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Abstract Two novel classes of four-dimensional exact
black hole (BH) solutions have been obtained in the scalar–
tensor (ST) theory which are coupled to Born–Infeld (BI)
electrodynamics. To this end, a conformal transformation
(CT) has been applied which transforms the action of ST–
BI gravity to that of Einstein–dilaton–BI theory. The scalar-
coupled BI theory, which has been introduced here, slightly
differs from those have been used, previously. The ana-
lytical solutions have been obtained in the Einstein frame
(EF) and two classes of charged dilatonic BHs, with unusual
asymptotic behaviors, have been presented. All the solutions
coincide with the corresponding values of Einstein–dilaton–
Maxwell theory, in the limit of large BI parameter. By calcu-
lating thermodynamic parameters and, noting the Smarr mass
relation, we showed that the first law of BH thermodynamics
(FLT) is valid for the novel dilatonic BHs. Stability of the
BHs has been investigated in EF, making use of the canon-
ical ensemble method and noting the signature of the BH
heat capacity (HC). Next, by use of the inverse CT, the solu-
tions of ST theory have been obtained from their EF counter-
parts. Although, the entropy of ST BHs violates entropy-area
law, the thermodynamic and conserved quantities have been
obtained noting their conformal invariance property. It has
been found that the ST BHs have the same thermodynamic
and stability properties as the Einstein–dilaton ones.

1 Introduction

Despite the great and outstanding predictions of Einstein’s
gravity theory, such as existence and detection of the BHs
[1–3], the related failures imply that it is needed to be com-
pleted. Disablement of Friedman equations, as the direct
consequences of general relativity, in describing the posi-
tive acceleration of the expanding universe is an important
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and famous problem. Extending this theory to the success-
ful theories of modified gravity is an attempt to address the
existing challenges [4–9]. The ST gravity is an alternative
theory which was established with the aim of explaining the
problems of initial gravity theory. Nowadays, ST modified
gravity is known as an interesting theory, because in one
side by introducing an inflaton scalar field, it can explain the
inflation phase of the universe [10–13] and, in other side the
fundamental string theory, in the low-energy regime, reduces
to an effective ST one [14–16]. The Jordan frame (JF) field
equations, obtained by varying the ST action, are strongly
coupled and obtaining the exact analytical solutions is too dif-
ficult. It is possible to translate the JF ST action to that of EF,
known as the action of Einstein–dilaton (Ed) gravity theory,
by utilizing CTs [17–20]. The Ed theory, in which Einstein’s
original action is coupled to a scalar field, also comes from
the low-energy limit of string theory. It is customary to solve
the equations of motion in the Ed theory and to obtain the
JF solutions by applying inverse CTs to the Ed counterparts
[21,22]. According to the entropy-area law, the BH entropy
is equal to one-fourth of the horizon area, but this approxi-
mately universal law is violated by the ST BHs. Through use
of the Euclidean action method, it has been proved that BHs’
thermodynamic quantities such as temperature, entropy and
electric potential on the horizon and, BHs’ mass and electric
charge, as the conserved quantities, remain invariant under
CTs. Therefore, thermodynamic and conserved quantities of
ST BHs are the same as already obtained for Ed BHs [23,24].

It is worth mentioning that ST gravity recovers the Brans–
Dicke (BD) theory as an especial case. The BD gravity was
initially proposed in 1961 by Brans and Dicke as an exten-
sion of original gravity theory by adding a scalar degree
of freedom to include Mach’s principle. This scalar field
which is minimally coupled to gravitation is also inversely
proportional to the gravitational constant G [25–27]. It has
been found that the exact four-dimensional solutions of
BD–Maxwell theory, due tho the conformal invariance of
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Maxwell Lagrangian, are just the Reissner–Nordstrom BHs
with a trivial constant scalar field. While in the higher-
dimensional spacetimes, where the Maxwell theory is no
longer conformal-invariant and through coupling with the
scalar field plays the role of source, the BH solutions have
been obtained with the nontrivial scalar field [28–30]. Some
other studies of BD charged exact solutions in the presence
of non(linear) electrodynamics and its cosmological applica-
tions can be seen in Refs. [31–36]. This theory is conformally
related to the Ed modified gravity, which has been studied
in the presence of self-interacting Liouville-type potentials
[37–43].

Maxwell’s theory of electromagnetism, known as the lin-
ear classical electrodynamics, leads to the infinite electric
field at the position of charged point-like particles. Different
models of non-linear electrodynamics, such as power-law,
Euler–Lagrange, Born–Infeld, exponential and logarithmic
ones, have been proposed with the aim of solving the prob-
lems of linear electrodynamics. Dynamics of the universe
have been studied through different models of cosmology
by taking into account the impacts of non-linear electro-
magnetic fields [44–50]. Application of these theories for
obtaining non-linear charged black branes and BHs in vari-
ous spacetime dimensions have generated many interesting
results [51–58]. Thermodynamics and thermal stability of
the charged BHs have been investigated, under the influ-
ence of non-linear electrodynamic models, in three-, four-
and higher-dimensional spacetimes [59–65]. Recently, these
studies have been extended to the three- and four-dimensional
ST BHs by using BI and Maxwell models of electrodynamics
in Refs. [66] and [67], respectively. Here, we tend to obtain
exact ST–BI BH solutions and, to study thermodynamics and
thermal stability of the four-dimensional JF BHs.

This paper has been outlined as follows: In Sect. 2, by
utilizing CTs the JF action of ST–BI theory has been trans-
lated to that of EF, named as the Ed–BI theory. Section 3
has been devoted to solving the Ed–BI field equations in
a static and spherically symmetric geometry. Consequently,
two classes of novel Ed–BI BHs, with unusual asymptotic
behaviors, have been obtained. Our solutions reduce to the
Ed–Maxwell ones if the nonlinearity parameter of BI theory
goes to infinity. Thermodynamic variables, mass and charge
of Ed–BI BHs have been calculated in Sect. 4. It has been
shown that the FLT is valid for novel Ed–BI BH solutions.
Thermal stability of Ed–BI BHs have been analyzed based
on the heat capacity (HC) of dilaton BHs in Sect. 5. The exact
ST BH solutions have been obtained from those of Ed the-
ory by use of the inverse CTs. It leads to the new ST BH
solutions which can produce horizon-less, one-horizon and
two-horizon ST–BI BHs. In Sect. 6, thermodynamic and sta-
bility properties of the ST–BI BHs have been discussed based
on their similar ones in the EF. The paper will be finished by
highlighting the results in Sect. 7.

2 The general formalism

The four-dimensional JF action of ST gravity theory can be
written as [20–22]

I (ST ) = − 1

16π

∫ √−ḡ
[
f1(ψ)R̄ − f2(ψ)(∇̄ψ)2

− f3(ψ) + L(F̄)
]
d4x . (2.1)

The bar sign has been used over to introduce the JF quantities.
Thus, R̄ and ∇̄ are the Ricci scalar and covariant derivative i
the JF with metric ḡμν . The arbitrary functions f1(ψ), f2(ψ)

and f3(ψ), with ψ as the JF scalar field, will be calculated
later. The electromagnetic Lagrangian L(F̄) is a function of
F̄ = F̄αβ F̄αβ , which we write in the form of BI non-linear
electrodynamics [57,58,68]. That is

L(F̄) = 2a2

⎛
⎝1 −

√
1 + F̄

a2

⎞
⎠ , (2.2)

and a is the nonlinearity/ or BI parameter. By expanding
(2.2), we have

L(F̄) = −F̄ + F̄2

4a2 − F̄3

8a4 + .... (2.3)

It shows that Maxwell’s classical theory is recovered if the
electromagnetic fields are taken very weak or a is chosen
very large.

By utilizing variational principle to the action (2.1), the
electromagnetic field equation is obtained as

∇̄α

⎛
⎝ F̄αβ√

1 + F̄
a2

⎞
⎠ = 0, (2.4)

and the gravitational field equation is written the following
form

f1(ψ)

(
R̄αβ − 1

2
R̄ḡαβ

)
− (∇̄α∇̄β − ḡαβ�̄

)
f1(ψ)

= T (s)
αβ + T (em)

αβ , (2.5)

where, �̄ = ∇̄μ∇̄μ, T (s)
αβ and T (em)

αβ are the energy-
momentum tensor of scalar and electromagnetic fields, and

T (s)
αβ = f2(ψ)∇̄αψ∇̄βψ − 1

2

[
f3(ψ) + f2(ψ)(∇̄ψ)2

]
ḡαβ,

(2.6)

T (em)
αβ = a2

⎛
⎝1 −

√
1 + F̄

a2

⎞
⎠ ḡαβ + 2F̄ανF̄ ν

β√
1 + F̄

a2

. (2.7)

Also, for the scalar field equation, we have
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2 f2(ψ)�̄ψ = f ′
3(ψ) − f ′

2(ψ)(∇̄ψ)2 − f ′
1(ψ)

f1(ψ)

⎡
⎣3�̄ f1(ψ)

+ f2(ψ)(∇̄ψ)2 + 2 f3(ψ)

−4a2

⎛
⎝1 −

√
1 + F̄

a2

⎞
⎠ − 2F̄√

1 + F̄
a2

⎤
⎦ .

(2.8)

Noting the strong coupling between gravitational and
scalar field equations, one cannot solve them directly. This
problem can be solved by applying CTs to translate the ST
action (2.1) to the Ed one [20,22]. Thus, in terms of a well-
behavior function �(ψ), we proceed with the following rela-
tion as the suitable CTs [18,21]

ḡμν → ḡμν = (�(ψ))2gμν, (2.9)

which relates the components of JF metric ḡμν to those of
EF gμν . Under these transformations, for the Ricci scalar, we
have [69]

R̄ → R̄ = (�(ψ))−2R − 6(�(ψ))−3��(ψ). (2.10)

Also, we obtain√−ḡ → √−ḡ = �4√−g. (2.11)

The electromagnetic tensor transformation relation is F̄μν →
Fμν and F̄ρλ → F̄ρλ = ḡρμḡλν F̄μν = (�(ψ))−4Fρλ, and
for the Maxwell-invariant we have

F̄ → F̄ = (�(ψ))−4F , (2.12)

where, F = FμνFμν is the EF Maxwell-invariant with
Fμν = ∂μAν−∂ν Aμ and Aμ is the electromagnetic potential.

The EF scalar field analogues to the JF field ψ , which
we may call as φ, can be considered such that ψ = ψ(φ).
Therefore, we have

(∇̄ψ)2 → �−2
(
dψ

dφ

)2

(∇φ)2. (2.13)

Now, making use of Eqs. (2.10), (2.11), (2.12) and (2.13) in
(2.1), we have

I (ST ) = −1

16π

∫ √−g
[
�2 f1(ψ)R

−6 f1(ψ)

(
d�

dφ

)2

(∇φ)2 − f2(ψ)�2
(
dψ

dφ

)2

(∇φ)2

−�4 f3(ψ) + �4L(�−4F)
]
d4x . (2.14)

It means that we have transformed the ST action (2.1) to
that of Ed provided that the following relations are fulfilled

f1(ψ) = �−2(φ), (2.15)

f3(ψ)�4 = V (φ), (2.16)

6�−2
(
d�

dφ

)2

+ f2(ψ)�2
(
dψ

dφ

)2

= 2, (2.17)

�4L(�−4F) = L(F , φ). (2.18)

Thus, for the action of Ed gravity, one can write

I (Ed) = − 1

16π

∫ √−g d4x

[
R − 2gαβ∇αφ∇βφ − V (φ)

+L(F , φ)

]
. (2.19)

Note that, R = gαβRαβ , and ∇α is the covariant derivative
in the EF with metric tensor gμν . V (φ) is the self-interacting
scalar potential and, the scalar-coupled Lagrangian of BI
electrodynamics is given by L(F , φ). Its explicit form, by
taking �(φ) = eαφ [70], is

L(F , φ)=2a2e4αφ
(

1 − √
1 + X

)
, X=F

a2 e
−4αφ,

(2.20)

and α denotes the strength of scalar-electromagnetic cou-
pling. Note that the scalar dependency of L(F , φ) is slightly
different from those previously presented by many authors
[71–74]. Expansion of the Lagrangian (2.20) in powers of F
reads

L(F , φ) = −F + F2e−4αφ

4a2 − F3e−8αφ

8a4 + .... (2.21)

In the case a → ∞, or F is assumed very small, it recov-
ers the L(F , φ) = −F , which reflects conformal-invariant
property of the four-dimensional Lagrangian of Maxwell’s
electrodynamics [67].

The exact solution of the Ed gravity will be obtained in
the following section based on the action (2.19).

3 The exact Ed solutions

Through varying the action (2.19), the related field equations
can be obtained. Thus we have

∂α

[√−g∂F L(F , φ)Fαβ
] = 0, (3.1)

Rαβ = 2∂αφ∂βφ + 1

2
gαβ [V (φ) + 2F∂F L(F , φ)

−L(F , φ)] − 2∂F L(F , φ)Fασ F
σ

β , (3.2)

4�φ = dV (φ)

dφ
− ∂φL(F , φ), (3.3)

for the electromagnetic, gravitational and scalar field equa-
tions, respectively.

We are aimed to obtain the exact solutions by choosing
a spherically symmetric line element, which in terms of the
unknown functions W (r) and R(r), can be written as [75,76]
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ds2 = gαβdx
αdxβ = −W (r)dt2

+ 1

W (r)
dr2 + r2R2(r)

(
dθ2 + sin2 θdϕ2

)
. (3.4)

Note that W (r) may be named as metric function and, R(r)
reflects the impacts of dilaton field φ on the geometry of
spacetime. It is a dimensionless function and reduces to unity
when the dilaton field disappears.

In the spacetime identified by (3.4), we have F = −2F2
tr

and, the solution of (3.1) reads

Ftr = q

r2R2(r)
√

1 + ξ
, with ξ = 2q2e−4αφ

a2r4R4(r)
.

(3.5)

In the limiting case a → ∞, we obtain

Ftr = q

r2R2(r)
, (3.6)

which is nothing but the electric field of Einstein–Maxwell–
dilaton gravity [67,77].

Also, for the various components of (3.2), we obtained

Ctt ≡ W ′′(r) + 2

[
1

r
+ R′(r)

R(r)

]
W ′(r) + V (φ)

−2a2e4αφ

(
1 − 1√

1 + ξ

)
= 0, (3.7)

Crr ≡ Ctt + 4

[
R′′(r)
R(r)

+ 2R′(r)
r R(r)

+ φ′2(r)
]
W (r)

= 0, (3.8)

Cθθ ≡ Cϕϕ ≡ 2

[
1

r
+ R′(r)

R(r)

]
W ′(r)

+2

[
1

r2 + R′′(r)
R(r)

+ 4R′(r)
r R(r)

+ R′2(r)
R2(r)

]
W (r)

− 2

r2R(r)2 + V (φ) + 2a2e4αφ
(√

1 + ξ − 1
)

= 0.

(3.9)

Noting Eqs. (3.3), (3.7), (3.8) and (3.9), we have[
1

r
+ R′(r)

R(r)

]
(Ctt − 2Cθθ ) = dCθθ

dr
. (3.10)

This mean that Eqs. (3.7) and (3.9) are not unique and, we
have five unknowns (i.e. φ, V (φ), Ftr , R(r) and W (r)), while
the number of unique equations is equal to four. Thus, we
have not enough unique equations to obtain the full exact
solutions and, mathematically we are in-fronted with the
problem of indeterminacy. One can solve this problem by use
of an ansatz function. Since R(r), which reflects the direct
impact of scalar hair on the geometry, hasn’t dimension a
power-law ansatz is a useful one [78–80]. Thus we consider

R(r) =
(
r

r0

)σ

, (3.11)

where r0 and σ are dimensional and dilaton parameters,
respectively [67].

By combining Eqs. (3.8) and (3.11) and noting (3.7), the
related equation can be solved for the scalar field φ(r). It
leads to the following relation

φ(r) = γ ln

(
b

r

)
, with γ = √−σ(σ + 1).

(3.12)

Note that b is assumed to be positive and σ must be restricted
to −1 < σ ≤ 0.

By replacing these quantities into Eqs. (3.3) and (3.9),
we showed that the differential equations governed by the
unknowns, V (φ) and W (r), are as follows

dV (φ)

dφ
− 2γ

σ + 1
V (φ) + 4γ r2σ

0

(σ + 1)r2+2σ

+4a2
[
(α − γ

σ + 1
)
(√

1 + ξ − 1
)

+α

(
1√

1 + ξ
− 1

)]
e4αφ = 0, (3.13)

2(σ + 1)

r

[
W ′(r) + 2σ + 1

r
W (r)

]
− 2

r2R(r)2

+V (φ) + 2a2
(√

1 + ξ − 1
)
e4αφ = 0. (3.14)

Hereafter, without loss of generality, we set γ
σ+1 = 2α for

simplicity. It reduces the number of independent arbitrary
constants.

Now, based on the relation Ftr = −∂r At (r), the temporal
component of Aμ can be calculated. Noting Eq. (3.5), we
have

At (r) = −
∫

qdr

r2R(r)2
√

1 + ξ
+ const..

By considering constant of integration equal to zero and

introducing the new variable ξ1 = 2q2

a2b2r2
0

( b
r

)
, we obtain

At (r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q
(2σ+1)r0

( r0
r

)2σ+1
2F1

[
1
2 , 1+2σ

2(3σ+2)
,

1 + 1+2σ
2(3σ+2)

, −ξ
]
, − 1

2 < σ ≤ 0,

− 2q
r0

ln
[
2
√

r
�

(
1 + √

1 + ξ1
)]

, σ=− 1
2 .

(3.15)

Note that, with the constraints on σ , At converges at infinity.
By expanding At (r), we have

At (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q
(2σ+1)r2

0

( r0
r
)2σ+1

[
1 − (1+2σ)ξ

2(8σ+5)
+ O

(
ξ2
)]

,

− 1
2 < σ ≤ 0,

− q
r0

ln
( r
�

) − 4q
r0

ln 2 − q
r0

ξ1 + O
(
ξ2

1

)
, σ=− 1

2 .

(3.16)

which recovers the results of [67] if the parameter a is chosen
very large. The solution of (3.13), after fixing the constant of
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integration through V (φ = 0) = 2�, reads

V (φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
2� + 2σa2

3σ+2

)
e4αφ + 2σ

b2(2σ+1)

( r0
b

)2σ e
φ
α

− 2σa2

2+3σ

√
1 + ξ e4α�, − 1

2 < σ ≤ 0,

(
2� − 2a2

)
e2φ − 4φ

br0
e2φ + 2a2√

1 + ξ1 e2φ,

σ = − 1
2 .

(3.17)

By expanding the last terms in powers o ξ (ξ1) one can show
that

V (φ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2�e4αφ + 2σ
b2(2σ+1)

( r0
b

)2σ
e

φ
α

− 2σq2

b4(2+3σ)

( r0
b

)4σ
e

2φ
α , − 1

2 < σ ≤ 0,

2�e2φ − 4φ
br0

e2φ + 2q2

b2r2
0
e4φ, σ = − 1

2 ,

(3.18)

which coincides with the result of Ref. [67].
By replacing (3.17) into (3.14) and solving for W (r), in

terms of the integration constant m, we have

W (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− m
r2σ+1 + 1

2σ+1
( r0
r
)2σ + η

( r
b

)2(σ+1)

− 2a2b−2σ

(3σ+2)r2σ+1

∫
r4σ+2√

1 + ξ dr, − 1
2 < σ ≤ 0,

−m + 2r
r0

[
2 + ln

(
b
r

)]
η1

r
b

−4a2b
∫ √

1 + ξ1 dr, σ = − 1
2 ,

(3.19)

where, we have used the definitions η = 2a2b2

(3σ+2)(4σ+3)
−

�b2

(σ+1)(4σ+3)
and η1 = 2

(
2a2 − �

)
b2. After working the

integrals, we have

W (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− m
r2σ+1 + 1

2σ+1

( r0
r

)2σ + η
( r
b

)2(σ+1)

− 2a2b2

(σ+1)(3σ+2)

[√
1 + ξ − (3σ+2)H

4σ+3

] ( r
b

)2(σ+1)
,

− 1
2 < σ ≤ 0,

−m + 2r
r0

[
2 + ln

( b
r

)]
+η1

r
b − 4a2br

{√
1 + ξ1

+ξ1 ln
[
2
√

r
�

(
1 + √

1 + ξ1
)]}

, σ = − 1
2 ,

(3.20)

where, H = 2F1

[
1
2 , − 4σ+3

6σ+4 , 1 − 4σ+3
6σ+4 , −ξ

]
is a hyper-

geometric function. The last terms can be expanded in powers
of ξ (or ξ1) for obtaining

W (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− m
r2σ+1 + 1

2σ+1

( r0
r

)2σ

− �r2

(σ+1)(4σ+3)

( r
b

)2σ

+ 2q2 r−2

(2σ+1)(3σ+2)

( r0
r

)4σ+O
(

1
a2

)
, − 1

2 < σ < 0

−m + 2r
r0

[
2 + ln

( b
r

)] − 2�br

− 4q2

r2
0

ln
( r

�

) + O
(

1
a2

)
, σ = − 1

2 ,

(3.21)

which are just the same as obtained in [67] when the limit
a → ∞ is taken.

Note that the real root(s) of W (r = r+) = 0, as the black
hole horizon radius, can be determined by use of the plots.
In Figs. 1 and 2, we have depicted W (r) vs r for σ 	= − 1

2
and σ = − 1

2 cases, respectively. The figures illustrate that
two-horizon, one-horizon, extreme and horizon-less BHs can
occur if the parameters are fixed properly.

It is worth mentioning that the solutions presented in Eq.
(3.20) can be considered as BHs, if both of the following
requirements are fulfilled. (a) The metric functions are nec-
essary to have at least one horizon radius. Existence of the
horizon radii is confirmed by diagrams of Figs. 1 and 2. (b)
At least one physical singularity is required to exist. It can
be explored by calculating the Ricci (R = gμνRμν) and
Kretschmann (K = RαβρλRαβρλ) scalars. As a matter of
calculation, one can show that

R = −W ′′ − 4(σ + 1)

(
W ′

r

)

−2(σ + 1)(3σ + 1)

(
W

r2

)
+ 2

r2

(r0

r

)2σ

, (3.22)

K = (
W ′′)2 + 4 (σ + 1)2

(
W ′

r

)2

+8σ (1 + σ)2 WW ′

r3 + 4

r4

(
b

r

)4σ

+4 (σ + 1)2
(

3σ 2 + 2σ + 1
)(W

r2

)2

−8 (σ + 1)2
(r0

r

)2σ
(
W

r4

)
. (3.23)

By replacing W (r) and its derivatives into Eqs. (3.22) and
(3.23), we found that the Ricci and Kretschmann scalars
diverge in the limit r → 0+. As the result, the spacetime
under consideration posses a physical singularity at the ori-
gin. These facts confirm that our solutions can be interpreted
as BHs. Thermodynamic properties of our novel Ed BHs will
be investigated in the following sections.

4 Thermodynamic quantities and FLT

Now, we calculate thermodynamic quantities of our novel Ed
BHs and, investigate validity of the FLT. At first, using the
concept of surface gravity, we calculate the Hawking temper-
ature on the BH’s horizon. It is proportional to the surface

gravity κ , via T = κ
2π

with κ =
√

− 1
2 (∇αχβ )(∇αχβ) and

χα = (−1, 0, 0, 0), is obtained as T = 1
4π

(
dW (r)
dr

)
r=r+

[81–83]. In our case, one obtains
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Fig. 2 −W (r) vs r , Eq. (3.20) for � = −3, b = 0.22, r0 = 1, a = 1.8: Left: q = 0.33, m = 0.22 (black), 0.63 (blue), 1 (red), Right:
m = 0.4, q = 0.31, (black), 0.352 (blue), 0.39 (red)

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4π(σ+1)r+

[
σ+1

2σ+1

(
r0
r+

)2σ − �b2
( r+
b

)2σ+2

− 2a2b2(σ+1)
3σ+2

(√
1 + ξ+ − 1

) ( r+
b

)2σ+2
]
, σ 	= − 1

2

1
2π

[
1
r0

+ 1
r0

ln
(

b
r+

)
− �b

−2a2b
(√

1 + ξ1+ − 1
)]

, σ = − 1
2 .

(4.1)

Here, r+ is the radius of BH horizon and, the subscript +
means that the corresponding quantity has been calculated
on the BH horizon. The last terms can be expanded in powers
of ξ (ξ1) then in the limiting case a → ∞, we have

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4π(σ+1)r+

[
σ+1

2σ+1

(
r0
r+

)2σ − �b2
( r+
b

)2σ+2

− 2(σ+1)q2

(3σ+2)r2+

(
r0
r+

)4σ + O
(

1
a2

)]
, σ 	= − 1

2

1
2π

[
1
r0

+ 1
r0

ln
(

b
r+

)
− �b

− 2q2

r2
0 r+

+ O
(

1
a2

)]
, σ = − 1

2 ,

(4.2)

which is just the same as obtained in [67]. We have eliminated
m from Eq. (4.1) by using the condition W (r+) = 0. Note
that a zero temperature BH, named as the extreme BH, may
exist if its charge and horizon radius, labeled by q = qext
r+ = rext , are fixed to give T (rext , qext ) = 0. The horizon
of extreme BHs can be fund by use of diagrams. The blue
curves of Fig. 3 shows T versus r+. Noting the left and middle
panels, the temperature of BHs with σ 	= − 1

2 , vanishes at
r+ = rext . The BHs with horizon radii greater than rext ,
have positive temperature and, are physically acceptable. The
right panel of Fig. 3, which has been depicted for σ = − 1

2 ,
shows that there are two vanishing points which we label
by r1ext and r2ext with r1ext < r2ext . The BHs with radius
of horizon equal to r1ext or r2ext are known as the extreme
ones. The BH with the horizon radii smaller than r1ext and
greater than r2ext are not physically reasonable, because they
have negative temperature. The BHs with horizon radii in the
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range r1ext < r+ < r2 have positive temperature and, may
be named as the physical BHs.

The BH entropy, according to the area law, is equal to
one-fourth of BH’s surface area. In our case it can be written
as

S = 4πr2+R2(r+)

4
= πr2+

(
r+
r0

)2σ

. (4.3)

Note that when the dilaton field is absent, by letting σ = 0,
it recovers the corresponding value for the BHs in Einstein
gravity theory.

The horizon electric potential, relative to an appropriate
point of reference, can be determined by use of the following
standard relation [84–86]

U (r+) = Aμχμ|ref. − Aμχμ|r=r+ . (4.4)

Noting Eq. (3.15) we obtained [62,87]

U (r+) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cq
(2σ+1)r0

(
r0
r+

)2σ+1
2F1

[
1
2 , 1+2σ

2(3σ+2)
,

1 + 1+2σ
2(3σ+2)

, −ξ+
]
, − 1

2 < σ ≤ 0,

− 2cq
r0

ln
[
2
√

r+
�

(
1 + √

1 + ξ1+
)]

, σ = − 1
2 .

(4.5)

Note that the arbitrary constant coefficient c, will be fixed
later.

The BH mass can be calculated based on the method pro-
posed by Brown and York. Thus, the line element must be
written in the form of [78,80,88,89]

ds2 = −X2(R)dt2 + dR2

Y 2(R)
+ R

2
(
dθ2 + sin2 θdϕ2

)
.

(4.6)

There is no derivative of metric in the matter field, thus the
quasilocal mass M can be calculated by use of the following
equation

M = 2X (R)[Y0(R) − Y (R)]. (4.7)

The Y0(R) is obtained from Y (R) by letting m = 0. Let’s
introduce a new variable R = r R(r), then

dr2 = dR2

(1 + σ)2R2 , (4.8)

and comparison of (3.4) and (4.6), shows that

X2(R) = W (r(R)) , (4.9)

Y 2(R) = (1 + σ)2 (R(R))2 W (r(R)) . (4.10)

By replacing X (R) and Y (R) into Eq. (4.7), and taking limit
R → ∞ the BH mass M is obtained as

M = σ + 1

2r2σ
0

m. (4.11)

It is just the same as that achieved in [67], and recovers the
mass of R-N BHs in the case of σ = 0.

The electric charge of BHs can be obtained by use of the
Gauss’s law, that is

Q = q. (4.12)

At this stage, the Smaar mass formula can be achieved if
the condition W (r+) = 0 is imposed on the metric functions
of Eq. (3.20) then replacing m into Eq. (4.11). That is

M(r+, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r+(σ+1)
2(2σ+1)

+ r+
2

(
r+
r0

)2σ ( r+
b

)2σ+2

×
{
η(σ + 1) − 2a2b2

3σ+2

[√
1 + ξ+

− (3σ+2)H+
4σ+3

]}
, σ 	= − 1

2 ,

r+
2

[
2 + ln

(
b
r+

)]
+ η1

r0r+
4b

−a2br0r+
{√

1 + ξ1+ + ξ1+ ln
[
2
√

r+
�

(1

+√
1 + ξ1+

)]}
, σ = − 1

2 .

(4.13)

Using Eqs. (4.1), (4.3), (4.5), (4.12) and (4.13) one can show
that

(
∂M
∂S

)
Q = T, and

(
∂M

∂Q

)
S

=
⎧⎨
⎩

2(σ+1)
3σ+2 At (r+), σ 	= − 1

2 ,

2At (r+), σ = − 1
2 ,

(4.14)
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It means that by fixing the constant c, introduced in Eq. (4.5),
as c = 2(σ+1)

3σ+2 , the standard form of FLT is valid for our new
Ed BHs. That is

dM(S, Q) = TdS +UdQ. (4.15)

5 Stability of Ed BHs

Here, we analyze thermal stability of Ed–BI BHs in the
canonical ensemble method, by using the BH’s HC. It is
well-known that physical BHs with positive HC are stable.
The BHs with negative HC, can be stable through phase tran-
sition (PT). Type-one PT occurs for the BHs with zero HC,
while those with singular HC undergo type-two PT [90–93].
To investigate stability or PT properties of the BHs, it is
required to calculate the HC. We obtain the HC based on the
following standard definition [94,95]

HQ = T

(
∂S

∂T

)
Q

. (5.1)

Noting the fact that T = (
∂M
∂S

)
Q , we can write

HQ = T

MSS
, and MSS =

(
∂T

∂S

)
Q

=
(

∂2M

∂S2

)
Q

,

(5.2)

where, the subscript Q reminds that the BH’s charge must
be treated as a constant. Now, we calculate HC and, then by
use of the plots, study PT or thermal stability of BHs.

As it can be seen from Eq. (5.2), the numerator of HC is
the BH temperature and it is given by Eq. (4.1). Also, we
calculate the denominator by use of Eqs. (4.1) and (4.3). It
leads to

MSS = 1

2π2r0

[
a2b ξ1+

r+
√

1 + ξ1+
− 1

r0r+

]
, σ = −1

2
, (5.3)

MSS = −1

8π2(σ + 1)r3+

(
r0

r+

)2σ
[(

r0

r+

)2σ

+�b2(2σ + 1)

σ + 1

(r+
b

)2σ+2

+2a2b2(2σ + 1)

3σ + 2

(r+
b

)2σ+2 (√
1 + ξ+ − 1

)

−2a2b2
(r+
b

)2σ+2 ξ+√
1 + ξ+

]
, σ 	= −1

2
. (5.4)

Note that MSS presented in Eqs. (5.3) and (5.4) coincide with
the corresponding quantity in the scalar–tensor–Maxwell
theory, as a grows to infinity [67].

Diagrams of T and HQ versus r+ have been given simul-
taneously in Fig. 3, to discuss PT or stability of the BHs.
Noting the left and middle panels with σ 	= − 1

2 , tempera-
ture vanishes at r+ = rext and type-one PT occurs at this

point. The HC diverges at r+ = r1 and r+ = r2 thus the
BHs with horizon radius equal to r1 or r2 experience type-
two PT. The BHs with r+ > r1 (left panel) and those with
rext < r+ > r1 and r+ > r2 (middle panel) are stable. The
right panel, which has been depicted for σ = − 1

2 , shows
that there are two points of type-one PT which we label by
r1ext and r2ext with r1ext < r2ext . The BHs with horizon
radius equal to r1ext or r2ext undergo type-one PT. The BH
HC diverges at r+ = r3 and the BHs with the horizon radius
equal to r3 undergo type-two PT. The BHs with horizon radii
in the range r1ext < r+ < r3, with positive T and HQ , are
locally stable.

6 ST–BI BHs in the JF

Up to now, the exact BH solutions have been introduced
and the related properties have been studied in the four-
dimensional Ed–BI gravity theory. Now, it is the time to
continue these studies in the ST–BI gravity theory. To this
end, making use of the inverse CTs, one is able to obtain
the metric function of ST–BI theory from its Ed–BI counter-
part. Therefore, noting Eq. (2.9) for the metric ḡμν we have

ḡμν = ( b
r

)2αγ
gμν and, by assuming the line element

ds̄2 = ḡμνdx
μdxν

= −A(r)dt2 + 1

B(r)
dr2

+r2C2(r)
(
dθ2 + sin2 θdϕ2

)
, (6.1)

in the JF, one obtains

A(r) = ( b
r

)2αγ
W (r),

B(r) = ( b
r

)−2αγ
W (r),

C(r) = ( b
r

)αγ
R(r).

(6.2)

Note that, through exact solutions of Ed–BI theory, R(r) and
W (r) have been presented in Eqs. (3.9) and (3.20), respec-
tively. The plots of B(r) vs r have been depicted, for both
of σ = − 1

2 and σ 	= − 1
2 cases in Figs. 4 and 5, respec-

tively. Clearly, the horizon-less, extreme, one-horizon and
two-horizon ST BHs can occur.

Now, the arbitrary functions f1 and f2 and the scalar
potential f3, appeared in the JF action (2.1), can be cal-
culated. From Eqs. (2.15) and (2.17), with the assumption
ψ = Exp(2αφ) [23], we have

f1(φ) = e−2αφ,

f2(φ) = 1
2

(
α−2 − 3

)
e−6αφ,

(6.3)

123



Eur. Phys. J. C (2023) 83 :987 Page 9 of 11 987

0.2 0.4 0.6 0.8
r

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.0
r

0.2

0.4

0.6

0.8

Fig. 4 B(r) vs r , for m = 3, � = −3, q = 1, b = 1, r0 = 1: Left: σ = −0.14, a = 0.78 (dashed), 0.83 (black), 0.905 (blue), 1(red),
Right: a = 1, σ = −0.125 (black), −0.132 (blue), −0.14 (red)

Fig. 5 −B(r) vs r , for � = −3, b = 0.22, a = 1.8, r0 = 1, σ = −0.5: Left: q = 0.33, m = 0.38 (black), 0.63 (blue), 1 (red), Right:
m = 0.4, q = 0.334 (black), 0.3515 (blue), 0.336 (red)

and noting Eqs. (2.16) and (3.17), one obtains

f3(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2� + 2σ
b2(2σ+1)

( r0
b

)2σ
ψ

1
α2 −4 + 2σa2

2+3σ(
1−

√
1+ 2q2

a2b4

( r0
b

)4σ
ψ

2
α2 −4

)
; − 1

2 <σ ≤0,

2� − 8
br0

ln ψ

−2a2
(

1 −
√

1 + 2q2

a2b2r2
0
ψ4

)
, σ = − 1

2 ,

(6.4)

which can be expanded to obtain

f3(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2� + 2σ
b2(2σ+1)

( r0
b

)2σ
ψ

1
α2 −4

− 2σq2

b4(2+3σ)

( r0
b

)4σ
ψ

2
α2 −4

+O
(

1
a2

)
; − 1

2 < σ ≤ 0,

2� − 8
br0

ln ψ + 2q2

b2r2
0
ψ4

+O
(

1
a2

)
, σ = − 1

2 ,

(6.5)

It means that our calculations present the JF scalar poten-
tial in the form of a typical power law function. It has been
shown that application of power law scalar potential can
produce acceptable results in the context of ST cosmology
[96,97]. Note that, in addition to the scalar term, the � and
charge terms are exist here.

Thermodynamics of ST–BI BHs can be studied through
those of Ed–BI ones. For example, the horizon temperature
of ST–BI BHs, which we denote by T̄ , is

T̄ = 1
4π

(√ B(r)
A(r)

dA(r)
dr

)
r=r+

= 1
4π

(
b
r+

)−2αγ
d
dr

[( b
r

)2αγ
W (r)

]
r=r+

= 1
4π

dW (r)
dr |r=r+ = T .

(6.6)

It means that the Hawking temperature remains unchanged
for both of the ST and Ed theories [98].

As mentioned in [23,24,28], the entropy of ST–BI BHs
cannot be obtained by use of the entropy-area law, but the
BH’s temperature, mass, entropy, charge and electric poten-
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tial remain unchanged under CTs. Thus the Smarr relation
is also the same for both of the Ed and ST–BI BHs. As the
result we have

Ū = ∂ M̄(S̄, Q̄)

∂ Q̄
, and T̄ = ∂ M̄(S̄, Q̄)

∂ S̄
, (6.7)

from which one can conclude that, just like the Ed BHs,
FLT is valid for the ST–BI BHs. As a matter of calculation,
one is able to show that HCs of the ST and Ed BHs are
identical. Therefore, the stability properties of our novel BHs
are identical in the Einstein and Jordan frames, as described
by use of Fig. 3.

7 Conclusions

Due to the strong coupling between various field equations of
ST gravity theory, it is not easy to obtain the analytical solu-
tions, directly. Here, we have removed the mentioned prob-
lem by utilizing CTs and transforming the ST action to that
of Ed theory. It has been found that the scalar-coupled form
of the BI electrodynamics differs from that has been used
frequently by many other authors. The equations of motion
have been solved in a four-dimensional EF and, by apply-
ing the inverse CTs, the JF exact analytical solutions have
been obtained from their EF counterparts. Finally, two novel
classes of BH solutions have been introduced in the Ed and
ST theories of gravity, which are related to each other by
CTs. The metric functions in both of the Einstein and Jor-
dan frames can produce the horizon-less, extreme and two-
horizon BHs. By expanding the solutions, it has been proved
that the exact solutions of Ed gravity reduce to the corre-
sponding quantities in the Einstein–Maxwell–dilaton theory,
as the BI parameter is taken very large. Asymptotic behavior
of the solutions, in the presence of scalar field, is neither flat
nor A(dS). Thus, the spacetime geometry, in the Jordan and
Einstein frames, has been affected by the scalar fields.

The BH temperature, mass, charge, entropy and electric
potential, as the conserved and thermodynamic quantities,
have been calculated in the EF and under the influence of
dilaton and BI fields. Then by introducing the BH mass as
a function of S and Q, we showed that the TFL is valid for
our novel Ed BHs. Also, as illustrated in Fig. 3, the BHs with
positive temperature named as the physical BHs and those
with negative temperature, which we call un-physical ones,
can occur. In the case of σ 	= − 1

2 extreme BHs with r+ =
rext exist and, the physical and un-physical BHs appear with
horizon radii greater and smaller than rext , respectively. For
the BHs with σ = − 1

2 the extreme BHs can exist with r+ =
r1ext and r+ = r2ext . They are physically reasonable (i.e.
have positive temperature) provided that the horizon radii
are in the interval r1ext < r+ < r2ext . The HC diverges at
r+ = r1 and r+ = r2 for the case σ 	= − 1

2 and at r+ = r3

for σ = − 1
2 . It means that the BHs experience type-two PT

at the points r+ = r1, r+ = r2 and r+ = r3. The type-one
PT can occur for the BHs having horizon radii equal to rext ,
r1ext , and r2ext . Also, those with horizon radii in the intervals
r+ > rext (left panel), rext < r+ < r1 and r+ > r2 (middle
panel) and r1ext < r+ < r3 are locally stable.

Although the entropy-area law is not valid in the ST grav-
ity, but the thermodynamic quantities such as temperature,
mass, charge, entropy and electric potential remain invariant
under CTs. With these facts in mind, it has been shown that
the thermodynamical first law is valid for the ST BHs too.
The physical and un-physical ST BHs exist with the same
properties mentioned for the Ed BHs. Also, the ST BHs have
the same stability properties as the Ed ones.
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