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1 Introduction

Wess-Zumino-Witten (WZW) models are one of the most important groups of conformal
field theories (CFT). Their defining characteristic is that they do not have just the Virasoro
symmetry, but also an affine Lie algebra symmetry, which is based on some Lie group G.
They are rational with respect to this symmetry, which makes them one of the few types of
solvable models. Therefore it is possible to construct certain classes of modular invariant
bulk theories and so-called maximally symmetric boundary states, which preserve one half
of the bulk symmetry. However, a boundary conformal field theory is only required to
preserve the Virasoro symmetry, which means that there is a more general class of boundary
states, which do not have the Lie group symmetry. These are called symmetry-breaking
boundary states. Symmetry-breaking boundary theories are generally non-rational and
therefore it is difficult to construct them. The known examples are based on techniques
like orbifold constructions or conformal embeddings and they do not represent fully generic
symmetry-breaking boundary states because they preserve some weaker symmetry or have
other special properties.

In the context of string theory, conformal boundary states correspond to D-branes.
Therefore classification of boundary states in a given model means understanding of D-
branes on the corresponding string background. In WZW models, that means D-branes on
the group manifold of the Lie group G. The aim of this paper is to investigate boundary
states/D-branes in the simplest WZW model, which has the SU(2) symmetry, using
Witten’s bosonic open string field theory (OSFT) [1]. We will search for both for maximally
symmetric boundary states, which can serve as a test of validity of our approach, and for
new symmetry-breaking boundary states.

Open string field theory was introduced as a non-perturbative formulation of string
theory. As a theory of open strings, it requires a choice of D-brane background, which
means that it is formulated using a boundary conformal field theory with some fixed
boundary conditions. However, there is a conjecture known as background independence of
OSFT [2–4], which states that the initial background is not important because OSFTs on
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different backgrounds are related by a field redefinition. These transitions are realized via
classical solutions of OSFT, which are conjectured to be in one to one correspondence with
conformal boundary states. In other words, by finding classical OSFT solutions, we can
move to new backgrounds and find their properties.

Therefore it should be theoretically possible to classify all conformal boundary conditions
in a given CFT by analyzing all classical OSFT solutions on a single background. In practice,
it is of course not that easy because solving OSFT equations is a difficult task. There
are two approaches to OSFT and both have their limitations. One possibility is to find
solutions analytically using the KBc algebra or its extensions [5–13]. A remarkable success
of this approach are solutions for any background [4, 14, 15], which can be used to prove
background independence of OSFT, but their disadvantage is that they are based on
boundary condition changing operators. Therefore they require full understanding of
the concerned boundary states and they will not help us to find new symmetry-breaking
boundary states. The second possibility is to look for solutions numerically, using the level
truncation approach [11, 16–22]. This approach allows us to find only a limited number of
solutions and the results are not exact, but it is possible to reach yet unknown boundary
theories. Therefore we choose this approach to analyze the SU(2)k WZW model.

The SU(2)k WZW model has been already considered in the context of OSFT in
an older work by Michishita [23], which also looks for classical solutions using the level
truncation approach. We take some inspiration from this article, but our paper has a
somewhat different focus and we use different computational techniques. We have more
efficient numerical algorithms and more computer power, so we can do calculations at much
higher level. We also have access to Ellwood invariants [19, 24], which allow us to make
precise identification of most solutions.

When we compared our numerical results with [23], we found that they are not the
same and we reached a conclusion that the numerical data in [23] are incorrect. The most
likely reason is that [23] uses a wrong input for boundary structure constants, see the
comment in section 2.4. We checked which results are correct using the duality of k = 2, 3
SU(2)k WZW models to Ising and Potts model respectively. We reproduce the correct
structure constants in these two minimal models, which does not happen if one uses the
structure constants from [23]. The problem with structure constants does not affect much
the conclusions of [23], which seem to be correct qualitatively, although the exact numerical
data are not.

The results of this paper can be divided into two different categories.
First, we can learn more about the SU(2)k WZW model itself. And since the SU(2)

group is a subgroup of all other Lie groups, the results can be also applied to more complex
WZW models. We find evidence about existence of new symmetry-breaking boundary
states (although there seems to be less of them than we expected), which can be helpful
for finding them analytically in the future, and we confirm the existence of the so-called
B-brane boundary states from [25]. Next, we observe transitions between Cardy boundary
states, which seem to follow some interesting selection rules regarding their parameters
(see (4.6)). It would be interesting to see whether such rules also apply to RG flows in the
SU(2)k WZW model in general, or whether they are specific to the OSFT approach. By
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considering complex solutions, it is also possible to explore boundary states in the SL(2,C)k
WZW model, both maximally symmetric and symmetry-breaking.

Second, our results are interesting purely from the OSFT perspective. We have worked
out algorithms for OSFT calculations with three non-commuting currents, which can be
extended to other WZW models in the future. We obtained many classical solutions, which
help us understand properties of OSFT solutions in general and which can be compared
with solutions in other models, like free boson theories and Virasoro minimal models. And
since we identified many of our solutions, we get further evidence regarding background
independence of OSFT and Ellwood conjecture in the numerical formulation of OSFT.

This paper is organized as follows: section 2 contains a review the SU(2)k WZW model
with focus on topics that are needed for OSFT calculations. In section 3, we discuss properties
of the string field in the context of the SU(2)k WZW model and then we focus on search for
OSFT solutions and on their identification. Sections 4 to 6 are used for presentation of our
numerical results. Section 4 describes solutions corresponding to SU(2) Cardy boundary
states, section 5 solutions representing SL(2,C) Cardy boundary states and finally section 6
focuses on exotic solutions, which describe symmetry-breaking boundary states. In section 7,
we summarize our results and offer some possible future directions of this research. In
appendix A, we discuss complex conjugation of SU(2) primary fields and in appendix B,
we construct explicit form of Ishibashi states in the SU(2)k WZW model. In appendix C,
we provide formulas for F-matrices in this model and we use sewing relations to derive
structure constants. Appendix D includes description of some of our numerical methods.
Finally, in appendix E, we provide additional numerical data regarding several solutions.

2 Review of the SU(2)k WZW model

In this section, we review some properties of the SU(2)k WZW model. We focus on aspects
that are useful for its implementation in the open string field theory. Basic properties
of this model are well-known and they can be found in many books and articles (the
traditional reference is the book by di Francesco at al. [26], other useful references include,
for example, [27–32]). Some topics, like boundary states and structure constants, are less
known, so we will discuss them in more detail.

2.1 SU(2) representations

First, let us review some basic properties of representations of the SU(2) group. The group
has three Hermitian generators Ja, a = 1, 2, 3, but, for most purposes, it is more convenient
to replace J1,2 by the ladder operators J± = J1 ± iJ2. These generators have commutation
relations [

J+, J−
]

= 2J3,[
J3, J±

]
= ±J±. (2.1)

Irreducible representations of the SU(2) group are labeled by half-integer spin j. States
that irreducible representations act on are labeled by the spin j and also by eigenvalues of
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the operator J3, which are denoted by m and which go from −j to j. The group generators
act on these states as

J3|j,m〉 = m|j,m〉,
J+|j,m〉 = α+

j,m|j,m+ 1〉, (2.2)
J−|j,m〉 = α−j,m|j,m− 1〉,

where α±j,m =
√
j(j + 1)−m(m± 1).

By definition, elements g of the SU(2) group are given by matrices

g =
(
a b

c d

)
, (2.3)

which satisfy g†g = 1 and Det g = 1, which implies c = −b∗, d = a∗ and ad − bc = 1.
However, it is more convenient for us to parameterize group elements by three angles
θ ∈ (0, π), ψ ∈ (0, π) and φ ∈ (0, 2π) as

g =
(

cos θ + i sin θ cosψ ieiφ sin θ sinψ
ie−iφ sin θ sinψ cos θ − i sin θ cosψ

)
. (2.4)

This parameterization also shows that the SU(2) group is isomorphic to a 3-sphere.
The matrix (2.4) forms the fundamental SU(2) representation of spin 1

2 . A generic spin
j irreducible representation of a group element g reads

g(|j,m〉) =
∑
n

Dj
mn(g)|j, n〉, (2.5)

where Dj
mn(g) is the Wigner D-matrix [33]

Dj
mn(g) =

min(j−m,j+n)∑
l=max(0,n−m)

[(j+m)! (j−m)! (j+n)! (j−n)!]1/2

(j+n−l)! l! (m−n+l)! (j−m−l)! a
j+n−l bl cm−n+l dj−m−l. (2.6)

Finally, let us note that the three generators Ja = (J−, J3, J+) form a triplet and
transform under the adjoint representation

g(Ja) = Ωa
b(g)Jb, (2.7)

where the matrix Ω equals
Ω(g) = AD1(g)A−1. (2.8)

This relation includes a diagonal matrix A = diag(
√

2, 1,−
√

2), which appears because the
currents have a different normalization from the usual spin 1 states.

2.2 SU(2)k WZW model

Now, let us move from the SU(2) group to the SU(2)k WZW model. This model is a
conformal field theory which has the SU(2) group as a symmetry. We will skip the sigma
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model description of this theory because it is not relevant for this paper and focus purely
on its CFT formulation.

The chiral symmetry algebra of the SU(2)k WZW model includes three currents of
dimension one Ja(z), a = 1, 2, 3, which generalize the SU(2) group generators. Their OPE is

Ja(z)Jb(w) ∼ i
∑
c

εabc
Jc(w)
z − w

+ kδab
2(z − w)2 . (2.9)

The OPE includes a parameter k, which is called level and which has to be a positive integer
in unitary models. This parameter appears in the central extension of the current algebra, in
a similar way as the central charge extends the Virasoro algebra. As before, we define a more
convenient linear combinations of the first two currents, J±(z) = J1(z)± iJ2(z). The OPE
of the three currents implies that their modes satisfy the following commutation relations[

J±m, J
±
n

]
= 0, (2.10)[

J3
m, J

3
n

]
= mk

2 δm+n,0, (2.11)[
J±m, J

∓
n

]
= ±2J3

m+n +mkδm+n,0, (2.12)[
J3
m, J

±
n

]
= ±J±m+n. (2.13)

The zero modes of the currents Ja0 form a subalgebra, which is identical to the Lie algebra
of SU(2).

The stress-energy tensor of the theory is given by the Sugawara construction

T (z) = 1
2(k + 2)

(
2(J3J3)(z) + (J+J−)(z) + (J−J+)(z)

)
= 1

2(k + 2)
∑
a,b

K−1
ab (JaJb)(z),

(2.14)
where

K−1 =

 0 0 1
0 2 0
1 0 0

 (2.15)

is the inverse of the Killing form. The OPE of the stress-energy tensor with itself implies
that the central charge of the theory is

cSU = 3k
k + 2 . (2.16)

Primary operators1 in this model are labeled according to SU(2) irreducible representa-
tions by two numbers (j,m), where j is restricted by the level k to j = 0, 1

2 , 1, . . . ,
k
2 and

m = −j, . . . , j as usual. We denote these primary operators as φj,m(z) and their Hilbert
space representation as |j,m〉 = φj,m(0)|0〉. Conformal weights of these primaries depend
only on the label j:

hj = j(j + 1)
k + 2 . (2.17)

1For our purposes, it is convenient to slightly abuse the terminology and use the term primary operator
for all operators φj,m, while it is more usual to consider only φj,j as primary and view the remaining
operators with the same j as J−0 descendants.
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Fusion rules of primary operators are different from the usual spin addition in quantum
mechanics because the maximal available spin is restricted by the level k:

j1 × j2 = |j1 − j2|+ · · ·+ min(j1 + j2, k − j1 − j2). (2.18)

Zero modes of the currents act on primary states following (2.2) and positive modes
annihilate them

Jan |j,m〉 = 0, n > 0. (2.19)

Therefore the state space of the SU(2)k WZW model is spanned by the states

Ja1
−n1 . . . J

al
−nl |j,m〉, n1 ≥ n2 ≥ . . . ≥ nl ≥ 1. (2.20)

However, this state space is not irreducible because it contains many null states, especially
for low k. The basic null state in a given highest weight representation is (J+

−1)k+1−2j |j, j〉
and the rest of the null space is formed by its descendants. We have to remove null states
during our string field theory calculations, although we search for them in a different way
by analyzing the Gram matrix.

The number of states in an irreducible representation can be determined using characters,
which appear for example in [27]. Characters of the SU(2)k WZW model are defined so
that they count both L0 and J3

0 eigenvalues:

χj(z, τ) = TrHj
[
qL0−c/24e−2πizJ3

0
]

=

Θ(k+2)
2j+1 −Θ(k+2)

−2j−1

Θ(2)
1 −Θ(2)

−1

 (z, τ), (2.21)

where q = e2πiτ as usual and where we introduce the theta functions

Θ(k)
l (z, τ) =

∑
m∈Z+ l

2k

qkm
2
e−2πikmz. (2.22)

So far, we have considered only the chiral theory. However, to construct a complete
CFT, which includes both bulk theory and boundary theory, we need to know how to
combine the left and the right sector. In case of bulk theory, there in not much to discuss
because our calculations mostly involve boundary CFT. Modular invariants of the SU(2)k
WZW models follow the A-D-E classification and we will work only with the A-series of
models, which have diagonal partition function

Z =
k/2∑
j=0
|χj |2. (2.23)

That means that the bulk spectrum includes all representations exactly once and primary
operators have the same left and right label j, so we denote them as φj,m,m′(z, z̄).

Classification of boundary theories is more complicated, so we will discuss these in the
following subsection.
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2.3 Boundary theory

When it comes to boundary theory in SU(2)k WZW models, let us distinguish two types of
boundary conditions:

• Maximally symmetric boundary conditions. These boundary conditions preserve one
half of the bulk current symmetry, that is one copy of the chiral algebra.

• Symmetry-breaking boundary conditions. They do not preserve the SU(2) current
symmetry and, in general, they have only the Virasoro symmetry.

Boundary conditions of the first type are well understood and their boundary states
are given by the Cardy solution (2.31). On the other hand, symmetry-breaking boundary
states are not classified and only few examples are known. We will describe some of these
in section 2.5.

In this section, we will focus on the maximally symmetric boundary conditions. They
are characterized by gluing conditions of the form

Ja(z) = Ωa
b(g)J̄b(z̄)|z=z̄. (2.24)

Equivalently, the corresponding boundary states satisfy

(Jan + Ωa
b(g)J̄b−n)||B〉〉 = 0, (2.25)

where g is an SU(2) element and Ω(g) is given by (2.8). This matrix obeys

ΩTK−1 Ω = K−1, (2.26)

which means that these gluing conditions automatically imply the gluing condition for the
stress-energy tensor:

T (z) = T̄ (z̄)|z=z̄. (2.27)

The gluing conditions (2.25) are solved by the SU(2) Ishibashi states |j, g〉〉, which are
built from bulk primaries. The Ishibashi state of spin j is given by

|j, g〉〉 =
∑
n1,n2

(−1)2j+|n1|G−1
n1g(n2)|n1〉|n2〉, (2.28)

where the states |n1,2〉 form a chiral basis of the spin j representation, |n1| is the eigenvalue
of the number operator and G−1

n1g(n2) is the inverse of the Gram matrix of BPZ products
〈n1|g(n2)〉. See appendix B for more details and a derivation.

We are mostly interested in the lowest level components of Ishibashi states, which
include only primary states. For the trivial gluing conditions g = 1, we find

|j,1〉〉 =
∑
m

(−1)j−m|j,m,−m〉+ . . . (2.29)

and for generic gluing conditions

|j, g〉〉 =
∑
m,n

(−1)j−mDj
−mn(g)|j,m, n〉+ . . . . (2.30)
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Full boundary states are given by the Cardy solution. For each g, there is a set of
boundary states

||J, g〉〉 =
∑
j

B j
J |j, g〉〉 =

∑
j

S j
J√
S j

0

|j, g〉〉, (2.31)

where the label J takes the same half-integer values as for the representations, J = 0, 1
2 , . . . ,

k
2 ,

and the modular S-matrix of the SU(2)k WZW model reads

S j
i =

√
2

k + 2 sin (2i+ 1)(2j + 1)π
k + 2 . (2.32)

These boundary states are formally very similar to boundary states in Virasoro minimal
models. For a future reference, we provide boundary state components in the first few
models in table 1.

The label J goes up to k
2 , but, in practice, we can consider only boundary states

with J ≤ k
4 because there is a relation between boundary states with labels J and k

2 − J .
Boundary state coefficients from (2.31) satisfy

B j
J = (−1)2jB j

k/2−J , (2.33)

which means that these boundary states are related as

||J, g〉〉 = ||k/2− J, (−1) ◦ g〉〉. (2.34)

In this paper, we impose the following condition on the string field (see section 3.1):

J3
0 |Ψ〉 = 0. (2.35)

Using Ellwood invariants, it can be shown that this condition puts a restriction on boundary
states that can be described by our OSFT solutions. For Cardy boundary states, it implies
that they must preserve the gluing condition for the current J3:

(J3
n + J̄3

−n)||B〉〉 = 0. (2.36)

Group elements that are compatible with this condition have ψ = 0 and they can be
characterized just by the angle θ, which now lies in the interval θ ∈ (−π, π). This leads
to a great simplification of most formulas. Most importantly, irreducible representations
become diagonal

Dj(θ) =



e−2jθi 0
0 e−(2j−1)θi

. . .
e(2j−1)θi 0

0 e2jθi


, (2.37)

and the matrix Ω simplifies to

Ω(θ) =

 e
−2θi 0 0
0 1 0
0 0 e2θi

 . (2.38)
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k = 2
j 0 1/2 1
||0〉〉 0.707107 0.840896 0.707107
||1/2〉〉 1. 0. −1.
||1〉〉 0.707107 −0.840896 0.707107

k = 3
j 0 1/2 1 3/2
||0〉〉 0.609711 0.775565 0.775565 0.609711
||1/2〉〉 0.986534 0.479325 −0.479325 −0.986534
||1〉〉 0.986534 −0.479325 −0.479325 0.986534
||3/2〉〉 0.609711 −0.775565 0.775565 −0.609711

k = 4
j 0 1/2 1 3/2 2
||0〉〉 0.537285 0.707107 0.759836 0.707107 0.537285
||1/2〉〉 0.930605 0.707107 0. −0.707107 −0.930605
||1〉〉 1.074570 0. −0.759836 0. 1.074570
||3/2〉〉 0.930605 −0.707107 0. 0.707107 −0.930605
||2〉〉 0.537285 −0.707107 0.759836 −0.707107 0.537285

k = 5
j 0 1/2 1 3/2 2 5/2
||0〉〉 0.481581 0.646457 0.721887 0.721887 0.646457 0.481581
||1/2〉〉 0.867780 0.806119 0.321270 −0.321270 −0.806119 −0.867780
||1〉〉 1.082104 0.358757 −0.578908 −0.578908 0.358757 1.082104
||3/2〉〉 1.082104 −0.358757 −0.578908 0.578908 0.358757 −1.082104
||2〉〉 0.867780 −0.806119 0.321270 0.321270 −0.806119 0.867780
||3/2〉〉 0.481581 −0.646457 0.721887 −0.721887 0.646457 −0.481581

k = 6
j 0 1/2 1 3/2 2 5/2 3
||0〉〉 0.437426 0.594604 0.679662 0.707107 0.679662 0.594604 0.437426
||1/2〉〉 0.808258 0.840896 0.520190 0. −0.520190 −0.840896 −0.808258
||1〉〉 1.056040 0.594604 −0.281525 −0.707107 −0.281525 0.594604 1.056040
||3/2〉〉 1.143050 0. −0.735660 0. 0.735660 0. −1.143050
||2〉〉 1.056040 −0.594604 −0.281525 0.707107 −0.281525 −0.594604 1.056040
||3/2〉〉 0.808258 −0.840896 0.520190 0. −0.520190 0.840896 −0.808258
||3〉〉 0.437426 −0.594604 0.679662 −0.707107 0.679662 −0.594604 0.437426

Table 1. Numerical values of components B j
J of SU(2) Cardy boundary states from k = 2 to k = 6.
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Finally, we have to mention the boundary spectrum. In a boundary conformal field
theory, there are two types of boundary operators. Normal boundary operators ψj,m(x),
which have the same boundary conditions on both sides, and boundary condition changing
operators, which connect two different boundaries a = (Ja, ga) and b = (Jb, gb). We will
focus on boundary condition changing operators which connect boundaries characterized by
the same group element g. In this case, the boundary spectrum includes operators ψ(ab)

j,m ,
where the allowed values of j are given by the fusion rule of the boundary labels, j ∈ Ja×Jb.

We are mainly interested in the spectrum of ordinary boundary operators ψj,m(x). By
specializing to the case Ja = Jb = J , we find out that their spin j is always an integer,
j = 0, 1, . . . ,min(2J, k − 2J), and m = −j, . . . , j as usual.

2.4 Structure constants

In this subsection, we will describe structure of the OPE and correlation functions in the
SU(2)k WZW model. The basic correlators can be written in terms of structure constants,
which we need as an input for OSFT calculations. In particular, we need boundary structure
constants for the OSFT action and bulk-boundary structure constants for evaluation of
Ellwood invariants. For simplicity, we consider only the Cardy boundary states with the
basic boundary conditions given by the group element g = 1, which we take as our initial
OSFT setting. Some of the formulas presented here come from [27], but we have not found
a detailed discussion of the SU(2)k WZW model structure constants in the literature.

The OPE and correlators of primary fields must follow the generic structure which is
imposed by the conformal symmetry, which determines their coordinate dependance. In
addition to that, the SU(2) symmetry leads to a further simplification of structure constants.
Consider a 3-point correlator of primary fields 〈φj1,m1(z1)φj2,m2(z2)φj3,m3(z3)〉. By acting
with zero modes of the currents on the primaries (through contour deformations), we get
relations between correlators with different J3

0 eigenvalues mi, which allow us to derive an
analogue of the Wigner-Eckart theorem from quantum mechanics. Therefore the key part
of the structure constants depends only on the spins ji, while the m-dependance is captured
by Clebsch-Gordan coefficients.

First, let us have a look at structure of the OPE of two chiral primary operators, which
we can write as

φj1,m1(z)φj2,m2(w) ∼
∑
j3

〈j1,m1, j2,m2|j3,m3〉C j3
j1j2

φj3,m3(w) (z − w)hj3−hj1−hj2 + . . .

(2.39)
As mentioned above, that the m-dependence of the OPE is fully captured in 〈j1,m1, j2,
m2|j3,m3〉, which are the usual SU(2) Clebsch-Gordan coefficients. Therefore we can define
two types of structure constants, ‘bare’ structure constants C j3

j1j2
, which depend only on

ji, and ‘dressed’ structure constants, which include the m-dependence:

C
(j3,m3)

(j1,m1)(j2,m2) = C j3
j1j2

〈j1,m1, j2,m2|j3,m3〉. (2.40)

Similarly, we define structure constants with lower indices, which appear in 3-point
functions

C(j1,m1)(j2,m2)(j3,m3) = C j3
j1j2

C 0
j3j3 〈j1,m1, j2,m2|j3,−m3〉〈j3,−m3, j3,m3|0, 0〉. (2.41)
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These constants can be also expressed in terms of SU(2) 3-j symbols using the identity(
j1 j2 j3
m1 m2 m3

)
= (−1)j1−j2+j3〈j1,m1, j2,m2|j3,−m3〉〈j3,−m3, j3,m3|0, 0〉. (2.42)

Next, let us move to the full theory, where there are three types of OPEs: bulk OPE,
boundary OPE and bulk-boundary OPE. Their structure (in this order) is

φj1,m1,n1(z, z̄)φj2,m2,n2(w, w̄) ∼
∑
j3

C j3
j1j2

φj3,m3,n3(w, w̄) |z − w|2(hj3−hj1−hj2 ) (2.43)

× 〈j1,m1, j2,m2|j3,m3〉〈j1, n1, j2, n2|j3, n3〉+ . . . ,

φ
(ab)
j1,m1

(z)φ(bc)
j2,m2

(w) ∼
∑
j3

〈j1,m1, j2,m2|j3,m3〉

× C(abc)j3
j1j2

φ
(ac)
j3,m3

(w) (z − w)hj3−hj1−hj2 + . . . , (2.44)

φj1,m1,n1(z, z̄) ∼
∑
j2

〈j1,m1, j1, n1|j2,m2〉 B
(a) j2

j1
φ

(aa)
j2,m2

(x)(2y)hj2−2hj1 + . . . .

(2.45)

In the last equation, we write z as x+ iy. We have written the boundary OPE for a generic
configuration of boundary condition changing operators, but we will actually need only a
simpler case with a = b = c in our calculations.

The CFT is therefore fully determined by the bare structure constants C k
ij , C(abc)k

ij

and B
(a) l

i . The solution for these structure constants can be obtained by solving sewing
relations for the SU(2) model, see appendix C.3. The solution is almost the same as in the
Virasoro minimal models [34], there are just some additional signs:

C k
ij = (−1)i+j−k

(
Fk0

[
i i

j j

])−1

, (2.46)

C
(abc)k
ij = Fbk

[
a c

i j

]
, (2.47)

B
(b) j

i = S i
0

S 0
0

∑
m

eiπ(2hm−2hb−2hi+ 1
2hj)F0m

[
b i

b i

]
Fmj

[
i i

b b

]
. (2.48)

The solution is expressed in terms of the fusion matrix of the SU(2)k WZW model. We
provide an explicit formula for the F-matrix in appendix C.1. Bulk and boundary structure
constants are always real, while bulk-boundary structure constants are either real (for even
j) or purely imaginary (for odd j).

Next, we will discuss the normalization of correlators and the BPZ product. The
solution for structure constants is not unique because we have a freedom in normalization
of primary operators. It would be ideal to use this freedom to set all two-point functions to
1, but that is problematic because the related Clebsch-Gordan coefficient

〈j,m, j,−m|0, 0〉 = (−1)j−m 1√
2j − 1 (2.49)
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has an alternating sign. Therefore, we settle with setting them to ±1.2 Two-point bulk
structure constants based on (2.46) read

C 0
jj = S j

0
S 0

0
. (2.50)

Since this expression is always positive, we can choose the normalization of bulk primaries
to be

Nbulk
j =

√
2j − 1

√
S 0

0√
S j

0

(2.51)

so that the bulk BPZ product is

〈j,m1, n1|j,m2, n2〉 = (−1)2j−m1−n1δm1,−m2δn1,−n2 . (2.52)

Boundary structure constants are sometimes negative, so we choose the normalization
of boundary operators to be

Nbound
j = (2j − 1)1/4 1√∣∣∣C(aaa)0

jj

∣∣∣ . (2.53)

The boundary BPZ product is then given by

〈j,m|j, n〉 = sgn(C(aaa)0
jj ) (−1)j−mδm,−n 〈1〉(a), (2.54)

where 〈1〉(a) is the trivial boundary correlator, which is equal to the boundary state
g-function B0

a.
Finally, let us note that our result for boundary structure constants is different from [23]

and we reached a conclusion that the corresponding expression in [23] is incorrect: compare
the equation (A.1) from [23] with our expression for the F-matrix (C.2) with special entries
given by (2.47) for a = b = c. The expression in [23] is missing the factors denoted by
Λ, which means that it is based on an F-matrix in a wrong ‘gauge’. We observe that Λ
approaches 1 as k →∞, which explains why the accuracy of results in [23] improves with
increasing k. We are essentially sure that our formulas are correct because we reproduce
the expected boundary states with much better precision and because some of our solutions
have duals in m = 2, 3 Virasoro minimal models.

2.5 Symmetry-breaking boundary states

Construction of symmetry-breaking boundary states is generally quite difficult. The known
examples do not describe completely generic boundary states. Instead, they rely on existence
of some other symmetry, which is preserved even though the original symmetry is broken,
or on orbifold constructions. A general description of these techniques is given in [35–38],
more references can be found in [31]. In case of the SU(2)k WZW model, we have found two

2This may look strange because the theory is unitary, but it is important to notice that we talk about
the BPZ product. The Hermitian product, which is connected to unitarity, is positively definite.
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references that discuss symmetry-breaking boundary states [25, 39]. These constructions
are based on decomposition of the SU(2)k WZW model into a parafermion theory and a
free boson. So we will describe this decomposition first.

The SU(2) group includes a U(1) subgroup (conventionally generated by the J3 current)
and therefore we can decompose our model as SU(2)k = SU(2)k

U(1)k ×U(1)k. The U(1)k model
describes a free boson theory on a circle of radius R =

√
k and the coset SU(2)k

U(1)k describes a
parafermion theory. In special cases k = 2 and k = 3, the parafermion theory is equivalent
to the Ising model and the Potts model respectively.

The free boson theory on a circle with radius of the form R =
√
k is slightly different

from a generic free boson theory because it has an extended symmetry, which is generated
by additional generators e±i2

√
kX(z) with conformal dimension k. Representations of this

theory are labeled by an integer n, which is defined modulo 2k. These representations are
built on states with momentum

p = n+ 2kl√
k

, l ∈ Z. (2.55)

This free boson theory includes two types of Ishibashi states which respect the extended
symmetry: Dirichlet Ishibashi states

|r, r〉〉D = exp
( ∞∑
n=1

1
n
α−nᾱ−n

)∑
l∈Z

∣∣∣∣r + 2kl√
k

,
r + 2kl√

k

〉
, r = 0, 1, . . . , 2k − 1 (2.56)

and Neumann Ishibashi states

|r,−r〉〉N = exp
(
−
∞∑
n=1

1
n
α−nᾱ−n

)∑
l∈Z

∣∣∣∣r + 2kl√
k

,−r + 2kl√
k

〉
, r = 0, k. (2.57)

Using these Ishibashi states, we can construct Cardy boundary states. Dirichlet
boundary states, which are denoted as A-branes using the terminology of [25], are

||D,n〉〉 = 1
(2k)1/4

2k−1∑
m=0

e−
iπmn
k |m,m〉〉D, n = 0, . . . , 2k − 1. (2.58)

These boundary states describe D0-branes that are positioned at one of 2k special points
on the circle. Neumann boundary states, denoted as B-branes in [25], are given by

||N, η〉〉 = k1/4

21/4 (|0, 0〉〉N + η|k,−k〉〉N ) , η = ±1. (2.59)

They are interpreted as D1-branes with two special values of Wilson line. The theory of
course admits D-branes with an arbitrary position or a Wilson line, but these boundary
states do not respect the extended symmetry.

Next, let us have a look at the parafermion theory. Irreducible representations of
this theory are labeled by pairs of numbers (j, n), where j is a half-integer in the range
0 ≤ j ≤ k

2 as in the SU(2)k WZW theory and n is an integer defined modulo 2k. The
pairs are further restricted by a condition 2j + n = 0 mod 2 and by an equivalence relation

– 13 –



J
H
E
P
0
3
(
2
0
2
3
)
2
2
8

(j, n) ∼ (k2 − j, k + n). If we choose n from the interval −2j ≤ n ≤ 2k − 2j − 2, the weights
of primaries are then given by

hj,n =


j(j+1)
k+2 −

n2

4k −j ≤ n
2 ≤ j,

j(j+1)
k+2 −

n2

4k + n−2j
2 j ≤ n

2 ≤ k − j.
(2.60)

Cardy boundary states in the parafermion theory read

||J, n〉〉 =
∑

(j,m)

S
PF (j,m)
(J,n)√
S
PF (j,m)
(0,0)

|j,m〉〉, (2.61)

where the parafermion S-matrix is related to the SU(2)k WZW model S-matrix as

S
PF (j,m)
(J,n) =

√
2
k
e
iπmn
k SSU jJ . (2.62)

These boundary states are denoted as A-branes in [25]. B-branes in the parafermion theory
are given by

||B, J〉〉 =
√
k
∑
j

S
PF (j,0)
(J,0)√
S
PF (j,m)
(j,0)

|B, j, 0〉〉, (2.63)

where B-type Ishibashi states are defined by equation (3.17) in [25]. There are some
subtleties regarding these boundary states, but we will not discuss them because they do
not appear in the construction of B-branes in the SU(2)k WZW model.

Cardy boundary states (A-branes) in the parafermion theory have a nice geometrical
interpretation. Consider a circle with k regularly placed special points. Boundary states
with J = 0 or J = k/2 are D0-branes at these special points and states with other J are
represented by lines that connect two points separated by 2J segments. The other number
n determines rotation of these branes with respect to some reference position. See figure 1
for illustration.

Now, let us go back to the SU(2)k WZW model. The representations in this theory
have a nontrivial decomposition into the free boson and parafermion representations. The
character (2.21) decomposes as

χSUj (q, z) =
2k−1∑
n=0

χPFj,n (q)χU(1)
n (q, z). (2.64)

The variable z tells us that there is a relation between momenta in the free boson theory
and eigenvalues of J3

0 in the SU(2)k WZW model. Concretely, the quantum number n
from (2.55) corresponds to 2m.
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Figure 1. Graphical representations of D-branes in the parafermion theory for k = 5. J = 0 branes
are located at 5 equidistant points on the circle, J = 1

2 branes are represented by the shorter lines
connecting the points and J = 1 branes by the longer lines. The second parameter n determines the
angle of rotation of the branes.

In [25], it was shown that Cardy boundary states in the SU(2)k WZW model can be
written in terms of Cardy boundary states in the constituent models:3

||J, g〉〉SU = 1√
k

2k−1∑
n=0
||J, n〉〉PF ||D,n〉〉U(1), (2.65)

where the sum over n goes only over values allowed by the parafermion representations.
The so-called B-branes4 are given by a very similar expression, one just needs to replace

Dirichlet boundary states by Neumann boundary states in the U(1) theory

||B, J, η〉〉SU = 1√
k

2k−1∑
n=0
||J, n〉〉PF ||N, η〉〉U(1), η = ±1. (2.66)

The g-function of a B-brane is given by
√
k times the g-function of the usual Cardy boundary

state with the same J . The formula above describes just two representatives of B-branes,
which however appear in much larger continuous families. The spectrum of B-branes includes
five dimension one operators and therefore they have five-dimensional moduli space.

3The reference [25] does not specify for what SU(2) gluing conditions it holds. It cannot be for the basic
identity gluing conditions, which imply (J3

n + J̄3
−n)||B〉〉 = 0, while Dirichlet boundary state is annihilated

by the combination of modes αn − ᾱ−n. A more likely candidate for the gluing matrix is

Ω =

 0 0 1
0 −1 0
1 0 0

 .

4B-brane boundary states were also constructed using Coulomb-gas representation of the SU(2)k WZW
model in [40].
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In the reference [39], the authors constructed another two types of symmetry-breaking
boundary states. These are less relevant for our work, so we will mention them only briefly.
First, they consider a case when the level is an integer squared, k = κ2. In these models,
they found boundary states parameterized by parafermion labels (j, n) and group elements
g ∈ SU(2)/Zκ or g ∈ SU(2)/Zκ/2 for odd and even k respectively. One can easily see how
additional symmetry-breaking boundary states arise in the simplest nontrivial case k = 4.
In this model, primary operators φ2,m have weight one; therefore there is an extended set of
marginal operators and symmetry-breaking boundary states can be generated by marginal
deformations of the J = 1 boundary state. Marginal deformations are however not a focus
of this article and we will encounter only one real OSFT solution that could potentially
belong to this group.

The second class of boundary states in [39] is inspired by the free boson boundary
states from [41]. They are defined for an arbitrary k, but they suffer from the same problem
as the boundary states in [41]. When one tries to verify the Cardy condition, modular
transformation of an overlap of two boundary states leads to an integral over characters
instead of the usual sum. It is not clear whether such boundary states have any physical
meaning. Another problem is that we do not know normalization of these boundary states,
so we cannot do even a simple comparison of g-function with our results.

2.6 Extension to the SL(2,C)k WZW model

Although our original intention was to work with the SU(2)k WZW model, we found that
some OSFT solutions actually describe SL(2,C)k WZW model boundary states. Therefore
let us make few comments regarding the relation between the two models.

The SL(2,C) group can be viewed as a complexification of the SU(2) group. We can
write a generic element of both groups using the same three generators,

g = exp
3∑

a=1
λaJ

a, (2.67)

but the difference is that the parameters λa are real in the SU(2) group and complex in
the SL(2,C) group. To describe SL(2,C) elements, we can also use the formula (2.4) with
complex angles, which generate hyperbolic functions.

Similarly, we can understand some SL(2,C) boundary states as complexification of
SU(2) boundary states. In this paper, we focus on boundary states that preserve the
J3 gluing condition. To describe these states in the SL(2,C)k WZW model, can use the
formulas (2.30) and (2.37), where we make the replacement

θ → θ − i log ρ, (2.68)

so that
einθ → ρneinθ, (2.69)

where the parameter ρ is a positive real number. In this parameterization, boundary state
components depend on ρ through integer powers.
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Obviously, SL(2,C) boundary states are not real with respect to our complex conjugation.
That means that the corresponding OSFT solutions must be also complex. However, the
SL(2,C) solutions that we discuss in this paper still have some reality properties, so we call
them pseudo-real.

3 String field theory implementation

In this section, we will discuss several topics regarding how the SU(2)k WZW model is
incorporated into OSFT. We take some inspiration from [23], but our approach to many
calculations is different. The general framework and numerical algorithms that we use are
based on the thesis [22] and we refer to this work for most technical details. However, we
have to make some adjustments in order to deal with the SU(2) currents, so we will focus
on the description of the differences that come with the SU(2)k WZW model. First, we
will discuss properties of the string field and then we will move to topics which concern the
analysis and identification of solutions. Additionally, appendix D provides a description of
some of our numerical algorithms for evaluation of the OSFT action and Ellwood invariants
in this model.

3.1 String field

The form of the string field in OSFT which describes the SU(2)k WZW model is obtained
by tensoring the Hilbert space (2.20) with state spaces of the remaining part of the
matter theory and the ghost theory (where we impose Siegel gauge and the SU(1,1) singlet
condition [20, 21, 42]). We expand the string field as

Ψ =
∑

A,I,J,K,j,m

tAIJKjmJ
A
−IL

′
−JL

′gh
−Kc1|j,m〉, (3.1)

where we use multiindices defined in the usual way, I = {i1, i2, . . . , in}, L′ are universal
matter Virasoro generators with central charge c′ = 26− cSU and L′gh are ‘twisted’ ghost
Virasoros [43]. This form of the string field automatically implements Siegel gauge and also
the SU(1,1) singlet condition. We treat the universal matter and ghost parts of the string
field in the same way as in [22], so let us focus on the SU(2) part.

Even though we impose Siegel gauge, OSFT equations still have an unfixed symmetry.
Similarly to free boson theories, which have U(1) symmetries that correspond to translation
of solutions along compact dimensions, our theory must respect the SU(2) symmetry. That
means that if |Ψ〉 is a solution of OSFT equations, then eiλaJa0 |Ψ〉 must be also a solution.
Therefore, with the exception of SU(2) singlets, OSFT solutions form continuous families,
which prevents us from finding them using Newton’s method (which searches for isolated
solutions). To deal with this problem, we fix this symmetry using the same prescription as
in [23]. We require that the string field obeys

J3
0 |Ψ〉 = 0. (3.2)

This condition sets λ± to zero and λ3 becomes irrelevant, so the SU(2) symmetry is
fully fixed. As we mentioned before, this restriction of the string field means that it can
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describe only certain boundary states. The Ellwood invariant conservation law for J3
0

(which is analogous to momentum conservation in free boson theories and it can be derived
following [19, 22]) reads

〈E[V]|J3
0 |Ψ〉 = −〈E[(J3

0 + J̄3
0 )V]|Ψ〉 (3.3)

and it follows that boundary states described by our solutions must obey

(J3
0 + J̄3

0 )||B〉〉 = 0. (3.4)

For Cardy boundary states, it automatically implies that they preserve the J3 gluing
condition,5 which leaves us with one-parametric families of boundary states parameterized
by the angle θ. The remaining symmetry is broken by the level truncation approximation,
so the equations of motion for the restricted string field have a discrete set of solutions and
we can search for them using Newton’s method.

In order to implement the condition (3.2), we decompose the SU(2)k WZW model
Hilbert space according to eigenvalues of J3

0 : H = ⊕
m∈ZH(m). Based on this decomposition,

we decompose the string field as

|Ψ〉 =
∑
m∈Z
|Ψ(m)〉, (3.5)

where |Ψ(m)〉 satisfies J3
0 |Ψ(m)〉 = m|Ψ(m)〉. The condition (3.2) therefore selects |Ψ(0)〉,

but we also need |Ψ(±1)〉 as auxiliary objects, which help us compute OSFT vertices and
Ellwood invariants, see appendix D. Since we work only with a part of the Hilbert space,
the number of states at a given level is significantly reduced and imposing (3.2) therefore
greatly speeds up our calculations.

For construction of OSFT solutions, the most important states are the tachyon c1|0, 0〉,
relevant primary fields c1|j, 0〉 and sometimes the marginal state J3

−1c1|0, 0〉. These states
are enough to find seeds of most of well-convergent solutions, which describe the fundamental
boundary states, although we usually also solve equations for first few descendant fields
when searching for seeds to have access to some more unusual solutions.

3.2 Twist symmetry and reality conditions

Next, we will describe the twist symmetry and reality conditions of the string field in the
SU(2)k WZW model, which are different from most other OSFT settings.

When we analyze boundary three-point functions in our model (which determine the
basic cubic vertices in OSFT), we notice that bare structure constants are fully symmetric,
but dressed structure constants satisfy

C(j1,m1)(j2,m2)(j3,m3) = (−1)j1+j2+j3C(j3,m3)(j2,m2)(j1,m1) (3.6)
5For generic symmetry-breaking boundary states, the condition (3.4) can be rewritten as

(Ln − L̄−n)(J3
−n + J̄3

n)||B〉〉 = 0,

which is however weaker than the J3 gluing condition.
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when we reverse the order of the three labels. This equation follows from properties of the
Clebsch-Gordan coefficients. In OSFT, the reversal of the order of entries in the cubic vertex
involves the twist symmetry. When we consider ghost number one string fields, we have

〈Ψ1,Ψ2,Ψ3〉 = 〈ΩΨ3,ΩΨ2,ΩΨ1〉, (3.7)

where Ω is the twist operator. If we further restrict the string fields just to primary fields,
|Ψi〉 = c1|ji,mi〉, the cubic vertex becomes

〈Ψ1,Ψ2,Ψ3〉 =
(

3
√

3
4

)3−h1−h2−h3

C(j1,m1)(j2,m2)(j3,m3). (3.8)

By combining the equations above, we find out that the twist symmetry acts on primary
operators in a nontrivial way6

Ω|j,m〉 = (−1)j |j,m〉. (3.9)

If we consider more generic states in a spin j representation, the action of the twist symmetry
generalizes to

Ω|Ψ〉 = (−1)N+j |Ψ〉, (3.10)

where N is the eigenvalue of the number operator.
Properties of the twist symmetry do not let us to set the twist odd part of the string

field to zero, which is usually done in most OSFT calculations. The reason is that twist odd
states play a crucial role in many important solutions and we would lose these solutions by
removing twist odd states. In particular, we note that the primary state c1|1, 0〉 is twist
odd and the marginal state J3

−1c1|0, 0〉 too. We considered some alternative definitions of
twist symmetry (which combine the twist symmetry with some Z2 symmetry), but none of
them seems to be useful for our purposes. They either remove important states too or they
are not compatible with our basis, which makes their implementation too complicated.

The inclusion of twist odd states increases the overall time requirements of our calcu-
lations, but not by much because most time is typically consumed by evaluation of cubic
vertices, see appendix D.2.

Next, let us move to reality properties of the string field. Complex conjugation (which
is defined as a combination of the BPZ and Hermitian conjugations) acts on modes Jan as

(J3
n)∗ = (−1)n+1J3

n, (3.11)
(J±n )∗ = (−1)n+1J∓n , (3.12)

and on boundary and bulk primary states as

|j,m〉∗ = (−1)m|j,−m〉, (3.13)
|j,m, n〉∗ = (−1)m−n|j,−m,−n〉. (3.14)

See appendix A for a derivation of these formulas.
6Alternatively, one can replace (−1)j by (−1)j+m because the factors (−1)mi cancel each other, but that

does not change the fact that some important states are twist odd.
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These rules for complex conjugation allow us to derive reality conditions for individual
components of the string field (for example, we find that coefficients of primary fields c1|j, 0〉
must be real for real solutions), but testing reality of the string field directly is not very
practical. Since the complex conjugation switches J+ with J− and we choose our basis
asymmetrically, we often find that real solutions satisfy

Ψ = Ψ∗ + χ, (3.15)

where χ is a null state. In other words, a real string field is usually real only up to a null
state. Checking this condition requires quite a lot of effort, so it is much easier to check
reality of gauge invariant observables. A real solution must have a real energy and its
invariants (which are defined in the next subsection) must satisfy

Ej,m = (−1)2jE∗j,−m (3.16)

and
J∗+− = J−+, J∗33 = J33. (3.17)

We also encounter many pseudo-real solutions, which have real action, but their string
field and invariants are not real. As examples, see the SL(2,C) solutions in section 5. These
solutions usually satisfy some alternative reality condition of the form

Ψ = S(Ψ∗) + χ, (3.18)

where S is some Z2 symmetry and χ is a null state.

3.3 Observables

In order to identify solutions as boundary states, we need gauge invariants observables. The
first quantity we consider is the energy, which is defined in the usual way using the OSFT
action:

E[Ψ] = EJ − S[Ψ] = EJ + 1
g2
o

(1
2〈Ψ, QΨ〉+ 1

3〈Ψ,Ψ ∗Ψ〉
)
, (3.19)

where EJ is the energy of the J-brane background. The normalization of the energy is
chosen so that it reproduces boundary state g-functions, which means that EJ = gJ = B 0

J .
However, knowing the g-function is not enough to identify a boundary state because there
are continuous families of boundary states with the same g-function. Therefore we need
more gauge invariant observables to make unique identification of solutions.

It is conjectured that components of a boundary state corresponding to a solution are
given by so-called Ellwood invariants [24], which are defined using on-shell bulk primary
operators V:

E[V] = 2πi〈I|V(i,−i)|Ψ−ΨTV 〉, (3.20)

where ΨTV is the tachyon vacuum solution. Using the normalization conventions of [22],
Ellwood invariants should reproduce components of the matter part of the boundary state
corresponding to the solution Ψ, E[V]exp = 〈V m||BΨ〉〉, where V m is the matter part of V.

– 20 –



J
H
E
P
0
3
(
2
0
2
3
)
2
2
8

When we decompose the bulk Hilbert space of the SU(2)k WZW theory into irreducible
representations with respect to the stress-energy tensor, we find that there is an infinite tower
of primary operators and therefore it is possible to define an unlimited number of Ellwood
invariants. However, most of primary fields have high conformal weights, which means that
the associated invariants would be not converge for most solutions (see [22]). Therefore
we consider only a limited number of simple invariants with low weights. Furthermore,
the condition (3.2) implies that Ellwood invariants can be nonzero only for bulk operators
which satisfy

(J3
0 + J̄3

0 )V = 0, (3.21)

so we consider only bulk operators which have the opposite left and right eigenvalues of J3
0 .

We define two types of invariants. The main invariants that we work with are based on
SU(2) primary operators:

Ej,m = 2πi〈E[cc̄φj,m,−mV aux]|Ψ−ΨTV 〉, (3.22)

where V aux is an auxiliary vertex operator, which sets the overall conformal weight to zero,
see [19] for more details. If we set j = m = 0, we get the universal invariant E0,0 which
measures the g-function. Additionally, we decided to test some invariants that include
the SU(2) currents. Most of them have high conformal weights, so we define only the
simplest possible invariants Jab, which are analogous to D1µν invariants from the free boson
theory [22]:

Jab = 2πiNab〈E[cc̄JaJ̄b]|Ψ−ΨTV 〉. (3.23)

The condition (3.21) implies that there are only three nonzero invariants: J+−, J−+ and
J33. The vertex operators that define these invariants lie in the same representation as the
identity, which means that these invariants should be related to E0,0 for Cardy boundary
states. We choose their normalization to be

N+− = N−+ = −1
k
, (3.24)

N33 = −2
k
, (3.25)

which guarantees that they are equal to E0,0 for universal solutions.
Expectation values of our invariants for Cardy boundary states follow from the formulas

in section 2.3. Their absolute values are given by the matrix B j
J and their phases follow from

Ishibashi states for the given gluing conditions. Their expectation values for a boundary
state describing a J-brane with angle θ are

Eexp
j,m = (−1)j−mB j

J e
2imθ, (3.26)

Jexp
±∓ = B 0

J e
±2iθ, (3.27)

Jexp
33 = B 0

J . (3.28)

In addition to gauge invariant observables, we also compute the first ‘out-of-Siegel’
equation ∆S [21, 22] using the prescription

∆S = −〈0|c−1c0b2|QΨ + Ψ ∗Ψ〉. (3.29)
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This quantity serves as a consistency check whether solutions satisfy equations that were
projected out during implementation of Siegel gauge and it should approach zero.

3.4 Search for solutions

Now, let us move to the topic of search for solutions and their analysis.
Our method to find OSFT solutions closely follows the algorithms described in [22], so

we will summarize it only briefly. We first compute low level seeds (typically at level 2)
using the homotopy continuation method which allows us to find all solutions at a given
level. Out of these seeds, we select those that have promising properties and we improve
them using Newton’s method to the highest level we can reach using the available computer
resources (which is 10 to 14 depending on the background).

We typically find many seed whose energy is of the same order as g-function of the
initial D-brane. Typically, only few seeds are real, more of them are pseudo-real solutions
and the vast majority are generic complex solutions. Unfortunately, we cannot restrict
the analysis only to real solutions because pseudo-real solutions describe SL(2,C) branes
and some complex seeds become real or pseudo-real at higher levels. For low k and J , the
number of solutions is manageable, but it grows very quickly as we consider higher models.
For k = 8, we had to deal with over ten thousand of solutions.

The number of potentially useful seeds is too high to be analyzed by hand, so we had
to come up with an automatic procedure to reduce their number to a manageable amount
by discarding those with undesirable properties, like large imaginary part or large ∆S . We
used several rounds of elimination, during which we gradually applied more and more strict
criteria with increasing level. At the highest available level, we decided keep for a more
detailed analysis by hand only solutions with Re[E] > 0, |Im[E]| . 0.05 and |∆S | . 0.05. In
most settings, these solutions still included a significant amount (usually few dozens) of
complex solutions. However, our analysis showed that only few complex solutions allow a
clear identification (they mostly represent two SL(2,C) 0-branes). These complex solutions
are usually not very interesting, so, in the end, we decided that the results presented in
this paper will include only solutions which are real or pseudo-real, or became so at some
achievable level.

The search for solutions in this model is more complicated than usual due to a partial
numerical instability of some solutions. In case of these solutions, Newton’s method does
not work properly at (some or all) odd levels, it either does not converges at all or it leads
to a result that is too different from the previous even level. In order to deal with this
problem, we use only even levels as seeds for Newton’s method. Some solutions with this
issue have a clear interpretation, so this instability does not necessarily disqualify solutions,
we just have to use only even level data for their analysis.

This instability is most likely connected to the marginal field λJ3
−1c1|0, 0〉, we checked

that unstable solutions excite this field (the value of λ is typically purely imaginary or
complex, so the instability mainly concerns SL(2,C) solutions). In principle, we should
be able to see continuous families of solutions that correspond to boundary states with
different θ, which are connected by marginal deformations. This symmetry is broken by
the level truncation approximation, but the potential for the marginal field is still quite
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flat. And it seems that some of its minima either disappear as some levels or the move far
between levels, which is probably the cause of the instabilities. However, it is not clear why
the instabilities occur for imaginary values of the marginal field and why they happen only
at odd levels.

3.5 Identification of solutions

First, let us divide solutions in our model into three categories based on which types of
D-branes they describe:

• SU(2) solutions. These solutions correspond to Cardy boundary states of the SU(2)
model described in section 2.3, which preserve the maximal possible amount of
symmetry. These solutions must be real.

• SL(2,C) solutions. Next, there are solutions that go beyond the original SU(2)
model and describe Cardy boundary states of the extended SL(2,C) model. SL(2,C)
boundary states are not real with respect to our reality condition, but they are mostly
pseudo-real.

• Exotic solutions. Finally, there are solutions that do not match any combination of
Cardy boundary states. Therefore we think that they describe symmetry-breaking
boundary conditions either in the SU(2) or the SL(2,C) model. They can be either
real or pseudo-real, but we will focus on real solutions which describe boundary states
in the SU(2) model.

Precise identification of solutions in our model and their assignment into one of these
groups is more difficult than in the free boson theory, where we have tachyon and energy
density profiles to guide us. The energy is usually consistent only with few D-branes
configurations, but determining whether there is a combination of parameters θ (and
possibly ρ) so that all invariants match the expected values can be quite difficult, especially
if a solution describes more than one D-brane.

Therefore we introduce a quantity R2 measuring the difference between invariants of a
solution and their expected values for a D-brane configuration with given parameters. We
define it as

R2(J, θ, ρ) =
∑
j,m

(Ej,m − Eexp
j,m(J, θ, ρ))2, (3.30)

where Ej,m are infinite level extrapolations of Ellwood invariants (or values from the last
available level) and Eexp

j,m(J, θ, ρ) are their expected values for given parameters J , θ and ρ.
To identify a solution, we select D-brane configurations allowed by the energy and then

we numerically minimize this quantity for each configuration. Since there can be more local
minima, we try several different starting points for θ and ρ. The minimum with the smallest
value of R2 is then chosen as the final identification. Cases of more D-branes configurations
having similar R2 are rare, so identification of well-behaved solutions is usually unique.
Good solutions typically have R2 < 0.001. If R2 & 0.01, it indicates low precision of a
solution (which is often accompanied by other problems), and if R2 & 0.1, it usually means
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that the identification failed and the given solution does not describe a configuration of
Cardy boundary states.

The definition of R2 allows various adjustments, some of which are more convenient for
certain types of solutions and less for others. One can choose various ranges of j and m.
We decided to take only m = −j, j because these invariants usually have the best precision
and they are most sensitive to the parameters θ and ρ, while invariants with m around zero
usually have larger errors. Additionally, for SL(2,C) solutions at high k, we restrict j by
jmax = 2 because these solutions have very large values of invariants with high j, which
leads to problems during the numerical minimization of R2. It would be also possible to
make other changes, like weighting invariants by their errors. Alternative definitions of R2

typically do not affect the final value of θ because this angle is unambiguously fixed to few
discrete values by reality of some invariants for most solutions. They lead to small changes
in ρ for SL(2,C) solutions, but the results seem to be affected more by precision of infinite
level extrapolations than by the definition of R2.

For infinite level extrapolations, we use the method described in [22]. Let us quickly
review the key points here.

To extrapolate a given quantity, we fit the known data points by a function of the form
of a polynomial in 1/L:

f (M)(L) =
M∑
n=0

anL
−N , (3.31)

where M is the order of the extrapolation. We usually use functions of the highest possible
order, which actually interpolate the data points. The infinite level extrapolation is then
given by the limit limL→∞ f

(M)(L).
However, OSFT data usually do not allow a straightforward extrapolation. They

contain more or less visible oscillations with period of 2 (energy, ∆S , string field coefficients)
or 4 (Ellwood invariants) levels. Therefore we divide data points into 2 or 4 groups and
extrapolate each of them separately. Then we take the average of the 2 or 4 values as the
final result and the standard deviation as the error estimate. This type of error estimate is
somewhat problematic because it tends to under/over-estimate the actual error depending
on properties of the given quantity, see the discussion in [22], but we have no better option
and it gives us at least a rough idea about precision of extrapolations.

3.6 Visualization of SU(2) D-branes

Boundary states in the SU(2)k WZW model have a somewhat different interpretation from
usual D-branes in free boson theory. They do not form hyperplanes, but they have a
geometrical meaning. Cardy boundary states are associated with conjugacy classes of the
SU(2) group [25, 31, 44]. However, they are not localized exactly to conjugacy classes, but
they are smeared objects around them. The localization is least definite for low k and it
gets sharper with increasing k.

The SU(2) group manifold is isomorphic to a 3-sphere and conjugacy classes form
either points or 2-spheres on the 3-sphere. Points correspond to 0-branes or k

2 -branes and
2-spheres to other D-branes. Visualization of the 3-sphere would be difficult, but the fact
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Figure 2. Visualizations of SU(2) Cardy branes for k = 7. The figure on the left shows all D-branes
with θ = 0, the right figure shows the same D-branes rotated by random angles θ.

that our solutions preserve the gluing condition for the J3 current fortunately makes the
problem much simpler. These Cardy boundary states are characterized just by the angle
θ, so we can replace the 3-sphere just by a circle, which corresponds to a ‘side view’ of
the 3-sphere. 0-branes are represented by points on the circle and other J-branes by lines
connecting two points on the circle separated by a distance determined by J . The angle
θ corresponds to rotation of D-branes with respect to the vertical axis. See figure 2 for
illustration, where we visualize some D-branes in k = 7 model as an example.

Notice that visualization of Cardy boundary states preserving the J3 gluing condition
is very similar to visualization of parafermion D-branes mentioned in section 2.5. The only
difference is that D-branes in the SU(2)k WZW model are not fixed to special points and
they can be rotated by an arbitrary angle.

4 SU(2) solutions

In this section, we will discuss OSFT solutions describing SU(2) Cardy boundary states,
which are the basic results expected based on background independence of OSFT. The
k = 1 model is not interesting for us because it is dual to free boson on the self-dual radius
R = 1,7 [26] and all fundamental boundary states are related by marginal deformations.
Therefore we will consider k ≥ 2. We will discuss k = 2, 3, 4 models in more detail and then
we will show a summary of solutions that we have found up to k = 8 and conjecture some
generic properties of these solutions.

When it comes to the initial boundary conditions, we can restrict our attention just
to 1

2 ≤ J ≤ k
4 . Boundary conditions with J > k

4 are related to k
2 − J just by an SU(2)

7It is easy to check that the central charge for k = 1 has the correct value c = 1 and that the three WZW
currents can be constructed using a single chiral free field:

J3(z) = i∂X(z), J±(z) = e±2iX(z).
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rotation (see (2.34)). We also skip all backgrounds with J = 0 because they have trivial
boundary spectrum and therefore all solutions on such backgrounds can be also found on
an arbitrary background with the same k. The argument why it happens is quite simple.
Consider a nontrivial boundary field φj,m. One-point function of a such field is always
zero, which means these fields always contribute to the action at least quadratically. The
same holds for their descendants. Therefore it is possible to set all fields corresponding
to representations with j > 0 to zero and the remaining equations of motion for fields
corresponding to descendants of the identity are the same as equations of motion for J = 0.
This shows that solutions based on the identity representation are shared by all backgrounds
for given k.

4.1 k = 2 solutions

Let us begin with the with the k = 2 model, where we choose J = 1
2 boundary conditions

(with θ = 0) as the background. By solving level 2 equations, we found approximately 1000
seed solutions. Out of them, there are only two meaningful real solutions,8,9 which differ by a
sign of the invariant E1/2,1/2. We picked the solution with the positive sign as a representative
and we improved it up to level 14 using Newton’s method, see the data in table 2.

Gauge invariants of the solution have several symmetries and, because of that, only
few of them are independent. Table 2 includes only the independent observables and the
remaining invariants can be obtained using relations

J33 = −E1,1 = −E1,−1 = E0,0,

J+− = J−+ = E1,0, (4.1)
E 1

2 ,−
1
2

= E 1
2 ,

1
2
.

These symmetries can be also seen in table 3, which summarizes extrapolations of the
observables and compares them to the expected values. Some of the symmetries are the
same as the conditions (3.16) and (3.17), which tell us that the solution is real, but there
are also additional ‘accidental’ symmetries with uncertain origin. Similar symmetries also
hold for many other real solutions and we will discuss them in more detail later.

The numbers in table 2 are familiar to us because they match observables of the main
Ising model solution [22, 45] for 1-brane. This is not surprising because the Ising model
can be obtained as a coset of the SU(2)2 WZW model (see section 2.5). The Ising model
data can be used to predict values of observables of our solution up to level 22 and obtain
better extrapolations, see [22], but that will not be important for our analysis.

Extrapolations of observables and their errors are shown 3. The energy (g-function) is
close to 1/

√
2, which suggests that the solution can be identified as a 0-brane (see table 1,

which summarizes boundary state coefficients for Cardy boundary states), but it remains
to check whether its Ellwood invariants are also consistent with this identification. First,

8There are also some interesting pseudo-real and complex solutions, some of which will be discussed later.
9These solutions are analogous to some solutions from [23], but this reference identifies them differently

as 0-branes with θ = 0, π.
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Level Energy E0,0 E1/2,1/2 E1,0 ∆S

2 0.749172 0.733703 0.739416i −0.893387 0.0210426
3 0.738953 0.725226 0.765890i −0.945626 0.0063005
4 0.726558 0.722133 0.778236i −0.487621 0.0040500
5 0.723823 0.719333 0.796483i −0.500237 0.0026609
6 0.719329 0.715848 0.801822i −0.721123 0.0019628
7 0.718253 0.714764 0.807270i −0.730309 0.0014777
8 0.715961 0.714011 0.810113i −0.629844 0.0011938
9 0.715423 0.713460 0.814922i −0.631591 0.0009406
10 0.714036 0.712159 0.816787i −0.704802 0.0008065
11 0.713724 0.711832 0.818892i −0.706614 0.0006497
12 0.712795 0.711535 0.820182i −0.664923 0.0005809
13 0.712596 0.711319 0.822338i −0.665365 0.0004740
14 0.711929 0.710651 0.823308i −0.701302 0.0004371

Table 2. Independent observables of a solution describing 0-brane with θ = π
2 in the k = 2 model

with J = 1
2 boundary conditions. We provide data up to level 14, higher level data can be obtained

through the duality to the Ising model. Extrapolations of these quantities and their expected values
are shown in table 3.

Energy E0,0 ∆S

∞ 0.707097 0.7069 −0.000028
σ 0.000001 0.0002 0.000003

Exp. 0.707107 0.707107 0
J+− J−+ J33

∞ −0.7072 −0.7072 0.7069
σ 0.0068 0.0068 0.0002

Exp. −0.707107 −0.707107 0.707107
E1/2,1/2 E1/2,−1/2

∞ 0.8396i 0.8396i
σ 0.0001i 0.0001i

Exp. 0.840896i 0.840896i
E1,1 E1,0 E1,−1

∞ −0.7069 −0.7072 −0.7069
σ 0.0002 0.0068 0.0002

Exp. −0.707107 −0.707107 −0.707107

Table 3. Comparison of extrapolations of observables to their expected values for a solution
describing J = 0 boundary state with θ = π

2 in the k = 2 model with J = 1
2 boundary conditions.

For each observable, the first line shows the infinite level extrapolation, the second line the estimated
error of the extrapolation and the final line the expected value based on θ = π

2 . The extrapolations
are based on the level 14 solution which we found in the WZW model, but an improvement is
possible using the dual Ising model solution, see table 8.4 in [22].
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let us consider the invariant E 1
2 ,

1
2
, which can be used to determine θ. Using (3.26), we find

θ = π

2 . (4.2)

The predictions of observables in table 3 are based this angle. The other solution with the
opposite sign of E 1

2 ,
1
2
describes boundary state with θ = −π

2 . We can see that there is a
good match between infinite level extrapolations and predictions, so we have no doubts that
the solution really describes a 0-brane. The out-of-Siegel equation ∆S (3.29) is satisfied
quite well, which suggests that the solution is consistent.

We notice that error estimates of some extrapolations do not match the actual errors
very well. They are underestimated for well convergent quantities (energy, E1/2,1/2, ∆S) and
overestimated for E1,0, which oscillates with level. This is the same type of behavior which
was observed in [22] and we have to take it into account when analyzing error estimates
made using this method.

It is interesting that we can determine the angle exactly, even though numerical results
are never precise. That is possible because some invariants depend on θ through a complex
phase and, since the invariants of this solution are either real or purely imaginary, θ = ±π

2
are the only possibilities.

The angles θ = ±π
2 are a somewhat unexpected result. In analogue with lump solutions

in the free boson theory, we expected that the basic solutions would have θ = 0, π. However,
that does not happen and, as we are going to see on more examples later, solutions in the
SU(2)k WZW model follow different rules than in the free boson theory. There are solutions
with θ = 0 on some backgrounds, but they are less common and they have worse properties.

The geometric interpretation of the two 0-brane solutions is shown in figure 3 on the
left. We observe that the 0-branes form around points which lie on the initial 1

2 -brane. If
we relaxed the condition J3

0 |Ψ〉 = 0, 0-brane solutions would form a 2-parametric family
(which can be obtained by action of SU(2) group elements on this solution) and the 0-branes
would lie somewhere on the 2-sphere that corresponds to the initial 1

2 -brane.
In addition to this solution, we also found a solution dual to the positive energy solution

from the Ising model [22, 45]. This solution has a complex seed, but its imaginary part
decreases with level and it becomes real at level 14. Up to some signs and imaginary units,
invariants of solutions in both models are again identical. Therefore we will not repeat the
analysis of this solution here and we will just mention its physical interpretation. On the
1
2 -brane, it can be identified as two 0-branes with θ1 = −θ2 = π

2 ) (it is represented by both
of the red dots in figure 3 on the left). This solution can be also found when choosing the
trivial J = 0 boundary conditions. On this background, it represents 1

2 -brane with θ = π
2 .

4.2 k = 3 solutions

Next, we move to the k = 3 model. The only interesting boundary conditions in this model
are again J = 1

2 because other boundary conditions do not offer any new solutions.
In this model, we find a pair of real solutions describing 0-branes, which are in many

aspects similar to the solutions from the previous subsection. Properties of one of them
are shown in table 4. Its gauge invariants have a large amount of symmetry, so the table
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Figure 3. Graphical representations of 0-brane solutions for k = 2 (on the left) and k = 3 (on the
right). The initial 1

2 -brane is represented by the black line and the two solutions describing 0-branes
by the red points which lie on the 1

2 -brane. A two 0-brane solution would be represented by both of
the red points.

includes only the independent observables for simplicity. Compared to k = 2, there is one
more independent invariant and some invariants now take generic complex values. The
remaining observables follow either from the reality conditions (3.16) and (3.17) or from
‘accidental’ symmetries given by relations

J33 = −E 3
2 ,

3
2

= E0,0,

−E1,1 = E 1
2 ,

1
2
, (4.3)

J+− = E 3
2 ,

1
2
.

Notice that the equations (4.3) have a form similar to (4.1). Other solutions in this section
also have similar symmetries, which suggests that the accidental symmetries follow a generic
patter, which will be discussed in subsection 4.4.

Similarly to k = 2, this solution has a dual solution in minimal models. This time, the
coset construction leads to m = 5 minimal model.10 When working on [22], we developed
a code that allows us to do calculations in OSFT involving arbitrary Virasoro minimal
model. Therefore we can compare results in the two models and we have found that the
WZW model solution has a dual solution that describes (3, 3)-brane going to (1, 3)-brane in
the minimal model. The solutions in both models are easiest to match using the tachyon
coefficient, which is free from any normalization conventions. Matching observables is
more difficult because both models have different normalization, but we managed to match
energies and the invariants E0,0 and E1,0 (in the SU(2)3 WZW model) with E(1,1) and E(3,5)

(in the minimal model), all these quantities have proportionality coefficient 31/4

23/4 . We have
not found any relations between other observables in the two models, which is probably
because the decomposition of the SU(2)3 WZW model is nontrivial and it mixes primaries
in the two constituent models.

10This model is called either the tetracritical Ising model or the Potts model based on the bulk partition
function. Our calculations were done in the tetracritical Ising model with diagonal partition function, but
the dual solution probably exists in the Potts model as well.
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L Energy E0,0 E1/2,1/2 E1,0 E3/2,1/2 ∆S

2 0.661072 0.652465 0.397689 + 0.574302i −0.842526 −0.506071 0.0257948
3 0.645043 0.638284 0.395050 + 0.610150i −0.901786 −0.566326− 0.672324i 0.0092582
4 0.630980 0.632061 0.393469 + 0.618405i −0.656516 −0.097475− 0.695914i 0.0054534
5 0.627511 0.628466 0.391996 + 0.633087i −0.663006 −0.103174− 0.372796i 0.0040414
6 0.622583 0.623410 0.391858 + 0.636782i −0.768041 −0.361218− 0.374128i 0.0027889
7 0.621308 0.622055 0.391288 + 0.642876i −0.772453 −0.369680− 0.561248i 0.0023045
8 0.618848 0.620449 0.390765 + 0.644878i −0.732819 −0.229205− 0.569512i 0.0017555
9 0.618235 0.619763 0.390448 + 0.648911i −0.733702 −0.229364− 0.459290i 0.0015076
10 0.616768 0.617881 0.390184 + 0.650229i −0.765339 −0.327392− 0.461067i 0.0012220
11 0.616423 0.617473 0.389993 + 0.652582i −0.766181 −0.329073− 0.538361i 0.0010714
12 0.615451 0.616792 0.389775 + 0.653499i −0.750970 −0.264749− 0.541515i 0.0009060

Extension by minimal model data
13 0.615234 0.616523 −0.751208 0.0008049
14 0.614544 0.615552 −0.766236 0.0007016
15 0.614398 0.615362 −0.766493 0.0006292
16 0.613882 0.614994 −0.758508 0.0005613
17 0.613779 0.614853 −0.758590 0.0005069
18 0.613379 0.614262 −0.767355 0.0004603
19 0.613302 0.614152 −0.767452 0.0004180
20 0.612983 0.613925 −0.762549 0.0003851
∞ 0.609706 0.60972 −0.7750 −0.000008
σ 4× 10−7 0.00001 0.0003 0.000001

Table 4. Independent gauge invariants of a solution describing 0-brane with θ = π/3 in the k = 3
model with J = 1

2 boundary conditions. The second part of the table includes higher level predictions
based on m = 5 minimal model data.

The duality can be used to predict behavior of some observables of the WZW model
solution at higher levels using the minimal model data (which we have up to level 20),
see the second part of table 4. Comparison of extrapolations with table 5 shows that the
additional data significantly increase precision of extrapolations, but they are not critical
for identification of the solution because the original data are good enough.

Table 5 summarizes extrapolations of observables of the solution. By comparing the
energy and the E0,0 invariant with the numbers in table 1, we identified the solution as a
0-brane. Other Ellwood invariants can be used to compute the angle θ and we find

θ = π

3 . (4.4)

Unlike for k = 2, some invariants have generic complex values, but the angle can be again
determined exactly because the invariant E3/2,3/2 is real. One can easily check that all
invariants are consistent with expectation values based on this angle. The other solution
differs by complex conjugation of invariants and it has θ = −π/3.

A closer inspection of Ellwood invariants reveals one interesting property. In [22],
we observed that the rate of convergence of most Ellwood invariants is related to their
conformal weights. Invariants with large weights typically suffer from oscillations, which
lead to large errors in infinite level extrapolations. However, the behavior of invariants
of this solution is somewhat different. Sets of invariants with the same j have the same
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Energy E0,0 ∆S

∞ 0.609695 0.6094 −0.00006
σ 0.000009 0.0004 0.00004

Exp. 0.609711 0.609711 0
J+− J−+ J33

∞ −0.31 + 0.54i −0.31− 0.54i 0.6094
σ 0.05 + 0.05i 0.05 + 0.05i 0.0004

Exp. −0.304856 + 0.528026i −0.304856− 0.528026i 0.609711
E1/2,1/2 E1/2,−1/2

∞ 0.3877 + 0.670i −0.3877 + 0.670i
σ 0.0005 + 0.001i 0.0005 + 0.001i

Exp. 0.387782 + 0.671659i −0.387782 + 0.671659i
E1,1 E1,0 E1,−1

∞ −0.3877 + 0.670i −0.79 −0.3877− 0.670i
σ 0.0005 + 0.001i 0.02 0.0005 + 0.001i

Exp. −0.387782 + 0.671659i −0.775565 −0.387782− 0.671659i
E3/2,3/2 E3/2,1/2 E3/2,−1/2 E3/2,−3/2

∞ −0.6094 −0.31− 0.54i 0.31− 0.54i 0.6094
σ 0.0004 0.05 + 0.05i 0.05 + 0.05i 0.0004

Exp. −0.609711 −0.304856− 0.528026i 0.304856− 0.528026i 0.609711

Table 5. Extrapolations of gauge invariants of a solution describing 0-brane with θ = π/3 in the
k = 3 model with J = 1

2 boundary conditions.

weight, so one would expect that they should behave similarly, but there are sometimes
big differences. For example, take invariants E3/2,3/2 and E3/2,1/2. We notice that E3/2,3/2
has smaller oscillations than E3/2,1/2 and its extrapolation is consequently more precise.
Similarly, E1,1 behaves better than E1,0. Other examples of solutions in this section confirm
this trend. We observe that behavior of invariants of this type of solutions does not depend
only on the conformal weight (which follows from j), but also on |m|. Invariants with m = 0
or m = ±1

2 usually have the worst behavior, which corresponds to their weights similarly as
in [22]. As m moves away from 0, the behavior improves and invariants with the maximal
value of |m|, that is Ej,±j , usually converge very well regardless of their weight. This
property becomes more apparent with increasing j (so it is more important for solutions in
higher models) because the number of invariants grows and their conformal weights increase.
This unusual property of Ellwood invariants is actually quite helpful to us because there are
more well-behaved invariants than we would expect just based on their conformal weights.

4.3 k = 4, J = 1 solutions

The final setting that we will discuss in detail is the k = 4 model. In this model, there
are two potentially interesting boundary conditions, J = 1

2 and J = 1. We will focus on
J = 1 because there are more nontrivial solutions, while the J = 1

2 background offers only
solutions similar to those we found for k = 2, 3.
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When we consider the J = 1 background, there are three interesting real solutions
(disregarding multiplicities), which we evaluated up to level 11. One of them describes a
1
2 -brane and the other two describe 0-branes. Two of the solutions are quite similar to the
examples above, so we will go over them more quickly, and we will focus more on the last
solution, which has somewhat different properties.

The results regarding the first solution are summarized in table 6. The number of
invariants for this k is already quite high, so showing all of them in detail would take a lot
of space. Since the finite level data do not have any new interesting properties, we decided
to show only the infinite level extrapolations. Once again, we notice that the solution has
some ‘accidental’ symmetries, similar to other real solutions.

The energy indicates that the solution describes a 1
2 -brane. Some of its observables

are complex, but the invariant E2,2 is real, so we can again determine θ exactly as a nice
multiple of π, it is equal to π

4 . This solution has degeneracy 4, which is twice as much as
for the previous 0-brane solutions. The three other solutions have θ = −π

4 and θ = ±3π
4 .

See figure 4, which depicts the geometry of these solutions.
Precision of this solution is slightly lower than what we saw at lower k, but it is still

quite good. We again observe the phenomenon that we noticed for the k = 3 solution,
precision of invariants with the same j (which determines their conformal weight) varies
depending on |m| and invariants with the maximal value of |m| are more precise than those
with m around 0.

At this point, we notice another interesting property of SU(2) Cardy solutions. It
becomes apparent that the parameter θ follows a simple pattern. For k = 2, we found a
solution with θ = π

2 , for k = 3, we got θ = π
3 and, finally, now we have θ = π

4 . That suggests
that the angles are given by multiples of π

k . In the next subsection, we will confirm this
property and deduce further rules.

Properties of the next solution are shown in table 7. This solution is especially nice
because all of its observables are either real or purely imaginary. A quick analysis shows
that this solution represents a 0-brane, so we have found representatives of both types of
D-branes with g-function lower than the background. Its invariants are consistent with the
angle θ = π

2 (as usual, there is also a solution with the opposite angle). This number is
twice the basic value of πk , but we will show later that it fits a generic pattern. Otherwise,
this solution is very similar to the 0-brane solutions that we found at k = 2, 3.

Finally, we get to the third solution, which is different from the examples above. In
table 8, we show behavior of some of its invariants at finite levels and table 9 summarizes
extrapolations of its observables. The most apparent difference compared to the other two
solutions is that this solution has much stronger level dependence, which, unfortunately,
leads to a lower precision. For example, take a look at its energy. It starts approximately
at 0.98, which is close to g-function of a 1

2 -brane, but it quickly decreases, its level 11 value
is roughly 0.69 and the infinite level extrapolation is around 0.58. Therefore the most likely
interpretation of this solution is a 0-brane.

In case of the first two solutions, their identification was unambiguous, but now we are
not entirely sure. Out of Cardy boundary states, a 0-brane is the only option, but there is
a small possibility that it is an exotic solution or a fake solution that appears as an artefact
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Energy E0,0 ∆S

∞ 0.9320 0.919 −0.0010
σ 0.0003 0.004 0.0001

Exp. 0.930605 0.930605 0
J+− J−+ J33

∞ 0.04 + 0.97i 0.04− 0.97i 0.919
σ 0.08 + 0.07i 0.08 + 0.07i 0.004

Exp. 0 + 0.9306i 0− 0.930605i 0.930605
E1/2,1/2 E1/2,−1/2

∞ 0.482 + 0.487i −0.482 + 0.487i
σ 0.002 + 0.002i 0.002 + 0.002i

Exp. 0.5 + 0.5i −0.5 + 0.5i
E1,1 E1,0 E1,−1

∞ −0.009 0.09 −0.009
σ 0.004 0.03 0.004

Exp. 0 0 0
E3/2,3/2 E3/2,1/2 E3/2,−1/2 E3/2,−3/2

∞ 0.482− 0.487i 0.59 + 0.54i −0.59 + 0.54i −0.482− 0.487i
σ 0.002 + 0.002i 0.12 + 0.05i 0.12 + 0.05i 0.002 + 0.002i

Exp. 0.5− 0.5i 0.5 + 0.5i −0.5 + 0.5i −0.5− 0.5i
E2,2 E2,1 E2,0 E2,−1 E2,−2

∞ 0.919 −0.04 + 0.97i −0.98 −0.04− 0.97i 0.919
σ 0.004 0.08 + 0.07i 0.15 0.08 + 0.07i 0.004

Exp. 0.930605 0.+ 0.930605i −0.930605 0.− 0.930605i 0.930605

Table 6. Extrapolations of gauge invariants of a solution describing J = 1
2 boundary state with

θ = π
4 in the k = 4 model with J = 1 boundary conditions.

of the level truncation approximation. The 0-brane however seems to be the most likely
option because all invariants show at least a rough agreement with the expected values and
there are analogous solutions at higher k that fit a certain pattern.

As a consistency check which helps us decide whether the solution has a physical
meaning, we computed the out-of-Siegel equation ∆S (3.29). The extrapolated value of
this quantity is approximately |∆(∞)

S | ∼ 0.01. This is a much worse result than what is
expected for a typical Siegel gauge solution at this level (compare with the other examples of
solutions) and it is comparable, for example, to the positive energy Ising model solution [22].
This is an indication that this solution is problematic, but ∆S is still low enough to accept
the solution as physical.

As we mentioned above, the extrapolated value of its energy is around 0.58, while it
should be equal to 0.537285. The error of the extrapolation is therefore at the second decimal
place, which is a pretty bad precision. Surprisingly, the extrapolation of the invariant E0,0
is closer to the expected value of the g-function than the energy, which does not happen
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Energy E0,0 ∆S

∞ 0.537311 0.536 −0.00009
σ 0.000008 0.001 0.00008

Exp. 0.537285 0.537285 0
J+− J−+ J33

∞ −0.55 −0.55 0.536
σ 0.02 0.02 0.001

Exp. −0.537285 −0.537285 0.537285
E1/2,1/2 E1/2,−1/2

∞ 0.704i 0.704i
σ 0.001i 0.001i

Exp. 0.707107i 0.707107i
E1,1 E1,0 E1,−1

∞ −0.757 −0.76 −0.757
σ 0.001 0.01 0.001

Exp. −0.759836 −0.759836 −0.759836
E3/2,3/2 E3/2,1/2 E3/2,−1/2 E3/2,−3/2

∞ −0.704i −0.69i −0.69i −0.704i
σ 0.001i 0.10i 0.10i 0.001i

Exp. −0.707107i −0.707107i −0.707107i −0.707107i
E2,2 E2,1 E2,0 E2,−1 E2,−2

∞ 0.536 0.55 0.7 0.55 0.536
σ 0.001 0.02 0.1 0.02 0.001

Exp. 0.537285 0.537285 0.537285 0.537285 0.537285

Table 7. Extrapolations of gauge invariants of a solution describing 0-brane with θ = π/2 in the
k = 4 model with J = 1 boundary conditions.

very often because the energy tends to be the most precise invariant. When we go over
other invariants, we observe that they also have errors at first or second decimal places.
Their values are consistent with the expected results, but the precision is not nearly good
enough to say that they converge towards the expected values with certainty.

When it comes to the angle θ, we notice that all invariants are real, which restricts
the possible values of θ to 0 and π. This solution has θ = 0 and there is one more related
solution with θ = π. Therefore we have finally found the value of θ which we expected as
the basic result and which eluded us at k = 2, 3. However, it appeared only for a quite
problematic solution, which is not a representative solution in this model.

Geometry of all solutions that we have found on this background is depicted in figure 4.
Unlike in figure 3, which is rather trivial, the branes now form a lattice of four points and
lines connecting them. We will discuss the rules governing positions of Cardy branes in the
next subsection.
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L Energy E0,0 E1/2,1/2 E1,1 E3/2,1/2 E2,0 ∆S

2 0.983991 0.804398 0.545513 0.398939 2.363891 −3.03723 −0.0190631
3 0.944328 0.754182 0.561370 0.483559 2.432603 −3.45429 −0.0219647
4 0.824155 0.669008 0.619364 0.555732 −0.503812 1.26504 −0.0238877
5 0.807669 0.654517 0.615335 0.585534 −0.614354 1.35439 −0.0228702
6 0.757275 0.621488 0.636096 0.608182 0.745131 −1.92255 −0.0223986
7 0.748563 0.614428 0.633373 0.618536 0.736658 −1.95637 −0.0216490
8 0.720638 0.599660 0.639537 0.624000 −0.452194 0.93105 −0.0210229
9 0.715108 0.595335 0.637546 0.634766 −0.487965 0.99759 −0.0204840
10 0.697031 0.585025 0.644810 0.640832 0.268710 −1.26871 −0.0198852
11 0.693133 0.582048 0.643394 0.645612 0.265116 −1.29018 −0.0194766

Table 8. Selected gauge invariants of a solution probably describing 0-brane with θ = 0 in the
k = 4 model with J = 1 boundary conditions.

Energy E0,0 ∆S

∞ 0.580 0.528 −0.0110
σ 0.003 0.005 0.0007

Exp. 0.537285 0.537285 0
J+− J−+ J33

∞ 0.47 0.47 0.528
σ 0.42 0.42 0.005

Exp. 0.537285 0.537285 0.537285
E1/2,1/2 E1/2,−1/2

∞ 0.657 −0.657
σ 0.007 0.007

Exp. 0.707107 −0.707107
E1,1 E1,0 E1,−1

∞ 0.689 −0.56 0.689
σ 0.006 0.06 0.006

Exp. 0.759836 −0.759836 0.759836
E3/2,3/2 E3/2,1/2 E3/2,−1/2 E3/2,−3/2

∞ 0.657 −0.5 0.5 −0.657
σ 0.007 0.1 0.1 0.007

Exp. 0.707107 −0.707107 0.707107 −0.707107
E2,2 E2,1 E2,0 E2,−1 E2,−2

∞ 0.528 −0.47 0.3 −0.47 0.528
σ 0.005 0.42 0.3 0.42 0.005

Exp. 0.537285 −0.537285 0.537285 −0.537285 0.537285

Table 9. Extrapolations of gauge invariants of a solution probably describing 0-brane with θ = 0 in
the k = 4 model with J = 1 boundary conditions and their expected values.
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Figure 4. Graphical representations of solutions in k = 4 model with J = 1 boundary conditions.
The initial 1-brane divides the circle in two halves. The first solution in this subsection is represented
by the four red lines, the second solution by the two red points that lie on the black line and the
third solution by the two red points at the top and bottom of the circle.

4.4 Generic properties of SU(2) solutions

In the previous subsections, we analyzed several examples of solutions describing SU(2)
Cardy boundary states. However, we have found several dozens of such solutions and we do
not have enough space to discuss all of them in such detail. It would not make much sense
anyway because their properties are mostly similar to the examples above. Therefore we
will present only a summary of these solutions and we will focus on deducing generic rules
governing their properties.

A survey of basic properties of the solutions we have found up to k = 8 is given in
tables 10 and 11. The tables provide information about which boundary states are described
by the solutions, comparison of their energies with the expected g-functions and with energy
of the background and some additional notes when necessary.

First, let us discuss which types of boundary states can be found. When we go over the
list of solutions, we observe that all of them describe either one or two D-branes. 0-branes
are the most common, the number of 1

2 -branes is smaller and there are only few 1-brane
solutions. Two D-brane solutions almost exclusively describe two 0-branes (an example of
a such solution is given in appendix E), there are just two solutions describing a 0-brane
and a 1

2 -brane (and both have some numerical problems). Some backgrounds at higher
k have enough energy to allow three D-brane solutions, but we have found none. There
are some solutions with energy similar to what we would expect from three 0-branes (see
table 28), but these solutions are pseudo-real (so they can describe at best SL(2,C) branes
anyway) and we have not found any parameters θ and ρ that would be consistent with their
Ellwood invariants. Therefore we concluded that they are exotic solutions describing some
symmetry-breaking boundary states. However, it is possible that solutions describing three
or more D-branes will appear if one considers backgrounds with even higher k and J .
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As usual for Siegel gauge solutions, the energy of most solutions is lower than the energy
of the reference D-brane, which means that the final J is lower than its initial value. Therefore
there are less opportunities to see branes with high J and it explains why there are so many
0-brane solutions. Nevertheless, OSFT allows us to find solutions with positive energy.
Two 0-brane solutions on backgrounds with J = 1

2 can serve as examples. Some of these
solutions are complex at low levels, but many of them have real seeds at level 2. The seeds
are however usually quite far away from the expected results and the solutions evolve rapidly
with level, so the precision of their extrapolations is usually worse than for other solutions.

Next, let us focus on geometry of these solutions. First of all, the data in tables 10
and 11 confirm the previous observation that the angle θ is always an integer multiple of πk .
As for the examples above, the parameter θ of real solutions can be determined exactly due
to reality of the invariant Ek/2,k/2, so there is no ambiguity or error.

As we analyze solutions on the individual backgrounds, we notice recurring groups of
similar solutions. Concretely, when we fix the boundary condition J and vary the level k,
we often find the same number solutions which describe D-branes with the same parameters
(with θ expressed in multiples of πk ).11 For example, if we choose J = 1

2 , we typically find a
0-brane solution with θ = ±π

k and a two 0-brane solution with θ1 = −θ2 = π
k . For J = 1,

we find a 0-brane solution with θ = ±2πk and a 1
2 -brane solution with θ = ±π

k , etc.
If we consider 0-brane solutions and analyze what θ they have on different backgrounds,

we discover another pattern. For J = 1
2 , they always have θ = ±π

k , for J = 1, they usually
have θ = ±2πk , next is θ = ±3πk for J = 3

2 , etc. These observations allow us to guess a
relation between θ, the initial boundary condition Ji and the final boundary condition Jf .
First, let us focus only on well convergent solutions. Their parameters satisfy the following
relation:

θ = ±(Jf − Ji)
2π
k
. (4.5)

Geometrically, this relation means that D-branes described by these solutions touch the
initial D-brane at one point. Furthermore, unless J = k/4, the final D-branes lay in the
circular segment given by the initial D-brane. See figure 5 on the left for illustration. If
J = k/4, solutions describe D-branes in both halves of the circle and θ can be shifted by an
additional factor of π. This case is illustrated in figure 4 for k = 4.

The equation (4.5) also holds for multiple brane solutions. For two 0-brane solutions, we
additionally find that they are always symmetric around the origin, which means θ1 = −θ2.

What about more slowly converging solutions, like the 0-brane solution with θ = 0
from table 9? To describe geometry of these solutions, we need to modify the relation (4.5).
The difference is that they have θ shifted by an additional multiple of 2π

k . Therefore, we
propose the following generalization of the equation (4.5)

θ = ±(Jf − Ji + n)2π
k
, n ∈ Z. (4.6)

11The reason for this repeated structure is that the boundary condition J determines the spectrum of
boundary primaries. Therefore OSFT equations for fixed J have a similar structure and the same types of
solutions.
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k J Identification E(∞) E(exp) EJ Notes

2 1
2

(0,±1) 0.707097 0.707107
1.000000

appears in Ising model
(0, 1) + (0,−1) 1.56367∗ 1.41421 R(14), appears in Ising model

3 1
2 (0,±1) 0.609695 0.609711 0.986534 appears in Potts model

4

1
2

(0,±1) 0.537275 0.537285
0.930605

(0, 1) + (0,−1) 1.093 1.07457 slow convergence

1
(1

2 ,±1(±3)) 0.9320 0.930605
1.074570(0, 0(4)) 0.580 0.537285 slow convergence

(0,±2) 0.53731 0.537285

5

1
2

(0,±1) 0.481562 0.481581
0.867780

(0, 1) + (0,−1) 0.958 0.963163 slow convergence

1

(0, 2) + (0,−2) 0.9646 0.963163

1.082104(1
2 ,±1) 0.8688 0.867780

(0, 0) 0.510 0.481581 slow convergence
(0,±2) 0.48175 0.481581

6

1
2

(0,±1) 0.43740 0.437426
0.808258

(0, 1) + (0,−1) 0.869 0.874852 slow convergence

1

(0, 2) + (0,−2) 0.8755 0.874852

1.056040(1
2 ,±1) 0.8088 0.808258

(0, 0) 0.454 0.437426 slow convergence
(0,±2) 0.43756 0.437426

3
2

(1
2 , 0(6)) 0.845 0.808258

1.143050

slow convergence
(0, 3) + (0,−3) 0.8755 0.874852
(0,±3) 0.43763 0.437426
(1

2 ,±2(±4)) 0.816 0.808258 R(3)

Table 10. List of solutions in SU(2)k WZW models with k ≤ 8 describing SU(2) Cardy boundary
states, part 1. The result are grouped according to the level k and then by the boundary condition J .
We show the most likely identification of solutions, comparison of extrapolated energies E(∞) with
their expected values E(exp) and with energy of the background EJ and sometimes additional notes.
Boundary states are described by their half-integer label J and by θ in multiples of πk . For solutions
with higher degeneracy, we show all values of θ. The table includes only solutions which are real or be-
come real at some accessible level. The note R(L) means that a solution has a complex seed and it be-
comes real at level L. If a solution becomes real at a level which is too high to do a meaningful extrapo-
lation, we show its energy from the highest available level. Such energies are denoted by the symbol ∗.
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k J Identification E(∞) E(exp) EJ Notes

7

1
2

(0,±1) 0.401510 0.401534
0.754638

(0, 1) + (0,−1) 0.796 0.803069 slow convergence

1

(0, 2) + (0,−2) 0.8034 0.803069

1.016721(1
2 ,±1) 0.75496 0.754638

(0, 0) 0.412 0.401534 slow convergence
(0,±2) 0.40163 0.401534

3
2

(1
2 , 0) 0.778 0.754638

1.156172

slow convergence
(1

2 ,±2) 0.7601 0.754638
(0, 3) + (0,−3) 0.80356 0.803069
(0,±1) 0.453 0.401534 slow convergence
(0,±3) 0.40175 0.401534
(1,±1) 1.021 1.01672 R(4)
(0,−3) + (1

2 , 4) 1.26722∗ 1.15617 R(8)

8

1
2

(0,±1) 0.371724 0.371748
0.707107

(0, 1) + (0,−1) 0.736 0.743496 slow convergence

1

(0,−2) + (0, 2) 0.74365 0.743496

0.973249(1
2 ,±1) 0.7073 0.707107

(0, 0) 0.3780 0.371748
(0,±2) 0.37182 0.371748

3
2

(1
2 , 0) 0.723 0.707107

1.144123

slow convergence
(1

2 ,±2) 0.7111 0.707107
(0,−3) + (0, 3) 0.74385 0.743496
(0,±1) 0.408 0.371748 slow convergence
(0,±3) 0.37195 0.371748
(1,±1) 0.9750 0.973249 R(4)

2
(0,−4) + (0, 4) 0.7440 0.743496

1.203002(0,±4) 0.3720 0.371748
(0, 4) + (1

2 ,−5) 1.094 1.07885 low level instability

Table 11. List of solutions in the SU(2)k WZW model with k ≤ 8 describing SU(2) Cardy boundary
states, part 2. The table has the same format as table 10.
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Figure 5. Visualization of the conjectured rules governing solutions describing SU(2) Cardy branes
for k = 9 and Ji = 2 background. The initial D-brane is denoted by the black line and the possible
configurations of final D-branes by red lines. The left figure illustrates the relation (4.5). In this
figure, all red lines touch the black one at one point. On the right, there is an illustration of the more
generic relation (4.6), where the points and lines form a net based on 5 points regularly positioned
in the segment.

Similarly as before, unless J = k/4, the sign and the integer n are such that the final D-branes
lie in the circular segment given by the initial D-brane. So far, we have seen only solutions
with n = ±1, but we predict that n can also take larger values. The only analyzed setting
where we could possibly find solutions with n = 2 is k = 8 and J = 2, but, for unknown
reason, we have found only few real solutions on this background and this one is missing.

This more generic relation is illustrated in figure 5 on the right. We observe that the
D-branes given by relation (4.6) form a net of points and lines, which lie on or connect
points which are regularly positioned in the circular segment. The geometry of branes
described by (4.6) is in fact the same as geometry of D-branes in parafermion models, which
we mentioned in section 2.5. This supports the possibility that all SU(2) Cardy solutions
have dual solutions in parafermion theories.

Next, we will discuss properties of Ellwood invariants of SU(2) Cardy solutions. On
the examples in the previous subsections, we observed that solutions of this type have many
symmetries. These symmetries hold for all SU(2) Cardy solutions and also for some real
exotic solutions (for example, for the B-branes from section 6.1). Some of their symmetries
follow from the reality conditions, but there are also ‘accidental’ symmetries without an
obvious explanation. It turns out that these symmetries follow a relatively simple pattern.
The equations (4.1) and (4.3) suggest that the invariant J33 is given by

J33 = E0,0. (4.7)

Similarly, the invariant J+− is also related to one of the Ej,m invariants. We get

J+− = (−1)2J+1E∗k/2,k/2−1. (4.8)
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Therefore none of the Jab invariants are independent for this class of solutions. The remaining
symmetries involve Ej,m invariants with the maximal value of m. These invariants are
related as

Ej,j = (−1)2JE∗k/2−j,k/2−j . (4.9)

Interestingly, the signs in these equation is given purely by the initial boundary condition J
and they does not depend on properties of the solutions themselves.

The exact mechanism behind these ‘accidental’ symmetries is not entirely clear to us.
We noticed that these symmetries are related to absence of the marginal field J3

−1c1|0〉.
We checked that SU(2) solutions do not excite the marginal field. On the other hand,
SL(2,C) solutions in the next section, which include the marginal field, do not have any
such symmetries. Another possibility how to excite the marginal field is to look for marginal
solutions using the standard approach of Sen and Zwiebach [46]. Such solutions are real,
but they lack any accidental symmetries, which supports the conjecture that accidental
symmetries are allowed only when the marginal field is absent.12

Another related issue may be the duality to parafermion theories. At k = 2, 3, we
observed dualities between SU(2)k WZW model solutions and minimal model solutions. We
expect that similar dualities extend to higher k and some (maybe all) SU(2) Cardy solutions
are dual to parafermion solutions. We are however not able to confirm this explicitly
because we have not constructed OSFT for parafermion theories. SU(2)k WZW model
solutions which have duals in parafermion theories cannot excite states that correspond to
the free boson primaries in the decomposition of the theory (which include the marginal
field), which could be the origin the ‘accidental’ symmetries.

Numerical precision of SU(2) Cardy solutions is quite diverse. There are many solutions
which converge well and extrapolations of their invariants are close to the expected values
despite the fact that we cannot reach levels as high as in simpler OSFT models. The best
solutions describe 0-branes with θ following (4.5), solutions describing branes with higher J
tend to have slightly worse precision. But there are also solutions with quite poor precision.
Some of them are D-branes with θ described by (4.6) with n 6= 0, for example, the last
solution in subsection 4.3. These solutions always have worse precision than solutions
describing the same D-brane with n = 0. Low precision is also typical for positive energy
solutions or solutions which are complex at low levels, which is however a generic property
of all OSFT models [22].

When it comes to relative precision of Ellwood invariants for a given solution, we
noticed on the examples in previous subsections that the precision depends not only on
conformal weights of invariants (which is determined only by the label j), but also on the
absolute value of m. Invariants with high |m| have smaller oscillations and better precision
than invariants with |m| around zero. This property of Ellwood invariants does not seem
to be fully universal. It holds for real solutions, both for solutions in this section and for
real exotic solutions from section 6, but it is less apparent for pseudo-real solutions from
section 5, where it holds only in some cases. These solutions are usually highly asymmetric

12However, it is not a sufficient condition. There are some real solutions (although clearly unphysical)
without the marginal field that do not have these symmetries.
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and there are large differences between absolute and relative errors, so it also depends what
kind error one chooses to compare.

A partial explanation of this behavior of Ellwood invariant comes from the symme-
try (4.9), which relates invariants Ej,j . Invariants with j > k

4 are related to invariants with
lower conformal weights and therefore they behave better than expected. However, this
relation involves only few invariants. A more fundamental explanation may be that string
fields describing SU(2) Cardy solutions are in some sense partially universal. Consider one
of the setting discussed in [22], free boson on a two-dimensional torus. There are solutions
(for example some D1-branes) that depend trivially (only through the stress-energy tensor)
on one of the free boson coordinates, say X. Therefore invariants constructed only using the
X field are proportional to the E00 invariant and they behave better that invariants which
include the other field Y . A similar mechanism may work here. If the expected duality to
parafermion theories holds, it means that our solutions do not excite primaries from the free
boson part of the theory, which could lead to the special properties of Ellwood invariants.

5 SL(2,C) solutions

The original purpose of this project was to study the SU(2)k WZW theory, but our OSFT
setup naturally allows solutions that describe SL(2,C) boundary states. Analogously as
the SL(2,C) group can be viewed as complexification of the SU(2) group, some SL(2,C)
boundary states can be obtained by complexification of SU(2) boundary states and they
are described by complex solutions in the SU(2)k WZW model. The SL(2,C) solutions
presented in this section are not generic complex solutions, but pseudo-real solutions. Their
energy and some invariants are real, but they do not satisfy the reality condition (3.16).
The energy of these solutions can be real because a part of their string field (including
the marginal field) is purely imaginary and because the imaginary part contributes to the
action quadratically. If one attempts to do marginal deformations following the approach
of [46] using a generic complex value of the marginal parameter [22], the result is a complex
solution without any special properties, with a small imaginary part of the energy.

In this section, we will briefly discuss solutions corresponding to SL(2,C) Cardy boundary
states. We will illustrate their properties on a k = 2 example and then we will provide
a survey of solutions at higher k and describe their generic properties. Finally, we will
mention one universal marginal solution that belongs to this group. Few more examples of
SL(2,C) solutions can be found in appendix E.

5.1 k = 2 solutions

Let us once again consider the k = 2 model with J = 1
2 boundary conditions. In subsec-

tion 4.1, we discussed a pair of real solutions describing 0-branes with θ = ±π
2 , but this

model admits one more interesting group of four solutions. Gauge invariants of one of these
solutions are shown in table 12 and their extrapolations in table 13. Unlike the previous
examples, this solution does not have any symmetries, so there are more independent
invariants than before. The lack of any symmetries also means that it does not satisfy the
reality conditions. However, its energy is real and Ellwood invariants are either real or
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purely imaginary, so this solution is pseudo-real. Similarly, the string field combines real
and purely imaginary states; for example, the tachyon field is real and the marginal field is
purely imaginary. The out-of-Siegel equation ∆S , which we use as a consistency check, is
satisfied quite well, which confirms that the solution can have a physical meaning despite
not being real.

The energy suggests that the solution describes a 0-brane. Its precision is similar as for
the real SU(2) solution, but Ellwood invariants tend to oscillate more, which leads to larger
errors of extrapolations. Determining parameters of the boundary state is more difficult than
for real solutions. It cannot be described by a single real angle, so we have to consider the
parameter ρ introduced in (2.68). By minimizing the quantity R2 defined in (3.30), we get

θ = π

2 , (5.1)

ρ ≈ 2.07. (5.2)

The angle θ can be once again determined exactly due to reality of some observables and
it satisfies the relation (4.5), but we get only an approximate result for ρ, which seems to
be a generic real number. It is not easy so say what is the precision of ρ. The relevant
invariants used to compute ρ have estimated errors of order of 1%, but we have seen that
these error estimates are not always reliable. Based on behavior of the invariants, the errors
are probably somewhat overestimated, so it is reasonable to assume that the relative error
ρ is around 1% or less.

As for SU(2) solutions, there are several solutions that share the same energy and which
differ only by simple transformations. This time, there are 4 solutions that are related
by complex conjugation or by exchange of invariants Ej,m ↔ Ej,−m. The parameters of
corresponding boundary states are related by transformations θ → −θ or ρ→ 1/ρ.

When we take a closer look at values of the invariants, we notice that there is a
disproportion between them. In case of real solutions from the previous section, absolute
values of invariants with the same j were roughly the same, while now there are large
differences, for example, |E1,1| is much larger than |E1,−1|. This illustrates that the
m-dependence of Ej,m invariants of SL(2,C) solutions is different from SU(2) solutions.
Invariants of SU(2) solutions behave as Ej,m ∼ e2imθ, so they differ just by a complex phase,
while for SL(2,C) solutions, we have

Ej,m ∼ ρ2me2imθ. (5.3)

We can see that absolute values of these invariants are proportional to ρ2m, which can make
them either very small or very large. The ratio |Ej,m|/|Ej,−m| is expected to be ρ4m, so for
this solution, which has ρ higher than 2, |E1,1| is more than 16 times higher than |E1,−1|
and the invariants J+− and J−+ differ by a similar ratio. The differences are not so crucial
in models with low k, where all invariants still take moderate values, but they become
problematic for larger k. If we consider invariants with the highest m that we encountered
in this project, E4,±4 in k = 8 model, their ratio is ρ16, which can be of order of tens of
thousands for similar values of ρ. So these invariants are spread across many orders, which
can cause problems in some numerical calculations.
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Level Energy E0,0 J+− J−+ J33 ∆S

2 0.732856 0.756306 0.25674 −1.728354 1.836561 0.0337496
3 0.723239 0.749342 −2.28109 1.641892 2.843920 0.0167758
4 0.720008 0.735311 −3.10667 −0.077581 −0.178054 0.0095397
5 0.717007 0.733258 −3.32678 −0.666911 −0.437828 0.0077107
6 0.715071 0.725776 −2.20887 −0.040855 1.419582 0.0057583
7 0.713881 0.724882 −2.56862 0.093424 1.531108 0.0049433
8 0.712798 0.721990 −2.76483 −0.298796 0.292591 0.0041006
9 0.712189 0.721490 −3.04900 −0.246259 0.249433 0.0036194
10 0.711516 0.718856 −2.65424 −0.068778 1.063174 0.0031645
11 0.711152 0.718528 −2.78922 −0.097844 1.089831 0.0028473
12 0.710698 0.717312 −2.79057 −0.240629 0.497605 0.0025669
13 0.710458 0.717081 −2.99280 −0.179035 0.485697 0.0023430
14 0.710132 0.715741 −2.78204 −0.112116 0.912584 0.0021543

Level E1/2,1/2 E1/2,−1/2 E1,1 E1,0 E1,−1

2 1.49750i 0.181299i −2.28898 −1.275935 −0.303887
3 2.01348i 0.295306i −3.54596 −1.366885 −0.047299
4 1.63766i 0.397805i −2.65845 −0.548245 −0.175615
5 1.78121i 0.345793i −3.16269 −0.558834 −0.173484
6 1.65939i 0.372642i −2.75013 −0.806901 −0.194656
7 1.77487i 0.371102i −3.08903 −0.815452 −0.155406
8 1.68733i 0.395409i −2.82897 −0.679071 −0.179102
9 1.75285i 0.376313i −3.05834 −0.680402 −0.169132
10 1.69375i 0.390029i −2.85837 −0.751813 −0.181081
11 1.75443i 0.384421i −3.04825 −0.752593 −0.163572
12 1.70358i 0.397976i −2.88787 −0.701759 −0.175908
13 1.74718i 0.386308i −3.03991 −0.701910 −0.168075
14 1.70655i 0.395863i −2.90209 −0.734085 −0.176403

Table 12. Gauge invariants of an SL(2,C) solution describing 0-brane with θ = π
2 and ρ ≈ 2.07 in

the k = 2 model with J = 1
2 boundary conditions.

5.2 Generic properties of SL(2,C) solutions

Properties of SL(2,C) solutions describing Cardy boundary states are more uniform that prop-
erties of other solutions, so after showing the k = 2 example, we will go straight to discussion
of their properties in general. Up to k = 8, we have found several dozens of such solutions
and we show their survey in tables 14 and 15 in a similar way as in subsection 4.4. The tables
provide identification of solutions, their energies and some additional notes when needed.

The two tables are dominated mostly by 0-brane solutions, other than that, there are
just few 1

2 -branes. We have not found any SL(2,C) solutions with J ≥ 1. Some of the
solutions describe a single brane, most solutions correspond to two 0-branes and we have
found just one combination of a 0-brane and a 1

2 -brane.
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Energy E0,0 ∆S

∞ 0.707093 0.7076 −0.000016
σ 0.000003 0.0001 0.000002

Exp. 0.707107 0.707107 0
J+− J−+ J33

∞ −3.05 −0.16 0.69
σ 0.19 0.16 0.36

Exp. −3.03 −0.17 0.707107
E1/2,1/2 E1/2,−1/2

∞ 1.744i 0.405
σ 0.015i 0.003

Exp. 1.741i 0.406
E1,1 E1,0 E1,−1

∞ −3.029 −0.714 −0.163
σ 0.030 0.014 0.005

Exp. −3.030 −0.707107 −0.165

Table 13. Extrapolations of gauge invariants of an SL(2,C) solution describing 0-brane with θ = π
2

and ρ ≈ 2.07 in the k = 2 model with J = 1
2 boundary conditions. Expected values of invariants

that depend on ρ are not exact because they are based on its estimated value ρ = 2.07.

In addition to J , SL(2,C) solutions are described by parameters θ and ρ. The parameter
θ behaves very predictably and it always follows the relation (4.5), both for solutions
describing one and two D-branes. We have not seen any solutions where the angle would
be shifted by a multiple of 2π

k as for some SU(2) solutions. For two 0-brane solutions, their
parameters additionally satisfy θ1 = −θ2.

On the other hand, the parameter ρ seems to take generic values. It typically has
moderate values which are neither too high nor too low, say 0.5 . ρ . 2. We also notice
that it does not take values close to 1, except for few solutions which probably describe
combinations of an SU(2) brane and an SL(2,C) brane. Despite not being able to identify
exact values of ρ, we notice that behavior of this parameter is not completely random
and there are traces of some rules. For example, if we select 0-brane solutions on J = 1

2
backgrounds, the parameter ρ always decreases as we increase the level k. But the sequence
does not fit any easily recognizable formula.

As we mentioned above, the parameter ρ different from 1 leads to large differences
between absolute values of invariants. Invariants with small absolute values, i.e. those
with negative m for ρ > 1 and with positive m for ρ < 1, often have large relative errors
(sometimes over 100%, see table 30 as an example). Therefore the value of ρ is, in practice,
determined mainly from invariants with large absolute values.

When it comes to solutions describing two 0-branes, we notice that there are rules
relating their parameters ρ1 and ρ2, which sometimes lead to additional symmetries. The
parameters of our solutions always follow one of three different patterns:
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• ρ1 = ρ2. These solutions have real invariants, but the solutions themselves do not
satisfy the reality condition (3.16) because there is no exact relation between Ej,m
and Ej,−m.

• ρ1 = 1/ρ2. Invariants of these solutions are given by generic complex numbers, but
they have an additional symmetry Ej,m = (−1)2jEj−,m.

• ρ1 ≈ 1 or ρ2 ≈ 1. These solutions probably describe combinations of an SU(2) brane
and an SL(2,C) brane. Invariants of these solutions do not have any special properties.

Examples of these three types of solutions are given in appendix E for k = 5.
As we described in section 3.4, a common trait of many SL(2,C) solutions is a numerical

instability at odd levels, which is probably connected to the fact that these solutions excite
the marginal field. This instability means that Newton’s method, which we use to find
solutions, either does not converge within a reasonable number of iterations or it converges
to a point that is too far from nearby even level data. This problem can manifest either
only at some levels (typically 3 and 5) or at all odd levels. We can still identify these
solutions based on even level data, but having lesser number of data points (whose number
is low to begin with) obviously leads to lower precision of results. We denote solutions with
numerical instabilities in tables 14 and 15 by the symbol I in the notes.

5.3 A complex marginal deformation solution

Finally, we will take a look at one curious SL(2,C) solution that appears on all backgrounds
regardless of the chosen level k or the boundary condition J . The reason is that it does
not excite any SU(2) primaries, but only states in the Verma module of the identity field.
The solution describes a specific marginal deformation by the field J3

−1c1|0, 0〉 with purely
imaginary value of the marginal parameter.

In table 16, we show its observables for k = 2 and J = 1
2 , where we computed the

solution to the highest level. The table shows only even levels because the solution suffers
from the odd level instability that we described before. The solution changes quickly with
increasing level, which together with the instability means that extrapolations of invariants
are not very precise, see table 17.

The energy of the solution approaches 1 and the only boundary state with this g-
function is a 1

2 -brane. This suggests that the solution describes marginal deformations with
imaginary value of the marginal parameter. However, it is not a standard marginal solution
because the marginal parameter quickly changes with level, see table 16. Ellwood invariants
are consistent with a 1

2 -brane and they tell us that θ = 0, which agrees with (4.5) for Ji = Jf .
The second parameter ρ can be determined only using the invariant E1,1, which is the only
well-behaved invariant that depends on this parameter, and we get ρ ≈ 5.9. However, this
number has a large error because E1,1 has poor precision. The parameter ρ changes if we
consider a different level k, see the values in table 18. It decreases as we go to higher k, but
we have not managed to fit it by any simple function, possibly due to errors of the results.
On the other hand, the parameter ρ does not seem to change when we fix k and vary the
boundary condition J , its values obtained for different J are very close to each other.
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k J Identification E(∞) E(exp) EJ Notes
2 1

2 (0, 1, 2.07) 0.707093 0.707107 1.000000

3 1
2

(0, 1, 1.80) 0.60969 0.609711
0.986534

(0, 1, 1.63) + (0,−1, 0.82) 1.221 1.21942 I, low precision

4

1
2 (0, 1, 1.61) 0.53721 0.537285 0.930605

1
(0, 2, 1.79) 0.537295 0.537285

1.074570
I(3,5)

(0, 2, 0.48) + (0,−2, 2.10) 1.0755 1.07457 I(3)

5

1
2

(0, 1, 1.48) 0.481507 0.481581
0.867780

(0, 1, 0.63) + (0,−1, 0.99) 0.9642 0.963163 I, SU(2) +SL(2,C)

1

(0, 2, 1.69) 0.481544 0.481581

1.082104

I(3)
( 1

2 , 1, 2.05) 0.869 0.86778 low precision
(0, 2, 0.50) + (0,−2, 0.50) 0.9636 0.963163
(0, 2, 0.99) + (0,−2, 1.82) 0.9640 0.963163 I(3,5), SU(2) +SL(2,C)
(0, 2, 0.49) + (0,−2, 2.05) 0.9619 0.963163 I

6

1
2

(0, 1, 1.39) 0.43736 0.437426
0.808258(0, 1, 1.53) + (0,−1, 0.98) 0.8756 0.874852 I, SU(2) +SL(2,C)

(0, 1, 1.27) + (0,−1, 0.79) 0.8724 0.874852

1

(0, 2, 1.60) 0.43736 0.437426

1.056040

I(3)
(0, 2, 0.57) + (0,−2, 1.74) 0.874881 0.874852 I
(0, 2, 0.56) + (0,−2, 0.56) 0.8750 0.874852
( 1

2 , 1, 1.79) 0.8086 0.808258 low precision
(0, 2, 1.70) + (0,−2, 0.98) 0.8752 0.874852 I(3,5), SU(2) +SL(2,C)
(0, 2, 0.47) + (0,−2, 2.11) 0.8738 0.874852 I
(0, 2, 2.11) + (0,−2, 0.47) 0.8737 0.874852 I
(0, 2, 2.52) + (0,−2, 0.40) 0.870 0.874852 I

3
2

(0, 3, 1.66) 0.437451 0.437426

1.143050

I(3,5)
(0, 3, 0.56) + (0,−3, 1.78) 0.8745 0.874852 I
(0, 3, 0.55) + (0,−3, 0.55) 0.8752 0.874852 I(3,5)
(0, 3, 1.02) + (0,−3, 0.58) 0.8753 0.874852 I(3,5), SU(2) +SL(2,C)
(0, 3, 0.41) + (0,−3, 2.47) 0.8730 0.874852 I
(0, 3, 2.50) + (0,−3, 0.40) 0.867 0.874852 I
(0, 3, 3.11) + (0,−3, 0.32) 0.89 0.874852 I

Table 14. List of SL(2,C) Cardy solutions in models with k ≤ 8, part 1. The table has the same
format as table 10. Identification of solutions includes the parameter J , the angle θ in multiples of πk
and the parameter ρ. In case of solutions with higher degeneracy, we show only one example. These
solutions are pseudo-real, so the note R means that the given solution changes from generically
complex to pseudo-real. The note I denotes instability at odd levels. If there are numbers in
brackets, the instability appears only at these levels, otherwise all odd levels are unstable. The
notes also mark solutions that probably describe combinations of SU(2) and SL(2,C) branes.

– 47 –



J
H
E
P
0
3
(
2
0
2
3
)
2
2
8

k J Identification E(∞) E(exp) EJ Notes

7

1
2

(0, 1, 1.33) 0.40147 0.401534
0.754638(0, 1, 0.57) + (0,−1, 1.75) 0.808009∗ 0.803069 R(10)

(0, 1, 0.79) + (0,−1, 1.27) 0.8022 0.803069

1

(0, 2, 1.52) 0.40144 0.401534

1.016721

I(3)
(0, 2, 1.62) + (0,−2, 0.62) 0.8065 0.803069 I
(0, 2, 0.60) + (0,−2, 0.60) 0.80305 0.803069
( 1

2 , 1, 1.65) 0.7548 0.754638 low precision
(0, 2, 0.99) + (0,−2, 1.60) 0.80324 0.803069 I(3), SU(2) +SL(2,C)
(0, 2, 2.16) + (0,−2, 0.46) 0.8023 0.803069 I
(0, 2, 2.20) + (0,−2, 0.45) 0.799 0.803069 I
(0, 2, 0.36) + (0,−2, 2.79) 0.808 0.803069 I

3
2

(0, 3, 1.61) 0.40150 0.401534

1.156172

I(3,5)
(0, 3, 1.68) + (0,−3, 0.60) 0.8024 0.803069 I
(0, 3, 1.69) + (0,−3, 1.69) 0.8033 0.803069 I(3,5)
(0, 3, 1.01) + (0,−3, 0.60) 0.8033 0.803069 I(3,5), SU(2) +SL(2,C)
(0,−3, 1.91) + ( 1

2 , 4, 1.10) 1.25491∗ 1.156172 R(10)

8

1
2

(0, 1, 1.29) 0.37169 0.371748

0.707107
(0, 1, 1.63) + (0,−1, 0.62) 0.746884∗ 0.743496 R(8)
(0, 1, 1.42) + (0,−1, 0.96) 0.7440 0.743496 I
(0, 1, 0.80) + (0,−1, 1.26) 0.74315 0.743496

1

(0, 2, 1.45) 0.37165 0.371748

0.973249

I(3)
(0, 2, 1.56) + (0,−2, 1.56) 0.74339 0.743496
(0, 2, 1.53) + (0,−2, 0.65) 0.74343 0.743496 I
( 1

2 , 1, 1.54) 0.70721 0.707107 low precision
(0, 2, 0.99) + (0,−2, 1.52) 0.74356 0.743496 I(3), SU(2) +SL(2,C)
(0, 2, 2.17) + (0,−2, 0.46) 0.7430 0.743496 I
(0, 2, 2.75) + (0,−2, 2.75) 0.752 0.743496 I, low precision

3
2

(0, 3, 1.55) 0.37169 0.371748

1.144123

I(3)
(0, 3, 0.69) + (0,−3, 1.59) 0.7426 0.743496 I
(0, 3, 0.62) + (0,−3, 0.62) 0.74363 0.743496 I(3,5)
(0, 3, 0.99) + (0,−3, 1.58) 0.74363 0.743496 I(3,5), SU(2) +SL(2,C)

2
(0, 4, 1.58) 0.37165 0.371748

1.203002
I(3)

(0, 4, 1.62) + (0,−4, 1.62) 0.7437 0.743496 I(3,5)
(0, 4, 1.01) + (0,−4, 0.62) 0.7437 0.743496 I(3), SU(2) +SL(2,C)

Table 15. List of SL(2,C) Cardy solutions in models with k ≤ 8, part 2.
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Interestingly, the solution has ‘accidental’ symmetries similar to SU(2) Cardy solutions
described in subsection 4.4, but the symmetries themselves are different:

E 1
2 ,

1
2

= E 1
2 ,−

1
2

= 0, (5.4)

E1,0 = E0,0, (5.5)
E1,1 = −J+−, (5.6)
E1,−1 = −J−+. (5.7)

The traditional marginal solution [46–48] is also a solution in the SU(2)k WZW model
OSFT, but it does not have any accidental symmetries for generic value of the marginal
parameter, so our solution is clearly exceptional. It most likely represents a special point in
the family of marginal solutions (which changes with level) where the equation of motion
for the marginal field, which is omitted in the traditional marginal approach, is satisfied.
That probably leads to the accidental symmetries, although the exact mechanism is not
clear to us.

6 Exotic solutions

In the last section dedicated to solutions, we will discuss solutions which seem to be physical,
but which we failed to identify as SU(2) or SL(2,C) Cardy boundary states. We think
that most of them describe symmetry-breaking boundary states, but it is possible that our
identification failed in some cases because of low precision or numerical instabilities. Among
the solutions, there is one group of real solutions with similar properties, which describe the
B-brane boundary states from [25]. We will discuss this group of solutions first, then we
will discuss the k = 4 background with J = 1 boundary conditions, which has some special
properties, then we will present two unidentified real exotic solutions for k = 8 and finally
we will provide a survey of all exotic solutions that we have found.

6.1 B-brane solutions

During our analysis of exotic solutions, we noticed that there is one group of real solutions
with similar properties, which we later identified as the so-called B-branes, whose properties
are reviewed in section 2.5. In order to compare our numerical results with B-brane boundary
states (2.66), we need to know what are the expected values of Ellwood invariants. We
have not worked out the exact map between the SU(2)k WZW model Hilbert space and the
parafermion times free boson Hilbert space, but we can fortunately extract the information
we need just based on conformal weights and free boson momentum.

We have found only solutions representing B-branes with J = 0 because others have too
high g-function to be seen in the numerical approach, so we will restrict our attention to this
case. The g-function of B-branes is multiplied by

√
k compared to the usual Cardy branes

with the same label J and therefore we expect that a J = 0 B-brane solution will have

Eexp
0,0 =

√
kB 0

0 . (6.1)
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Level Energy E0,0 E1,1 E1,−1 J33 ∆S λ

2 1.01246 0.997915 −1.08383 −5.238689 5.32460 −0.0169001 −0.330633i
4 1.00931 0.993375 −8.09888 −0.142909 −1.53685 −0.0118150 −0.404850i
6 1.00905 0.988201 −10.2092 −0.134406 2.51075 −0.0095241 −0.485320i
8 1.00905 0.986204 −12.8326 −0.156754 1.35414 −0.0084797 −0.560089i
10 1.00896 0.984836 −15.2304 −0.079354 0.70920 −0.0078490 −0.625607i
12 1.00876 0.984682 −17.4956 −0.113267 2.11236 −0.0073784 −0.681621i
14 1.00848 0.984716 −19.5194 −0.068453 0.52919 −0.0069804 −0.729196i

Table 16. Independent observables and the marginal parameter λ of the special complex marginal
solution in the k = 2 model with J = 1

2 boundary conditions. We show only even level data because
of the odd level instability.

Energy E0,0 ∆S λ

∞ 0.9997 0.986 −0.0005 −1.21
σ − 0.004 − −

Exp. 1 1 0 −
J+− J−+ J33

∞ 34.5 0.02 2.8
σ 4.4 0.09 0.7

Exp. 34.5 0.03 1
E1/2,1/2 E1/2,−1/2

∞ 0 0
σ − −

Exp. 0 0
E1,1 E1,0 E1,−1

∞ −34.5 0.986 −0.02
σ 4.4 0.004 0.09

Exp. −34.5 1 −0.03

Table 17. Extrapolations of observables and the marginal parameter of the special complex marginal
solution in the k = 2 model with J = 1

2 boundary conditions. The expected values are based on
θ = 0 and ρ ≈ 5.9. We do not have good error estimates for some observables.

k 2 3 4 5 6 7 8
ρ 5.88 3.83 2.87 2.59 2.40 2.27 2.18

Table 18. Values of the parameter ρ of the special complex marginal solution for different k.
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Next, we notice that B-brane boundary states involve only n = 0, k free boson represen-
tations, which means that most invariants are equal to zero because they correspond to
other momenta. We find that the trivial invariants are

Eexp
j,m = 0, m 6= 0,±k2 . (6.2)

The exceptions are invariants with m = 0, which are equal to

Eexp
j,0 =

√
kB j

0 , (6.3)

and invariants with j = ±m = k
2 :

|Eexp
k/2,±k/2| =

√
kB 0

0 . (6.4)

This equation is written with an absolute value because determining the sign (which is
related to η) would require knowledge of the exact correspondence between the two Hilbert
spaces. Finally, Jab invariants have expected values

Jexp
+− = Jexp

−+ = 0, (6.5)
Jexp

33 =
√
kB 0

0 . (6.6)

Overall, invariants of B-branes are much simpler than for SU(2) Cardy branes. Most
invariants vanish and the rest are real numbers proportional to elements of the matrix of
boundary state coefficients.

Now that we know what results to expect, we can move to actual solutions. We have
found B-brane solutions in models with k ≥ 3 with the exception of k = 4. Furthermore,
the background needs to have high enough g-function, so most of B-brane solutions appear
on backgrounds with the highest g-function for the given k. Boundary states (2.66) should
be described by real solutions, but some of them have complex seeds and they become real
at a higher level. We also find some pseudo-real solutions with B-brane properties. We will
discuss examples of B-brane solutions for k = 3 and k = 6 in more detail.

The first B-brane solution can be found on the k = 3 background with J = 1
2 boundary

conditions. Interestingly, the solution has degeneracy just one, so we have found only one of
the two B-brane boundary states described by equation (2.66). Its data up to level 12 and
infinite level extrapolations are given in tables 19 and 20. The basic identification can be done
using the energy, which is approximately 1.056 and which does not matches any combination
of SU(2) Cardy boundary states given in table 1. The energy of the B-brane solution
is higher than the g-function of the initial 1

2 -brane, so it is not surprising that the seed
solution at level 2 is complex. This aspect of the solution reminds us of other positive energy
solutions (see, for example, positive energy lumps or one of the Ising model solutions in [22]),
but our solution fortunately becomes real much more quickly, the imaginary part disappears
already at level 4. Therefore we have enough real data points to do a decent analysis.

In many aspects, the solution is similar to the 0-brane solution on the same background.
The data in table 20 show that its invariants satisfy the reality conditions and that they
have the same symmetries (4.7)–(4.9). When we take a closer look at their extrapolations,
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SU(2)k WZW model data
Level Energy E0,0 E1/2,1/2 E1,0 E3/2,1/2 ∆S

2 1.16839 0.98818 −0.276857 2.88659 −2.674373 −0.0319044
−0.05599i +0.11488i +0.306363i −0.40927i +1.895532i +0.0217899i

4 1.09180 1.00282 −0.137331 1.32541 0.217832 −0.0136018
6 1.07642 1.02430 −0.0759386 1.58556 −0.676351 −0.0075041
8 1.07037 1.03273 −0.049461 1.40505 0.017113 −0.0052371
10 1.06710 1.03719 −0.0386589 1.46741 −0.329571 −0.0040362
12 1.06506 1.04022 −0.0300022 1.39810 −0.024171 −0.0032897

Extension by minimal model data
14 1.06366 1.04227 −0.0256691 1.42623 −0.207926 −0.0027795
16 1.06264 1.04389 −0.0214132 1.38967 −0.035069 −0.0024084
18 1.06187 1.04509 −0.0191116 1.40559 −0.148645 −0.0021259
20 1.06126 1.04610 −0.0165916 1.38302 −0.037352 −0.0019035
∞ 1.05606 1.05546 0.0005 1.3442 0.002 −0.000007
σ − 0.00004 0.0004 0.0007 0.006 −
Exp. 1.05605 1.05605 0 1.34332 0 0

Table 19. Selected invariants of the B-brane solution in the k = 3 model with J = 1
2 boundary

conditions. The first part of the table includes data found in the SU(2)k WZW model, while the
second part shows higher level predictions based on a dual solution in the m = 5 minimal model.
We show only data from even levels because odd level data are the same.

we observe that there is a good agreement with the predictions (6.1)–(6.6), which makes
the identification of the solution definitive. In particular, notice that a high number of
invariants is close to zero, which is a characteristic of B-brane solutions. The precision
of extrapolations is somewhat lesser than expected (because we have only 5 data points
from levels 4 to 12), but it can be improved if we realize that the solution has a dual in the
m = 5 minimal model like the 0-brane solution. This dual solution describes (3,5)-brane
going to (1,2)-brane.13 Using the dual solution, we can predict behavior of its invariants up
to level 20, see the second part of table 19. The table also includes extrapolations using
these extra data and we observe that the precision improves approximately by one order
compared to table 20.

Next, we move to the k = 6 background with J = 3/2 boundary conditions. In this
case, we find not one, but two different B-brane solutions (solutions number 18 and 3061
from table 27). Due to large amount of data, we decided to show only extrapolations of
their invariants in table 21.

The first solution is not much different from the one at k = 3. It is somewhat nicer
because it has lower energy than the background and therefore it is real at all levels. That
allows us to extrapolate its energy with better precision, even though we evaluated the

13It would be interesting to see the minimal model solution from the perspective of the parafermion theory.
Based on its energy, it seems likely that it describes a B-brane in the parafermion model.
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Energy E0,0 ∆S

∞ 1.05624 1.054 −0.00014
σ − 0.004 −

Exp. 1.05605 1.05605 0
J+− J−+ J33

∞ 0.06 0.06 1.054
σ 0.18 0.18 0.004

Exp. 0 0 1.05605
E1/2,1/2 E1/2,−1/2

∞ 0.006 −0.006
σ 0.016 0.016

Exp. 0 0
E1,1 E1,0 E1,−1

∞ −0.006 1.31 −0.006
σ 0.016 0.03 0.016

Exp. 0 1.34332 0
E3/2,3/2 E3/2,1/2 E3/2,−1/2 E3/2,−3/2

∞ −1.054 0.06 −0.06 1.054
σ 0.004 0.18 0.18 0.004

Exp. −1.05605 0 0 1.05605

Table 20. Extrapolations (based on levels 4 to 12) of the B-brane solution in the k = 3 model with
J = 1

2 boundary conditions.

solution only up to level 10. When it comes to Ellwood invariants, they have again the
‘accidental’ symmetries (4.7)–(4.9), which are typical for Cardy solutions. Some higher
invariants have large errors due to their conformal weights, but most of them agree very
well with the expected values, so the solution is consistent with our predictions. We notice
that the percentage of invariants going to zero is higher than for the solution above and all
invariants with half-integer labels vanish identically, so these invariants were removed from
the table to reduce its size.

The second solution is different. Although most of its invariants have similar values as
for the first solution, we notice that they are no longer symmetric and therefore the solution
is not real, but only pseudo-real. Most of the invariants go to zero and invariants with
m = 0 match the predictions (6.3), so the key difference lies in the invariants E3,3 ≈ −9
and E3,−3 ≈ −0.3. These invariants represent the main asymmetry of the solution and they
are the only ones that do not match the predictions. However, we think that they should
satisfy

E3,3 = ρ6E0,0, E3,−3 = ρ−6E0,0 (6.7)

for some constant ρ, although exact verification of this relation is not possible due to large
relative error of E3,−3. This relation holds for SL(2,C) boundary states and therefore we
think that the two B-brane solutions are related in the same way as ordinary SU(2) and
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SL(2,C) solutions. B-brane boundary states have several moduli, so the pseudo-real solution
should be possible to obtain by marginal deformations of the real solution using a purely
imaginary value of the marginal field related to J3

−1. This solution has degeneracy two and
the two solutions differ by exchange Ej,m ↔ Ej,−m.

The remaining B-brane solutions that we found appear in the survey of exotic solutions
in tables 27 and 28. They have analogous properties as the examples above, so there is no
need to discuss them in detail.

6.2 k = 4 solutions

Next, we consider one special setting, the k = 4 model with J = 1. In addition to the
SU(2) currents, the boundary spectrum of this model includes additional marginal fields
given by φ2,m, which have weight 1 for this k. This setting therefore allows more types of
marginal deformations, which lead to an 8-parametric family of boundary states, which
presumably includes the first type of symmetry-breaking boundary states from [39]. In
this paper, we impose the condition (3.2), so only one of the new marginal fields survives
and our string field includes two marginal states J3

−1c1|0, 0〉 and c1|2, 0〉. By solving the
OSFT equations, we found few solutions (one real and few pseudo-real) with energy close
to 1-brane g-function. The real solution is more interesting and we will discuss it first (it is
solution number 745 from table 27).

Extrapolations of its invariants are given in table 22 and we observe that its properties
(including ‘accidental’ symmetries) are similar to SU(2) solutions. However, its identification
is difficult. Since it has energy similar to a 1-brane, we will first compare the extrapolations
to expected values for 1-brane with θ = 0, which seems to be the closest match. We observe
that some invariants match the 1-brane (E0,0, E2,2, E2,0 and invariants with half-integer
labels), but some are clearly different (E1,1, E1,0, E2,1). Therefore the solution does not
represent a 1-brane but some symmetry-breaking boundary state. The coefficient of c1|2, 0〉
is nonzero while the coefficient of J3

−1c1|0, 0〉 disappears, which suggests that the solution
represents a marginal deformation of the initial 1-brane by the additional marginal operator.

Let us check whether it belongs to the first group of boundary states from [39].
We do not have an exact map between the two Hilbert spaces, so we cannot do a full
comparison, but some operators can be uniquely matched just based on their weights and
the decomposition (2.64), so we will at least compare the related invariants. Let us have a
look at the boundary state (3.4) from [39] for κ = 2. The g-function of a Jα = 0 boundary
state14 is NBPF (0,0)

(0,0) D0
0,0(g) = 1.07457, which matches the energy of our solution. The other

label nα affects only some signs, so we take nα = 0 for simplicity. Next, we notice that the
boundary state includes only integer J primaries, so all invariants with half-integer labels
should disappear. That also agrees with our results. However, the invariant E1,0 should be
NBPF (1,0)

(0,0) D0
0,0(g) = 1.51967, which does not match our results. Table 22 includes expected

values for few more invariants whose values can be easily extracted from the boundary state.
They depend on the parameter a from the parameterization of group elements (2.3), but there

14We had to add a factor
√

2 to the normalization to match the claim that boundary states for certain
parameters match superpositions of κ Cardy branes.

– 54 –



J
H
E
P
0
3
(
2
0
2
3
)
2
2
8

Real solution
Energy E0,0 ∆S

∞ 1.07149 1.0713 −0.000036
σ 0.00002 0.0011 0.000003

Exp. 1.07147 1.07147 0
J+− J−+ J33

∞ 0.00 0.00 1.0713
σ 0.05 0.05 0.0011

Exp. 0 0 1.07147
E1,1 E1,0 E1,−1

∞ 0.0003 1.667 0.0003
σ 0.0004 0.005 0.0004

Exp. 0 1.66482 0
E2,2 E2,1 E2,0 E2,−1 E2,−2

∞ −0.0003 −0.02 1.66 −0.02 −0.0003
σ 0.0004 0.06 0.19 0.06 0.0004

Exp. 0 0 1.66482 0 0
E3,3 E3,2 E3,1 E3,0 E3,−1 E3,−2 E3,−3

∞ −1.0713 0.00 0.0 0.9 0.0 0.00 −1.0713
σ 0.0011 0.05 0.7 0.8 0.7 0.05 0.0011

Exp. −1.07147 0 0 1.07147 0 0 −1.07147

Pseudo-real solution
Energy E0,0 ∆S

∞ 1.07149 1.0718 0.000024
σ 0.00006 0.0003 0.000001

Exp. 1.07147 1.07147 0
J+− J−+ J33

∞ 0.04 −0.02 1.09
σ 0.11 0.07 0.52

Exp. 0 0 1.07147
E1,1 E1,0 E1,−1

∞ −0.01 1.665 −0.001
σ 0.02 0.009 0.014

Exp. 0 1.66482 0
E2,2 E2,1 E2,0 E2,−1 E2,−2

∞ 0.01 −0.05 1.6 −0.06 0.05
σ 0.05 0.09 0.3 0.16 0.08

Exp. 0 0 1.66482 0 0
E3,3 E3,2 E3,1 E3,0 E3,−1 E3,−2 E3,−3

∞ −9.2 0.04 0.5 1.0 −0.2 −0.1 −0.3
σ 0.3 0.20 1.2 1.2 1.0 0.3 0.3

Exp. ? 0 0 1.07147 0 0 ?

Table 21. Extrapolations of observables of two B-brane solutions in the k = 6 model with J = 3
2

boundary conditions. All invariants Ej,m with half-integer j are identically equal to zero.
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is no value of the parameter that would lead to agreement with our results. So we conclude
that this solution does not represent a boundary state from the family described in [39].

Next, let us briefly go back to other solutions in this model. We notice that we can
make a complex linear combination of the two marginal operators so that the resulting
operator has trivial OPE with itself (like ∂X+). Deformations by a such operator are
exactly marginal and we have indeed found several solutions that describe exactly marginal
deformations (table 27 includes one example, solution number 697). They can be easily
recognized because their OSFT action exactly disappears. However, they have big problems
with numerical stability, which are worse than for SL(2,C) solutions and which seem to
be caused by the trivial (constant) potential for the marginal field. Therefore it would be
necessary to investigate them using the traditional marginal approach [22, 46–48].

6.3 k = 8 solutions

In this subsection, we will describe two real exotic solutions that we found in the k = 8
model, which is the highest model considered in this paper. The first solution is solution
number 4669 from table 28 for J = 3/2 boundary conditions and the second solution has
number 6534 and it was found for J = 2 boundary conditions. These solutions are our best
candidates for new symmetry-breaking boundary states. We provide some of their data for
comparison in case that they are rediscovered by some other numerical or analytic method.

Although the two solutions were found on different backgrounds, their properties are
quite similar. Both solutions have complex seeds at level 2, but they become real already
at level 4 like one of the B-brane solutions. We managed to evaluate these solutions up
to level 10, so we have enough data points to do extrapolations, although the precision is
obviously not great. Fortunately, the solutions do not evolve too much with increasing level,
which helps a bit. Both solutions satisfy the out-of-Siegel equation ∆S quite well, so they
most likely have an interpretation as boundary states.

In table 23, we provide values of several invariants of the first solution at levels 4 to
10 and table 24 shows extrapolations of the observables. The number of invariants in this
model is too high, so we show Ej,m invariants only up to j = 2. The invariants again
satisfy the ‘accidental’ symmetries (4.7)–(4.9) and these relations provide values of few more
invariants. The extrapolated energy of the solution E ≈ 1.1580 is slightly higher than the
g-function of the reference 3

2 -brane, which is 1.14412. However, the solution clearly does
not represent a 3

2 -brane because other invariants do not agree with the expected values.
For example, E1,0 is around 0 instead of 0.437016, E2,2 is approximately 0.37 instead of 0,
etc. Additionally, we checked that invariants of the solution do not match well enough any
combination of SU(2) Cardy boundary states or B-branes and therefore we believe that it
describes a yet unknown symmetry-breaking boundary state in the k = 8 model.

The g-function of the new boundary state either matches the g-function of the 3
2 -brane

or it is slightly above. The later option is more likely because the difference is over 30σ,
which is quite a lot, even though error estimates tend to be underestimated for the energy.

Tables 25 and 26 show data regarding the second exotic solution, the first table provides
examples of finite level data and the second one infinite level extrapolations. This solution
was found on J = 2 background, but its properties are often analogous to the first solution.
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Energy E0,0 ∆S

∞ 1.074573 1.0748 −0.000007
σ 0.000003 0.0006 0.000007

Exp. 1 1.074570 1.07457 0
Exp. 2 1.074570 1.07457 0

J+− J−+ J33

∞ 0.711 0.711 1.0748
σ 0.005 0.005 0.0006

Exp. 1 1.07457 1.07457 1.07457
Exp. 2 ? ? 1.07457

E1/2,1/2 E1/2,−1/2

∞ −0.013 0.013
σ 0.001 0.001

Exp. 1 0 0
Exp. 2 0 0

E1,1 E1,0 E1,−1

∞ −0.367 1.342 −0.367
σ 0.004 0.004 0.004

Exp. 1 −0.759836 0.759836 −0.759836
Exp. 2 1.51967a 1.51967 1.51967a∗

E3/2,3/2 E3/2,1/2 E3/2,−1/2 E3/2,−3/2

∞ −0.013 −0.047 0.047 0.013
σ 0.001 0.006 0.006 0.001

Exp. 1 0 0 0 0
Exp. 2 0 0 0 0

E2,2 E2,1 E2,0 E2,−1 E2,−2

∞ 1.0748 −0.711 1.07 −0.711 1.0748
σ 0.0006 0.005 0.19 0.005 0.0006

Exp. 1 1.07457 −1.07457 1.07457 −1.07457 1.07457
Exp. 2 1.07457a2 1.07457a ? 1.07457a∗ 1.07457(a∗)2

Table 22. Extrapolations of a real exotic solution in the k = 4 model with J = 1 boundary
conditions. There are two sets of expected values, the first one is for 1-brane with θ = 0 and the
second one for the boundary state (3.4) from [39] with Jα = 0 and nα = 0. The solution does not
seem to match either of them.
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It has the same symmetries and its energy is also slightly higher than for the reference
D-brane (1.239 compared to 1.203). Once again, we cannot rule out the possibility that the
energy matches the 2-brane g-function, but it is more likely that it does not.

Since the two solutions have the same symmetries as real solutions describing Cardy
boundary states, they may have duals in the k = 8 parafermion theory. If so, the ex-
istence of these solutions also suggests that there are unknown boundary states in the
parafermion theory.

Finally, we notice that table 28 includes two pseudo-real solutions (solution number
4491 for J = 3/2 and number 6354 for J = 2) which have similar energy and θ-independent
invariants as the real solutions presented here. Analogously to Cardy solutions and B-branes,
we believe that the pseudo-real solutions are connected to the real ones by complex marginal
deformations.

6.4 Survey of exotic solutions

Finally, let us briefly discuss the remaining exotic solutions. We provide a survey of these
solutions up to k = 8 in tables 27 and 28. There are only few real and well-behaved solutions.
They include the B-branes, which we discussed in subsection 6.1, one marginal solution for
k = 4 discussed in subsection 6.2 and two solutions for k = 8 discussed in subsection 6.3,
which suggest existence of unknown symmetry-breaking boundary states.

We unfortunately cannot say much about most of the remaining solutions. They are
mostly pseudo-real with relatively generic properties, so we can deduce only that they
probably represent some symmetry-breaking SL(2,C) boundary states. Furthermore, they
often suffer from numerical instabilities or they are fully complex at low levels, which makes
their analysis even more problematic.

There is one interesting property of exotic solutions, which we noticed when going
over the extrapolated energies in tables 27 and 28. Energies some of these solutions match
each other or some combination Cardy boundary states (these matches are mentioned in
the notes). The extrapolated energies have only a limited precision, so some of the cases
could be just coincidences, but they often share other properties (most notably, they often
have similar invariants Ej,0 like the two B-brane solutions in table 21) and coincidental
agreements of multiple invariants have only a low probability. A possible explanation is
therefore that such solutions belong to some broader family of boundary states connected
by marginal deformations.

In particular, when we choose the setting with k = 8 and J = 2, there are several
related solutions with energy similar to three 0-branes. These solutions are pseudo-real, so
they cannot describe SU(2) Cardy branes, but they could potentially describe combinations
of SL(2,C) boundary states. We tried to identify them using the R2 minimization procedure,
but we found no parameters that would match their invariants well enough. Therefore we
placed these solutions in this section among exotic solutions.
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Level Energy E0,0 E1/2,1/2 E1,1 E1,0 ∆S

4 1.16165 1.14432 0.66963 + 0.010145i −0.372793 + 0.078599i −0.147291 −0.0018960
5 1.16131 1.14445 0.66779 + 0.010206i −0.371460 + 0.079163i −0.134488 −0.0018266
6 1.15993 1.14961 0.66315 + 0.008729i −0.372276 + 0.074751i −0.095785 −0.0010325
7 1.15982 1.14958 0.66255 + 0.009130i −0.371323 + 0.074747i −0.097006 −0.0010147
8 1.15926 1.15187 0.66100 + 0.008633i −0.372584 + 0.072576i −0.077517 −0.0007109
9 1.15921 1.15185 0.66071 + 0.008807i −0.372224 + 0.072782i −0.075520 −0.0007032
10 1.15891 1.15306 0.65989 + 0.008561i −0.372362 + 0.072160i −0.068430 −0.0005426

Table 23. Selected observables of exotic solution number 4669 in the k = 8 model with J = 3
2

boundary conditions. We omitted data from levels 2 and 3 because the solution is complex at
these levels.

Energy E0,0 ∆S

∞ 1.1580 1.157 −0.0002
σ 0.0004 0.005 0.0003

J+− J−+ J33

∞ 0.73 + 0.02i 0.73− 0.02i 1.157
σ 0.08 + 0.01i 0.08 + 0.01i 0.005

E1/2,1/2 E1/2,−1/2

∞ 0.655 + 0.008i −0.655 + 0.008i
σ 0.005 + 0.001i 0.005 + 0.001i

E1,1 E1,0 E1,−1

∞ −0.3723 + 0.069i −0.03 −0.3723 + 0.069i
σ 0.0008 + 0.004i 0.04 0.0008 + 0.004i

E3/2,3/2 E3/2,1/2 E3/2,−1/2 E3/2,−3/2

∞ −0.683 + 0.26i 0.53 + 0.39i −0.53 + 0.39i 0.683 + 0.26i
σ 0.005 + 0.02i 0.02 + 0.03i 0.02 + 0.03i 0.005 + 0.02i

E2,2 E2,1 E2,0 E2,−1 E2,−2

∞ 0.37i 0.32 + 0.56i −0.39 0.32− 0.56i −0.37i
σ 0.02i 0.03 + 0.05i 0.05 0.03 + 0.05i 0.02i

Table 24. Extrapolations of gauge invariants of exotic solution number 4669 in the k = 8 model
with J = 3

2 boundary conditions. Due to large number of invariants, we decided to show invariants
only up to j = 2 to fit a page.

7 Summary and future directions

In this paper, we described many OSFT solutions in the SU(2)k WZW model which
correspond to several types of boundary states. So let us review the results and discuss
some possible future directions of this research.

We divide solutions in this model into three groups. The first group includes real
solutions describing SU(2) Cardy boundary states. These represent the basic type of
solutions which is expected based on background independence of OSFT. From the OSFT
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Level Energy E0,0 E1/2,1/2 E1,1 E1,0 ∆S

4 1.25683 1.20475 −0.274082 + 0.018397i −0.737259− 0.277261i 0.251618 −0.0064416
5 1.25319 1.20724 −0.260742 + 0.027474i −0.746221− 0.262986i 0.291839 −0.0052499
6 1.24806 1.21918 −0.251575 + 0.024688i −0.743583− 0.248075i 0.337671 −0.0032275
7 1.24701 1.21939 −0.247524 + 0.028925i −0.747284− 0.244595i 0.334880 −0.0029470
8 1.24498 1.22457 −0.243820 + 0.027853i −0.747330− 0.237617i 0.357334 −0.0021747
9 1.24449 1.22458 −0.241864 + 0.029755i −0.748414− 0.235977i 0.362410 −0.0020537
10 1.24339 1.22734 −0.240052 + 0.029199i −0.747833− 0.233558i 0.370721 −0.0016452

Table 25. Selected observables of exotic solution number 6534 in the k = 8 model with J = 2
boundary conditions.

Energy E0,0 ∆S

∞ 1.239 1.237 −0.0004
σ 0.002 0.012 0.0010

J+− J−+ J33

∞ 0.5 + 0.14i 0.5− 0.14i 1.237
σ 0.2 + 0.06i 0.2 + 0.06i 0.012

E1/2,1/2 E1/2,−1/2

∞ −0.23 + 0.034i 0.23 + 0.034i
σ 0.02 + 0.004i 0.02 + 0.004i

E1,1 E1,0 E1,−1

∞ −0.753− 0.21i 0.42 −0.753 + 0.21i
σ 0.004 + 0.02i 0.06 0.004 + 0.02i

E3/2,3/2 E3/2,1/2 E3/2,−1/2 E3/2,−3/2

∞ 0.14 + 0.38i −0.40 + 0.73i 0.40 + 0.73i −0.14 + 0.38i
σ 0.01 + 0.04i 0.03 + 0.08i 0.03 + 0.08i 0.01 + 0.04i

E2,2 E2,1 E2,0 E2,−1 E2,−2

∞ 0.56 −0.43− 0.50i 0.16 −0.43 + 0.50i 0.56
σ 0.01 0.06 + 0.08i 0.10 0.06 + 0.08i 0.01

Table 26. Extrapolations of gauge invariants of exotic solution number 6534 in the k = 8 model
with J = 2 boundary conditions.

perspective, solutions of this type have similar properties as lump solutions in free boson
theories and solutions in Virasoro minimal models [22]. We reproduce the expected g-
functions and boundary states components with decent precision and we are able to uniquely
identify most of the solutions. We have found just two peculiar properties of these solutions.
They have ‘accidental’ symmetries of certain invariants, which may be connected to absence
of the marginal field in these solutions. We also noticed that some of their invariants
converge better than we expected based on their conformal weights, which makes their
identification easier.
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k J No. E(∞) EJ Real Notes
3 1

2 169 1.0562 0.986534 yes R(4), B-brane

4 1
697 1.07457

1.074570
no I, exactly marginal

745 1.07457 yes energy similar to 1-brane
783 1.0747 no energy similar to 1-brane

5

1
2 215 0.96 0.867780 no I(3)

1

1833 1.0756

1.082104

no I(3), pseudo-real B-brane
1861 0.97 no I
1887 1.082 no I, energy similar to 1-brane
1957 1.089 no I, energy similar to 1-brane
2007 1.076 yes R(6), B-brane
2461 0.98 no I

6

1 2590 0.892 1.056040 no I

3
2

18 1.07149

1.143050

yes B-brane
2235 0.786 no I
2785 0.70 no I
3061 1.07149 no pseudo-real B-brane
3243 1.10228 no
3383 1.10217 no energy similar no. 3243
3591 1.10247 no energy similar no. 3243
3779 1.079 no I
4393 1.114 no I

Table 27. List of exotic solutions in the SU(2)k WZW model with k ≤ 8, part 1. The structure of
the table and notes follows tables 10 and 14. We added a column with solution numbers (which
come from ordering of seeds by the homotopy continuation algorithm and which do not have any
deeper meaning) so that we can refer to them and a column which denotes whether the solutions are
real or pseudo-real. Energies are rounded roughly according to error estimates of our extrapolations,
but in case of solutions which are complex at low levels or which have numerical instabilities, error
estimates are often just a guesswork. We removed the column with expected energies because we do
not know them for most solutions.

When we consider these solutions in the context of boundary conformal field theory, it
is most important to know what are their parameters J and θ, which characterize Cardy
boundary states in the SU(2)k WZW model restricted to our ansatz. The parameter J
does not seem to follow any special selection rules, but (as in other OSFT models) it is
restricted by the fact that numerical OSFT solutions typically have lower energy than the
background, so we mostly encounter solutions with low values of J . We found only few
solutions with energy higher than the background and they mostly represent two 0-branes.
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k J No. E(∞) EJ Real Notes

7

1 2491 1.26 1.016721 no I

3
2

2256 0.750

1.156172

no energy similar to 1
2 -brane

2691 0.804 no I
2917 0.745 no I
3501 1.062 no I(3), pseudo-real B-brane
3607 1.062 yes R(6), B-brane
4640 1.19815∗ no R(9)
4740 1.07 no R(4), I
4812 0.96 no R(6)
4988 1.19800∗ no R(9)
5364 1.20515∗ yes R(9)
5655 1.19368∗ no R(10)
7090 1.14 no I

8

1 4471 1.19 0.973249 no I(3)

3
2

1679 0.705

1.144123

no energy similar to 1
2 -brane

3581 1.051 no I(3,5), pseudo-real B-brane
4383 1.16 no R(5), I
4491 1.1576 no energy similar no. 4669
4663 1.35 no I
4669 1.1580 yes R(4)
5335 1.12 no R(6), I
5343 1.058 no R(4), I, pseudo-real B-brane?
6281 1.075 no R(5)
6285 1.27027∗ yes R(10)
6449 1.24984∗ no R(8)

2

10 1.05148

1.203002

yes B-brane
2581 0.72 no I
2969 1.08591∗ no R(10)
3461 1.05149 no pseudo-real B-brane
3695 1.1119 no energy similar three 0-branes
3707 1.1128 no energy similar three 0-branes
3859 1.109 no energy similar three 0-branes
4255 1.1122 no energy similar three 0-branes
5068 1.12 no I(3,5), energy similar three 0-branes
5806 1.06 no I
6354 1.234 no R(4), energy similar no. 6534
6534 1.239 yes R(4)
9339 1.117 no I, energy similar three 0-branes
10419 1.04 no I

Table 28. List of exotic solutions in the SU(2)k WZW model with k ≤ 8, part 2.
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Rules governing the angle θ are more interesting. Out of the continuous family of
boundary states, we find only a finite number and their parameters satisfy the following
relation:

θ = ±(Jf − Ji + n)2π
k
, n ∈ Z. (7.1)

That means that the angle is given by an integer multiple of π
k and it is related to the

difference between the initial and final value of J . In addition to this, branes described by
our solutions lie in the segment given by the reference brane (see figure 5) and there is a
preference for branes that touch the reference brane at one point (which have n = 0). We
also noticed that solutions with |n| > 0 are more difficult to find and they converge slower.

The structure of branes described by the equation (7.1) is in fact the same as structure
of branes in the parafermion theory. Therefore it seems likely that the condition J3

0 |Ψ〉 = 0
and the fact that these solutions do not excite the marginal field turn off the free boson
degrees of freedom and effectively reduce the SU(2)k WZW model OSFT to parafermion
OSFT. We have seen that k = 2, 3 solutions have duals in minimal models (which are
isomorphic to the parafermion theories) and we expect that similar dualities hold even for
higher k.

It would be to interesting to see whether the selection rule (7.1) is specific to OSFT or
whether it also applies to boundary states that can be obtained by other RG flow methods.
One possibility would be to use boundary conformal field theory perturbation techniques
(see for example [27], chapter 5). This method requires a boundary field with conformal
dimension close to 1, so it would work only on backgrounds which include such boundary
field, but even such limited results would be useful. Another method which could be
used for investigating RG flow in this model is the truncated conformal space approach
(TCSA) [49–52].

The second group of solutions does not describe Cardy boundary states in the SU(2)k
WZW model, but in the SL(2,C)k WZW model. The SL(2,C) group is a complexification of
the SU(2) group, so it is not surprising that these solutions are complex (their invariants do
not satisfy the SU(2) reality condition (3.16)), although they have some reality properties,
like real action. They generally do not have any special symmetries and they often suffer
from numerical instabilities, so their properties are generally worse than properties of SU(2)
Cardy solutions.

As before, we find mainly solutions with low values of the parameter J , mostly 0-branes.
They are characterized by a complex angle θ− i log ρ. Its real part follows the equation (7.1)
with n = 0, while the other parameter ρ seems to be quite generic. For a given value of
θ, there are always two solutions with ρ and 1/ρ. In case of solutions that describe two
0-branes, which is the most common type SL(2,C) solutions, we find θ1 = −θ2 and their ρ
parameters follow one of three options: ρ1 = ρ2, ρ1 = 1/ρ2 or one of the two parameters is
close to one. The third option means that such solutions describe combinations of SU(2)
and SL(2,C) boundary states.

Finally, there is a third group of exotic solutions, which do not fit the previous two
groups. These solutions are potentially the most interesting, because they most likely
describe symmetry-breaking boundary states either in the SU(2)k or the SL(2,C)k WZW
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model (depending on whether they are real or not). We have found quite a large number of
exotic solutions, but, unfortunately, only few of them are real. The rest are pseudo-real
solutions and they often suffer from various numerical problems, so we are not able to say
much about their physical properties. When it comes to real exotic solutions, we identified
most of them as the B-brane boundary states from [25]. Their invariants match the expected
values quite well, so we are essentially sure about the identification. We have also found
some pseudo-real B-branes, which are probably related to real B-branes by complex marginal
deformations. Apart from B-branes, we have found only three nice real solutions. The first
one appears in the k = 4 model with J = 1 boundary conditions, which has additional
marginal operators. It probably describes a marginal deformation of the initial 1-brane by
the field φ2,0. We checked whether it belongs to the first group of symmetry-breaking states
from [39], but it seems likely that it does not. The other two real solutions that we were not
able identify are presented in section 6.3 and they probably describe yet unknown boundary
states in the k = 8 model with g-functions approximately 1.1580 and 1.239. From the OSFT
point of view, behavior of real exotic solutions is analogous to solutions describing SU(2)
Cardy boundary states, they have the same symmetries and similar precisions. It is quite
likely that real exotic solutions also have duals in parafermion theories, although we are
not able to verify this directly with the exception of the k = 3 B-brane solution.

We were surprised that the number of real exotic solutions is quite low, especially when
compared with free boson theory on torus [22], which admits more exotic solutions. A
possible cause is the condition (3.2), which we used to fix the SU(2) symmetry of OSFT
equations. It imposes the condition (3.4) on boundary states that correspond to our
solutions, which seems to be a big restriction for new symmetry-breaking boundary states.

In a future work, it would be interesting to try to relax the condition J3
0 |Ψ〉 = 0,

which may help us find more exotic solutions. However, doing so would require significant
modifications of the numerical approach because we would need to fix the SU(2) symmetry
in some alternative way. The simplest option seems to be to take inspiration from the free
boson theory and to remove states that are odd with respect to some Z2 symmetry of the
action. In analog with the symmetry X → −X, we consider transformations that flip signs
of two of the three currents (because we need to preserve the SU(2) algebra), for example
J1,2 → −J1,2. In our basis, the three transformations act as

J3 → J3, J± → −J±, (7.2)
J3 → −J3, J± → J∓, (7.3)
J3 → −J3, J± → −J∓. (7.4)

However, imposing even parity with respect to one of these symmetries does not fully fix
the SU(2) symmetry, so we have impose two of them, which automatically implies the third
one. Unfortunately, these symmetries are not compatible with our basis and it would be
necessary to abandon splitting of the Hilbert space according to J3

0 eigenvalues and use the
basis generated by J1,2,3 instead.

This ansatz would lead both to some simplifications and complications in the numerical
approach. Algorithms to compute the action and Ellwood invariants would be simpler
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Figure 6. Schematic depiction of the expected mechanism of covering the moduli space of 0-branes
in the k = 7 model. The dots represent the solutions found in this paper using the traditional
approach, while the red arrows show how the solutions can be moved by marginal deformations.
The actual length of the arrows is unknown and they may or may not overlap.

because we would not need to worry about J3
0 eigenvalues, but there would be an overall

increase in the number of states at a given level, which would increase time and memory
requirements of the calculations, and more Ellwood invariants would be nonzero. A Cardy
boundary state in this ansatz would be characterized by all three angles instead of just
one like now, so identification of solutions would be much more complicated, especially for
solutions describing more than one D-brane.

Another topic that should be explored in the future is how to restore the D-brane
modulus. The approach used in this paper leads only to discrete number of solutions, whose
parameters follow (7.1). In order to find a continuum of solutions, we propose an approach
inspired by marginal deformations [22, 46–48]. We can fix the value of the marginal field,
remove the equation corresponding to the marginal field and try to solve this reduced
system of equations. However, unlike in the traditional marginal approach, we do not
suggest to look for solutions that preserve the energy, but for solutions that describe lower
energy D-branes. In general, we expect that these solutions will cover the moduli space as
depicted in figure 6. Solutions found in this paper will work as seeds and there will be an
area covered by marginal deformations around each of them. We tried a quick low level test
of this approach for k = 2 and it seems to work at least for small values of the marginal
parameter. But the precision goes quickly down with increasing value of the marginal
parameter and the branch of solutions possibly goes off-shell. Therefore it is unclear how
much of the moduli space can be actually covered by this approach. It is possible that the
areas around seed solutions will overlap and the entire moduli space will be covered, but it
seems more likely that there will be some gaps and we will recover only part of the moduli
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space. The later option is supported by the fact that we typically find solutions only in one
section of the circle (given by the initial D-brane), so covering the remaining part without
any seed solutions seems to be difficult. We would like to explore this approach in one of
our future works.

This approach should also work for complex marginal deformations, which generate
SL(2,C) boundary states. Specifically, if we consider purely imaginary marginal field, we
should be able to take the SU(2) solutions from section 4 and continuously deform them
until we get the SL(2,C) solutions from section 5 with the same values of J and θ.
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A Complex conjugation

In this appendix, we will discuss complex conjugation of SU(2) primary states.
Complex conjugation in string field theory is defined as a combination of BPZ and

Hermitian conjugations. Modes of the SU(2) currents satisfy

bpz(Jan) = (−1)n+1Ja−n (A.1)

and

(J3
n)† = J3

−n, (A.2)
(J±n )† = J∓−n. (A.3)

By combining the two conjugations, we find

(J3
n)∗ = (−1)n+1J3

n, (A.4)
(J±n )∗ = (−1)n+1J∓n . (A.5)

We also need to know how the complex conjugation acts on primary states, which is
more difficult to derive. For consistency, we must have

(Ja0 |j,m〉)∗ = (Ja0 )∗|j,m〉∗. (A.6)

By choosing a = 3, we find |j,m〉∗ ∼ |j,−m〉 and choosing a = ± gives us

|j,m〉∗ = (−1)mf1(j)|j,−m〉, (A.7)
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where f1(j) is a function that equals ±1 for each j. Similarly, bulk states satisfy an
analogous relation

|j,m, n〉∗ = (−1)m−nf2(j)|j,−m,−n〉. (A.8)

So far, we have determined complex conjugation of primary states up to two unknown
functions f1(j) and f2(j). To fix these functions, we will analyze reality of boundary states.
We would like SU(2) boundary states to be real under our reality condition. Complex
conjugation of the Ishibashi states (2.30) gives us

|j, g〉〉∗ =
∑
m,n

(−1)j−m
(
Dj
−m,n(g)

)∗
(−1)m−nf2(j)|j,−m,−n〉+ . . . . (A.9)

Using a formula for complex conjugation of Dj
m,n [53](

Dj
m,n(g)

)∗
= (−1)m−nDj

−m,−n(g), (A.10)

we get

|j, g〉〉∗ =
∑
m,n

(−1)j−m−2nDj
m,−n(g) f2(j)|j,−m,−n〉+ . . . (A.11)

=
∑
m,n

(−1)j−mDj
−m,n(g) f2(j)|j,m, n〉+ . . . , (A.12)

where we changed the summation variables as m → −m, n → −n and used that
(−1)2(m+n) = 1 because m + n is always an integer. The condition |j, g〉〉∗ = |j, g〉〉 then
leads to a simple result f2(j) = 1.

Next, we consider a bulk-boundary correlation function 〈φj,m,n(z)ψ(aa)
J,−m−n(w)〉. Dressed

bulk-boundary structure constants of these correlators (based on (2.45)) are

(a)B(j,m,n)(J,−m−n) = (−1)J B
(a) J

j C
(aaa)0
JJ

(
j j J

m n −m− n

)
〈1〉(a) (A.13)

By complex conjugation of the r.h.s. of this equation we get

(a)B∗(j,m,n)(J,−m−n) = (−1)2J B
(a) J

j C
(aaa)0
JJ

(
j j J

m n −m− n

)
〈1〉(a) (A.14)

because bulk-boundary structure constants (C.31) satisfy ( B
(a) J

j )∗ = (−1)J B
(a) J

j and the
remaining terms are real. By complex conjugation of the fields in the correlator, we get

(a)B∗(j,m,n)(J,−m−n) = (−1)m−n(−1)−m−nf1(J) (a)B(j,−m,−n)(J,m+n)

= (−1)J−2nf1(J) B
(a) J

j C
(aaa)0
JJ

(
j j J

−m −n m+ n

)
〈1〉(a)

= (−1)2Jf1(J) B
(a) J

j C
(aaa)0
JJ

(
j j J

m n −m− n

)
〈1〉(a), (A.15)

where we used a symmetry of the 3-j symbols(
j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
−m1 −m2 −m3

)
(A.16)
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and that (−1)2(j−n) = 1. The expressions (A.14) and (A.15) are equal if we set f1(j) = 1.
The final results are therefore simply

|j,m〉∗ = (−1)m|j,−m〉, (A.17)
|j,m, n〉∗ = (−1)m−n|j,−m,−n〉. (A.18)

These rules for complex conjugation of boundary fields tell us that string fields describing
Cardy boundary states are real, which is the expected result.

B Ishibashi states

In this appendix, we will derive an explicit form of SU(2) Ishibashi states. A more abstract
discussion of this topic can be found in [27, 54].

We consider a chiral basis of a spin j representation denoted as |n〉. These states do
not have to be orthogonal or have some other special properties. Using this basis, we
parameterize Ishibashi states as

|j, g〉〉 =
∑
n1,n2

M j
n1n2(g)|n1〉|n2〉. (B.1)

Let us start with the lowest level elements and the trivial gluing condition. One-point
function of a bulk primary operator (with unit normalization) equals to

|z−z̄|2hj 〈φj,m1,m2〉(a) = B
(a) 0

j 〈j,m1, j,m2|0,0〉Nbulk
j 〈1〉(a) =Bj

a(−1)j−m1δm1,−m2 , (B.2)

where we used (2.31), (2.51) and B
(a) 0

j = S j
a
S 0
a
. Alternatively, we can express the same

correlator as contraction of a bulk primary and a boundary state

〈j,m1,m2||a〉〉 =
∑
n1,n2

Bj
a〈j,m1,m2|M j

n1n2(1)|j, n1, n2〉 = Bj
a(−1)2j−m1−m2M j

−m1−m2(1).

(B.3)
The comparison of these two equations gives us the first elements of the matrix M j(1)

M j
m1m2(1) = (−1)j−m1δm1,−m2 . (B.4)

Therefore the Ishibashi states are

|j,1〉〉 =
∑
m

(−1)j−m|j,m,−m〉+ . . . . (B.5)

It is easy to check that this expression solves the gluing condition (2.25) for g = 1.
Now, let us consider the full gluing conditions. We need a solution to

(Jan + Ωa
b(g)J̄b−n)

∑
n1,n2

Mn1n2(g)|n1〉|n2〉 = 0. (B.6)

We contract this condition with arbitrary states |m1〉, |m2〉 and we get

0 = 〈m1|〈m2|(Jan + Ωa
b(g)J̄b−n)

∑
n1,n2

Mn1n2(g)|n1〉|n2〉 (B.7)

=
∑
n1,n2

(Gm1n1Gm2(g(Ja−n)n2) + (−1)1−nG(Ja−nm1)n1Gm2n2)Mn1n2(g), (B.8)
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where we use Gram matrix of BPZ products Gmn = 〈m|n〉, Gm(Ja−nn) represents 〈m|Ja−n|n〉
and g(Ja−n) is an abbreviation for Ωa

b(g)Jb−n. Similarly, we define Gmg(n) = 〈m|g(n)〉 =∑
kDnk(g)〈m|k〉, where D(g) is a representation (generally reducible) of g on our basis.
The solution to (B.8) is given by

Mn1n2(g) = (−1)2j+|n2|G−1
n1g(n2), (B.9)

where |n2| is the eigenvalue of the number operator and the inverse matrix G−1
n1g(n2) should

be understood as

G−1
n1g(n2) =

∑
k

G−1
kn2

Dkn1(g−1) =
∑
k

G−1
n1k

Dkn2(g). (B.10)

To show that (B.9) is indeed the correct solution, we substitute this expression into (B.8)
and we get ∑

n1,n2,k

(−1)2j+|n2|Gm1n1Gm2(g(Ja−n)n2)G
−1
n1k

Dkn2(g)

+
∑

n1,n2,k

(−1)2j+1−n+|n2|G(Ja−nm1)n1Gm2n2G
−1
kn2

Dkn1(g−1)

=
∑
n2,k

(−1)2j+|n2|δm1kGm2(g(Ja−n)n2)Dkn2(g)

+
∑
n1,k

(−1)1−n+|m2|G(Ja−nm1)n1δm2kDkn1(g−1) (B.11)

= (−1)2j+|m1|Gm2(g(Ja−n)g(m1)) + (−1)1−n+|m2|G(Ja−nm1)g−1(m2)

= (−1)|m1|Gg(Ja−nm1)m2 − (−1)|m1|G(Ja−nm1)g−1(m2)

= 0,

where we used that |m2| = |m1| + n and that the Gram matrix has a symmetry Gmn =
(−1)2jGnm for spin j representation. In the last step, we used Gmn = Gg(m)g(n). This
equation means

Gmn =
∑
k,l

Dmk(g)Dnl(g)Gkl. (B.12)

This relation looks a bit unusual, but it is correct. We can see that by decomposing our
basis into irreducible representations. Then it simplifies to

(−1)j−mδm,−n =
∑
k,l

Dj
mk(g)Dj

nl(g)(−1)j−kδk,−l, (B.13)

which is satisfies thanks to the relation

Dj
mn(g−1) = (−1)n−mDj

−n−m(g), (B.14)

which hold for g ∈SL(2,C) [53].
For g = 1, we find that (B.9) matches (B.5) at the lowest level, which justifies that

factor (−1)2j which was added to (B.9) by hand.
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For generic gluing conditions, we find from (B.9) that the lowest level elements of
Ishibashi states are

|j, g〉〉 =
∑
m,n

(−1)j−mDj
−mn(g)|j,m, n〉+ . . . . (B.15)

C F-matrices and sewing relations

In this appendix, we discuss properties of F-matrices and B-matrices in the SU(2)k WZW
theory, which are needed for structure constants, and we sketch how to derive the formulas
for structure constants using sewing relations. The derivation is analogous to Virasoro
minimal models [34, 55, 56], but one has to make corrections because some equations include
additional signs. We also provide an explicit expression for the fusion matrix.

C.1 Fusion matrices

Let us begin with F-matrices. A formula for the F-matrix in the SU(2)k WZW model
can be found in [27], but the F-matrix in this form does not lead to the correct structure
constants.15 The reason is that the F-matrix admits ‘gauge’ transformations [57, 58] of the
form

Fpq

[
j k

i l

]
→ Λ(j, k, q)Λ(i, l, q)

Λ(i, j, p)Λ(k, l, p)Fpq
[
j k

i l

]
. (C.1)

This transformation preserves the pentagon identity (C.16), but it changes structure
constants and therefore it leads to a different theory. The ‘gauge’ can be fixed by requiring
that the F-matrix leads to correct bulk structure constants (see (C.30)), which can be found
in [27, 59]. Once we include the ‘gauge’ correction, the final result for the F-matrix is

Fpq

[
j k

i l

]
= Λ(j, k, q)Λ(i, l, q)

Λ(i, j, p)Λ(k, l, p)∆(i, j, p)∆(k, l, p)∆(j, k, q)∆(i, l, q) (C.2)

× (−1)i+j+k+l
√
b2p+ 1cb2q + 1c

∑
s

(−1)sbs+ 1c!

×
(
bs− i− j − pc!bs− k − l − pc!bs− j − k − qc!bs− i− l − qc!

× bi+ j + k + l − sc!bi+ k + p+ q − sc!bj + l + p+ q − sc!
)−1

,

15We found some typos in the formula in [27], which can be fixed by requiring that the F-matrix has the
correct symmetries (C.10) and that it satisfies the pentagon identity (C.16).
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where the sum over s goes over such values that all arguments of b.c! are nonnegative and
where we use the following definitions:

∆(i, j, k) =
√
bi+ j − kc!bi+ k − jc!bj + k − ic!

bi+ j + k + 1c! , (C.3)

bnc =
sin nπ

k+2
sin π

k+2
, (C.4)

bnc! =
n∏
i=1
bic, (C.5)

b0c! = 1, (C.6)

Λ(i, j, k) =

aiaj
ak

i+j−k∏
l=1

γ(l)γ(2i− l + 1)
γ(2k − l + 1)γ(2j − l + 1)

 1
2

, (C.7)

γ(n) =
Γ
(

n
k+2

)
Γ
(
− n
k+2

) , (C.8)

an =
2n∏
i=1

√
γ(i)

γ(i+ 1) . (C.9)

Next, we list several relations satisfied by the F-matrices which are useful during
manipulations with sewing relations and structure constants:

Fpq

[
j k

i l

]
= Fpq

[
i l

j k

]
= Fpq

[
l i

k j

]
, (C.10)

∑
r

Fpr

[
j k

i l

]
Frq

[
l k

i j

]
= δpq, (C.11)

F00

[
i i

i i

]
= (−1)2iS

0
0
S i

0
, (C.12)

Fk0

[
i i

j j

]
= (−1)2iS

k
0

S j
0
Fj0

[
k k

i i

]
, (C.13)

F0k

[
i j

i j

]
Fk0

[
i i

j j

]
= S 0

0 S
k

0

S i
0 S

j
0
, (C.14)

Fpi

[
j k

n l

]
Fn0

[
i i

l l

]
= Fnk

[
i j

l p

]
Fp0

[
k k

l l

]
, (C.15)

∑
s

Fqs

[
j k

p b

]
Fpl

[
i s

a b

]
Fsr

[
i j

l k

]
= Fpr

[
i j

a q

]
Fql

[
r k

a b

]
. (C.16)

Note that these relations are meaningful only if the labels satisfy the required SU(2)k fusion
rules and that the equations (C.12) and (C.13) differ from the minimal model case.

C.2 Braiding matrices

The relation between F-matrices and braiding matrices is the SU(2)k WZW model is
different from Virasoro minimal models. To see why, we consider the limit k →∞. In this
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limit, F-matrices are essentially just the usual SU(2) 6j-symbols

lim
k→∞

Fpq

[
j k

i l

]
=
√

(2p+ 1)(2q + 1)(−1)i+j+k+l
{
i j p

k l q

}
. (C.17)

Furthermore, weights of primary operators become zero and conformal blocks become just
products of Clebsch-Gordan coefficients. Therefore we get

〈i,mi, j,mj |p,mp〉〈p,mp, k,mk|l,ml〉 =
∑
q

Fpq

[
j k

i l

]
〈j,mj , k,mk|q,mq〉〈i,mi, q,mq|l,ml〉

(C.18)
and

〈i,mi, j,mj |p,mp〉〈p,mp, k,mk|l,ml〉 =
∑
q

Bpq

[
j k

i l

]
〈i,mi, k,mk|q,mq〉〈q,mq, j,mj |l,ml〉.

(C.19)
Thanks to properties of Clebsch-Gordan coefficients, we find the F-matrix and the B-matrix
in this limit differ by a sign

Bpq

[
j k

i l

]
= (−1)i+l−p−qFpq

[
j l

i k

]
. (C.20)

Going back to finite k, the relation between the F-matrix and the B-matrix changes
to [54]

Bpq

[
j k

i l

]
= eiπ(∆i+∆l−∆p−∆q)Fpq

[
j l

i k

]
, (C.21)

where ∆i ≡ hi − i.

C.3 Sewing relations and structure constants

Structure constants in Virasoro minimal models can be derived using sewing relations [34].
We would like to derive structure constants in the SU(2)k WZW model in the same way.
However, some sewing relation in the SU(2)k WZW model are slightly different because
there are some additional signs. The reason is the formula for B-matrix (C.21), which
appears at intermediate steps of derivation of sewing relations. Unfortunately, we cannot
take the relations from [34, 60] and simply replace hi by ∆i. Therefore, we decided to
rederive the sewing relations using the new expression for the B-matrix. Our results seem
to be equivalent to [54], this reference however uses different conventions and therefore
there are some differences in complex phases.

Sewing relations for bulk or boundary fields only obviously remain the same because
the do not involve the B-matrix:

C q
jk C l

iq Fqp

[
l k

i j

]
= C p

ij C l
pk Fpq

[
j k

i l

]
, (C.22)

C
(bcd)q
jk C

(abd)l
iq =

∑
p

C
(abc)p
ij C

(acd)l
pk Fpq

[
j k

i l

]
. (C.23)
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Differences appear in sewing relations that involve both bulk and boundary fields. By
considering a correlator of one bulk field and two boundary fields 〈φi(z)ψ(ab)

p (x1)ψ(ba)
q (x2)〉,

we get the following sewing relation

B
(b) l

i C
(abb)q
pl C(aba)0

qq =
∑
k,m

B
(a) k

i C(aba)k
pq C

(aaa)0
kk Fkm

[
q i

p i

]
Fml

[
i i

p q

]
(C.24)

× eiπ(2∆m−2∆i−∆p−∆q+∆k−hk/2+hl/2)

Another sewing relation follows from a correlator of two bulk fields and one boundary field
〈φk(z1)φl(z1)ψ(aa)

i (x)〉:

B
(a) q

k B
(a) t

l C
(aaa)i
qt =

∑
p,r

C p
kl B(a) i

p Fpr

[
i l

p k

]
Fpq

[
l r

k k

]
Frt

[
l l

q i

]
(C.25)

× eiπ(∆k+∆r−∆p−∆q−hi/2+hp+hq/2−hk+ht/2−hl)

After substituting the expression for ∆, the two equations above change to

B
(b) l

i C
(abb)q
pl C(aba)0

qq =
∑
k,m

B
(a) k

i C(aba)k
pq C

(aaa)0
kk Fkm

[
q i

p i

]
Fml

[
i i

p q

]
(C.26)

× eiπ(2hm−2hi−hp−hq+hk/2+hl/2)(−1)p−q+k

and

B
(a) q

k B
(a) t

l C
(aaa)i
qt =

∑
p,r

C p
kl B(a) i

p Fpr

[
i l

p k

]
Fpq

[
l r

k k

]
Frt

[
l l

q i

]
(C.27)

× eiπ(hr−hq/2−hi/2+ht/2−hl)(−1)k+r−p−q

By setting i = 0 in the second equation, we get also get a simpler sewing relation for just
two bulk fields

B
(a) q

k B
(a) q

l C
(aaa)0
qq =

∑
p

C p
kl B(a) 0

p Fpq

[
l l

k k

]
(−1)k+l−p−q (C.28)

Now we can find a solution for structure constants following [34]. Boundary structure
constants remain the same:

C
(abc)k
ij = Fbk

[
a c

i j

]
. (C.29)

Bulk structure constants can be obtained by setting a = 0 in (C.28):

C k
ij = (−1)i+j−k

(
Fk0

[
i i

j j

])−1

. (C.30)

This equation includes an additional sign compared to the minimal model solution. Finally,
bulk-boundary structure constants follow from (C.26), where we set a = 0, p = q = b.
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Although the sewing relation is different, the solution is surprisingly the same as in Virasoro
minimal models:

B
(b) l

i = S 0
i

S 0
0

∑
m

eiπ(2hm−2hb−2hi+hl/2)F0m

[
b i

b i

]
Fml

[
i i

b b

]
(C.31)

However, unlike in the minimal model case, some of these structure constants are purely
imaginary.

D Numerical methods

In this appendix, we would like to describe several numerical algorithms which we use to
compute the OSFT action and Ellwood invariants. We will focus on the SU(2)k WZW
model sector, because most calculations can be factorized and algorithms in the ghost sector
and in the universal part of the matter sector are the same as in [22].

The general framework of our algorithms (representation of the string field, matrix
representations of various objects, conservation laws, etc.) is described in [22], but we have
to adapt the algorithms because the SU(2) state space is generated by three non-commuting
currents. The situation is further complicated by the fact that we divide the state space
according to J3

0 eigenvalues and we make restriction to states that belong to H(0) and H(±1).
This leads to algorithms which have a structure somewhat similar to algorithms for ghost
theory in the bc basis, where the J3

0 eigenvalue plays a role analogous to the ghost number.
Our calculations are executed in Mathematica (symbolic manipulations) and C++

(time-consuming numerical calculations).

D.1 Gram matrix

First, we will focus on the Gram matrix, which is the key ingredient of the quadratic term
in the OSFT action. In the SU(2) sector, we need to compute the matrix of BPZ products
Gij = 〈i(0)|j(0)〉, where the states |i(0)〉 form a basis of the space H(0). As described in [22],
we compute the Gram matrix using a recursive algorithm which expresses a given element
as a sum of elements at lower levels. In this way, we reduce level of elements until we get to
a BPZ product of two primary operators, which we know explicitly.

In order to compute an element Gij , we first separate the first current operator from
the state |i〉 as |i〉 = Ja−n |̂i〉 and move this operator to the other side of the BPZ product:

Gij = 〈Ja−nî|j〉 = (−1)n+1〈̂i|Janj〉. (D.1)

The next steps depends on the value of a. If a = 3, there are no problems and we can
compute Gij as

Gij = (−1)n+1∑
k

M(J3
n)0
jkGîk. (D.2)

The objectM(J3
n)0
jk is a matrix representation of the current operator J3

n acting on the
state space, see [22] for more details. The upper index 0 denotes that the operator J3

n

acts on states from H(0). If a = ±, the algorithm becomes more complicated because the
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states |̂i〉 and Jan |j〉 belong to H(±1). Therefore we have to define an auxiliary Gram matrix
Gaux
ij = 〈i(−1)|j(+1)〉. Then we get either

Gij = (−1)n+1∑
k

M(J+
n )0

jkG
aux
îk

(D.3)

or
Gij = (−1)n+1∑

k

M(J−n )0
jkG

aux
kî

(D.4)

depending on whether the first operator in |i〉 is J+
−n or J−−n.

The auxiliary matrix Gaux can be computed analogously, but there are few complications.
Once again, we would like to separate one operator from the state 〈i| and act with it on |j〉.
The case a = 3 is simple and the recursive step is very similar to (D.2):

Gaux
ij = (−1)n+1∑

k

M(J3
n)1
jkG

aux
îk
. (D.5)

The case a = −1 also proceeds without any issues, but there is a problem if a = +1. We
cannot remove a J+ operator because that would lead to a state from H(−2), which we want
to avoid. States with J+ at the first position typically have J− at some later position,16

that is |i〉 = J+
−n1 . . . J

−
−n2 . . . |j,m〉. In such cases, we can commute the first J−−n operator

to the first position through operators in front of it, but we have to take into account that
the commutators produce new states. It can also happen that there are no explicit J−
operators present, for example in states of the form J+

−n|j,−2〉. In such cases, we have to
remove one J−0 from the primary state and commute it forward. Therefore we can write in
general (including the trivial case when J−n is at the first position)

|i(−1)〉 = CiJ
−
−n |̂i(0)〉+

∑
k

Ci,k |̂i
(−1)
k 〉, (D.6)

where Ci equals 1 if n > 0 and 1/αj,m+1 if n = 0. The second part includes constants Ci,k
and states |̂i(−1)

k 〉 which come from commuting J−−n through the operators in front of it.
Therefore the general formula for the recursive step for J−n reads

Gaux
ij = (−1)n+1Ci

∑
k

M(J−n )1
jkGîk +

∑
k

Ci,kG
aux
îkj
. (D.7)

There is no risk of infinite loops (which we will have to deal with later) because commutators
with J−−n tend to reduce the number of operators and change J+ to J3, so we eventually
always get to states which have J3

−n or J−−n with n > 0 at the first position.
Another issue that plays a role in this theory is the existence of null states. Especially

for low levels k, there is a large number of null states, so removing them is essential. To
do so, we use the approach described in [22]. We find null states by analyzing the Gram
matrix, then we choose a basis that represents the irreducible part of the Hilbert space and

16We canonically order the current operators in states so that J+ are first, J− are second and finally J3

are at last positions. For this particular step, it would be more convenient to change the order, but similar
problems would appear elsewhere.
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remove representatives of null states from the string field. This must be accompanied by
modification of matrix representations. Null states from the Hilbert space H(0) are encoded
in the basic Gram matrix G and null states from the auxiliary spaces H(±1) in the matrix
Gaux. We first compute the Gram matrices in Mathematica to get exact expressions for
null states and later in C++ we compute the Gram matrices only for the irreducible part
of the state space.

D.2 Cubic vertex

When it comes to the cubic vertex, the situation gets even more complicated because
there are three states involved. Therefore we will describe our recursive algorithm only
schematically, precise formulas involving matrix representations can be obtained by making
similar modifications as in the previous subsection to the formulas from [22]. The main
problem we face during these calculations is a risk of the recursive algorithm going into
infinite loops when using certain conservation laws.

For reference, let us define a matrix of ‘physical’ vertices Vijk = 〈V3|i(0)〉|j(0)〉|k(0)〉 and
a matrix of auxiliary vertices V aux

ijk = 〈V3|i(−1)〉|j(0)〉|k(1)〉. The general idea of computing
the cubic vertex is the same as for the Gram matrix, we construct a recursive algorithm that
expresses a given element as a sum of elements at lower levels. In this way, we eventually
get to the basic vertex for three primary operators. There are no issues when computing
elements of the physical part of the vertex. We can choose an arbitrary operator from any
of the three entries and use the corresponding conservation law. If we pick J3, we stay
within the physical part of the vertex, but if we pick J±, the recursive formula also involves
the auxiliary part of the vertex.

The real problem lies in the auxiliary vertex. We want to avoid states from H(±2), so
we have to select such conservation laws that we stay in the desired part of the Hilbert
space. Therefore the only options are to pick either J3

−n operator from an arbitrary entry
of the vertex, J−−n from the first entry or J+

−n from the third entry. If n > 0, we are always
safe because the corresponding conservation law reduces level of the elements. However, we
are sometimes forced to use J0 conservation laws which do not decrease level. If we apply
them incorrectly, they can sometimes lead to infinite loops.

As a simple example, consider the element 〈V3|2,−1〉|2, 0〉|k(1)〉, where |k(1)〉 is an
arbitrary state. If we use J−0 conservation law on the first entry, the first state changes
to |2, 0〉 and the second state to |2,−1〉 (plus there are other terms that come from J−0
acting on the last state, but these are not important now). Once we exchange the order
of the two states to match the definition of V aux, we notice that the recursive algorithm
points to the same element again and therefore it enters an infinite loop. There are also
two-step infinite loops. For example, consider the element 〈V3|J+

−m|2,−2〉J+
−n|2,−1〉|k(1)〉.

In the first step, we apply the J−0 conservation law on the first state and the result includes
〈V3|J+

−n|2,−2〉J+
−m|2,−1〉|k(1)〉, in the second step, we use J−0 conservation law again we

get back to 〈V3|J+
−m|2,−2〉J+

−n|2,−1〉|k(1)〉.
Such infinite loops can be avoided by choosing which conservation laws we use following

the steps below. There, mj denotes spin projection of the primary in the state |j(0)〉 and
Ni and Nk are number operator eigenvalues of the states |i(−1)〉 and |k(1)〉 respectively.
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1. If there are any operators J3
−n or J−−n with n > 0 in the state |i(−1)〉, we remove them

using the corresponding conservation laws.

2. Similarly, if there are any operators J3
−n or J+

−n with n > 0 in the state |k(1)〉, we
remove them.

3. Next, we check mj . If mj > 0, we use J−0 conservation law on |i(−1)〉.

4. If mj < 0, we use J+
0 conservation law on |k(1)〉.

5. Finally, if mj = 0, we check Ni and Nk. If Ni > 0 and Nk = 0, we use J+
0 conservation

law on the state |k(1)〉.

6. If Nk > 0 and Ni = 0, we use J−0 conservation law on the state |i(−1)〉.

7. In other cases, it is save to use both of these options.

We have explicitly checked for all types of problematic vertices that an algorithm
following these rules does not lead to infinite loops.

Next, let us make few comments regarding the time requirements of this algorithm.
In [22], we stated that computing solutions using Newton’s method takes more time than
evaluation of the cubic vertex. However, that is not true in this model and computing the
cubic vertex is typically the most time consuming task. The asymptotic estimates from [22]
are no longer valid for two reasons.

The first reason is that evaluation of one element of the cubic vertex requires a lot of
operations. Matrix representation of operators like Ln or αn are typically sparse, so their
application requires only few operations. In our model, there are however many nontrivial
elements because most commutators of current modes are nonzero and because we have to
make replacements for null states. Therefore the scaling of time needed for the cubic vertex
is no longer O(N3), but somewhere between O(N3) and O(N4).

Second, there is a huge asymmetry between the constituent models. In other OSFT
settings, the constituent models typically have more or less the same number of states in
the truncated Hilbert space. In the SU(2)k WZW model, the Hilbert space is generated
by three currents, which means that it is much larger than state spaces of the universal
matter and ghost sectors. If we denote the number of states in a Virasoro Verma module
up a given level as NL, than we can roughly estimate the number of states in the SU(2)
Hilbert space (including null states) as N

√
3

L and number of states in the full state space as
N
√

5
L . So the number of states in the SU(2) space is much closer to number of states in the

full state space than in other models.
When combined, these two reasons mean that evaluation of the cubic vertex typically

takes much more time than computing one solution using Newton’s method. So, unless one
wants to compute a large number of solutions, the cubic vertex is the main restriction that
decides the available level and the results are worth saving for possible future calculations.
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D.3 Ellwood invariants

Our strategy to compute Ellwood invariants again follows the approach described in [22],
which involves a recursive algorithm based on conservation laws.

First, let us have a look at structure of Ellwood invariant conservation laws for SU(2)
currents, which take schematic form:

〈E[V]|(Jan + (−1)nJa−n)|Ψ〉 = 〈E[Ja(V)]|Ψ〉. (D.8)

The left hand side includes the usual combination of modes, which allows us to trade a
creation operator for an annihilation operator. Furthermore, this part does not lead to
change of the J3

0 eigenvalue of the string field. The right hand side, which we will describe
in more detail later, is determined by the OPE between the current Ja and the vertex
operator V . If we choose a = ±, this part changes J3

0 eigenvalues and it leads to states from
the auxiliary spaces H(±1). Therefore we have to apply conservation laws also on the these
auxiliary states, which involves the same complications as in section D.1 (restricted choice
of conservation laws to avoid states from H(±2), commutation of J−−n through operators in
front of it). We deal with these problems similarly as before.

When it comes to action of conservation laws on the Ellwood state, we decided to
implement the approach described towards the end of section 2.5.1 in [22]. The reason is
that bulk vertex operators that define Ellwood invariants can include both SU(2) primaries
and current descendants. The invariants considered in this paper are quite simple, so we
could deal with them using other methods, but we would like have the option of adding
more complicated invariants in future works, so we decided for this approach. The full
expression for conservation laws in this approach takes the form

〈E[V]|(Jan + (−1)nJa−n)|Ψ〉 =
∑
m

E+
m(Ja−n)〈E[JamV]|Ψ〉+

∑
m

E−m(Ja−n)〈E[J̄amV]|Ψ〉, (D.9)

where E±m(Ja−n) are constants that follow from expansion of functions vn(z) (which generate
conservation laws) around the points ±i, see equations (2.5.237) and (2.5.244) in [22]. We
represent bulk vertex operators as products of two chiral Hilbert spaces (with unrestricted
J3

0 eigenvalue), so the expressions JamV and J̄amV represent action of current modes on the
left and right part of the bulk state, which can be written in terms of matrix representation.

To write an explicit recursive algorithm, we choose a basis Vij of bulk vertex operators
and we define Eijk = 〈E[Vij ]|k(0)〉 (we need also auxiliary objects E±ijk = 〈E[Vij ]|k(±1)〉).
The recursive algorithm then takes the schematic form

Eijk = (−1)n
−∑

l

M(Jan)k̂lEijl+
∑
m,l

E+
m(Ja−n)M(Jam)ilEljk̂+

∑
m,l

E−m(Ja−n)M(Jam)jlEilk̂

 .
(D.10)

To complete it, we need to make modifications for the individual currents so that it correctly
switches between Eijk and E±ijk and sometimes for commuting a required operator Ja−n to the
first position. These modifications once again follow section D.1, so we will not go into details.
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Conservation laws allow us to remove all currents from the string field. Then we are
left we expressions of the form

〈E[V]|j,m〉 = 2hj 〈V(i,−i)φj,m(0)〉. (D.11)

These are ordinary bulk-boundary correlators, which can be computed using standard CFT
methods.

E More numerical data

In this appendix, we provide several examples of solutions describing two 0-branes. We
choose k = 5 and J = 1 as the background. The first solution represents an SU(2) Cardy
boundary state, the other three describe SL(2,C) boundary states, which illustrate the three
types of two 0-brane solutions mentioned in section 5.2. Since this background includes a
large number of Ellwood invariants, we provide only their infinite level extrapolations to
keep the amount of data reasonable. All extrapolations are based on level 10 results.

The data given in table 29 describe a real solution corresponding to an SU(2) boundary
state. We can easily identify it as two 0-branes with θ1 = −θ2 = 2π

k . Apart from the fact
that it describes two branes, it has very similar properties to the examples of solutions in
section 4. In particular, we observe that it has the same symmetries and the extrapolations
have similar precision.

The next solution given in table 30 describes an SL(2,C) boundary state. We notice that
all of its invariants are real numbers, although the solution itself is not because it violates the
condition (3.16). This property of invariants suggests a special relation between parameters
of the two branes. By the R2 minimization procedure, we found that θ1 = −θ2 = 2π

k , which
is typical for two 0-brane solutions, and that the two ρ parameters are equal, ρ1 = ρ2 ≈ 0.50.
Their value is quite close to 1

2 , but that seems to be just a coincidence. The parameters ρ are
determined mainly from Ej,m invariants with negative m. Invariants with positive m have
very small expected values and most of them have relative errors over 100%, which means
that these invariants do not give us any meaningful information. If we make a comparison
of invariants which do not depend on ρ with the SU(2) solution above, we find that the
SL(2,C) solution is surprisingly more precise, although it has larger error estimates.

The solution in table 31 has somewhat different properties. Invariants of this solution
are generic complex numbers, but we notice that they have a symmetry given by:

Ej,m = (−1)2jEj,−m. (E.1)

Although similar, this symmetry is not the same as the reality condition (3.16), so the
solution is only pseudo-real. However, the symmetry implies a relation between parameters
of the two 0-branes. The parameters θ take the usual values θ1 = −θ2 = 2π

k and ρ parameters
are inversely proportional: ρ1 ≈ 0.49 and ρ2 = 1/ρ1 ≈ 2.05. The solution suffers from
the odd level instability, therefore we have data only from 5 levels, which leads to lesser
precision of extrapolations.
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Energy E0,0 ∆S

∞ 0.9646 0.951 −0.0013
σ 0.0004 0.003 0.0003

Exp. 0.963163 0.963163 0
J+− J−+ J33

∞ −0.84 −0.84 0.951
σ 0.05 0.05 0.003

Exp. −0.779215 −0.779215 0.963163
E1/2,1/2 E1/2,−1/2

∞ 0.397 −0.397
σ 0.001 0.001

Exp. 0.399532 −0.399532
E1,1 E1,0 E1,−1

∞ −1.162 −1.46 −1.162
σ 0.004 0.02 0.004

Exp. −1.16804 −1.44377 −1.16804
E3/2,3/2 E3/2,1/2 E3/2,−1/2 E3/2,−3/2

∞ −1.161 −0.47 0.47 1.161
σ 0.004 0.03 0.03 0.004

Exp. −1.16804 −0.446151 0.446151 1.16804
E2,2 E2,1 E2,0 E2,−1 E2,−2

∞ 0.397 1.07 1.22 1.07 0.397
σ 0.001 0.03 0.28 0.03 0.001

Exp. 0.399532 1.04599 1.29291 1.04599 0.399532
E5/2,5/2 E5/2,3/2 E5/2,1/2 E5/2,−1/2 E5/2,−3/2 E5/2,−5/2

∞ 0.951 0.84 0.1 −0.1 −0.84 −0.951
σ 0.003 0.05 0.8 0.8 0.05 0.003

Exp. 0.963163 0.779215 0.297634 −0.297634 −0.779215 −0.963163

Table 29. Extrapolations of observables of a solution describing two SU(2) Cardy 0-branes with
θ1 = −θ2 = 2π

k in the k = 5 model with J = 1 boundary conditions.

Extrapolations of invariants of the final two 0-brane solution are given in table 32.
Most of the invariants are generic complex numbers and they do not have any symmetries
or special properties. The solution has odd level instabilities, which leads to lesser precision
of extrapolations. We determined parameters of the two 0-branes it describes to be
θ1 = −θ2 = 2π

k , ρ1 ≈ 0.99 and ρ2 ≈ 1.82. One of the ρ parameters is quite generic, but the
other is close to 1, which means that this solution most likely describes a combination of an
SU(2) brane and an SL(2,C) brane.
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Energy E0,0 ∆S

∞ 0.9636 0.963 −0.0003
σ 0.0005 0.003 0.0009

Exp. 0.963163 0.963163 0
J+− J−+ J33

∞ −0.21 −3.11 0.96
σ 0.65 1.15 1.25

Exp. −0.19 −3.12 0.963163
E1/2,1/2 E1/2,−1/2

∞ 0.204 −0.800
σ 0.010 0.016

Exp. 0.200 −0.799
E1,1 E1,0 E1,−1

∞ −0.23 −1.444 −4.67
σ 0.11 0.060 0.26

Exp. −0.29 −1.44377 −4.67
E3/2,3/2 E3/2,1/2 E3/2,−1/2 E3/2,−3/2

∞ 0.04 −0.28 0.90 9.42
σ 0.39 0.17 0.16 0.40

Exp. −0.15 −0.22 0.89 9.34
E2,2 E2,1 E2,0 E2,−1 E2,−2

∞ 0.16 0.56 1.1 4.13 6.63
σ 0.31 0.74 1.1 0.67 0.05

Exp. 0.02 0.26 1.29291 4.18 6.39
E5/2,5/2 E5/2,3/2 E5/2,1/2 E5/2,−1/2 E5/2,−3/2 E5/2,−5/2

∞ 0.76 0.58 1.01 0.42 −6.23 −30.97
σ 1.54 1.57 2.84 2.59 1.44 0.68

Exp. 0.03 0.10 0.15 −0.60 −6.23 −30.82

Table 30. Extrapolations of observables of a solution describing two SL(2,C) 0-branes with θ1 = 2π
k ,

θ2 = −2π
k and ρ1 = ρ2 ≈ 0.50 in the k = 5 model with J = 1 boundary conditions.
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Energy E0,0 ∆S

∞ 0.962 0.964 0.0002
σ − 0.002 −

Exp. 0.963163 0.963163 0
J+− J−+ J33

∞ −1.68−0.91i −1.68−0.91i −0.5
σ 0.46+0.44i 0.46+0.44i 0.5

Exp. −1.73−1.12i −1.73−1.12i 0.963163
E1/2,1/2 E1/2,−1/2

∞ 0.507−0.982i −0.507+0.982i
σ 0.002+0.003i 0.002+0.003i

Exp. 0.507−0.960i −0.507+0.960i
E1,1 E1,0 E1,−1

∞ −2.51−1.67i −1.6 −2.51−1.67i
σ 0.09+0.06i 0.1 0.09+0.06i

Exp. −2.59−1.68i −1.44377 −2.59−1.68i
E3/2,3/2 E3/2,1/2 E3/2,−1/2 E3/2,−3/2

∞ −5.0+3.6i −0.64+0.9i 0.64−0.9i 5.0−3.6i
σ 0.8+0.4i 0.04+0.7i 0.04+0.7i 0.8+0.4i

Exp. −5.1+3.6i −0.57+1.1i 0.57−1.1i 5.1−3.6i
E2,2 E2,1 E2,0 E2,−1 E2,−2

∞ 3.6+10.9i 1.8+1.0i 0.9 1.8+1.0i 3.6+10.9i
σ 0.5+2.2i 0.1+1.1i 2.1 0.1+1.1i 0.5+2.2i

Exp. 3.5+10.8i 2.3+1.5i 1.29291 2.3+1.5i 3.5+10.8i
E5/2,5/2 E5/2,3/2 E5/2,1/2 E5/2,−1/2 E5/2,−3/2 E5/2,−5/2

∞ 18.1 2.7−1.74i −0.7+0.6i 0.7−0.6i −2.7+1.74i −18.1
σ 3.1 1.1+0.04i 4.6+0.7i 4.6+0.7i 1.1+0.04i 3.1

Exp. 17.4 3.4−2.41i 0.4−0.7i −0.4+0.7i −3.4+2.41i −17.4

Table 31. Extrapolations of observables of a solution describing two SL(2,C) 0-branes with
θ1 = 2π

k , θ2 = −2π
k , ρ1≈ 0.49 and ρ2 = 1/ρ1≈ 2.05 in the k= 5 model with J = 1 boundary conditions.

Extrapolations are done only using even level data due to odd level instabilities.
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Energy E0,0 ∆S

∞ 0.9641 0.957 −0.0007
σ − 0.001 −

Exp. 0.963163 0.963163 0
J+− J−+ J33

∞ −1.85−0.66i −0.54−0.27i 0.77
σ 0.08+0.15i 0.19+0.03i 0.09

Exp. −1.68−0.65i −0.51−0.20i 0.963163
E1/2,1/2 E1/2,−1/2

∞ 0.5638−0.542i −0.310+0.289i
σ 0.0004+0.009i 0.001+0.003i

Exp. 0.5633−0.504i −0.310+0.277i
E1,1 E1,0 E1,−1

∞ −2.55−1.03i −1.46 −0.759−0.316i
σ 0.03+0.04i 0.04 0.017+0.009i

Exp. −2.52−0.98i −1.44377 −0.760−0.296i
E3/2,3/2 E3/2,1/2 E3/2,−1/2 E3/2,−3/2

∞ −4.14+2.2i −0.66+0.64i 0.36−0.32i 0.678−0.40i
σ 0.14+0.1i 0.06+0.07i 0.04+0.10i 0.004+0.02i

Exp. −4.10+2.1i −0.63+0.56i 0.35−0.31i 0.681−0.35i
E2,2 E2,1 E2,0 E2,−1 E2,−2

∞ 2.38+6.2i 2.21+0.86i 1.39 0.76+0.41i 0.23+0.60i
σ 0.11+0.4i 0.06+0.28i 0.57 0.26+0.16i 0.02+0.14i

Exp. 2.39+6.1i 2.26+0.88i 1.29291 0.68+0.27i 0.22+0.56i
E5/2,5/2 E5/2,3/2 E5/2,1/2 E5/2,−1/2 E5/2,−3/2 E5/2,−5/2

∞ 9.7 2.9−1.3i 0.1+0.01i −0.8+0.3i −0.59+0.35i −0.56
σ 0.8 0.4+0.2i 1.1+0.09i 0.2+1.7i 0.20+0.23i 0.04

Exp. 10.1 2.7−1.4i 0.4−0.38i −0.2+0.2i −0.45+0.24i −0.51

Table 32. Extrapolations of observables of a solution describing probably an SU(2) 0-brane with
θ1 = 2π

k (ρ1≈ 0.99) and SL(2,C) 0-brane with θ2 = −2π
k and ρ2≈ 1.82 in the k= 5 model with J = 1

boundary conditions. Extrapolations are done only using even level data due to odd level instabilities.
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