same constraint. One
of the most remarkable consequences of this fact is that the
interaction between electrons remains the familiar ∼1=r
potential rather than the logarithmic one that would take
place if the gauge fields were also restricted to the plane.
Therefore, it is convenient and necessary to modify QED3

in order to merge the desired features of the two sectors of
the theory, starting with a general (3þ 1) theory and
dimensionally reducing it to a nonlocal effective (2þ 1)
theory. This procedure was followed in similar approaches
in [16] with the so-called pseudo-QED (PQED), and
posteriorly in [17], receiving the name of reduced QED
(RQED). In this work we follow the outline of RQED, but
both constructions are equivalent; for interesting applica-
tions of PQED, we refer to [18–21].
In the context of pure QED3, the most general structure

of the action allows for a term in the gauge sector that
breaks time reversal (T), namely, the Chern-Simons (CS)
term. Its presence gives a mass to the photon [22,23] and,
for this reason, it is also known as a topological mass term
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(actually, in the Abelian case there is no real topology
involved and the term “topological” is used for historical
reasons based on its non-Abelian counterpart). This term is
important in several contexts in condensed matter; for
instance, it naturally leads to the transverse conductivity
observed from the Hall effect, and it is crucial to model
high Tc superconductivity [24]. It was shown that radiative
corrections coming from interaction terms can give a
contribution for the topological photon mass up to one
loop. Remarkably, a theorem by Coleman and Hill [25]
demonstrates that, apart from one loop, all corrections to
the topological mass term vanish identically to all orders.
This was done on general grounds, considering the photon
interacting with any massive scalar, spinor, or vector field
with arbitrary gauge-invariant interactions. The massive
nature of the field excitations interacting with the photon is
crucial here, to avoid the typical infrared subtleties
in lower-dimensional field theories. In particular, the
Coleman-Hill theorem does not hold in the presence of
massless degrees of freedom, as explicitly illustrated in
e.g., [26]. Indeed, infrared singularities, typical for lower-
dimensional field theories, can disturb the argument.
Regarding the importance of RQED in the description of

planar Dirac systems in condensed matter, precisely for
those systems that allow for a direct analogy with QCD, it is
important to verify if the Coleman-Hill theorem also holds
for this theory, in particular, when the Lorentz-noninvariant
version of RQED is considered. In this work we demon-
strate that higher order radiative corrections are exactly
vanishing in RQED, in the same way as for QED3, meaning
that the topological photon parameter arises at one loop or
does not arise at all. In Sec. II we discuss briefly how the
tight-binding model yields QED3 in the continuum limit
and present the general features of RQED, including its
gauge invariance and freedom of gauge choice, before and
after the reduction. In particular, we discuss possible mass
terms for the fermions that are important if we want to
apply our theory directly to graphene. The role of electro-
magnetic background fields in the radiative corrections,
which is important in manipulations to study transport
phenomena in materials, is also briefly highlighted, with
explicit computations relegated to a future, longer paper. In
Sec. III we prove in full detail, for the Lorentz invariant
case, that corrections of order higher than one are null, thus
motivating our choice of mass terms, from both the
(crucially different) two- and four-component spinor view-
points; finally, we summarize the explicit one-loop com-
putation in the absence of background fields. Section IV is
devoted to the generalization of the argument to the Lorentz
noninvariant case. In Sec. V we present our final remarks.

II. SETTING THE STAGE: PLANAR
SYSTEMS AND RQED

In this section we briefly review how the continuum limit
of the tight-binding model describing graphene can be

associated with QED in a lower dimension and why, in this
case, it is interesting to work with a modified version of this
theory, known as reduced QED. We discuss in some more
detail the gauge invariance of this theory before and after
the reduction, especially concerning the gauge fixing term,
which is not covered so well in other papers. We pay
particular attention to the role of fermion masses and how,
in the continuum limit, different structures can result in
equivalent mass terms, an issue that usually, although
known [27], is undervalued in the literature. Finally, we
deduce the photon propagator for RQED, taking into
account a Chern-Simons term, and we discuss the role
of its coefficient, the θ parameter. We compare it to the
standard QED3, where θ is responsible for generating a
photon mass, and we show that in RQED, although it also
appears explicitly in the propagator, it differs dimensionally
from a mass parameter; i.e., the photon remains massless
for RQED.
As a starting point, we briefly present the very basics

of graphene from a point of view that is convenient
for a quantum field theoretical approach. Many excellent
reviews are available on this subject—for instance
[14,15] and references therein. Graphene, constituted by
a single sheet of carbon atoms tightly packed into a two-
dimensional honeycomb lattice, can be regarded in terms of
two periodic sublattices LA and LB. Here, we follow the
convention of [14] (for an alternative convention see for
instance [28]) and define the primitive two-dimensional
vectors a⃗i for sublattice LA and b⃗i for the reciprocal
sublattice, as a⃗1 ¼ að1=2; ffiffiffi

3
p

=2Þ, a⃗2 ¼ að1=2;− ffiffiffi
3

p
=2Þ,

and b⃗1 ¼ 2π
a ð1=2; ffiffiffi

3
p

=2Þ, b⃗2 ¼ 2π
a ð1=2;− ffiffiffi

3
p

=2Þ, where a
is the sublattice spacing. It is also convenient to introduce
the three nearest-neighbor vectors s⃗i,

s⃗1 ¼ að0; 1=
ffiffiffi
3

p
Þ; s⃗2 ¼ að1=2;−

ffiffiffi
3

p
=6Þ;

s⃗3 ¼ að−1=2;−
ffiffiffi
3

p
=6Þ; ð1Þ

where l ¼ affiffi
3

p is the minimal lattice length.

The inner orbitals are strongly bonded to their respective
carbon atom, while the π orbitals present a weak overlap.
The electrons presented in these orbitals are called π
electrons. Following the usual tight-binding approach, only
the interaction of each charge carrier with the nearest
neighbors of π electrons is considered. The Hamiltonian is
written as

H ¼ −t
X
r⃗∈LA

X3
i¼1

ða†ðr⃗Þbðr⃗þ s⃗iÞ þ b†ðr⃗þ s⃗iÞaðr⃗ÞÞ; ð2Þ

where the first sum is only along sublattice LA, t is the
nearest-neighbor hopping energy, and a; a†ðb; b†Þ are the
anticommuting ladder operators in the sublattice LAðLBÞ.
Applying a Fourier transformation, it is straightforward
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to compute the energy-momentum dispersion relation
[14,15]:

Eðkx;kyÞ

¼�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ2cosð

ffiffiffi
3

p
kyaÞþ4cos

� ffiffiffi
3

p

2
kya

�
cos

�
3

2
kxa

�s
:

ð3Þ

The valence and conduction bands, generated by the
opposite signs in the dispersion relation, touch at six points
(Dirac points), of which only two are inequivalent. Here we
choose them to be K⃗� ¼ �2π=að2=3; 0Þ. Expanding the
expression above around these zero energy points, one can
verify that the dispersion relation for each one of them is
linear, E�ðp⃗Þ ¼ �ℏvFjp⃗j. Here, the Fermi velocity is

determined by vF ¼ 3
2
tl ¼

ffiffi
3

p
2
at ≈ c

300
. It was shown [29]

that the annihilation operators a and b can be accommo-
dated in a spinor field when we expand around the above
Dirac points and, therefore, it can be seen as a relativistic-
like fermion that obeys a Dirac-like equation. In conclu-
sion, the continuum limit of the nearest-neighbor approach
in a tight-binding model applied to a pure hexagonal
sublattice with two intertwined triangular sublattices yields
a massless version of the fermion sector of QED3.
Following this approach and working with ημν ¼

diagð−1; 1; 1Þ, the action of the system reads

Sf ¼
Z

d3x½ψ̄ ½γ0ði∂0 − ivFγ⃗ · ∇⃗�ψ �; ð4Þ

where only the first two spatial gamma matrices γ⃗ enter.
Here we show explicitly the Fermi velocity vF ≤ 1
expressed in units of c ¼ 1. Later we deal with extra
fields, in addition to the fermion description of the π
electrons. If only these fermions were taken into account,
we could take a simpler action in a Minkowskian space
with a velocity vF instead of c [12,13,30,31]. In what
follows we first focus on the vF ¼ 1 limiting case, i.e., the
standard Lorentz-invariant Dirac action. In Sec. IV we
generalize the construction to the vF < 1 case.
Interactions with external sources or alterations on the

underlying lattice, for instance using a substrate or doping,
could produce a gap between the bands. This can be
represented at the level of the action by a specific Dirac
mass term, mψ̄ψ , or interaction terms involving the matter
current. Let us refer to [14,32,33] for such possibilities and
classification of the mass terms. Interaction terms that are
bilinear in the fermion field will change the basic sym-
metries of the action, depending on their particular gamma
matrix structure. In this paper we work in the chiral basis,
where the gamma matrices and the fifth gamma matrix are
given by

γ0 ¼
�

0 I2
I2 0

�
; γi ¼

�
0 σi

−σi 0

�
;

γ5 ¼
�−I2 0

0 I2

�
; i ¼ 1; 2; 3; ð5Þ

where I2 is the 2 × 2 identity and σi are the standard Pauli
matrices. Among the several possibilities of interactions,
one can observe that certain terms are completely equiv-
alent to the Dirac mass term as they correspond to a change
in the variables in the path integral. Since there is no axial
anomaly in (2þ 1) dimensions, the result must describe the
same physics. This is the case for the (anti-Hermitian) mass
terms mψ̄γ3ψ and imψ̄γ5ψ , which can be reached from
the standard Dirac mass term by performing the following
unitary transformations in the fermion fields [27],
respectively:

ψ → eiβγ
5

ψ ; ψ̄ → ψ̄eiβγ
5

: ð6aÞ

ψ → eαγ
3

ψ ; ψ̄ → ψ̄eαγ
3

; ð6bÞ

with appropriate choices of the “angles” α and β. In the case
of massless fermions, Eqs. (6a) and (6b) both constitute
symmetries of the theory and are part of a larger U(2)
invariance (see [14]).
We remark that this is a feature of the continuum limit,

and discretization can bring differences between those
terms. For example, the tight-binding lattice models that
would induce the three masses are different [32,33],
but they share their continuum limit. Notice also that all
these masses correspond to a T-even sector [14], where
we refer to T-even or T-odd in the four-component
spinor language. In the two-component description the
symmetry behavior of the fermion mass terms can be
different (see [34,35]).
Considering these variations of the Dirac mass in the

continuum, it is particularly useful to use mψ̄γ3ψ when
working with a four-component representation of the
fermion field since, in this way, it is possible to decompose
and rewrite the action in terms of two decoupled two-
component spinors. This point will be discussed in more
detail below in Sec. III B. The subtle differences between
both formulations can also be seen in [34].
Besides the variants of the Dirac mass, one other specific

mass term is particularly important, the Haldane mass
moγ

3γ5 [36]. This term is totally independent of the masses
previously discussed, as it corresponds to a T-odd bilinear
term. It is especially interesting because in pure QED3 it
can be directly related to the CS term.
The gauge sector of pure QED3 is described by

SQED3
¼
Z

d3x

�
−
1

4
FμνFμνþ 1

2ξ
ð∂ ·AÞ2−θ

2
ϵμνρAμ∂νAρ

�
;
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where the first term is the usual Maxwell term, the second is
a linear gauge fixing term, and the last one is the CS term.
On one hand, the one-loop radiative corrections from a
fermion with Haldane mass generate a T-odd piece in the
photon polarization tensor [37,38], which can be translated
into the presence of the CS term in the gauge sector of the
action. The Coleman-Hill theorem [25] guarantees that no
higher order corrections are allowed, so the connection of
the two terms is clearly pictured. On the other hand, the
presence of a CS term dynamically generates a Haldane
mass for the fermions [39] already at one loop as well.
As discussed before, in order to correctly describe

electrons confined to a plane but whose interaction is
the usual Coulomb interaction, it is necessary to consider
the gauge fields living in the three-dimensional spatial bulk
rather than in the two-dimensional spatial plane. To obtain a
consistent theory combining the suitable conditions for
fermions and gauge fields, Refs. [16,17] start with the
gauge theory in four dimensions and integrate out the gauge
field. For the sake of brevity, we consider standard QED4

(without a Chern-Simons term) written as

SQED4
¼

Z
d4x

�
−
1

4
FμνFμν þ 1

2ξ
ð∂ · AÞ2 þ jμAμ

�
: ð7Þ

The Dirac matter currents are

jμ ¼
�
iψ̄γμψδðx3Þ for μ ¼ 0; 1; 2;

0 for μ ¼ 3;
ð8Þ

with the fermion fields only dependent on ðx0; x1; x2Þ. This
formally expresses the fact that the fermion dynamics is
restricted to the ðx1; x2Þ plane, i.e., the planar graphene
sheet. The current is conserved, ∂μjμ ¼ 0. The easiest way
to proceed is to Wick rotate to Euclidean space and to
Fourier transform (denoted by the -̂notation throughout the
remainder of the text) in order to integrate out the four-
dimensional gauge field, leading to

Seff ¼
Z

d4p½ĵμD̂T
μνðp⃗; p3Þĵν�; ð9Þ

where p⃗ ¼ ðp0; p1; p2Þ. Note that D̂T
μνðp⃗; p3Þ ¼ ðδμν −

pμpν

ðp⃗2þp2
3
ÞÞ × 1

ðp⃗2þp2
3
Þ is the (gauge-independent) transverse

projection of the free photon propagator, which appears
due to the conserved fermion current. As the Fourier-
transformed currents will not depend on p3, we can
integrate out the latter, leading to

Seff ¼
Z

d3p½ĵμD̂T
μνðp⃗Þĵν�: ð10Þ

The indices μ, ν are, from now on, restricted to x0, x1, x2,
and we can forget about the δðx3Þ in the definition of the
current jμ. Furthermore, we set

D̂T
μνðp⃗Þ ¼

�
δμν −

pμpν

p2

�
1

2p
; p ¼

ffiffiffiffiffi
p⃗2

q
: ð11Þ

It is worth noting that, in passing from (9) to (10), an
irrelevant longitudinal term appearing in ĵμ…ĵν has been
dropped from (10). It is then easily recognized that the
effective action (10) can be equivalently reformulated
in terms of a Euclidean nonlocal gauge-invariant three-
dimensional theory, with gauge fixed action

SRQED3
¼
Z

d3x

�
1

2
Fμν 1ffiffiffiffiffiffiffiffi

−∂2
p Fμνþ ψ̄ði=DÞψþ 1

2ζ
ð∂ ·AÞ2

�
;

ð12Þ

after the introduction of a new and now three-dimensional
Abelian gauge field that, with a slight abuse of notation, we
again call Aμ. We have also added dynamics for the
fermions, still without mass for the moment. The physical
content of the theory will be gauge invariant and thus
independent of the chosen gauge; thus, the gauge fixing
terms before and after the reduction do not need to be the
same. We have opted here for a simple linear gauge fixing
rather than the involved reduced nonlocal gauge fixing term
in [16,17]. The gauge parameter ζ here also carries a
dimension, unlike ξ in (7). The renormalization properties
of RQED≡ RQED3 were discussed in [40,41]. It should be
noted that (12) already generates at tree level a branch cut in
the complex momentum plane in the photon propagator,
with a branch point at p2 ¼ 0. It is exactly the presence of
the 1=

ffiffiffiffiffiffiffiffi
−∂2

p
in the kinetic gauge term that also allows us to

keep the electromagnetic coupling constant e dimension-
less, even in a (reduced) three-dimensional space-time.
Indeed, the new gauge field Aμ still has mass dimension 1,
while for standard QED3 that mass dimension would
amount to 1=2. The nonlocal operator

ffiffiffiffiffiffiffiffi
−∂2

p −1 is to be
understood via its three-dimensional Fourier (momentum)
space representation [16]

1ffiffiffiffiffiffiffiffi
−∂2

p ðx⃗ − x⃗0Þ ¼
Z

d3k
2π3

eik⃗·ðx⃗−x⃗0Þ

k
; k ¼

ffiffiffiffiffi
k⃗2

p
: ð13Þ

If we add a Euclidean CS term, iθ
R
d3xϵμνρAμ∂νAρ, to the

action in (12), we can deduce the tree-level photon
propagator for a reduced Maxwell-CS theory, namely,

D̂μνðp⃗Þ ¼
1

2p
1

ð1þ θ2Þ
�
δμν −

pμpν

p2

�
−

1

2p2

θ

ð1þ θ2Þ ϵμνρp
ρ

þ ζ

p2

pμpν

p2
: ð14Þ

From the CS term, we can infer that θ here is actually a
dimensionless parameter, so unlike in standard QED3, it
does not provide the theory with a “topological photon
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mass.” This is consistent with the observation that RQED is
scale invariant up to at least two loops; i.e., the beta
function of the electromagnetic coupling vanishes [40,42].
On the other hand, θ ≠ 0 influences the photon propagator,
not only by the presence of a T-odd contribution, but also
by a normalization of the photon propagator. Intuitively,
this corresponds to a down-scaling of the strength of the
photon propagator, an effect not unlike increasing the mass
of the exchanged particle.

III. ONE-LOOP EXACTNESS OF TOPOLOGICAL
PHOTON TERM IN REDUCED PLANAR QED:

LORENTZ-INVARIANT CASE

Our aim now is to prove that there will be no T-odd
contributions to the gauge sector, i.e., the CS term, coming
from radiative corrections beyond one loop. In principle,
for the sake of physical interest, we could also try to add a
generic electromagnetic background field to the action—to
QED4 or RQED3—via the gauge principle of minimal
coupling with the fermion fields. Background fields must
be treated classically and, in the same way as the gauge
sector, they must be defined in four dimensions. For
possible interesting physics involving background fields,
see for instance [43–45], including in-plane fields, which
were also considered in [46]. For example, minimal
coupling means we replace the covariant derivative in (12)
as follows:

i=D → i=Dþ iĀ0γ
0 þ iĀ3γ

3; ð15Þ

where the barred gauge fields are classical in nature. Here
Ā0 can describe a potential (electric field E⃗) applied in or
orthogonal to the graphene sheet, while Ā3 can be used to
couple an in-plane magnetic field B⃗ke⃗1. We remark here
that the fields Aμ can be considered as the quantum
fluctuations around these classical background fields Āμ.
Taking the nonrelativistic limit of the corresponding Dirac
equation, the latter coupling will provide the necessary
magnetic field–magnetic moment coupling relevant for the
Zeeman term considered in [46]. It is important to realize
that although graphene is a sheet and the fermions will have
no classical dynamics outside of the plane due to an in-
plane magnetic field, there is still the option for further
quantum effects in the plane. Unfortunately, the tensorial
basis elements relevant for the construction of a transverse
self-energy, which play an important role in the Coleman-
Hill argument, become far more complicated in the
presence of background fields, mostly due to the increased
number of allowed transverse tensors in Fourier (momen-
tum) space. Moreover, nonconstant background fields
make the situation utterly difficult. In light of this, we
ignore background fields from our analysis in the current
paper, and from now on we work with

SRQED3
¼
Z

d3x

�
1

2
Fμν 1ffiffiffiffiffiffiffiffi

−∂2
p Fμν

þ ψ̄ði=Dþmγ3þmoγ
3γ5Þψ þ 1

2ζ
ð∂ ·AÞ2

�
: ð16Þ

Notice that E⃗ · B⃗ would be another T-odd scalar quantity, if
present. In the absence of such fields we have allowed for
the Haldane mass as another source of T-odd physics. As
explained before, we opt for the mψ̄γ3ψ -representation of
the Dirac mass, although the following argument does not
depend on which fermion masses are present; the actual
numbers can, however.

A. All order proof based on Ward identity

First, we use the power of the global Ward identity
associated with charge conservation to prove that (16)
generates a CS term for the photon at one-loop order,
or not at all. It is important that the fermions are massive
to avoid spurious infrared singularities, so we can hereafter
safely consider zero momentum expansions. Such an
approach was suggested in [47] for standard QED3 while
avoiding the combinatorial elements of the original proof
of [25]. We follow as closely as possible the analysis
of [47], paying attention to some differences where
necessary.
We decompose, in Fourier space, the three-dimensional

photon 1PI propagator (self-energy) in its most general
form in a linear covariant gauge that is compatible with all
Ward (Slavnov-Taylor) identities,

Π̂μνðp⃗Þ ¼ hÂμðp⃗ÞÂνð−p⃗Þi1PI

¼
�
δμν −

pμpν

p2

�
Πðp2Þ þ ϵμνρpρϑðp2Þ: ð17Þ

Although it is well known that the photon self-energy is
transverse, let us briefly review the underlying argument, as
we will also need it later when we study the Lorentz-
noninvariant case (without change). It is most easily
derived by replacing the action (16) by its equivalent
version

SRQED3
¼

Z
d3x

�
1

2
Fμν 1ffiffiffiffiffiffiffiffi

−∂2
p Fμν

þ ψ̄ði=Dþ iAsγ
s þmγ3 þmoγ

3γ5Þψ þ bð∂ · AÞ

−
ζ

2
b2 þ c̄∂2c

�
; ð18Þ

including the multiplier b and Faddeev-Popov (anti)ghost
c̄; c. Then the action (18) has a manifest BRST invariance,
generated by
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sAμ ¼ −∂μc; sc̄ ¼ b; sc ¼ 0; sb ¼ 0;

sψ ¼ −iecψ ; sψ̄ ¼ −ieψ̄c; s2 ¼ 0: ð19Þ

We can define the composite operators sψ and sψ̄ at the
quantum level by means of appropriate external sources
coupling them to the theory,

Σ ¼ SRQED3
þ
Z

d3x½J̄ sψ − sψ̄J �: ð20Þ

At the functional level, the BRST invariance is encoded in

Z
d3x

�
−∂μc

δΣ
δAμ

þ b
δΣ
δc̄

þ δΣ
δJ̄

δΣ
δψ

−
δΣ
δJ

δΣ
δψ̄

�
¼ 0; ð21Þ

which becomes the Slavnov-Taylor identity at the quantum
level,

Z
d3x

�
−∂μc

δΓ
δAμ

þ b
δΓ
δc̄

þ δΓ
δJ̄

δΓ
δψ

−
δΓ
δJ

δΓ
δψ̄

�
¼ 0: ð22Þ

Here, Γ is the quantum effective action, viz. the generating
functional for the 1PI correlation functions. We have also
suppressed the space-time variable x to avoid notational
clutter. Acting with the test operator δ2

δcδAν
on (22) and

setting all external fields and sources to null, we indeed
obtain the well-known transversality constraint

∂μ
δ2Γ

δAμδAν
≡ ∂μΠμν ¼ 0: ð23Þ

Returning to the decomposition (17), the Coleman-Hill
theorem now states that limp2→0ϑðp2Þ is solely determined
by one-loop corrections.
To show this explicitly, we start from the path integral,

I ¼
Z

½dψ̄ �½dψ �½dAμ�e−SRQED3 ; ð24Þ

with SRQED3
defined in (16). Then, diagrammatically, it is

easily seen that at zero momentum, the graphs contributing
to Π̂μνðp2Þ correspond to those of the 1PI current-current
correlator with zero momentum flow. We hence focus our
attention on hjμðxÞjνðyÞi1PI and show that, at zero momen-
tum, it is fully determined at one-loop order.
Classically, we can couple the current jμðxÞ to the action

via an extra local source ημðxÞ by considering

Σ0 ¼ Σþ
Z

d3xημjμ: ð25Þ

Then

∂μ
δΣ0

δημ
¼ ψ̄

δΣ0

δψ̄
þ δΣ0

δψ
ψ ð26Þ

expresses that the current is conserved. This is nothing
other than the Noether theorem in functional language. As
before, we get the quantum Ward identity

∂μ
δΓ
δημ

¼ ψ̄
δΓ
δψ̄

þ δΓ
δψ

ψ : ð27Þ

Here, we tacitly ignore the presence of the nonlocal
operator 1ffiffiffiffiffiffi

−∂2p as, strictly speaking, the quantum validity

of Ward identities is only ensured in terms of local quantum
field theory [48]. That being said, the nonlocality can be
reduced from 1ffiffiffiffiffiffi

−∂2p to
ffiffiffiffiffiffiffiffi
−∂2

p
by introducing an auxiliary

antisymmetric tensor field Bμν that allows us to replaceR
d3x 1

2
Fμν 1ffiffiffiffiffiffi

−∂2p Fμν →
R
d3x½1

2
Bμν

ffiffiffiffiffiffiffiffi
−∂2

p
BμνþBμνFμν�. This

replacement does not affect the rest of the proof in this
section, but a complete localization remains impossible
unless we go back to a higher dimension of course, i.e., the
original starting point with its mixed-dimensional action.
However, it is also important to realize that the nonlocal
term only affects the photon propagator, making it even
softer in the infrared than for standard QED3. As such, the
infrared is safer than expected, while for the interaction
terms (leading to the nontrivial Feynman diagrams), stan-
dard power counting will apply. This is also the reason we
could present the current analysis, which makes it clear that
the RQED situation is, although similar, not completely the
same as its better known cousin QED3, as treated in [47].
Power counting renormalizability of RQED was discussed
in [40,42,49]. This ensures that the tree-level nonlocality
will not spread into the theory; in that sense, there is no
need to introduce more and more interaction vertices into
the theory to maintain renormalizability. For example, if
higher powers of 1ffiffiffiffiffiffi

−∂2p are to be combined with higher

powers of Fμν, we still have d ¼ 3, but higher order
interaction vertices could appear radiatively. This is not
the case for RQED. As dim½ημ� ¼ 1, the quantum version of
the action (25), which should contain all possible integrated
d ¼ 3 polynomials of fields and sources compatible with
the Ward identity constraints, will not be deformed by
terms containing η2μ or higher powers, as no such terms can
be constructed. The latter terms, if present, are responsible
for contact terms in correlation functions containing the
(gauge-invariant) current (see e.g., [50] for a similar
observation). Thus, we do not need to worry about contact
terms from the start, thereby evading the comment of [47].
Let us now denote with V0 ≡ −i

R
d3xψ̄Aμγ

μψ the
standard gauge-boson fermion vertex operator. Then we
can infer from the Ward identity (27) that

∂μhjμðxÞjνðyÞVn
0i1PI ¼ 0 ð28Þ
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by taking another functional derivative of (27) w.r.t. ηνðyÞ,
followed by n ≥ 0 derivatives w.r.t. the coupling constant e
and setting all external sources and fields to zero at the end.
The coupling e acts as the (constant) source defining, by its
derivatives, the quantum insertion of the vertex operator V0.
Notice that each power of V0 is an integrated operator
insertion, that is, one with zero momentum flow. Since (28)
holds for any n and since any expectation value of operators
evaluated with the path integral partition function (24) can
be succinctly rewritten as

hjμðxÞjνðyÞi1PISRQED3
¼

X
n∈N

hjμðxÞjνðyÞenVn
0i1PIquad; ð29Þ

where “quad” refers to the quadratic (free theory) approxi-
mation of SRQED3

, we can equally well write

X
n∈N

∂μhjμðxÞjνðyÞenVn
0i1PIquad ¼ 0 ð30Þ

instead of (28).
For n ≥ 0, each term in the expansion (29) can be

expanded around zero momentum as

hĵμðpÞĵνð−pÞV̂n
0i1PIquad ¼ anδμν þ bnϵμνρpρ þ � � � ð31Þ

after Fourier transforming. There is no need for the trans-
verse projector PμνðpÞ ¼ δμν −

pμpν

p2 here, as for p → 0, this

operator becomes proportional to δμν.
Combining the constraint (30) with (31) then immedi-

ately gives an ¼ 0 for all n ≥ 0. To control bn, we use a
small trick. We replace

hĵμðpÞĵνð−pÞV̂n
0i1PIquad

→ lim
k→0

hĵμðpþ k=2Þĵνð−pþ k=2ÞV̂n−1
0 V̂ki1PIquad; ð32Þ

i.e., we let a small net momentum k flow through one of the
vertices, keeping total momentum conservation in mind of
course. Strictly speaking, from the viewpoint of renorm-
alization, we should introduce here another local source to
define the nonintegrated quantum operator −iψ̄Aμγ

μψ,
thereby deforming the original action (25) again.
However, since we are only interested in the zero momen-
tum limit, i.e., integrated operator, we refrain from doing
so. This means we must exclude the n ¼ 0 term as we need
at least one vertex insertion. Due to the symmetry ðμ; pÞ ↔
ðν;−pÞ present in expression (32), only the following
expansion can hold at leading order in ðp; kÞ,

hĵμðpþ k=2Þĵνð−pþ k=2ÞV̂n−1
0 V̂ki1PIquad

¼ Anδμν þ Bnϵμνρpρ þ � � � : ð33Þ

Since k does not appear in the foregoing expression, we
actually have Bn ¼ bn for n ≥ 1 from the identification
(32) together with the expansion (31). This aforementioned
symmetry is crucial to avoid other possible momentum
combinations in (33); we assume that [47] used the same
observation, without having made it explicit.
The Fourier version of the constraint1 (30) now reads

ðpþ k=2Þμhĵμðpþ k=2Þĵνð−pþ k=2ÞV̂n−1
0 V̂ki1PIquad ¼ 0:

ð34Þ

Applying this to (33) leads, next to An ¼ 0, to bn ¼ 0 for
all n ≥ 1.
Putting everything back together, we have actually

shown that

hĵμðpÞĵνð−pÞi1PISRQED3
¼ b0ϵμνρpρ þOðp2Þ; ð35Þ

which is nothing other than the Coleman-Hill theorem for
RQED, as the corresponding zeroth order diagram con-
tributing to (35) is equivalent to the one-loop photon self-
energy correction.

B. Four-component vs two-component spinors

As we mentioned in Sec. II, there are several theoretical
instances to create a mass gap in the Dirac regime of
graphene π-electrons, even if experimentally it is still very
difficult to open a mass gap in a controllable way [15] (see
[14,33,51] for a detailed description of the different mass
terms and their corresponding symmetry breaking). Here,
we briefly survey how those mass terms are reduced in the
four- and two-component spinor descriptions for these
electrons. If we consider four-spinors in (2þ 1) dimen-
sions, the Lorentz generators are in a reducible 4 × 4matrix
representation [14,27,31]. We arrange the sublattice anni-
hilation operators (a and b) with their corresponding valley
numbers (subscripts þ and −) as

ψþ ¼
�
aþ
bþ

�
; ψ− ¼

�
b−
a−

�
; ð36Þ

in the two-component representation, and as

ψ ¼
�
ψþ
ψ−

�
; ð37Þ

in the case of a four-component representation.
As in the four-component description, we have at our

disposal two matrices which anticommute with respect to

1This condition also holds when the operators V̂k are not
integrated; this can be shown by coupling the operator ψ̄=Aψ to the
action Σ with another local source and by manipulating the
corresponding Ward identity.
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the rest (γ3 and γ5); we basically have four kinds of masses.
Notice that we do not consider the internal spin-1=2 nature
of the π electrons. By considering it, the number of
mass terms increases considerably [33]. A standard mass
term in four-component spinor language is of the form
mψ̄ψ ¼ mψ†γ0ψ , which breaks both symmetries (6a) and
(6b), but it does not break time reversal symmetry in the
four-dimensional matrix representation. This term mixes
the flavors þ and −,

Susual ¼ −
Z

d3xmψ̄ψ ¼ −
Z

d3xmðψ†
þψ− þ ψ†

−ψþÞ:

The mass terms considered in Sec. II, i.e., imψ̄γ5ψ and
mψ̄γ3ψ , break one of the extended symmetries, (6a) and
(6b), respectively, but preserve time reversal symmetry in
the four-dimensional matrix representation. The first case is
related to the Kekulé distortion [52], while we can see that
the second one allows us to rewrite the action in a two-
component spinor decomposition as

Sγ3 ¼ −
Z

d3xmψ̄γ3ψ ¼ −
Z

d3xmðψ†
þσ3ψþ − ψ†

−σ
3ψ−Þ:

ð38Þ

We call this term the “normal” mass, as it is the usual mass
for a two-component spinor in (2þ 1) dimensions with two
different decoupled flavors þ and −.
The last possibility is the Haldane mass term [36], which

does not break the symmetries (6a) and (6b) but does break
time reversal symmetry [14]. This term also admits a
decoupled two-component spinor decomposition,

SHaldane ¼ −
Z

d3xm0ψ̄γ
3γ5ψ

¼ −
Z

d3xmoðψ†
þσ3ψþ þ ψ†

−σ
3ψ−Þ: ð39Þ

We can see that the mass terms (38) and (39) have different
relative sign for the two flavors þ and −.
The CS mass term can be generated by T-odd fermion

one-loop corrections. These corrections at zero momentum
are of the form [35,38,53,54]

Γodd
μν ∼

m
jmj ϵμνρpρ; ð40Þ

implying that the term (38) will give a net zero contribution
for the CS photon mass, while (39) does contribute. More
precisely, we get, at the level of the action, a (exact)
radiatively introduced T-photon term

SCS ¼
Z

d3x

�
−i

e2

4π

mo

jmoj
ϵμνρAμ∂νAρ

�
ð41Þ

when a Haldane term (39) is coupled to RQED. Here,
again, we note the role of the dimensionless coupling in
RQED. Indeed, in the case of QED3 the factor e2 in (41) is
what “feeds” the dynamical topological photon mass θ
thanks to e2 having mass dimension 1, whereas now the
dimensionless nature of e2 gives a dimensionless parameter
θ in front of the CS term.

IV. ONE-LOOP EXACTNESS OF TOPOLOGICAL
PHOTON TERM IN REDUCED PLANAR QED:

LORENTZ-NONINVARIANT CASE

Having proven the Coleman-Hill theorem in the case of
Lorentz-invariant RQED3, let us now turn to the generali-
zation in terms of the action [based on the one of (4),
supplemented with the photon field and BRST-invariant
linear gauge fixing]

SRQED3
¼

Z
d3x

�
1

2
Fμν 1ffiffiffiffiffiffiffiffi

−∂2
p Fμν þ ψ̄ðiγ0ð∂0 þ eA0Þ

þ ivFγið∂i þ eAiÞ þmγ3 þmoγ
3γ5Þψ

þ bð∂ · AÞ − ζ

2
b2 þ c̄∂2c

�
; ð42Þ

i.e., we take into account the Fermi velocity vF. To avoid
further notational clutter, we keep the notation SRQED3

for
the classical action, Σ for the classical action supplemented
with external sources, and Γ for the quantum effective
action. We briefly note the points that do not change but go
intomore detail about the necessary, significant adaptations.
Some quantum aspects of a similar theory—for massless
fermions and within the approximation of an instantaneous
Coulomb interaction—were discussed in [55], including the
renormalization of vF away from the fixed point vF ¼ 1
(also studied in [56]), the latter corresponding to the
Lorentz-invariant limit. Dyson-Schwinger equation based
studies are presented in e.g., [57,58].
Clearly, the action (42) is still BRST invariant w.r.t. (19),

so the transversality constraint (23) holds, irrespective
of vF. As the Lorentz invariance is reduced to two-
dimensional rotational invariance in the (1, 2)-plane, the
tensorial decompositions used in Sec. III become a bit more
elaborate. The self-energy can now be decomposed into

Πμνðp⃗Þ ¼ hAμðp⃗ÞAνð−p⃗Þi1PI
¼ P1

μνΠ1ðp0; pipiÞ þ P2
μνΠ2ðp0; pipiÞ

þ ϵμνρpρϑðp0; pipiÞ: ð43Þ

We have introduced two transverse projectors, similar to
what is known from finite-temperature field theory [59,60],
as the raison d’être for the relevance of these two tensors is
the same: the 0-direction is singled out as “special.” To be
more precise, we have, with i; j ∈ f1; 2g,
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Pð1Þ
μν ¼

�
0 μ ¼ 0 or ν ¼ 0

δij −
pipj

p2 otherwise;

Pð2Þ
μν ¼

�
δμν −

pμpν

p2

�
− Pð1Þ

μν : ð44Þ

The decomposition (43) is the most general one that is
compatible with the symmetry ðμ; pÞ ↔ ðν;−pÞ, the two-
dimensional rotational invariance, and the transversality
constraint pμΠμν ¼ 0. The form factors can depend sepa-
rately on p0 and pipi, as indicated.
The (conserved) fermion current is now given by

jμ ¼ ψ̄iγ0ψδμ0 þ vFψ̄iγiψδμi; ∂μjμ ¼ 0; ð45Þ

while the photon-fermion vertex becomes V0 ¼
−i

R
d3xψ̄A0γ

0 − ivF
R
d3xψ̄Aiγ

i. This vertex could be split
into two vertices, but considering all powers of V0 in the
series expansion will generate all necessary powers of its
two substructures; thus, we can maintain a single vertex
expression, for simplicity.
The connection between the self-energy Πμνðp⃗Þ and the

current-current correlator remains valid, so it is still
sufficient to control the low momentum expansion of
hjμjνi1PI, which is rewritable as, using the same arguments
as in Eq. (29),

hjμjνi1PISRQED3
¼

X
n∈N

hjμjνenVn
0i1PIquad ð46Þ

and subject to (30), with the appropriate vertex replacement.
A word of caution is needed here. As the fermions are

massive, just as before, there will be no singular behavior
around zero momentum, despite the lack of Lorentz
invariance. This situation is in sharp contrast with finite
temperature, where nonanalytic behavior emerges at zero
momentum (see for instance [60,61]). In particular, the
limits p0 → 0 and pi → 0 do not commute, as they corres-
pond to different physics. Intuitively, a finite-temperature
medium opens extra reaction channels (particle absorption
from the medium), leading to extra branch points, in
particular, at the momentum origin [61]. This lies at the
heart of the nonvalidity of the Coleman-Hill theorem at
finite temperature, explicitly illustrated in [60]. Our current
setup is inherently different, as we have no thermal
medium. As such, for each n ≥ 0, we can expand the
terms in (46) as follows:

hĵμðpÞĵνð−pÞV̂n
0i1PIquad ¼ anδμ0δν0 þ a0nδμiδνi

þ bnϵμνρpρ þ � � � : ð47Þ

The twodelta terms correspond to the zeromomentum limits
of the aforementioned transverse projectors. The rest of the
argument proceeds analogously as in Sec. III, eventually
leading to an¼a0n¼0;∀n≥0, and bn¼0;∀n≥1. In other

words, the zero momentum limit of the topological term in
the photon self-energy is exact at one-loop order; i.e., the
Coleman-Hill theorem applies to the theory described by the
action (42).
It is useful to compute ϑð0Þ and see how it depends on

vF. We follow [35,62] and consider first a single two-
component (Euclidean) spinor with standard Dirac mass.
We use

γ0¼
�−i 0

0 i

�
; γ1¼

�
0 i

i 0

�
; γ2 ¼

�
0 1

−1 0

�
: ð48Þ

The one-loop photon self-energy is then given by

Πμνðp⃗Þ ¼ e2
Z

d3k
ð2πÞ3 Tr½ðγ

0δμ0 þ vFγiδμ0Þ

× SFðp⃗þ k⃗Þðγ0δν0 þ vFγjδνjÞSFðk⃗Þ�; ð49Þ

with a fermion propagator reading

SFðp⃗Þ ¼
p0γ

0 þ vFpiγ
i −m

p2
0 þ v2Fpipi

: ð50Þ

To facilitate the computation, we can introduce P⃗ ¼
ðp0; vFpiÞ, and doing the same for the integration momen-
tum K⃗ ¼ ðk0; vFkiÞ, we get

Π̂μνðp⃗Þ≡Π̃μνðP⃗Þ

¼ e2

v2F

Z
d3K
ð2πÞ3Tr

�
ðγ0δμ0þvFγiδμ0Þ

×
Pþ=K−m

ðPþKÞ2þm2
ðγ0δν0þvFγjδνjÞ

=K−m
K2þm2

�
: ð51Þ

As we are only interested in the piece ∝ ϵμνρpρ, it is clear
that the only relevant contributions to this odd piece come
from combining an odd number of γ matrices, based on the
property TrðγμγνγρÞ ¼ −2ϵμνρ. It is clear from the above
expression (51) that we will find for the integral, at leading
order in P and thus in p, the same result as if vF ¼ 1,
modulo the fact that each time a spatial index appears, an
extra factor of vF is to be included, either coming from the
γi- and/or γj-vertex, or from the spatial part of the Pρ-factor
multiplying ϵμνρ. Thanks to the ϵ-symbol, we know that
exactly two such spatial indices will appear in any case, so
taking into account the prefactors of the integral, we
ultimately find

Π̂μνðp⃗Þ ¼
e2

4π

m
jmj ϵμνρp

ρ þOðp2Þ; ð52Þ

i.e., the topological photon term does not depend on the
Fermi velocity. This result confirms the earlier finding of
[63], where a vF rescaling of the spatial γ matrices was
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introduced to facilitate the one-loop computation of the
self-energy.
Returning to the graphene case with four-component

spinors, we thus find no dynamically generated CS term in
the presence of a Dirac mass, while a Haldane mass leads to

SCS ¼
Z

d3x

�
−i

e2

4π

mo

jmoj
ϵμνρAμ∂νAρ

�
ð53Þ

if the underlying dynamics is governed by the action (42).

V. OUTLOOK

We have shown that, in the framework of reduced QED in
(2þ 1) dimensions, the topological piece of the photon self-
energy at zeromomentumonly receives quantumcorrections
up to one loop. Using fundamental arguments based on the
Uð1ÞWard identity, we have proven that all two- and higher-
loop contributions are identically zero. In other words,
besides holding for ordinary QED3, the Coleman-Hill
theorem thus also applies in the case of a theory containing
nonlocal terms in the action, where the gauge fields are not
constrained to the plane but the fermions are; this is
irrespective of the presence of the Fermi velocity vF < c
which explicitly breaks the Lorentz invariance. Let us point
out that Lorentz invariance can be broken in an even more
severe way, namely, rotational symmetry breaking, once we
abandon the linear regime due to the honeycomb lattice
structure. This has important consequences for the π electron
description in such regimes [64,65]. For completeness, we
have also derived the tree-level photon propagator for this
theory, taking into account the CS term. Interestingly, for the
RQED case, the parameter θ in front of the CS term is not a
mass, as for QED3, but somehow acts as a dimensionless
suppressing factor in the photon propagator [see (14)].
Moreover, we computed the exact value of θ in the case
where the four-component Dirac fermions are massive for
two different realizations of the mass term, both relevant for
graphene studies [see (38) and (39)], which is valid for both
Lorentz-invariant and noninvariant cases.

Our observations pave the road to more deeply inves-
tigate the interconnection between the CS photon term and
Haldane fermion mass in the specific case of RQED. Any
interaction term or fermion mass has a direct influence on
the vector and axial current channels which, in the context
of graphene physics, provide us with relevant observables
for transport phenomena. A mapping between the two
sectors of the theory would also allow us to investigate how
the presence of external electromagnetic fields effectively
manifest themselves in the fermion sector. An important
piece of information will be encoded in the θ-sector of the
photon propagator, which we expect to be quite sensitive to
such background fields. Numerical estimates for the
influence of the CS term on the Haldane mass and/or
γ3-Dirac mass, making use of Dyson-Schwinger equations,
along the same lines as the QED3 study of [66], are
currently being prepared and will be reported in a forth-
coming work, paying particular attention on the role of the
Fermi velocity vF. Moreover, we hope to establish the one-
loop exactness of the topological photon term, at least in the
case of constant background electric and magnetic fields,
which are of phenomenological relevance, as outlined in
our text. These backgrounds can be rephrased in terms of a
single space-time dependent background gauge field,
which itself remains constant in momentum space, up to
appropriate (derivatives of) δ functions. It should hence be
possible to construct the most general transverse tensor
basis, in the presence of both aforementioned background
fields and Fermi velocity vF, and apply similar techniques
as outlined here.
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