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Abstract

We construct new solvable vertex models based on the spin representation of the Lie algebra Bk . We 
use these models to study the algebraic structure underlying such vertex theories. We show that all the Bk

spin vertex models obey a version of the BMW algebra along with extra relations that are called n–CB 
(conformal braiding) algebras. These algebras were discussed before for various IRF (interaction round the 
face) models. Here we establish that the same algebras hold for vertex models.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Solvable lattice models in two dimensions are an excellent playing ground to study phase 
transitions, integrable models and knot theory. For reviews see [1,2].

Of particular significance to us is the algebraic structure underlying solvable lattice models. 
Examples of such algebras are the Temperley–Lieb algebra [3] and the Birman–Murakami–Wenzl 
algebra (BMW) [4,5]. These algebras had a major role in the solution of the models as well as 
applications such as knot theory. In particular, in knot theory we mention the celebrated work of 
Jones [6] and the works of Wadati et al. reviewed in ref. [2]. See also the book [7].

In recent works [8–11], the algebraic structure of IRF solvable lattice models was established. 
These works were based on the Yang–Baxter equation and the ansatz for Baxterization put for-
ward in ref. [12], generalizing the two blocks Baxterization of Jones [6], to more than two blocks. 
An algebra was described for any number of blocks and called the n–CB algebra (conformal 
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braiding), where n is the number of blocks (defined as the order of the polynomial equation sat-
isfied by the Boltzmann weights). The n–CB algebra includes the Temperley–Lieb algebra and a 
version of BMW algebra along with additional relations.

Our aim here is to study the n–CB algebra for vertex models. For recent works on vertex 
models, see [13–16]. We establish that the same algebra is obeyed by vertex models. For this 
study, we construct new vertex models based on the spin representation of the simple Lie algebra 
SO(2k + 1) which is denoted as Bk , for arbitrary positive integer k. These models are described 
for any number of blocks which is n = k + 1. Previously, a Yang–Baxter solution was described 
for the vector representation of Bk (for a review see [2] and refs. therein.)

2. Vertex models and their Baxterization

Vertex lattice models are described by an element of End(V ⊗ V ) where V is some vector 
space. It will be convenient to describe these elements using a matrix notation. Namely, if R ∈
End(V ⊗ V ) then we may write,

R(vμ ⊗ vν) = Rμ̄,ν̄
μ,ν (vμ̄ ⊗ vν̄), (2.1)

where ν and μ are basis vectors of the vector space V . Here, we include the indices of R.
The matrix R depends on the spectral parameter R(u) where u is some complex number. The 

solvability of the model is encapsulated in the Yang–Baxter equation (YBE) which can be written 
as an equation in End(V ⊗ V ⊗ V ),

(R(u) ⊗ 1)(1 ⊗ R(u + v))(R(v) ⊗ 1) = (1 ⊗ R(v))(R(u + v) ⊗ 1)(1 ⊗ R(u)). (2.2)

This equation can be expanded in terms of matrix elements, eq. (2.1), to give,∑
α,β,γ

R
β,α
j,k (u)R

l,γ

i,β (u + v)Rm,n
γ,α (v) =

∑
α,β,γ

R
α,β
i,j (v)R

γ,n

β,k (u + v)Rl,m
α,γ (u). (2.3)

We assume that R(u) is a trigonometric solution of the Yang–Baxter equation.
The vertex models may obey a number of properties in addition to the YBE. The initial con-

dition,

R
k,l
i,j (0) = δikδjl . (2.4)

The inversion relation,∑
m,n

R
m,n
i,j (u)Rl,k

m,n(−u) = ρ(u)ρ(−u)δilδjk, (2.5)

where ρ(u) is a function, to be specified later. Also, crossing symmetry,

R
k,l
j i (u) = R

l,ī

k̄,j
(λ − u)

[
r(i)r(l)

r(j)r(k)

]1/2

, (2.6)

where λ is the crossing parameter. Here ī is the charge conjugation of i and the crossing multi-
plier is r(i), where r(ī) = 1/r(i). Usually, in a vector model, we will have that v̄ = −v. We have 
the reflection symmetry,

R
m,n
i,j (u) = R

i,j
m,n(u). (2.7)

Finally, we have the charge conservation,
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R
i,j
m,n = 0, unless m + n = i + j. (2.8)

We find it convenient to define an operator form for the R matrix. We define the matrix,

Xi(u) =
∑

m,n,a,b

Ra,b
m,n(u)I (1) ⊗ . . . ⊗ I (i−1) ⊗ e(i)

a,m ⊗ e
(i+1)
b,n ⊗ I (i+2) ⊗ . . . ⊗ I (n), (2.9)

where ⊗ means tensor product, I (i) is the identity matrix at position i, and eab is a matrix whose 
elements are given by (ers)lm = δrlδsm. We define in a similar fashion other operators. It is then 
clear that the YBE, eq. (2.2), can be written as

Xi(u)Xj (v) = Xj(v)Xi(u), if |i − j | ≥ 2,

Xi(u)Xi+1(u + v)Xi(v) = Xi+1(v)Xi(u + v)Xi+1(u). (2.10)

We will build the vertex model from the data of a fixed conformal field theory. Given the 
conformal field theory O, let V be the representation of some primary field in O. The vertex 
model is given in terms of the representations that appear in the tensor product of V . We assume 
that the theory is real and that [V ] is a real representation. Thus, we have the fusion product,

[V ] × [V ] =
n−1∑
i=0

[ψi], (2.11)

where [x] denotes the primary field x. Here n is an integer which is called the number of blocks 
and [ψ0] = 1, is the unit representation. The order of the fields in eq. (2.11) is important as will 
be discussed later. For real models a rule of thumb appears for this order. Namely, the field ψi+1
appears in the tensor product of ψi and the adjoint representation (for quantum groups). Thus, 
in particular, ψ0 = 1 and ψ1 is the adjoint representation. The complete implementation of this 
rule is presently not clear. For each representation that appears in this fusion product we define 
a projection operator Pi onto this representation. For this purpose, we define the limit of the 
trigonometric solution of the Yang–Baxter equation, Xi(u), as,

Xi = lim
u→i∞ ei(n−1)uXi(u), Xt

i = lim
u→−i∞ e−i(n−1)uXi(u). (2.12)

The eigenvalues of Xi can be seen from conformal field theory to be,

λi = εie
iπ(2�v−�i), (2.13)

where �v is the conformal dimension of the primary field [V ], �i is the conformal dimension 
of the representation [ψi] and εi = ±1 indicating whether the product is symmetric or antisym-
metric.

From Xi we can define the ath projection operator as,

P a
i =

∏
p �=a

[
Xi − λpI

λa − λp

]
, (2.14)

where a = 0, 1, . . . , n − 1 and I is the unit operator. We have the following relations for the 
projection operators,

Xi =
n−1∑

λaP
a
i , (2.15)
a=0
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n−1∑
a=0

P a
i = I, P a

i P b
i = δabP

a
i . (2.16)

From the projection operator one may build the solution to the YBE, Xi(u). It is basically the 
same conjecture as for the IRF models described in ref. [12]. We define the parameters by,

ζi = π(�i+1 − �i)/2, (2.17)

and λ = ζ0 is the crossing parameter and i = 0, 1, . . . , n − 2. The trigonometric solution to the 
Yang–Baxter equation ansatz is then,

Xi(u) =
n−1∑
a=0

fa(u)P a
i , (2.18)

where the functions fa(u) are given by,

fa(u) =
[

a∏
r=1

sin(ζr−1 − u)

][
n−1∏

r=a+1

sin(ζr−1 + u)

]/[
n−1∏
r=1

sin(ζr−1)

]
. (2.19)

From the ansatz it is easy to see that the inversion relation, eq. (2.5), holds with

ρ(u) =
n−1∏
r=1

sin(ζr−1 − u)

sin(ζr−1)
. (2.20)

The crossing equation, eq. (2.6), holds with the crossing parameter λ = ζ0.
The order of the fields [ψi] is important and the YBE holds only for one particular order. We 

will specify below the order which is suitable for specific models.
An interesting question is the relation between the CFT used to define the model and the 

conformal field theories which arise at the criticality of the models. A partial answer, based 
on (D. Gepner, unpublished work), is that the critical field theories are cosets of the original 
theory, where in one limit, the original theory is in the denominator, whereas in the other it is 
in the numerator of the coset theory. The full coset theory is presently unknown, except in some 
examples. For a review see ref. [2].

We are interested in the algebra obeyed by these models. For this purpose, we define the 
operators,

Gi = 2n−1e−i(n−1)ζ0/2

[
n−1∏
r=1

sin(ζr−1)

]
Xi, (2.21)

and

G−1
i = 2n−1ei(n−1)ζ0/2

[
n−1∏
r=1

sin(ζr−1)

]
Xt

i , (2.22)

where Xi and Xt
i are given by eq. (2.12). We also define the operator,

Ei = Xi(λ). (2.23)

The inversion relation eqs. (2.5), (2.20) implies that as defined GiG
−1 = I .
i
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From the crossing relation, eq. (2.6), it follows that Ei can be expressed as follows,

E
m,n
a,b = δā,bδm̄,nr(n)r(b), (2.24)

where r(a) is the crossing multiplier. Here we reverted back to the explicit notation for Ei . From 
the above equation, it follows that Ei obeys the relation,

EiEi±1Ei = Ei, (2.25)

where we used the equation r(m̄) = 1/r(m). From the ansatz eqs. (2.18), (2.19) it follows that

E2
i = bEi, (2.26)

where

b =
n−1∏
r=1

sin(ζ0 + ζr−1)

sin(ζr−1)
. (2.27)

These two equations together are the celebrated Temperley–Lieb algebra [3]. Thus, we proved 
that any real vertex model, with any number of blocks, obeys the Temperley–Lieb algebra, as-
suming that the ansatz eq. (2.18)-(2.19) holds.

Since Ei is proportional to P 0
i we find the following relations,

GiEi = EiGi = l−1Ei, (2.28)

where l is given by,

l = in−1 exp

[
i(n − 1)ζ0/2 + i

n−2∑
r=0

ζr

]
. (2.29)

From the YBE, eq. (2.2), we find that Gi obeys the braid group relation,

GiGj = GjGi if |i − j | ≥ 2, GiGi+1Gi = Gi+1GiGi+1. (2.30)

From the ansatz, eqs. (2.18), (2.19), and from the equation 
∑

a P a
i = I we find the skein 

relation,

Gn−2
i = aEi +

n−3∑
r=−1

brG
r
i , (2.31)

where the coefficients a and br are expressed as functions of the parameters ζi , which can be 
calculated from the ansatz, eqs. (2.18), (2.19).

3. Vertex models and quantum groups

We utilize now the powerful method for constructing solutions to the YBE vertex models, 
eq. (2.2), which is quantum groups [17–19].

The definition of the quantum group is as follows [17,18]. Let A = (aij ) be a Cartan matrix of 
a simple Lie algebra G. Let {αj } and {hj } be the simple roots and coroots, for 1 ≤ i ≤ N , such 
that < hi |αj >= aij . For a parameter q which is nonzero we define qi = q(αi ,αi ), where (|) is the 
invariant inner product in h∗.
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The generators of the quantum group are {k±1
i , ei, fi}1≤i≤N . They obey the relations,

kik
−1
i = k−1

i ki = 1, [ki, kj ] = 0, (3.1)

kiej k
−1
i = q

aij

i ej , kifj k
−1
i = q

−aij

i fj , (3.2)

[ei, fj ] = δij (k
2
i − k−2

i )/(q2
i − q−2

i ). (3.3)

There are additional relations, (3D) and (3E) of ref. [17], but we will not require these.
For q → 1 the quantum algebra, denoted by Uq(G) reduces to the simple Lie algebra G. 

(Actually, the quantum group can be defined for any Kac–Moody algebra [17,18].)
We shall need the co–product of the quantum group Uq(G). This is the homomorphism 

�(m)U → ⊗mU (m fold tensor product), defined by

�(m)(ki) = ki ⊗ ki ⊗ . . . ⊗ ki, (3.4)

�(m)(Xi) =
m∑

ν=1

ki ⊗ . . . ⊗ ki ⊗ν Xi ⊗ k−1
i ⊗ . . . ⊗ k−1

i , (3.5)

for Xi = ei or Xi = fi . The co–product obey the same quantum group Uq(G).
In the following we will assume that q is not a root of unity, unless otherwise specified. In 

this case, the irreducible representations of Uq(G) are labeled by the irreducible representations 
of G and have the same dimensions.

The solution to the vertex YBE, eq. (2.2), commutes with the co–product,

[R,�(2)(Xi)] = 0, (3.6)

for any Xi = ei or fi or ki . This equation is not enough to determine the R matrix. However, 
given a solution to this equation, it is guaranteed to have the same eigenvectors but not the 
same eigenvalues as the R matrix. Thus, they share the same projection operators, eq. (2.14). 
Assuming that the number of distinct eigenvalues of R is n, where n is the number of blocks, 
than the projection operators are given as in eq. (2.14),

P a =
∏
p �=a

[
R − λpI

λa − λp

]
, (3.7)

where λp are the eigenvalues of R. We can then use our ansatz eqs. (2.18), (2.19) to get the full 
trigonometric solution of the YBE.

Each projection operator P a is associated to some representation in the tensor product g ∈
V × V , where V is the representation used to define the vertex model. The projection operator 
can be written as,

(P g)
c,d
a,b =

∑
λ

< g λ|V a V b >< g λ|V cV d >, (3.8)

where λ runs over the weights of the representation g and < g λ|V a V b > is the quantum group 
Wigner coefficient of this tensor product. P g is the vertex projection operator with the weights 
a, b, c, d which are weights of the representation V . From this equation, it is clear that the projec-
tion operator vanishes unless a + b = c + d , eq. (2.8). For SU(2) this was described in ref. [19]. 
In this reference, it was shown that for SU(2) the vertex and the IRF models have the same 
Baxterization.
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4. Bk spin vertex models

Our purpose is to describe solvable vertex models based on the algebra Bk , or SO(2k + 1), 
where the representation V is the spinor representation. We use the basis for Bk where the simple 
roots are αn = εn −εn+1, for n = 1, 2, . . . , k−1 and αk = εk . Here εi are orthogonal unit vectors. 
The spinor representation has the highest weight (ε1 + ε2 + . . . εk)/2 and the weights of this 
representation are (±ε1 ± ε2 ± . . .± εk)/2. We find it convenient to add 1/2 to these weights and 
to represent the weights of the spinor representation by m where mi = 0 or 1.

We look for a solution C for the spinor representation of the algebra Bk , which commutes 
with the co–product, eq. (3.6). Such a solution was described recently in a paper by Wenzl [20]. 
The solution C is an element of End(V ⊗ V ) where V denotes the spinor representation. It is 
given by [20],

Cb,c
m,n =

k∑
j=1

δmj ,1−nj
(−q2){m−n}j δb,m̄j δc,n̄j + (−1)kδm,bδn,c(−q2){m−n}k /[2], (4.1)

where

{m}j =
j∑

r=1

mr, (4.2)

and n̄j is equal to n except at the j th coordinate where it is 1 − nj . Here [2] = q + q−1. Here 
m, n, b, c = 0 or 1 are weights of the spinor representation shifted by 1/2. The matrix C, so 
constructed, commutes with the co–product eq. (3.6).

The eigenvalues of the matrix C were computed by Wenzl [20]. They are given by

λj = (−1)j s(k + 1

2
− j), for j = 0,1, . . . , k, (4.3)

where

s(x) = q2x − q−2x

q2 − q−2 . (4.4)

There are k + 1 distinct eigenvalues of C. Thus, this is a k + 1 blocks theory. Each eigenvalue 
corresponds to a representation in the tensor product V × V , where V is the spinor representa-
tion. The j th eigenvalue λj corresponds to the representation Vj = ∧j v where v is the vector 
representation. The highest weight of the representation Vj is ε1 + ε2 + . . . + εj . It is the fully 
anti–symmetric representation in the tensor of j vector representations.

We assume that q is not a root of unity and is nonzero. To connect with section 3, we identify

q2 = exp[πi/(r + g)], (4.5)

where r is the level of the WZW model based on Bk , at level r and g is the dual Coxeter number,

g = 2k − 1. (4.6)

We assume that the level r is not a real rational number, so that q is not a root of unity. The 
dimension of the representation with highest weight � in a WZW theory is given by

�� = �(� + 2ρ)
. (4.7)
2(r + g)
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Here ρ is half the sum of positive roots and C� = �(� +2ρ) is the Casimir of the representation 
�. See, e.g. [21].

As explained in section 3, the eigenvectors of C are the projections of the solution of the YBE 
to the different representations. We thus define,

(P a)b,c
m,n =

∏
p �=a

[
C − λpI

λa − λp

]
, (4.8)

where the product is in End(V ⊗ V ) and I is the identity map.
We know from equation (2.13) that the eigenvalues of the R matrix are given by

εj exp[−iπ�j ] up to an irrelevant constant. Thus, we need to compute the second Casimir 
of the representations Vj , since the dimensions of the representations are computed in terms of 
the Casimir, eq. (4.7). The Casimir is given by

C(Vj ) = Cj = j (2k + 1 − j). (4.9)

Thus the eigenvalues of R are

βj = εj q
−C(Vj ), (4.10)

where εj is a sign which is harder to compute. To give this sign we define,

(h0, h1, . . . , hk) = (0,2,4, . . . , k, k − 1, k − 3, . . . ,1), (4.11)

for even k. For odd k,

(h0, h1, . . . , hk) = (0,2, . . . , k − 1, k, k − 2, k − 4, . . . ,1). (4.12)

Then the sign εj is given by,

εhs = (−1)s . (4.13)

We are now in position to construct the R matrix as

Ra,b
m,n =

k∑
j=0

βj (P
j )a,b

m,n. (4.14)

This is since we know the projection operators from eq. (4.8) and the eigenvalues of R from 
eq. (4.10).

We can now check that the R matrix, so constructed, obeys the braiding relation,∑
α,β,γ

R
β,α
j,k R

l,γ

i,β Rm,n
γ,α =

∑
α,β,γ

R
α,β
i,j R

γ,n

β,k Rl,m
α,γ . (4.15)

We checked this R matrix numerically for k = 2, 3, 4, 5, 6 and it is, indeed, obeyed for various 
weights and for general q .

We can now build the full solution to the YBE, eq. (2.3). We need to compute the parameters 
ζi . To do this, we need to know the order of the operators ψi in eq. (2.11). In fact, the order of 
the representations is given by hr . Thus, we have

ζj = (Chj+1 − Chj
)/2, (4.16)

for j = 0, 1, . . . , k − 1. We also replace the sin(x) in eq. (2.19) by
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sin(x) → p(x) = qx − q−x. (4.17)

Then the solution to the YBE, eq. (2.3), assumes the form,

Xa,b
m,n(u) =

k∑
j=0

fj (u)(P hj )a,b
m,n, (4.18)

where

fa(u) =
⎡
⎣ a∏

j=1

p(ζj−1 − u)

⎤
⎦

⎡
⎣ k∏

j=a+1

p(ζj−1 + u)

⎤
⎦/⎡

⎣ k∏
j=1

p(ζj−1)

⎤
⎦ , (4.19)

where a = 0, 1, . . . , k.
For example for k = 6 we have, (ζ0, ζ1, . . . , ζ5) = (11, 7, 3, −1, −5, −9). The crossing pa-

rameter is always λ = ζ0.
We can now check numerically that the matrix Xi(u) so defined obeys the Yang–Baxter equa-

tion, eq. (2.3). We checked this numerically for k = 2, 3, 4, 5, 6 for various values of the weights 
and the spectral parameters and indeed the YBE is obeyed for general q .

Actually, our results hold also for q which is a root of unity. We take q2 = exp[iπs/(r + g)], 
as in eq. (4.5), where r and s are now integers such that, gcd(s, r + g) = 1. Then, if the level r
is greater or equal two, then the fusion rule in eq. (2.11) is the same as the tensor product, since 
the representations ψi appear at level two. Namely, all the representations appear if the level 
is greater or equal two. Thus, the ansatz eqs. (4.18), (4.19), holds as it is. We checked this for 
various algebras of the type Bk and various integer levels, r , and indeed the YBE is obeyed for 
q which is a root of unity, as well. Thus, for levels greater than one, exactly the same solution 
holds. We call these models for rational level, the restricted models.

5. n–CB algebra and Bk vertex models

The Bk vertex models are k + 1 blocks models. For k = 2 this is a three blocks model. Thus, 
it is natural that the model would obey the BMW algebra [4,5], as we will show. We use the 
operator notation eq. (2.9) and define the operators Gi and Ei as before, eqs. (2.21)-(2.23). The 
relations of the BMW algebra are,

Gi − G−1
i = m(1 − Ei), (5.1)

GiGj = GjGi if |i − j | ≥ 2, GiGi+1Gi = Gi+1GiGi+1, (5.2)

EiEi±1Ei = Ei, E2
i = bEi, (5.3)

Gi±1GiEi±1 = EiGi±1Gi = EiEi±1, Gi±1EiGi±1 = G−1
i Ei±1G

−1
i , (5.4)

Gi±1EiEi±1 = G−1
i Ei±1, Ei±1EiGi±1 = Ei±1G

−1
i , (5.5)

GiEi = EiGi = l−1Ei, (5.6)

EiGi±1Ei = lEi, EiG
−1
i±1Ei = l−1Ei, (5.7)

where

b = m−1(l − l−1) + 1, (5.8)

and l and b are given by eqs. (2.27), (2.29) for three blocks, n = 3.
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We checked the BMW relations eqs. (5.1)-(5.8) for the B2 vertex model and indeed they are 
all obeyed for various weights and general q . We find,

b = −(q4 + q2 + q−2 + q−4), (5.9)

and

l = −q5, m = q + q−1 (5.10)

In fact, as we show, the BMW algebra is also obeyed for k > 2, except for the skein relation, 
eq. (2.31). The relations eqs. (5.2), (5.3), (5.6) were already proved in section 2 for all the vertex 
models, eqs. (2.25), (2.26), (2.28), (2.30), along with the new skein relation eq. (2.31). It remains 
to check the other relations. We checked them for k = 3, 4, 5, 6 with various weights, and general 
q , and indeed they are all obeyed. The parameters l and b are given by eqs. (2.27), (2.29). We 
call this algebra BMW′.

We checked the BMW′ algebra also for the restricted models and it also holds. Our discussion 
below applies equally well to the restricted models as they also obey the same ansatz and the 
same YBE.

In ref. [8–11], we analyzed the Yang–Baxter equation assuming only BMW′ algebra and the 
ansatz eqs. (2.18), (2.19). We established this only for IRF models and not for vertex models. 
However, all the assumptions are exactly the same, even though the definition of the operators 
is different, eq. (2.9). Thus, the same conclusions we found by expanding the YBE still hold. 
We found that for three blocks, k = 2, we get a week version of the BMW algebra [10]. For 
four blocks, n = 4, we get an algebra which we called 4–CB, which is BMW′, along with one 
additional relation. The additional relations are enlisted in the appendix. For five blocks n = 5
we get additional 19 relations which are quite bulky. This method can be used to compute the 
algebra for any number of blocks, n, which we call n-CB algebra.

Since all of the assumptions are the same for IRF models as for the vertex models, we conclude 
that the n-CB algebra holds for the Bk vertex models, with n = k + 1. We conjecture that the 
n–CB algebra is obeyed for all the solvable vertex models with n blocks, for which the ansatz 
eqs. (2.18), (2.19) holds.
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Appendix A. Four CB relations

For completeness, we summarize here the four blocks relations [10]. The skein relation is 
given by
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G2
i = ie− 1

2 iζ0−iζ1−iζ2
(

1 − e2iζ1 + e2iζ1+2iζ2
)

Gi + ie− 3
2 iζ0+iζ1−iζ2 G−1

i

+ e−2iζ0−2iζ1−2iζ2
(
e2iζ1 − 1

) (
1 + e2iζ0+2iζ1+2iζ2

) (
e2iζ2 − 1

)
(
e2iζ0+2iζ2 − 1

) Ei

− e−iζ0−2iζ2
(

1 − e2iζ2 + e2iζ1+2iζ2
)

. (A.1)

The last relation follows from the Yang Baxter equation and the ansatz eq. (2.18)-(2.19). It is

g(i, i + 1, i) = g(i + 1, i, i + 1), (A.2)

where

g = a1,2,4 + a1,3,1 + a4,2,1 + iq−ζ0/2+ζ1−ζ2(a1,3,4 + a4,2,4 + a4,3,1)+
iqζ0/2−ζ1+ζ2(a2,3,4 + a4,1,4 + a4,3,2)+

i
qζ1+ζ2

(q2ζ1 − 1)(q2ζ2 − 1)

(
qζ0/2a1,2,1 + q−ζ0/2a2,1,2

)
+ za4,3,4, (A.3)

where

z = q−ζ0−2ζ1−2ζ2(q2ζ1 − 1)(q2ζ2 − 1)

q2ζ0+2ζ2−1 ×(
2q2ζ0+2ζ2 + 2q2ζ0+2ζ1+2ζ2 + q4ζ0+2ζ1+4ζ2 + 1

)
. (A.4)

We denoted by ai,j,k(r, s, t) the element of the algebra ai[r]aj [s]ak[t] where ai[r] is Gr, G−1
r , Er

or 1r , if i = 1, 2, 3, 4, respectively. Here, q = ei .
We checked these relations for the B3 vertex model, which is a four blocks model, numeri-

cally, and indeed they hold for various values of the heights and for general values of q .
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