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The entanglement of purification EPðA∶BÞ is a powerful correlation measure, but it is notoriously
difficult to compute because it involves an optimization over all possible purifications. In this paper, we

prove a new inequality: EPðA∶BÞ ≥ 1
2
Sð2ÞR ðA∶BÞ, where SðnÞR ðA∶BÞ is the Renyi reflected entropy. Using

this, we compute EPðA∶BÞ for a large class of random tensor networks at large bond dimension and show
that it is equal to the entanglement wedge cross section EWðA∶BÞ, proving a previous conjecture motivated
from AdS/CFT.
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Introduction. Given a bipartite density matrix ρAB, the
entanglement of purification EPðA∶BÞ is defined as [1]

EPðA∶BÞ ¼ min
jψiABA0B0

SðAA0Þ; ð1Þ

where SðRÞ ¼ −trðρR log ρRÞ is the von Neumann entropy.
The minimization runs over all possible purifications of
ρAB, i.e., jψiABA0B0 such that trA0B0 ðjψihψ jÞ ¼ ρAB, and the
jψi that achieves the minimum is called the optimal
purification. EPðA∶BÞ is a useful measure of correlations
in a bipartite mixed state and is proven to be monotonic
under local operations [1]. However, it is generally intrac-
table to compute because of the optimization over all
possible purifications [2].
In the context of AdS/CFT [4], it has been conjectured

that for A, B subregions of the conformal field theory
(CFT), there is a simple geometric, anti–de Sitter (AdS)
dual to EPðA∶BÞ. The entanglement wedge of subregion
AB of the CFT is the bulk region between AB and the

minimal surface γAB [also called the Ryu-Takayanagi (RT)
surface [6] ]. This is, in appropriate settings, the bulk region
reconstructable from the corresponding boundary subre-
gion [7]. Based on this, Refs. [3,8] conjectured that
EPðA∶BÞ is given by

EPðA∶BÞ ¼ EWðA∶BÞ ¼ AreaðΓA∶BÞ
4GN

; ð2Þ

where ΓA∶B is the entanglement wedge cross section, the
minimal surface dividing the entanglement wedge into
portions containing A and B respectively, as depicted in
Fig. 1. GN is Newton’s constant, and in this paper, we will
set ℏ ¼ c ¼ 1 by choosing natural units.

FIG. 1. The entanglement wedge cross section ΓA∶B divides the
entanglement wedge (blue) into two regions which contain A and
B respectively. The RT surface is denoted γAB.
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Proving this AdS/CFT conjecture appears quite chal-
lenging. However, there exists a toy model of AdS, called
random tensor networks (RTNs), which have proven useful
in discovering new insights into AdS/CFT entanglement
properties [9–13], especially because of their connection to
fixed-area states [14–17]. The goal of this note is to present
progress on proving the conjecture (2) in RTNs.
We compute EP by using a known upper bound and

deriving a new lower bound (Theorem 1), which we are
able to argue matches the upper bound in certain RTNs.
This argument relies on results obtained previously for the
reflected entropy, SRðA∶BÞ, in RTNs [11–13]. The
reflected entropy is defined as [18]

SRðA∶BÞ ¼ SðAA�Þj ffiffiffiffiffiffiρAB
p i; ð3Þ

where the state j ffiffiffiffiffiffiffiρAB
p i is the canonical purification, which

lives in the Hilbert space EndðHABÞ of operators acting on
HAB. EndðHABÞ is isomorphic to the doubled Hilbert
space HAB ⊗ HA�B� .
The bounds are as follows. It is conjectured that the

reflected entropy in AdS/CFT satisfies

SRðA∶BÞ ¼ 2EWðA∶BÞ; ð4Þ

and this has been proven rigorously for a large class of
RTNs [11–13], as we will discuss. Moreover, as argued in
[8], RTNs in general satisfy

EPðA∶BÞ ≤ EWðA∶BÞ: ð5Þ

This places the upper bound EP ≤ SR=2. The rest of this
paper proves the lower bound and discusses when it
matches this upper bound.

Reflected entropy from modular operator.
Definition 1. The Renyi reflected entropy is

SðnÞR ðA∶BÞ ¼ SnðAA�Þj ffiffiffiffiffiffiρAB
p i; ð6Þ

where SnðRÞ ¼ 1
1−n log trðρnRÞ is the nth Renyi entropy.

The lower bound in Theorem 1 will require the following
lemma that rewrites the Renyi reflected entropy using the
formalism of modular operators appearing in Tomita-
Takesaki theory [19]. Consider a finite dimensional system
with Hilbert space HAB ⊗ HC, where subsystem C is
completely general. Given a state jψi [21] and subsystem
AB, the modular operator is defined as

ΔAB;ψ ¼ ρAB ⊗ ρ−1C ; ð7Þ

where the inverse is defined to act only on the nonzero
subspace of ρC and ΔAB;ψ is defined to annihilate the
orthogonal subspace.

Lemma 1. For integer n ≥ 2,

SðnÞR ðA∶BÞ ¼ 1

1 − n
loghψ⊗njΣAΔ

1=2
AB⊗n;ψ⊗nΣ†

Ajψ⊗ni; ð8Þ

where ΣAðA�Þ are twist operators that cyclically permute the
n copies of j ffiffiffiffiffiffiffiρAB

p i on subregion AðA�Þ, jψi is an arbitrary
purification of ρAB, and ΔAB⊗n;ψ⊗n ¼ Δ⊗n

AB;ψ .
Proof. Start with Eq. (6) and rewrite it as [18]

SðnÞR ðA∶BÞ ¼ 1

1 − n
log trðρnAA� Þ ð9Þ

trðρnAA� Þ ¼ h ffiffiffiffiffiffiffi
ρAB

p ⊗njΣAΣA� j ffiffiffiffiffiffiffiρAB
p ⊗ni: ð10Þ

As described in Ref. [18], operators act on EndðHABÞ by
left and right actions, i.e.,

OABjMABi ¼ jOABMABi ð11Þ

OA�B� jMABi ¼ jMABO
†
ABi; ð12Þ

and the inner product is defined by

hMjNi ¼ trðM†NÞ: ð13Þ

Using this, one finds that Eq. (10) is given by

trðρnAA� Þ ¼ trðABÞ⊗nð ffiffiffiffiffiffiffi
ρAB

p ⊗nΣA
ffiffiffiffiffiffiffi
ρAB

p ⊗nΣ†
AÞ: ð14Þ

To express Eq. (14) in terms of modular operators, we
consider an arbitrary purification of ρAB denoted jψi, giving

trðρnAA� Þ ¼ trðABÞ⊗nð ffiffiffiffiffiffiffi
ρAB

p ⊗nΣA
ffiffiffiffiffiffiffi
ρAB

p ⊗nΣ†
AÞ

¼ hψ⊗njΣAΔ
1=2
AB⊗n;ψ⊗nΣ†

AΔ
−1=2
AB⊗n;ψ⊗n jψ⊗ni

¼ hψ⊗njΣAΔ
1=2
AB⊗n;ψ⊗nΣ†

Ajψ⊗ni;

where we have used the fact that the ρC dependence cancels
out in the second line. For the last line, we have used
Δ−1=2

AB;ψ jψi ¼ jψi which is easy to see by working in the
Schmidt basis. ▪

Lower bound.
Theorem 1. For integer n ≥ 2,

EPðA∶BÞ ≥ SðnÞR ðA∶BÞ=2: ð15Þ

Remark 1. In Ref. [18], it was proven that for integer
n ≥ 2, the Renyi reflected entropy is monotonic under

partial trace, i.e., SðnÞR ðA∶BCÞ ≥ SðnÞR ; ðA∶BÞ. This immedi-
ately implies Theorem 1 by the following argument. Let
jψiABA0B0 be the optimal purification. Then
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2SðAA0Þ≥ 2SnðAA0Þ ¼ SðnÞR ðAA0∶BB0Þ≥ SðnÞR ðA∶BÞ; ð16Þ

where we have used the fact that SðnÞR ðC∶DÞ ¼ 2SnðCÞ for a
pure state on CD. That said, we choose to present the proof
below because it is self-contained and far simpler than the
proof of monotonicity in Ref. [18].
Proof of Theorem 1. We first define the Renyi gener-

alization of EPðA∶BÞ as

EðnÞ
P ðA∶BÞ ¼ min

jψiABA0B0
SnðAA0Þ: ð17Þ

Applying the monotonicity of Renyi entropy, i.e., ∂nSn ≤ 0,
for n > 1 we have

EPðA∶BÞ ≥ EðnÞ
P ðA∶BÞ: ð18Þ

Now consider an arbitrary purification jψiABA0B0 . For
integer n ≥ 2, the Renyi entropy for subregion AA0 can be
computed using twist operators in a fashion similar to
Eqs. (9) and (10), i.e.,

SnðAA0Þ ¼ 1

1 − n
log trðρnAA0 Þ ð19Þ

trðρnAA0 Þ ¼ hψ⊗njΣAΣA0 jψ⊗ni: ð20Þ

Define the operatorsΠAB;ψ (ΠA0B0;ψ ) to be projectors onto
the nonzero subspaces of the reduced density matrices on
AB (A0B0). Then, using ΠAB;ψ jψi ¼ ΠA0B0;ψ jψi ¼ jψi, we
can insertΠAB;ψ (ΠA0B0;ψ ) from the right (left) in Eq. (20) for

each of the n copies of jψi. Note that ΠABΠA0B0 ¼
Δ1=4

AB;ψΔ
−1=4
AB;ψ as the inverse density matrices in the modular

operators annihilate the orthogonal subspaces. We can use
this fact to insert a pair of modular operators into Eq. (20)
to get

trðρnAA0 Þ ¼ hψ⊗njΣAðΔ1=4
AB;ψΔ

−1=4
AB;ψ Þ⊗nΣA0 jψ⊗ni

≤ ðhψ⊗njΣAΔ
1=2
AB⊗n;ψ⊗nΣ†

Ajψ⊗ni
hψ⊗njΣA0Δ−1=2

AB⊗n;ψ⊗nΣ†
A0 jψ⊗niÞ12; ð21Þ

where we have applied the Cauchy-Schwarz inequality
between the modular operators.
Using Δ−1

AB;ψ ¼ ΔA0B0;ψ and Eq. (15), the two terms in the
last line of Eq. (21) can be related to Renyi reflected
entropies on A∶B and A0∶ B0 respectively. Thus, we have

2
1

1 − n
log trðρnAA0 Þ ≥ SðnÞR ðA∶BÞ þ SðnÞR ðA0∶B0Þ: ð22Þ

Finally using the fact that SðnÞR ðA0∶B0Þ ≥ 0, applying
Eq. (22) to the optimal purification arising in the

calculation of EðnÞ
P ðA∶BÞ and using Eq. (18), we have

our desired inequality. ▪
Remark 2. We will use the inequality at n ¼ 2 since it is

the strongest.
Remark 3. It is important to note that this inequality was

derived using twist operators which only exist at integer n.
In thecontextofcomputingentanglemententropy,oneusually
analytically continues the answer obtained at integer n to
noninteger values using Carlson’s theorem. However, it is not
necessarily possible to analytically continue an inequality.
For example, the monotonicity of Renyi reflected entropy

under partial trace, i.e., SðnÞR ðA∶BCÞ ≥ SðnÞR ; ðA∶BÞ was
proved to be true at integer n [18], whereas counterexamples
were found for noninteger n in Ref. [22].

Random tensor networks. We can now use these bounds to
compute EP in many random tensor network states. These
states are defined as (up to normalization) [23]

jψi ¼
 Y

hxyi∈E

hxyj
! Y

x∈V

jVxi
!
; ð23Þ

where we are considering an arbitrary graph defined by
vertices V and edges E. The states jVxi are Haar random,
and the states jxyi are maximally entangled. This defines a
state on the vertices living at the boundary of the graph. We
will consider RTNs in the simplifying limit where all bond
dimensions χxy are large such that log χxy ∝ logD and
D → ∞ [24].
For RTN states, the Renyi reflected entropy is computed

by finding the optimal configuration of permutations that
minimizes a certain free energy (see Ref. [13] for details). It
was proved in Ref. [13] that the optimal configuration
involves four permutation elements fe; gA; gB; Xg and takes
the general form shown in Fig. 2. In detail, we have

lim
D→∞

SðnÞR ðA∶BÞ
logD

¼ 2AnðA∶B∶CÞ −
n

n − 1
AðAB∶CÞ; ð24Þ

whereAnðA∶B∶CÞ is the triway cut with tensions tA∶B ¼ 1
and tA∶C ¼ tB∶C ¼ n

2ðn−1Þ [see Fig. 2]. AðAB∶CÞ is the

minimal cut separating AB from C.
While the triway cut problem provides a natural analytic

continuation in n and Refs. [11,12] have provided evidence
that this in fact is the correct prescription, it is not necessary
to assume this for the purpose of this paper. For now we
note that at n ¼ 2, all the tensions are equal and normalized
to 1. On the other hand, in the limit n → 1, the rhs of
Eq. (24) approaches 2EWðA∶BÞ.
Now, the key point is that there exist networks where the

triway cut configuration is identical for n → 1 and n ¼ 2.
This corresponds to networks where the X region in Fig. 2
vanishes at n ¼ 2. We will demonstrate such examples in
Sec. V. For now, assuming such a network and using
Eq. (15), we have
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EPðA∶BÞ ≥
1

2
Sð2ÞR ðA∶BÞ ¼ EWðA∶BÞ: ð25Þ

To prove the opposite inequality, we repeat the arguments
made in Refs. [3,8]. There is an approximate isometry
relating the RTN state jψiABC to the state jψiABC0 defined
on the same graph truncated to the entanglement wedge of
AB, withC0 ¼ γAB. The RT formula can still be applied, and
optimizing over the choice of decomposition C ¼ A0 ∪ B0,
wehaveSðAA0Þ ¼ EWðA∶BÞ. Sincewehave foundone such
purification, we have

EPðA∶BÞ ≤ EWðA∶BÞ: ð26Þ

Note that each of the above inequalities is in theD → ∞ limit.
Combining these two inequalities, we have EPðA∶BÞ ¼
EWðA∶BÞ up to terms vanishing in the D → ∞ limit. It is
then also clear that the geometric purification in Refs. [3,8] is
the optimal purification to leading order in D.

Examples. In this section, we provide simple examples of
RTNs to demonstrate regions of parameter space where we
have proved EPðA∶BÞ ¼ EWðA∶BÞ. While in the con-
tinuum limit one generically expects a nontrivial X region
as shown in Fig. 2, for any discrete network we expect a
codimension-0 region of parameter space where the X
region vanishes.

1TN: The first example we consider is that of a Haar
random tripartite state, represented by a graph with a single
vertex and three legs with bond dimensions dA=B=C respec-
tively [see Fig. 3]. In this case, the reflected entropy was
computed in detail in Ref. [11]. We present the phase
diagram in Fig. 3. The phase boundaries at n ¼ 2 are
represented as a function of xA ¼ log dA

log dC
and xB ¼ log dB

log dC
.

Apart from the shaded region marking the X domain, we
have proved EPðA∶BÞ ¼ EWðA∶BÞ everywhere else. It is

also straightforward to read off the optimal purification
since we already argued it is given by the geometric
purification suggested in Refs. [3,8].
One may consider a simple deformation of the above

model, by changing the maximally entangled legs of the
RTN to nonmaximally entangled legs. Such states have also
been useful to model holographic states [25]. In fact, the
simplest situation where we add nonmaximal entanglement
to the C leg results in a state identical to the Penington-
Shenker-Stanford-Yang (PSSY) model of black hole evapo-
ration [26]. We can thus use the results of Ref. [27] which
computed the reflected entropy in this model. The phase
diagram turns out to be similar to Fig. 3 except the shaded
region turns out to be larger. Thus, nonmaximal links do not
help in improving the applicability of our result. We provide
some more details on this in the Appendix.

2TN: The next simplest network to consider is one where
we have two vertices connected by an internal bond
labelled W as shown in Fig. 4. For simplicity, the external
C bonds are chosen to have identical bond dimension.
In general, we have the phase diagram shown in Fig. 4.

Again, we see a large codimension-0 region of parameter
space where our proof applies. In fact, motivated by holog-
raphy, Ref. [12] considered a limit where xW ¼ log dW

logdC
→ 0.

In this limit, the shaded domains containing the element X
vanish at arbitrary n. Thus, our proof always applies in
this limit.

Discussion. In this note we have proven EP ¼ EW for a
large class of RTNs. Our result relied on the inequality

EP ≥ 1
2
Sð2ÞR proven as Theorem 1.

Proving the stronger inequality EP ≥ 1
2
SR would prove

EP ¼ EW more generally, but this cannot be achieved with

FIG. 2. The triway cut (yellow) minimizes the energy cost of
the domain walls with tensions tA∶B ¼ 1 and tA∶C ¼ tB∶C ¼

n
2ðn−1Þ. For n > 1, it lies within the entanglement wedge of AB

defined by the RT surface denoted AðAB∶CÞ. The optimal
configuration corresponds to domains of permutation elements
fe; gA; gB; Xg as shown.

FIG. 3. The 1TN model (top right), along with its phase
diagram labeled by the dominant permutation element in each
domain. We have proved EPðA∶BÞ ¼ EWðA∶BÞ everywhere
except the region marked with squares.
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our proof technique. It would be interesting to check this
numerically using the techniques of Ref. [28].
An inequality of the form of Eq. (21) can in fact be

proved for heavy local operators in AdS/CFT by using
the geodesic approximation and the techniques of comput-
ing mirror correlation functions [29] (see Fig. 5). In
AdS3=CFT2, twist operators are local and can be analyti-
cally continued to n ≈ 1. Applying the inequality, wewould
then find SðAA0Þ ≥ 1

2
SRðA∶BÞ þ 1

2
SRðA0∶ B0Þ in any geo-

metric purification. It would be interesting if this argument
can be generalized to nongeometric states, so that we can
minimize the lhs and find the strengthened inequality.
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Appendix: Nonmaximally entangled RTNs. In a standard
RTN, the edges are projected onto maximally entangled
states. These RTN states can be deformed to nearby
states by simply changing the entanglement spectrum on
the edges. One may then ask whether we can prove
EP ¼ EW for a larger class of states by considering
such a deformation, and attempting to enlarge the
parameter space where the inequality in Theorem 1 is
saturated. It turns out the answer is no, and we give an
example in this section to highlight the basic issue.
Consider the 1TNmodel of Sec. VAwith a nonmaximally

entangled leg for subregionC. This state, for a specific choice
of spectrum, is identical to that of the PSSY model, an
evaporating black hole in Jackiw-Teitleboim gravity coupled
to end-of-the-world branes with flavor indices entangled
with a radiation system [26]. Here, we will not restrict to the
PSSY spectrum, and find more generally how this deforma-
tion affects the phase diagram of reflected entropy.
For generality, consider the state jρm=2

AB i, a one parameter
generalization of the canonical purification. Reference [27]
computed the entanglement spectrum of ρAA� for this state.
It consists of two features: a single pole of weight pdðmÞ
and a mound of minðd2A − 1; d2B − 1Þ eigenvalues with
weight pcðmÞ. The weights are given by

pdðmÞ ¼ trðρm=2
AB Þ2

dAdBtrðρmABÞ
ðA1Þ

pcðmÞ ¼ 1 − pdðmÞ: ðA2Þ
Now, wewould like to compare the phase diagram of this

model with the standard 1TN with maximally entangled
legs. First note that the transition between e and X in Fig. 3
is dictated by the location of the entanglement wedge phase
transition, which we hold fixed to compare the two models.
Then the remaining question is where the transition from X
to gA=gB happens.
Consider the region of the phase diagram where

dA > dB. The transition happens in the connected sector.
Thus, we have pcðmÞ ≈ 1 and the spectrum of ρAB is well
approximated by the spectrum on the C leg. Using this, we
find that the location of the transition for Sð2ÞR is given by

pdðmÞ ¼ 1

dB
: ðA3Þ

Using Eq. (A1), we then have

ð2 −mÞSm=2 − ð1 −mÞSm ¼ log dA; ðA4Þ

where Sn is the nth Renyi entropy of the nonmaximal
spectrum on the C leg.

FIG. 4. The 2TN model (bottom left) and its phase diagram
labeled by the dominant permutation element tuple. We have
proved EPðA∶BÞ ¼ EWðA∶BÞ everywhere except the region
marked with squares.

FIG. 5. A correlation function computed by the geodesic of
length L (solid blue) can be compared to the mirror correlation
functions analogous to Eq. (21) computed by mirror geodesics
(red and green) meeting the RT surface (dashed) orthogonally.
Each of the mirror geodesics with length L1;2 involves two copies
(dashed and solid). It is then clear that L ≥ L1þL2

2
.
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Then it is clear that at m ¼ 1, the location of the phase

transition is xA ¼ S1=2
S1

≥ 1. The standard 1TN has a flat
spectrum, i.e, Sn ¼ S1 and the transition is at xA ¼ 1. Thus,
the shaded region where we cannot prove EP ¼ EW is
larger after deforming the RTN to add nonmaximally
entangled legs.
As a side note, we would like to mention what happens

for m ≥ 2 where one can use the usual RTN calculation

of domain walls with tensions modified by the entangle-
ment spectrum, thus introducing an m dependence [9,25].

For m ≥ 2, we have xA ¼ Sm=2

S1
− ðm − 1Þ Sm=2−Sm

S1
≤ 1 since

Sm ≤ Sm=2 ≤ S1. Thus, the X region shrinks form ≥ 2 after
deforming the spectrum on the legs. However, as demon-
strated above for m ¼ 1, the naive analytic continuation of
the result at m ≥ 2 fails.
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