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1 Introduction

While the discovered Higgs boson is consistent with the Standard Model (SM) one, this

could just be the first manifestation of an Electro-Weak Symmetry Breaking (EWSB) dy-

namics that is far richer than the minimal one existing in the current prevalent description

of Nature. On the one hand, the latter is non-minimal in both its matter (as there are

three generations of quarks and leptons) and interaction (as multiple gauge bosons states

of different multiplicities exist) content, so that one is well motivated to postulate a non-

minimal Higgs sector too. On the other hand, bearing in mind that the discovered Higgs

state has a doublet construction, one is well justified in pursuing first, in the quest for

some Beyond the SM (BSM) physics, the study of 2-Higgs Doublet Models (2HDMs). In

fact, these scenarios always include a neutral scalar Higgs state that can play the role

of the detected one. Furthermore, these constructs offer additional (pseudo)scalar states,

both neutral and charged, amenable to discovery by the ATLAS and CMS collaborations,

which are now substantially engaged in direct searches for new Higgs bosons, in parallel

with extracting a possible BSM dynamics indirectly from the precision measurements of

the detected one.

However, 2HDMs do not have the ability to solve the so-called hierarchy problem of

the SM. An elegant way to overcome it is to presume that the revealed Higgs state and

its possible 2HDM companions are not fundamental particles, just like any spin-0 object

discovered so far in Nature. In this sense, one would be interpreting these (pseudo)scalar

states belonging to a Composite 2HDM (C2HDM) as (fermion) composites, i.e., mesonic

states of a new theory of strong interactions not dissimilar from QCD. A phenomeno-

logically viable possibility, wherein the mass of the lightest Higgs state is kept naturally

lighter than a new strong scale (of compositeness, f , in the ∼TeV region) is, in particular,

the one of assigning to these QCD-like states a pseudo-Nambu-Goldstone Boson (pNGB)

nature, like in Composite Higgs Models (CHMs) arising from the spontaneous symmetry

breaking around the TeV scale of the global symmetry of such a new strong sector [1].

The residual symmetry is then explicitly broken by the SM interactions through the partial

compositeness paradigm [2, 3]. In the minimal CHM [4–11] the lone Higgs state is a pNGB

(surrounded by various composite resonances, both spin-1/2 and spin-1, generally heavier).

Hence, it is natural to assume that the new (pseudo)scalar Higgs states of a C2HDM can

also be created as pNGBs.

Such C2HDMs embedding pNGBs, which arise from a new confining strong dynam-

ics, can be constructed by explicitly imposing a specific symmetry breaking structure.

Herein, we will analyse 2HDMs based on the spontaneous global symmetry breaking of a

SO(6) → SO(4) × SO(2) symmetry [12]. Within this construct, one can then study both

the deviations of C2HDM couplings from those of a generic renormalisable Elementary

2HDM (E2HDM) [13] as well as pursue searches for new non-SM-like Higgs signals.

We explicitly construct here a C2HDM making only a few specific assumptions about

the strong sector, namely, the global symmetries, their pattern of spontaneous breaking

and the sources of explicit breaking (as intimated, in our approach, they come from the

couplings of the new strong sector with the SM fields) and by generalising to the coset
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SO(6)/SO(4)× SO(2) the 2-site minimal construction developed in [6]. (We will also show

in appendix A the equivalence with the standard prescription by Callan, Coleman, Wess

and Zumino (CCWZ) [14, 15].) The scalar potential is in the end generated by loop effects

a la Coleman-Weinberg (CW) [16] and, at the lowest order, is mainly determined by the

free parameters associated to the sole top-quark and the complete gauge sector [12].

Calculations of the Higgs potential in the composite realisation of 2HDMs have been

performed in the pioneering work [12] based on the CCWZ technique, in which each coeffi-

cient of the potential is expressed in terms of invariants of the global symmetry computed as

an expansion in the parameters responsible for the partial compositeness. This approach is

quite general, but the undetermined O(1) coefficients associated to each invariant prevent

one to exploit the dependence on the masses and couplings of the resonances generated

by the new strong sector. Furthermore, the computation of such coefficients is crucial to

make a clear connection with the parameters of the strong dynamics which depends on the

choice of the model setup.

As mentioned before, we adopt an explicit 2-site model based on [6] originally developed

in the context of minimal CHMs governed by the SO(5) symmetry and here extended

to SO(6). These models are composed of two sectors, i.e., an elementary one including

particles whose quantum numbers under the SU(2)L×U(1)Y gauge symmetry are the same

as those of the SM fermions and gauge bosons plus a composite sector having new spin-1

and spin-1/2 resonances introduced as multiplets of the global group. The mixing between

states in these two sectors realise the partial compositeness. With this construction, we can

evaluate observables in the Higgs sector such as masses and couplings. This analysis also

allows to clarify the differences between these observables and those from renormalisable

E2HDMs [17]. The aim of the paper is to show that a composite scenario could give rise

to a concrete realisation of a 2HDM and also to highlight the phenomenological aspects

which could reveal at the Large Hadron Collider (LHC) the composite nature of the Higgs

states described by our construction.

The plan is as follows. In section 2 we describe the general features of a C2HDM based

on SO(6)→ SO(4)× SO(2) and we discuss the corresponding symmetries. In section 3 we

present the explicit model on which our analysis is based. In section 4 we compute explicitly

the Higgs potential and we discuss in section 5 the Higgs boson couplings to fermions and

bosons as well as amongst themselves. In section 6 we present the Higgs spectrum of the

model and discuss some phenomenological results which may act as smoking gun signals

of the C2HDM. In addition, we comment on the implications from flavour constraints.

Finally, we conclude in section 7. We leave to the appendices the connection with the

CCWZ construction and other technical details.

2 The SO(6)→ SO(4)× SO(2) symmetry breaking

In this section we discuss the main aspects of C2HDMs highlighting the general properties

that follow by their constructions as effective field theories. The scenarios we consider are

schematically characterised by the following structure:

LComposite = L2HDM + Ld≥6, (2.1)
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where L2HDM has the same form as the Lagrangian of the E2HDM and contains the kinetic

terms, the scalar potential (up to quartic terms) and Yukawa interactions,

L2HDM = kinetic terms + V (H1, H2) + LYukawa, (2.2)

with H1 and H2 being the isospin scalar doublets and

V (H1, H2) = m2
1H
†
1H1 +m2

2H
†
2H2 −

[
m2

3H
†
1H2 + h.c.

]
+
λ1

2
(H†1H1)2 +

λ2

2
(H†2H2)2 + λ3(H†1H1)(H†2H2) + λ4(H†1H2)(H†2H1)

+
λ5

2
(H†1H2)2 + λ6(H†1H1)(H†1H2) + λ7(H†2H2)(H†1H2) + h.c. (2.3)

The Ld≥6 element includes effective operators (starting from dimension 6) that can gener-

ate modifications to the Higgs couplings to bosons and fermions, hence effects in specific

experimental observables in Higgs and flavour physics as well as global Electro-Weak (EW)

precision tests. In general, these effective operators generate effects that are suppressed

by v2/f2 (with v being an EW scale parameter connected to the Higgs doublet Vacuum

Expectation Values (VEVs) and f the scale of compositeness), however, larger suppressions

can be achieved by virtue of some approximate symmetries of the underlying composite

dynamics. We will compute here, through an expansion in v2/f2, the leading contributions

to the 2HDM parameters m2
i (i = 1, . . . 3) and λj (j = 1, . . . 7) originating from the ex-

plicit breaking of the global symmetry. We then obtain the phenomenological observables,

such as masses and couplings, that were only estimated in [12] on the basis of symmetry

arguments and produce explicitly the low energy particle spectrum of the C2HDM.

In order to be concrete we need to choose a coset space and describe how the global

symmetries are explicitly broken by the elementary sector. In the remainder of this work

we have as a main focus the model

G
H

=
SO(6)

SO(4)× SO(2)
, (2.4)

expanding upon the work presented in [12] and recently discussed in [17]. The NGB

fluctuations are described by the matrix U in the vector representation of SO(6)

U ≡ exp

(
i
Π

f

)
, Π =

 04×4 φ1 φ2

−φT1 0 0

−φT2 0 0

 , (2.5)

where φ1,2 are two real fourplets (the two Higgs doublets)

φT1 = (~π1, h1), φT2 = (~π2, h2), (2.6)

that can be rearranged into two SU(2) doublets as

Hα =
1√
2

(
φ2
α + iφ1

α

φ4
α − iφ3

α

)
, α = 1, 2. (2.7)
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Besides the NGBs and the elementary SM fields, the model describes the extra spin-1

and spin-1/2 resonances. While the representations of the spin-1 states are fixed by the

gauge symmetry, the model allows for some freedom in the choice of the fermion ones and

in the embedding of the elementary fermions in representations of G. We choose:

• chiral elementary fermions in the 6 of SO(6),

• vector-like composite fermions in the fourplet ψI and doublet ψα of SO(4)×SO(2).

The resonances and their interactions with the elementary sector are then fully de-

scribed by the following Lagrangian

LC2HDM = Lelementary + Lmixing + Lresonances. (2.8)

The last part describes also the derivative interactions of the NGBs with the composite

matter fields and can be parameterised by means of the CCWZ formalism as shown in

appendix A. The interactions of the NGBs are suppressed by 1/f and are H-symmetric

while the resonances have an overall mass scale of size m∗. The elementary sector contains

the gauge and fermionic kinetic terms for the SM-like fields while the mixing term is

the crucial ingredient since all the phenomenology strongly depends upon the interactions

between the elementary and composite sectors.

Concretely, the mixing Lagrangian contains the partial compositeness terms that gen-

erate masses for the SM fermions,

Lmixing = yijL f q̄
i
LU · (ψI)j + ỹijL f q̄

i
L U · (ψα)j + (qL → uR, dR, lL, eR), (2.9)

where i, j are flavour indices that run over the three families and we wrote schematically

with a dot all the possible invariants that can be formed (see the next section for the actual

implementation). Then, upon integrating out the resonances of the composite sector, we

generate several effects that would allow us to match LC2HDM in eq. (2.8) to the reference

Lagrangian LComposite of eq. (2.1).

In the spirit of CHMs with partial compositeness, the parameters that enter the two

sectors in LComposite, i.e., the usual part L2HDM and the new one Ld≥6, are related to each

other, since all the Higgs interactions and effective operators with SM fields are mainly

generated by the explicit breaking of the global symmetry under which the Higgs doublets

then behave as pNGBs. In order to set the stage for the discussion of our C2HDM we now

quickly recall the main aspects of CHMs with partial compositeness.

2.1 Custodial and discrete symmetries

A renormalisable 2HDM never faces custodial breaking effects at tree level. This can

be traced back to the presence, when the hypercharge coupling is neglected, of a large

SU(2)L×Sp(4) symmetry in the kinetic terms of the two Higgs doublets. Since in the

renormalisable E2HDM there are no terms in the Lagrangian that contribute to the T̂

parameter other than the kinetic terms, no custodial violation is present for any number

of Higgs doublets.

– 5 –
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In CHMs, the non-linearities of the effective Lagrangian for NGBs contribute with

operators of dimension 6 of the following form

Ld≥6 ⊃
cij c̃kl
f2

(H†i
←→
D µHj)(H

†
k

←→
D µHl) + h.c., (2.10)

which do not respect the Sp(4) symmetry and contribute to the T̂ parameter for generic

VEVs of the two Higgs doublets. However, the value of the coefficients c, c̃’s is constrained

by the symmetry of the subgroup H. This in turn suggests that only models where the

unbroken group contains H ⊃ SU(2)L×Sp(4) are free from tree level violation of custodial

symmetry for any form of the Higgs VEVs. This is not the case for SO(4)×SO(2), which

does not contain the full symmetry of the renormalisable kinetic terms, therefore, in our

case the coefficients in eq. (2.10) are non-vanishing and fixed by the symmetries, which

then predict a T̂ parameter [12] such that

T̂ ∝ 16× v2

f2
× Im[〈H1〉†〈H2〉]2

(|〈H1〉|2 + |〈H2〉|2)2
. (2.11)

Since custodial breaking is sensitive to the combination Im[〈H1〉†〈H2〉] there are two ap-

proximate symmetries, discussed in the following, that can be used to reduce these effects:

i) CP, which is well approximated in the SM; ii) a new symmetry, C2, that forbids a VEV

for one of the two Higgs doublets.

CP invariance. In this case we realise a scenario where the two Higgs doublets have

VEVs aligned in phase as required by the vanishing of the contribution in eq. (2.11).

Without a very accurate alignment, the bound coming from precision tests can be roughly

estimated as δT̂ < 10−3, which then constrains the phase misalignment ∆φ = φ1 − φ2,

defined through 〈H1,2〉T = 1/
√

2(0, v1,2) exp(iφ1,2), to be

∆φ . 0.03

(
f

600 GeV

)
, (2.12)

assuming tan β = v2/v1 ∼ O(1). Such a value can be achieved by assuming an approximate

CP symmetry in the scalar potential. Interestingly, the interactions of the NGBs among

themselves and with other composite fields respect automatically charge conjugation C

since Hi → H∗i is realised on the real degrees of freedom φ1,2 encoded in the matrix U as

C = diag[1,−1, 1,−1, 1, 1], (2.13)

which is an element of SO(4). Because of this argument, we find it rather natural to

consider the scenario where CP is a good symmetry of the composite sector and very well

approximated in the elementary couplings (needed to comply with flavour constraints).

C2 invariance. Another possibility to control the deviations in eq. (2.11), as extensively

discussed in [12], is to make the stronger assumption that one of the two Higgs doublets

has a discrete symmetry that forbids any VEV, e.g.,

C2 : H1 → H1, H2 → −H2, (2.14)

– 6 –
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which, contrary to C, is not a symmetry of the composite sector in the sense that it is not

an element of H.1 Although this condition is not what is strictly required from eq. (2.11),

it has an interesting byproduct since it selects a specific pattern of Higgs couplings to

fermions, because only one Higgs doublet is coupled to them. As well known, in this case,

any tree level mediations of Flavour Changing Neutral Currents (FCNCs) from the scalar

sector are absent for a generic flavour structure of the Yukawa couplings.

2.2 Flavour structure

When CP is the only discrete symmetry acting on the Higgs doublets, the Yukawa couplings

of the renormalisable 2HDM are of the following form:

L2HDM ⊃ Y ij
u q̄

i
L

(
a1uH̃1 + a2uH̃2)ujR + Y ij

d q̄
i
L

(
a1dH1 + a2dH2)djR

+ Y ij
e l̄

i
L

(
a1eH1 + a2eH2)ejR + h.c. (2.15)

Therefore, only under the assumption that the coefficients a’s are the identity in flavour

space, the above interactions do not generate Higgs-mediated FCNCs at tree level. Under

this assumption, FCNCs are therefore confined to loop effects as in the SM.

In a C2HDM the above description is modified by the presence of higher dimension

operators that contribute to the Yukawas of eq. (2.15) and in general one would expect

any kind of operator of the form κijkψψHiH
†
jHk + h.c. However, thanks to the pNGB

nature of the Higgs doublets, the structure of the higher-dimensional operators is highly

constrained by the symmetry of the theory and in general [18] the Yukawa terms including

all the non-linearities are simply

Y ij
u q̄

i
L

(
a1uF

u
1 [Hi] + a2uF

u
2 [Hi])u

j
R + . . . , (2.16)

where the functions F u1,2 are trigonometric invariants of Hi and start with a linear term in

H1,2, respectively. Therefore, the elementary case of eq. (2.15) is automatically included as

a specific case in eq. (2.16) and this shows that the assumption of aligned Yukawa couplings

is not a stronger requirement in the composite scenario than in the elementary one.

A difference between the elementary and composite cases arises though when one

considers the additional constraints on the theory induced by the alignment of eq. (2.16).

In other words, while in the elementary case eq. (2.15) is the only possible source of flavour

violation, in the composite one LComposite contains four-fermion operators generated by

integrating out the composite fermions and vectors of the form

xijkl
f2

ψiψjψkψl, (2.17)

with ψ being a SM fermion, which can mediate FCNCs at tree level if the flavour coefficients

xijkl are generic, and where we neglected the precise chirality structure of fermions. This

shows that the aligned structure of eq. (2.16) is not sufficient to avoid tree level effects, since

a diagonalisation of the Yukawas may still leave the set of four-fermion operators misaligned

1Notice that, limitedly to the Higgs sector, the C2 symmetry of the C2HDM coincides with the Z2 one

of the E2HDM.
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with respect to the mass basis. Notice also that, despite the four-fermion operators of

eq. (2.17) originate from different effects than (pseudo)scalar-mediated FCNCs, they are

not less harmful and, more importantly, they are present also in the C2 symmetric case.

A mechanism to generate an approximate alignment between the flavour structures

of Eqs (2.16) and (2.17) is possible under the working assumption of a flavour universal

composite sector. In this case the latter enjoys a symmetry G5
F that commutes with H

while the elementary sector has the usual U(3)5 flavour symmetry.

Only by the explicit breaking of G5
F and U(3)5 down to baryon number the CKM

structure of the Yukawa sector can be reproduced: in absence of this breaking the SM

fermions are in fact massless. The couplings y, ỹ in eq. (2.9) break explicitly this symmetry

and, depending on their structure in flavour space, they may lead to misaligned (with

respect to the mass basis) flavour interactions.

Several possibilities have been considered in the literature to prevent large tree level

flavour violations in composite models [19, 20]. In particular, it is worth mentioning the fol-

lowing.

1. Higgs-mediated tree level FCNCs are absent when there is only one flavour structure

per SM representation. This means that the invariants in Lmixing given in eq. (2.9)

need to be aligned in flavour space (e.g., yijL ∝ ỹ
ij
L ). For any form of yij in flavour space

then Higgs-mediated FCNCs are zero at tree level and appear only at loop order.

2. Tree level effects in the four-fermion operators of eq. (2.17) are much suppressed

when, in addition to the assumption in point 1, one also realises a partial alignment

of yij with the CKM matrix.

We will work under these assumptions in order to realise a flavour symmetric compos-

ite sector.

3 An explicit model

When parameterising a composite sector one is faced with a few practical approximations

that are needed to capture its main features. Since we would like to focus on the connec-

tion between Higgs phenomenology and the spectrum of heavier resonances, we adopt a

description of the composite sector based on a 2-site model, as a generalisation of [6], as

already intimated.

We consider here a simplified picture that includes the minimal amount of new reso-

nances that allow for a calculable Higgs potential [6]. Here, we focus on the gauge sector.

Despite we are interested in the full coset structure

G
H

=
SU(3)c × SO(6)×U(1)X

SU(3)c × SO(4)× SO(2)×U(1)X
, (3.1)

the consistent inclusion of spin-1 resonances requires additional (gauged) symmetries as

typical of 2 and 3-site models [21]. In principle, we should expect any type of resonances

classified accordingly to the unbroken group H, however, since we are mainly interested

– 8 –
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in deriving the Higgs potential, only spin-1 resonances associated to SO(4)× SO(2) would

play a major role.2

In the 2-site scenario, the Lagrangian of the gauge sector can be written as

Lgauge
C2HDM =

f2
1

4
Tr|DµU1|2 +

f2
2

4
Tr|DµΣ2|2 −

1

4g2
ρ

(ρA)µν(ρA)µν − 1

4g2
ρX

(ρX)µν(ρX)µν

− 1

4g2
A

(AA)µν(AA)µν − 1

4g2
X

XµνX
µν , (3.2)

where two copies, G1,2, of the symmetry group G = SO(6) × U(1)X characterise the two

sites. Here, G2 is a local group and describes the spin-1 resonances through the gauge fields

ρXµ and ρAµ , with A ∈ Adj(SO(6)). Further, G1 is global with only the SU(2)L × U(1)Y
component lifted to a local subgroup. The corresponding elementary SM gauge fields are

conveniently embedded into spurions, AAµ and Xµ, of the adjoint of G1, and gA, gX are

the corresponding gauge couplings. The U1 field in eq. (3.2) is commonly dubbed link due

to its transformation properties under both symmetry groups of the two sites it connects,

namely, U1 → g1U1g
†
2. Notice that g1 is an element of the global G1 group in the first

site while g2 belongs to the local G2 in the second site. By virtue of the EW gauging, the

SU(2)L×U(1)Y component of the global symmetry on the first site is promoted to a local

one. The Σ2 field defined on the second site transforms, instead, under the local group

G2. Having specified the transformation properties of the fields introduced in eq. (3.2), the

covariant derivatives are easily worked out to be

DµU1 = ∂µU1 − iAµU1 + iU1ρµ,

DµΣ2 = ∂µΣ2 − i[ρµ,Σ2], (3.3)

where Aµ ≡ AAµTA+XµT
X and ρµ ≡ ρAµTA+ρXµ T

X , with TA and TX being the generators

of SO(6) and U(1)X , respectively. The link field U1 realises the spontaneous symmetry

breaking of G1 × G2 to the diagonal component G while the VEV of Σ2 accounts for the

breaking to SO(4) × SO(2) × U(1)X . The 2-site construction is schematically depicted

in figure 1. This breaking pattern provides 24 NGBs, 16 of which are reabsorbed in the

longitudinal components of the gauge fields, while the remaining 8 can be identified with

Higgs fields. In the unitary gauge, where the physical degrees of freedom are clearly evident,

the U1 and Σ2 are given by Ui = exp i f
f2i

Π and Σ2 = U2Σ0U
T
2 with Π being the usual NGB

matrix given in eq. (2.5) , Σ0 = i
√

2TS where TS = −i/
√

2(δ5
I δ

6
J − δ5

Jδ
6
I ) with I, J = 1, ., 6

and f−2 = f−2
1 +f−2

2 , following from the canonical normalisation of the Higgs kinetic term.

Before EW gauging, the model possesses an unbroken SO(4)×SO(2)×U(1)X symmetry

and the masses of the spin-1 resonances are described by the following relations:

m2
ρ =

g2
ρf

2
1

2
, m2

ρX
=
g2
ρX
f2

1

2
, m2

ρ̂ =
g2
ρ(f

2
1 + f2

2 )

2
, (3.4)

where the first two characterise the resonances spanning the unbroken group while the last

one is related to the broken sector. The gauging of the EW subgroup explicitly breaks

2Coloured spin-1 resonances affect the Higgs potential only at two loop order, while resonances associated

to U(1)X would give a subdominant contribution to the Higgs potential.
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Figure 1. The 2-site construction in the gauge sector based on the SO(6)/SO(4)×SO(2) coset. The

first site is the elementary sector while the second one is the composite sector with SO(6) ×U(1)X
heavy resonances.

SO(4)×SO(2)×U(1)X and induces a mixing between the elementary and composite fields

as well as corrections to the masses defined above.

Upon integrating out the spin-1 resonances, we obtain the following effective La-

grangian in momentum space up to quadratic terms:

Lgauge
Composite = −(PT )µν

2

[
q2Π̃0(q2)AAµA

A
ν + q2Π̃X(q2)XµXν

+ f2Π̃1(q2)AAµA
B
ν Tr(ΣTATBΣ) + f2Π̃2(q2)AAµA

B
ν Tr(TAΣTBΣ)

]
,

(3.5)

where Σ = U1Σ2U
T
1 and P Tµν is the projection operator P Tµν = ηµν − qµqν/q2. The form

factors Π̃ are determined by the parameters of the strong sector, namely, by the masses

and couplings of the resonances, with their explicit expressions given in appendix B. At

q2 = 0, the Π̃1 form factor can be fixed in terms of the SM gauge masses. Indeed, keeping

only the CP-even components of the Σ matrix and removing the non-dynamical fields, the

W and Z gauge boson masses are given by

m2
W = −ΠW (0)

4
f2 sin2 v

f
, m2

Z = −ΠW (0)

4
f2 sin2 v

f
(1 + tan2 θW ), (3.6)

where θW is the Weinberg angle and we recall that v2 = v2
1 + v2

2, with v1,2 the VEVs of

the two CP-even Higgs boson components. The form factor ΠW is normalised in order to

correctly reproduce the canonical kinetic term of the SM gauge fields. From eq. (3.6) we

can finally identify

v2
SM = f2 sin2 v

f
, g2 = −ΠW (0), (3.7)

where vSM ' 246 GeV is the SM VEV and g is the SU(2)L gauge coupling. As usual, the

corrections, with respect to the SM, will be parameterised by ξ = v2
SM/f

2.

Differently from the gauge sector, which is model independent and fixed only by the

symmetry group of the strong dynamics, the fermion sector is not uniquely determined

due to the possibility to choose different group representations for the fermionic fields. In

this work we opt for the simplest one in which the SM fermions are embedded into the

fundamental of SO(6). Another scenario, for instance, envisages the 20 representation [12].
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Figure 2. The 2-site construction in the fermion sector with the Left-Right (LR) structure based

on the SO(6)/SO(4)× SO(2) coset.

For the sake of simplicity, we consider only the third generation and focus ourself on

the top quark contributions. Indeed, all the other SM quarks provide only sub-leading

corrections to the Higgs effective potential. Needless to say, all the other fermions can be

included, if necessary, by simply extending the formalism described below.

In order to construct a SO(6)×U(1)X invariant Lagrangian, it is useful to embed the

top quark using the spurion method into a complete representation of SO(6) with X = 2/3.

More precisely, the 6 of SO(6) decomposes into the (4,1)⊕(1,2) of SO(4)×SO(2). The L-

hand top quark doublet qL has a unique embedding into the (4,1)2/3 while for the R-handed

component of the top quark tR, described by the (1,2)2/3, an extra angle θt parameterises

the ambiguity of the embedding in the 6, since the fundamental representation contains

two SU(2)L singlets. The R-handed component of the bottom quark bR is coupled to the

(1,2)−1/3 of 6−1/3 and, due to U(1)X invariance, a second embedding for qL (in another

6−1/3) is needed in order to generate the bottom mass. The embedding of the τ lepton

follows the same line of reasoning of the bottom quark with X = −1. In particular, the

L-hand (doublet) and R-handed (singlet) components are promoted to spurions

(q6L)At = qαL(Υt
L)αA, (t6R)A = tR(Υt

R)A,

(q6L)Ab = qαL(Υb
L)αA, (b6R)A = bR(Υb

R)A,

(l6L)Aτ = lαL(Υτ
L)αA, (τ6R)A = τR(Υτ

R)A, (3.8)

with α being the SU(2)L index and the spurion VEVs defined as

〈Υt
L〉 =

1√
2

(
0 0 1 i 0 0

1 −i 0 0 0 0

)
, 〈Υt

R〉 = (0, 0, 0, 0, cos θt, i sin θt) ,

〈Υb
L〉 =

1√
2

(
1 i 0 0 0 0

0 0 −1 i 0 0

)
, 〈Υb

R〉 = (0, 0, 0, 0, cos θb, i sin θb) (3.9)

and 〈Υτ
L,R〉 = 〈Υb

L,R〉 with b→ τ .

The spin-1/2 resonances of the top quark are described by 6-plets Ψ with X = 2/3. As

62/3 = (4,1)2/3 ⊕ (1,2)2/3, the former delivers two SU(2)L doublets with hypercharge 7/6

and 1/6, respectively, while the latter delivers two SU(2)L singlets with hypercharge 2/3.

After EWSB we count four top partners with electric charge Q = 2/3, one bottom partner

with Q = −1/3 and one exotic fermion with Q = 5/3. For the down type quarks and
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charged leptons, we can analogously introduce other spin-1/2 resonances with X = −1/3

and −1, respectively. The Lagrangian of the composite fermion sector is

Lfermion
C2HDM = (q̄6L)tiD/ (q6L)t + (t̄6R)iD/ (t6R) + Ψ̄I

t iD/ ΨI
t − Ψ̄I

t (MΨt)IJPRΨJ
t

− Ψ̄I
t [(Y

t
1 )IJΣ2 + (Y t

2 )IJΣ2
2]PRΨJ

t + (∆t
L)I(q̄

6
L)tU1PRΨI

t

+ (∆t
R)I(t̄

6
R)U1PLΨI

t + (t→ b, τ) + h.c. , (3.10)

where the covariant derivatives of the elementary fermions include the interactions with

the elementary gauge bosons while the covariant derivative of the resonance Ψ provides

the couplings to the spin-1 resonances introduced above. In the following, we will restrict

ourselves to a realisation with I = 1, 2 fermionic resonances. The dimensionful parameters

∆L and ∆R induce a mixing between the elementary and composite fermions and, as such,

explicitly break the SO(4) × SO(2) × U(1)X symmetry. All the parameters in the above

Lagrangian are taken to be real in order to realise a CP invariant scenario. Moreover, we

assume the LR structure of the fermionic Lagrangian discussed in [6] which allows us to

simplify the parameterisation of the spin-1/2 resonances and to reduce the number of free

couplings. This construction is sketched in figure 2. This represents the minimal choice able

to generate the SM Yukawa interactions and to guarantee the Ultra-Violet (UV) finiteness

of the CW potential. Notice that the LR assumption requires ∆2
L = ∆1

R = M21
Ψ = Y 11

1 =

Y 22
1 = Y 11

2 = Y 22
2 = Y 21

1 = Y 21
2 = 0.

Upon integrating out the heavy resonances ΨI , the effective Lagrangian takes the form

Lfermion
Composite = (q̄6L)t q/[Π̃

qt
0 (q2) + Π̃qt

1 (q2)Σ + Π̃qt
2 (q2)Σ2](q6L)t

+ t̄6R q/[Π̃
t
0(q2) + Π̃t

1(q2)Σ + Π̃t
2(q2)Σ2]t6R

+ (q̄6L)t[M̃
t
0(q2) + M̃ t

1(q2)Σ + M̃ t
2(q2)Σ2]t6R + (t→ b, τ) + h.c. , (3.11)

where the explicit expression of the form factors is given in appendix B. Due to Σ† = −Σ,

with Σ = U1Σ2U
T
1 , the hermeticity of the Lagrangian implies that the form factors Π̃qt

1

and Π̃t
1 are purely imaginary while Π̃qt,t

0 and Π̃qt,t
2 are real. The form factors M̃ t

1 and M̃ t
2

can be complex but we will restrict them to real values, as a consequence of the reality of

the strong sector parameters.

It is important to notice that the above Lagrangian has non-canonically normalised

fields, therefore, when computing a given quantity, one has to take this fact into account.

The form factors in eq. (3.11) are listed in appendix B.

The mass spectrum of the top-partners can be extracted from the poles and zeros

of the form factors of eq. (3.11). For instance, before EWSB the spectrum of the heavy

top-partner resonances is given by

• two 27/6 with masses m4, m̃4 from the poles of Π̃qt
0 ,

• two 21/6 with masses mQ, m̃Q from the zeros of Π̃qt
0 ,

• two 12/3 with masses mT , m̃T from the zeros of Π̃t
0,

• two 12/3 with masses m1, m̃1 from the poles of M̃ t
1,
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where, e.g., 27/6 denotes a SU(2)L doublet with hypercharge 7/6. The masses listed above

are functions of the fundamental parameters and, in particular, only mQ, m̃Q and mT , m̃T

get corrections from the elementary/composite mixings ∆L,R.

4 The Higgs potential

As already pointed out, the elementary sector is defined by the SM fermions and the

gauge fields that linearly couple to operators of the strong sector and explicitly break its

symmetry. As a result, the NGB symmetry becomes only approximate and the scalar

potential for the Higgs is radiatively generated together with the SM gauge boson and

fermion masses. Once the symmetries of the strong sector are fixed and the representations

of the fermion fields are chosen, the computation of the effective potential can be carried

out without a complete knowledge of all the details of the strong UV dynamics. Indeed, it

can be entirely expressed in terms of the form factors introduced in eqs. (3.5) and (3.11)

which have been obtained after the integration of the heavy resonances. The CW effective

potential, at one-loop order in perturbation theory and up to the fourth power in 1/f , is

formally written as

iV1-loop =
1

f4

∫
d4k

(2π)4

[
3

2
VG(H1, H2)− 2NcVF (H1, H2)

]
+O

(
1

f6

)
, (4.1)

where VG(H1, H2) and VF (H1, H2) show the same structure of the Higgs potential in the

renormalisable E2HDM. The normalisation of the parameters has been fixed in eq. (2.3)

and they read as

m2
i =
−i
f2

∫
d4k

(2π)4

[
3

2
(mG

i )2 − 2Nc(m
F
i )2

]
, λj =

−i
f4

∫
d4k

(2π)4

[
3

2
λGj − 2Ncλ

F
j

]
,

i = 1, . . . , 3, j = 1, . . . , 7, (4.2)

where their explicit dependence on the form factors is given below. Here we focus only on

the leading top quark and gauge contributions as well as on the CP-conserving scenario

while we allow, at the same time, for an explicit C2 breaking (differently from [12] where

the C2 symmetry is enforced). The former is realised if the parameters of the strong sector

are real and the embedding of the R-handed top is aligned in the θt = 0 direction. In this

configuration, all the form factors are real and, in particular, Π̃t,qt
1 = 0.

The contribution of the gauge bosons is given by

(mG
1 )2

f2
=

(mG
2 )2

f2
=

3ΠW + ΠB

2
,

(mG
3 )2

f2
= 0,

λG1 = λG2 = −2

3
(3ΠW + ΠB)− 1

4
(Π

2
B + 2ΠWΠB + 3Π

2
W ),

λG3 = −2ΠW −
1

4
(Π

2
B − 2ΠWΠB + 3Π

2
W ),

λG4 = −4

3
ΠB −ΠWΠB,

λG5 =
2

3
ΠB,

λG6 = λG7 = 0. (4.3)
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The relation between the form factors appearing in the previous equations and those from

eq. (3.5) is worked out in appendix B. The fermion contribution to the parameters of the

scalar potential is

(mF
1 )2

f2
= −Πqt

2 + 2Πt
2 −

(M t
2)2

k2
,

(mF
2 )2

f2
= −Πqt

2 −
(M t

1)2

k2
,

(mF
3 )2

f2
=

(M t
1M

t
2)

k2
,

λF1 =
4

3
(Πqt

2 − 2Πt
2)− (Πqt

2 )2 − 4(Πt
2)2 +

16(M t
2)2

3k2
,

λF2 =
4

3
Πqt

2 − (Πqt
2 )2 +

4(M t
1)2

3k2
,

λF3 =
2(M t

1)2

k2
,

λF4 =
1

3

[
2Πqt

2 − 2Πt
2 − 3(Πqt

2 )2
]
− 2

3k2
[(M t

1)2 − 2(M t
2)2],

λF5 =
2

3

(
Πqt

2 −Πt
2

)
− 2

3k2
[(M t

1)2 − 2(M t
2)2],

λF6 = λF7 =
5(M t

1M
t
2)

3k2
. (4.4)

The quadratic as well as quartic parameters and, therefore, the masses and couplings of

the Higgs bosons are completely predicted by the strong sector. Notice also that in our

construction λ6 = λ7 = (5/3)m2
3/f

2.

4.1 Structure of the scalar potential

In order to understand the relevance of the various terms in the potential we can organ-

ise our discussion based on the presence of accidental symmetries and on the amount of

breaking of the shift symmetry due to the elementary couplings.

Gauge contribution. From the above discussion we notice that the gauge contribution

to the Higgs potential respects the SO(2) symmetry that rotates the two scalar four-plets

and is both CP and C2 conserving for any value of the parameters. Moreover, the explicit

expressions of Π̄W,B are proportional to the ratio g2/g2
ρ and, by construction, give a positive

contribution to the mass terms of the two Higgs doublets, which are proportional to

m2
1|gauge = m2

2|gauge ∼
9g2

32π2
m2
ρ, (4.5)

and grows with the mass of the spin-1 resonances. In isolation, the gauge radiative correc-

tions are not sufficient to break the EW symmetry.

Fermionic contribution. The effect of the fermion sector on the Higgs potential is more

complicated due to the fact that the elementary-composite mixings of the L-handed dou-

blet qL and R-handed tR top break different symmetries. In order to treat the fermionic
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contribution on the same footing as the gauge one, it is convenient to introduce the di-

mensionless couplings yL,R = ∆L,R/f . The presence of a C2 breaking in the composite

sector generates a non-vanishing m2
3 and λ6,7. At the approximation we are working, these

contributions are proportional to each other. It is important to stress that the effects of

C2 breaking appear at quartic order in the couplings yL,R, as the scaling is given by

m2
3|fermion ∼

Nc

16π2
y2
Ly

2
Rf

2, (4.6)

while the contributions to the mass terms m2
1,2 start at the quadratic order. Accidentally,

we also notice that the fermionic contribution to λ3 vanishes when the composite sector

displays a C2 symmetry.

Comparison with other studies. The presence of the C2 breaking terms represents

the main difference with respect to the scenario discussed in [12] which, instead, focused

on the CP and C2 invariant configuration. Incidentally, the parities under CP and C2

of each of the operators that can be generated at one loop, and that have been classi-

fied in [12], are the same, with the only exception of one contribution proportional to

∆2
L∆2

R(Υt †
L )iα(Υt

L)αj(Υt †
R )mβ(Υt

R)βnδijεmn, where δij and εmn sum, respectively, over the

SO(4) and SO(2) indices. This operator provides the possibility to construct a CP invari-

ant model that is not C2 symmetric and to eventually realise the scenario that we have

considered in this work.

4.1.1 Parameters of the model

Before moving to the characterisation of the scalar spectrum, we stress again that the

effective potential may be, in general, UV divergent and that an explicit realisation of the

strong sector requires, at least, two heavy fermions. Among the possible structures of the

parameters controlling the strong dynamics, the LR one presented in [6] and discussed

above provides the most economical condition for a calculable potential. In contrast, the

gauge contributions do not give rise to UV singularities at one-loop level. Moreover, for

the sake of simplicity, we can also require f1 = f2 and gρ = gρX , which gives us eight free

input parameters to the Higgs sector of the C2HDM, namely,

f, Y 12
1 , Y 12

2 , ∆1
L, ∆2

R, M11
Ψ , M22

Ψ , M12
Ψ , gρ. (4.7)

Under these assumptions, all the results presented below have been obtained with pa-

rameters scanned in the ranges 600 GeV ≤ f ≤ 3000 GeV, 0 ≤ X ≤ 10f , with X =

Y 12
1 , Y 12

2 ,∆1
L,∆

2
R,M

11
Ψ ,M22

Ψ ,M12
Ψ and 2 ≤ gρ ≤ 10.

Before moving to the study of the EWSB dynamics and the characterisation of the

spectrum of the composite Higgs bosons, we show in figure 3 the parameters of the scalar

potential in the general basis as functions of f that represent the main outcome of the

constraints imposed by the strong dynamics. Of some relevance here is to establish a

contact with the results of refs. [22, 23] and [24], where the following parameter region

of the C2HDM scalar potential was investigated: λ6,7 � λ1,2,3,4,5, mimicking the one

normally exploited in investigations of E2HDMs with a softly broken Z2 symmetry, namely
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Figure 3. The mass parameters and the quartic couplings of the scalar potential as functions of

f . Notice that λ6 = λ7.

Figure 4. The relative size of the mass parameters of the scalar potential satisfying the condition

λ6,7 < 0.1 λ1,2,3,4,5.

λ6 = λ7 = 0 and m2
3 6= 0. To this end, we show in figure 4 the population of points,

extracted from those in figure 3, which satisfy the requirements λ6,7 < 0.1 λ1,2,3,4,5, plotted

over the plane (m2
3/m

2
1,m

2
3/m

2
2). As the values of the mass parameters were in refs. [22, 23]

and [24] taken within an order of magnitude of each other, over the corresponding region of

parameter space of figure 4, the same results found therein can be adopted for our C2HDM

construct as well.
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Figure 5. Correlation between tan β and f . Left: full potential. Right: potential without the

gauge contribution.

Figure 6. Left: fine-tuning ∆ × ξ as a function of the coupling gρ. Right: correlation between

tanβ and gρ.

4.2 EWSB and the significance of tan β

Differently from an E2HDM scenario in which all the Lagrangian parameters (m2
i , λj) ap-

pearing in eq. (2.3) can be taken as free,3 all the masses and couplings in the Higgs potential

of the C2HDM are predicted by the strong dynamics. Therefore, achieving EWSB suc-

cessfully in the C2HDM is not straightforward and a given amount of tuning is always

necessary. Moreover, the potential of a CP-conserving 2HDM can allow, in general, two

separate minima [25] and one has to make sure that the EW one corresponds to a stable

configuration. In our analysis we have explicitly checked that, if this particular configura-

tion is realised, the EW vacuum always corresponds to the global minimum. In addition,

we have further demanded to reconstruct the observed Higgs and top masses in the intervals

(120, 130) GeV and (165, 175) GeV, respectively. As a result of these constraints and of the

implications of the strong dynamics, the distributions of the allowed points imply strong

correlations among the physical observables that will be investigated in the following.

The existence of a non-trivial vacuum is secured by a careful solution of the two tadpole

equations which provide values for the VEV and tan β. While vSM is fixed to 246 GeV,

tanβ could potentially be unconstrained if it were not for the requirements on mh and

mt, which select tan β ∼ O(1 − 10) among all its possible values. The surviving range of

tanβ, mapped against f , after imposing the two aforementioned constraints is illustrated

in figure 5 (left), from where it is clear that tan β never exceeds ∼ 10.

3Unless an additional overarching symmetry is imposed, e.g., Supersymmetry: see ref. [17] for a com-

parison between Supersymmetry and Compositeness realisations embedding 2HDMs.
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Before moving to the characterisation of the scalar spectrum we comment on the

significance of tan β for 2HDMs, both elementary and composite. In general, tan β is not

a physical parameter of the 2HDM since it is not basis-independent [26, 27]. This is, for

instance, the case of an E2HDM in which the Z2 transformation properties of the two

Higgs doublets are not specified. By imposing specific discrete symmetries, one selects

a particular basis (the one in which such symmetries are manifest) where tan β can be

uniquely identified, thus promoting it to a physical observable. Notable examples are the

type-I and type-II E2HDMs [13]. The composite scenario described in this work does not

have a C2 invariance in the strong sector and thus cannot be related to any of the well know

Z2 realisations of the E2HDM. Nevertheless, the requirement of CP conservation (θt = 0) in

the mixing between the composite states and the elementary R-handed quark automatically

selects the C2 invariant embedding of the latter. This choice eventually picks up a special

basis, thus a special tan β among all possible basis-dependent definitions. Interestingly,

this is not the case for the E2HDM in which the absence of a Z2 symmetry prevents the

identification of a particular tan β. As a final remark, then, it is worth noticing that one

should pay attention in comparing C2HDMs vs E2HDMs for fixed values of tan β as the

procedure is not meaningful unless the realisation of the 2HDMs is the same. Indeed, even

though the two definitions of tan β may be both physical in the two models, if they belong

to different bases, the observables they describe are not the same.

4.3 The tuning of the Higgs potential

Another important message learnt from figure 5 (left) is that the density of points becomes

smaller at large f , as naively expected from fine-tuning arguments. Indeed, when f is far

from vSM, severe cancellations among the parameters of the strong sector are necessary to

satisfy the tadpole conditions. In general, a single tuning of the order 1/ξ = f2/v2
SM is

not sufficient to depart from the natural solution of the tadpole equations, vSM ∼ f , and

other cancellations, which depend on the fermionic and gauge embeddings in the global

symmetry group, must also be advocated. In order to understand what are the most

natural regions of the model, we compute the tuning ∆ associated with the EW scale using

the measure [28]

∆ = max
i

∣∣∣∣∂ logmZ

∂ log xi

∣∣∣∣ , (4.8)

where the xi’s span the parameters of the strong sector, i.e., those in eq. (4.7). As stated

above, ∆ ∼ ξ−1 represents only the minimal and unavoidable tuning necessary to trigger

EWSB and bounds from below the distribution of points. Indeed, for a given ξ, the actual

tuning may vary over different orders of magnitude. This situation, which is also manifest

in SO(5)/SO(4) CHMs with fermions in the fundamental representations, is dubbed double

tuning and has been extensively discussed in [29], where the role of the fermion sector

has been emphasised. It has been shown that the parametrically leading quadratic con-

tributions y2
L,R, with yL,R = ∆L,R/f , in the mass terms cannot be made arbitrarily small

without reducing at the same time the quartic couplings. This makes the potential not

tunable at the order O(y2
L,R). The presence of higher order corrections is therefore crucial

and one is obliged to firstly demand the leading y2
L,R contributions to be of the same order
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of the subleading y4
L,R ones before invoking the second cancellation which finally generates

the order ξ hierarchy between the EW vacuum and the scale of compositeness.

Here we focus, instead, on the impact of the gauge sector which is most of the time

overlooked and neglected with respect to the top quark one due to the smallness of the weak

gauge couplings. This is not always the case as one can naively see from figure 5 (right),

where we have considered the limiting case when g, g′ → 0, i.e., the unphysical regime

where there is no gauge contribution. The distribution of tan β is clearly very different

and limited to much more small values with respect to that of figure 5 (left), where all the

gauge and fermionic contributions are correctly taken into account.

In figure 6 (left), we notice that the minimum amount of tuning increases in the region

where the coupling gρ (and, thus, the mass of the spin-1 resonances) becomes large. Indeed,

a rather model independent gauge contribution to m2
1,2 is proportional to (9/32π2)g2m2

ρ,

which is C2 symmetric and tends to prevent the breaking of the EW symmetry. As such,

a larger cancellation between the fermionic and gauge contributions must be advocated.

As the gauge contributions become large, the fermionic ones are forced to increase as well

and, being intrinsically C2 breaking, drive the model into a region of the parameter space

which deviates substantially from the inert case. This expectation finds confirmation in

figure 6 (right), where we show a correlation between large values of gρ and sizeable values

of tanβ (we remind the reader that the inert case implies tan β = 0).

5 Higgs boson masses and couplings

We start here by recalling that the physical Higgs states of the C2HDM are the same as

those of the renormalisable E2HDM, namely, the two CP-even scalars h and H (in the

C2HDM, h is always the SM-like Higgs with mass around 125 GeV), the pseudoscalar A

and the charged Higgs H±. These are easily identified in the Higgs basis (see appendix C)

in which only one of the two doublets provides a VEV and it is obtained from eq. (2.3)

after a rotation by an angle β. The correspondence between parameters in the Higgs and

general basis is worked out, for instance, in [26]. The mass matrix for the CP-even states is

M2 =

(
M2

11 M2
12

M2
12 M2

22

)
with



M2
11 = −2M2

11

M2
12 = 2

v

vSM
M2

12

M2
22 =

v2

v2
SM

[
M2

22 +
v2

2
(Λ3 + Λ4 + Λ5)

] , (5.1)

where the prefactor v/vSM arises from the canonical normalisation of the kinetic terms and

the parameters M2
ij and Λi which are given in appendix C. The diagonalisation of the mass

matrix provides the masses of the physical CP-even Higgses

m2
h = c2

θM2
11 + s2

θM2
22 + s2θM2

12 ,

m2
H = s2

θM2
11 + c2

θM2
22 − s2θM2

12 ,

tan 2θ = 2
M2

12

M2
11 −M2

22

. (5.2)
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Interestingly, the minimum conditions in the Higgs basis are

M2
11 = −1

2
Λ1 v

2 , M2
12 =

1

2
Λ6 v

2, (5.3)

which involve only M2
11 and M2

12 while the value of M2
22 is unconstrained. Therefore,

while M11 and M12 are tuned to vSM (or, equivalently, M11 and M12), thus providing a

physical Higgs state with mh ' M11 much lighter than the scale of compositeness and a

small mixing angle θ between the two CP-even scalars, the mass of the heavy Higgses is

naturally of order mH ' M22 ' f , modulo corrections induced by the mixing θ. For the

latter we have

tan 2θ = 2
M2

12

M2
11 −M2

22

' −2
M2

12

M2
22

' −2Λ6ξ . (5.4)

The dependence of θ from f is depicted in figure 8. Further details on the behaviour of the

masses and mixing angle are discussed in the following sections.

The masses of the CP-odd and charged Higgs states are, instead, given by

m2
A = M2

22 +
v2

2
(Λ3 + Λ4 − Λ5) ,

m2
H± = M2

22 +
v2

2
(Λ3 − Λ4) , (5.5)

and, as mH , are naturally of order f .

We now present explicitly in analytical form the couplings of all Higgs states of the

C2HDM to both fermions and gauge bosons of the the SM as well those among themselves

which are relevant for LHC phenomenology. We shall do so in three separate sub-sections.

5.1 Couplings to fermions

Assuming flavour alignment in order to guarantee the absence of FCNCs at tree level, the

leading couplings of the scalars to the fermions are extracted from eq. (3.11) at first order

in ξ and can be described by the Yukawa Lagrangian

−LYukawa =
∑

f=u,d,l

mf

vSM
f̄
[
ξfh h+ ξfH H − 2iIfξ

f
AAγ

5
]
f

+

√
2

vSM

[
Vud ū

(
−ξuAmuPL + ξdAmdPR

)
dH+ + ξlAml ν̄PRl H

+
]

+ h.c., (5.6)

where If = 1/2(−1/2) for f = u (d, l) and the ξf coefficients are

ξfh = (1 + chf ξ) cos θ + (ζf + cHf ξ) sin θ , ξfH = −(1 + chf ξ) sin θ + (ζf + cHf ξ) cos θ ,

ξfA = ζf + ξ

[
−tanβ

2

1 + ζ̄2
t

(1 + ζ̄f tanβ)2

]
, (5.7)

with

chf = −1

2

3 + ζ̄f tanβ

1 + ζ̄f tanβ
, cHf =

1

2

ζ̄f (1 + tan2 β)

(1 + ζ̄f tanβ)2
,

ζf =
ζ̄f − tanβ

1 + ζ̄f tanβ
, ζ̄f = −Y

f
1

Y f
2

. (5.8)
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As mentioned, the parameter θ denotes the mixing between the two CP-even states while

ζf represents the normalised coupling to the fermion f of the CP-even scalar that does not

acquire a VEV in the Higgs basis. Since θ is predicted to be small [12, 17], ζf controls

the interactions of the Higgs states H,A,H± at the zeroth order in ξ. At that order, the

structure of the Yukawa Lagrangian is the same as the E2HDM one in which the alignment

in the flavour sector has been enforced. The crucial difference is that in the E2HDM ζf is a

free parameter while in the C2HDM is fixed by the strong dynamics and correlated to other

physical observables. Some of these correlations will be explored in the following sections.

The mass of fermions are also predicted quantities in CHMs. In particular, exploiting

the explicit expressions of the form factors in eq. (3.11) (and listed in appendix B), we read

the top mass

mt =
vSM√

2

∆L∆R

mQmT

M2
Ψ

m̃Qm̃T

Y1sβ + Y2cβ
f

[
1 +O

(
∆2

M2
Ψ

ξ

)]
≡ yt√

2
vSM (5.9)

where mQ,T and m̃Q,T are the physical masses of the top partners coupled to qL and

tR, respectively, and, for simplicity, we dropped the superscript t from the parameters of

eq. (3.10). When the mixing parameters are such that ∆ ∼MΨ the subleading corrections

can be numerically relevant at small f . The expression of the bottom mass is totally

analogue and better approximated even at smaller f .

5.2 Couplings to gauge bosons

The trilinear interaction vertices between the physical Higgses and the SM gauge bosons

can easily be extracted from the kinetic Lagrangian of the pNGB matrix in eq. (3.2) up to

the order ξ. As typical in CHMs, due to the non-linearities of the derivative interactions,

the kinetic terms of the NGBs must be rescaled in order to be canonical. This introduces

corrections of order ξ in the gauge couplings. The relevant interaction terms and corre-

sponding coefficients have been computed in [23] and are listed in table 1 as functions of the

mixing angle θ. In particular, the couplings of the SM-like Higgs to the EW gauge bosons,

hV V with V = W,Z, get modified by the usual mixing angle θ, as in every realisation

of E2HDMs, but also by corrections of order ξ. A convenient way to parameterise these

couplings is to recast them in terms of the so called κi ‘modifiers’ of ref. [30] which are the

couplings of the SM-like Higgs boson normalised to the corresponding SM prediction

κV =

(
1− ξ

2

)
cos θ, (5.10)

where θ → 0 with f → ∞ corresponds to the alignment limit, i.e., the couplings of h to

SM particles become the same as those of the SM-like Higgs at tree level.

5.3 Higgs boson self-couplings

The scalar trilinear couplings are extracted from the cubic part of the potential, V3 =∑
i,j,k λφiφjφkφiφjφk. Here we only show the most relevant ones to the phenomenological
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vertex coupling vertex coupling

hW+
µ W

−µ gmW (1− ξ/2) cos θ HW+
µ W

−µ −gmW (1− ξ/2) sin θ

hZµZ
µ gZ mZ/2 (1− ξ/2) cos θ HZµZ

µ −gZ mZ/2 (1− ξ/2) sin θ

H±∂µhW
∓µ ∓ig/2 (1− 5ξ/6) sin θ H±∂µHW

∓µ ∓ig/2 (1− 5ξ/6) cos θ

h∂µH
±W∓µ ±ig/2 (1− ξ/6) sin θ H∂µH

±W∓µ ±ig/2 (1− ξ/6) cos θ

A∂µhZ
µ −gZ/2 (1− 5ξ/6) sin θ A∂µHZ

µ −gZ/2 (1− 5ξ/6) cos θ

h∂µAZ
µ gZ/2 (1− ξ/6) sin θ H∂µAZ

µ gZ/2 (1− ξ/6) cos θ

H+
↔
∂ µH

−Zµ −igZ/2 cos(2θW ) H+
↔
∂ µH

−Aµ −ie

H±
↔
∂ µAW

∓µ g/2

Table 1. Trilinear couplings between (pseudo)scalars and SM gauge bosons.

studies that will be carried out below, i.e.,

λhH+H− = vSM

[
(cθΛ3 + sθΛ7) +

ξ

6
(cθΛ3 + 2sθΛ7)

]
,

λHAA =
vSM

2

[
(cθΛ7 − sθ(Λ3 + Λ4 − Λ5)) +

ξ

6
(2cθΛ7 − sθ(Λ3 + Λ4 − Λ5))

]
,

λHH+H− = vSM

[
(cθΛ7 − sθΛ3) +

ξ

6
(2cθΛ7 − sθΛ3)

]
,

λHhh =
vSM

2

[ (
−s3

θΛ345 + 3s2
θcθ(Λ7 − 2Λ6) + sθc

2
θ(2Λ345 − 3Λ1) + 3c3

θΛ6

)
+
ξ

2

(
−s3

θΛ345 + 4s2
θcθ(Λ7 − Λ6) + sθc

2
θ(2Λ345 − Λ1) + 2c3

θΛ6

)]
, (5.11)

where the quartic couplings Λi are defined in the Higgs basis and explicitly given in ap-

pendix C and Λ345 = Λ3 + Λ4 + Λ5. Finally, due to θ ∼ ξ (see eq. (5.4)), the terms ∝ snθ
for n > 1 in eq. (5.11) can safely be omitted at the order O(ξ). We note that other terms

at the first order in ξ arise from the non-linearities of the derivative terms of the NGB

Lagrangian. For the sake of simplicity, these are not shown here but correctly taken into

account in all our numerical computations.

6 Phenomenology of the C2HDM Higgs bosons

We here list the expression for the scalar masses and mixing angle once the parameters are

fixed to reproduce the correct EW VEV. In particular, we have the following prediction

for the mass of the Higgs states and the rotation angle θ from the Higgs basis to the mass

basis

m2
h

v2
=

1

(1 + t2β)2

(
λ1 + t4βλ2 + 2t2βλ345 + 4λ6(1 + t2β)tβ

)
+O(ξ), (6.1)

m2
H = m2

3

1 + t2β
tβ

+ v2
t2β

(1 + t2β)2

(
λ1 + λ2 − 2λ345 −

1

2
λ6

(1 + t2β)3

t3β

)
+O(ξ), (6.2)
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Figure 7. Distribution of the masses of the lightest top-partners. (Left) Zoomed region of a

selected mass window for the heavy CP-even Higgs boson. The red shaded region represents the

analytic formula for mH at O(ξ). (Right): the blue points are subject to the constraint tan β < 0.1

and the red line is the theoretical expectation for the Higgs mass in the minimal CHM.

m2
A = m2

3

1 + t2β
tβ

− v2

2

(
2λ5 + λ6

(1 + t2β)

tβ

)
, (6.3)

m2
H± = m2

3

1 + t2β
tβ

− v2

2

(
λ4 + λ5 + λ6

(1 + t2β)

tβ

)
, (6.4)

θ = −
m2
h

tβm
2
H

+
λ6v

2

m2
H

3 + t2β
1 + t2β

+
λ1v

2

tβ(1 + t2β)m2
H

+
λ345v

2tβ
(1 + t2β)m2

H

+O(ξ2). (6.5)

By numerical evaluation we can show that indeed the O(ξ) corrections are negligible in

the determination of the mass of the heavy Higgses. In the remainder of this section we

are going to discuss in more detail the phenomenological impact of the above formulas

trying also to correlate (when possible) the Higgs properties with the parameters of the

composite sector.

6.1 The mass of the heavy Higgs bosons

Up to corrections of order ξ, the mass of the heavy Higgs bosons is mainly set by the m2
3

parameter, which is associated to the explicit breaking of C2. In order to correlate mH ,

or equivalently mA and mH± , to the fermionic resonances of the composite sector, we can

inspect the form factors from which m2
3 originates. Given the expression of m2

3 in eq. (4.4)

and exploiting the poles and the zeros of the form factors listed in appendix B, in particular

of the product M t
1M

t
2 in eq. (B.14), we can write (after requiring the top mass in eq. (5.9))

the following expression for m2
3

m2
3 =

Nc y
2
t

8π2

ζ̄t(1 + t2β)

(tβ ζ̄t + 1)2

∫
dk2

m2
Qm̃

2
Qm

2
T m̃

2
T

(k2 −m2
Q)(k2 − m̃2

Q)(k2 −m2
T )(k2 − m̃2

T )
F (k2; {m}), (6.6)

where the masses mQ, m̃Q,mT , m̃T refer to the top-partners in the 21/6 and 12/3 represen-

tations while F (k2; {m}) is a ratio of quartic polynomials in k and functions of the masses

m4, m̃4,m1, m̃1 introduced at the end of section 3. Due to the large degeneracy between m4

and m1 and between m̃4 and m̃1, F (k2; {m}) can be well approximated by F (k2; {m}) ' 1
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Figure 8. Here, we show sin θ (left) and kV (right) as a function of f . The green(gray) points (do

not) satisfy the constraints from current indirect and direct Higgs searches.

for any value of k. As such, the dependence of m2
3 on the top-partner masses can be

recasted in a simple analytic expression obtained from the integral in eq. (6.6) and only

through mQ, m̃Q,mT , m̃T . Such a dependence further simplifies when a given hierarchy is

established among the fermion masses. In that case, we expect m2
3 to be approximated by

m2
3 ≈

Nc y
2
t

8π2

ζ̄t(1 + t2β)

(1 + tβ ζ̄t)2

m2
l1
m2
l2

(m2
l1
−m2

l2
)

log

(
m2
l1

m2
l2

)
, (6.7)

where ml1,2 are the masses of the lightest and next-to-lightest top-partners, respectively,

among mQ, m̃Q, mT , m̃T . Notice that between the two lightest states there is always a

fermion in the 21/6 and one in the 12/3. A comparison with the numerical computations

is done in the left panel of figure 7. By requiring the next-to-lightest top partners to be

much lighter than ml3 we recover the expected behaviour, while the estimate in eq. (6.7) is

violated as soon as the condition ml2 � ml3 is not satisfied, as the full dependence on the

four top-partner masses becomes important in the determination of m2
3. Notice also that we

recover the generic result that the terms proportional to quartic powers of the elementary

composite mixings are UV finite and calculable even with just two top-partners.

Finally, in order to make a comparison with previous studies, we plot in figure 7

(right) the correlation between the two lightest states in the spectrum of the top-partners,

respectively, in the 21/6 and 12/3 representations and we contrast it with the prediction of

minimal CHMs based on the coset SO(5)/SO(4). In this case, the correlation is usually

constrained by the mass of the SM-like Higgs as the aforementioned top-partners domi-

nantly contribute to mh (shown with a red line). In the present scenario, however, the

presence of a non-vanishing tan β allows for a larger region of parameter space.

6.2 Scalar mixing and mass splittings

We now proceed to show some phenomenological results of relevance to Higgs physics at

the LHC, concerning both precision measurements of the SM-like Higgs boson and masses,

coupling plus decay properties of its C2HDM companions. However, in order to do so, we

first ought to extract the viable regions of C2HDM parameter space following the latest

experimental constraints.
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Figure 9. (Left) The CP-odd scalar mass mA as a function of f for three values of tan β. (Right)

Mass splittings mH −mA (blue) and mH+ −mA (black) versus mA.

The points generated from the scan are tested against void experimental searches for

extra Higgs bosons, through HiggsBounds [31], and signal strength measurements of the

discovered Higgs state, via HiggsSignals [32]. Acceptable regions of the C2HDM parameter

space are determined according to the exclusion limits computed at 95% Confidence Level

(CL) and then further sifted if the corresponding χ2 lied within 2σ from the best fit point.

The aforementioned tools have been fed with the normalised (with respect to the SM

values) Higgs couplings to SM fermions and bosons and with the neutral and charged Higgs

Branching Ratios (BRs) without SM equivalents. The Higgs production and decay rates

are computed including O(ξ) corrections with the Feynman rules listed in section 5. For

the Higgs couplings and masses, as well as for the top quark mass, we used the numerical

values predicted, for each data point, by the strong dynamics. For the sake of definiteness,

we assumed that the C2 symmetry is broken with the same strength in all the three sectors

of the third generation, namely, the top, the bottom and the τ lepton. This simplified

assumption implies ζ̄b = ζ̄τ = ζ̄t or, equivalently, ζb = ζτ = ζt. Even though this particular

choice may have an impact on the couplings of the heavy scalars to SM fermions, the

predictions for the parameters of the Higgs potential remain unaffected since they are

sensitive only to the top sector and thus to ζt. Besides the extra scalars discussed above,

the spectrum of the model is characterised by vector and fermion resonances. Their impact

has been taken into account in the computation of the gauge and fermionic form factors

that define the scalar potential. Direct searches in di-boson final states, see for instance [33],

effectively constrain the masses and couplings of the vector resonances of composite Higgs

models. Our scenario can be mapped, for what concerns the heavy spin-1 states, into

the model of the SU(2) vector triplet considered in [33]. We will take into account the

corresponding exclusion bound at 2σ level which was obtained by assuming a branching

ratio into SM gauge bosons of ∼ 50% and the narrow width approximation. As such, these

bounds are more than conservative since, as shown in [34, 35], the decay modes into SM

gauge bosons can be suppressed and the total width substantially enlarged as soon as the

heavy fermion decay channels open. In the sector of the heavy fermion resonances, we

will require for the lightest state, which usually corresponds to the exotic resonance X5/3,

MX5/3
& 1 TeV in order to comply with the exclusion bound at 2σ level extracted in [36]
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under the assumption BR(X5/3 → Wt) = 1. Nevertheless, we expect that this constraint

will be relaxed in our model compared to the minimal scenario examined in [36] as the

presence of an extra Higgs doublet also allows for the decay mode X5/3 → H+t.

Hereafter, all the results discussed in the text and figures are taken to satisfy the

constraints from direct and indirect searches described above.

The first consequence of these bounds is on the Higgs couplings. In particular we can

constrain the mixing angle θ as depicted in the left panel of figure 8 in which we show

its dependence on the compositeness scale, in agreement with the expectation that θ ∼ ξ

for large f , see eq. (5.4). The green points are all those satisfying the bounds discussed

above while the gray ones represent those failing these. For smaller f , the mixing angle

can vary in principle over a wide range of values but is at present bounded by Higgs

coupling measurements to be | sin θ| . 0.15. (We also notice that, in the C2HDM, sin θ

is predicted to be predominantly of positive sign.) The shape makes clear that the more

aligned with the SM-like Higgs predictions the LHC measurements are, the larger f ought

to be. Indeed, for f & 1 TeV, all the sin θ predicted values do pass the indirect and direct

constraints. Conversely, if significant deviations from sin θ = 0 are eventually established,

this implies that f might well be at the sub-TeV scale, in turn hinting at the existence of

other C2HDM states in the LHC regime. The plot on the right of figure 8 shows, instead,

the Higgs coupling modifier kV introduced in eq. (5.10). With respect to the E2HDM, κV
in the C2HDM approaches the alignment limit more slowly, as evident from the negative

O(ξ) corrections, as seen in eq. (5.10) and exemplified by the upper edge of the distribution

presented. However, sin θ also feeds into this distribution, so that its spread seen on the

left-hand side of figure 8 is responsible for the departures from the (1− ξ/2) behaviour on

the right-hand side. We finally note that values of κV & 0.9 are currently compatible with

LHC data at 1σ level [37], hence allowing for several C2HDM solutions at small f . Finally,

concerning the ability to distinguish between the C2HDM hypothesis and the E2HDM one,

as stressed in [23], once equipped with a measurement of κV , one can look for differences

in the correlation of possible deviations in κE and κD, where E and D represent a charged

lepton (e.g., a τ) and a down-type quark (e.g., a b), respectively.

The size of the mass of the CP-odd scalar is shown in figure 9(a) for three specific values

of tanβ and, as expected, grows linearly in f . Indeed, as shown in eq. (6.3), the mass of

the pseudoscalar, as well as that of H± and H, is controlled by m3 which is not constrained

to the EW scale by the minimisation conditions of the potential. From the same equation

it is also possible to extract the dependence of the mass on tan β. In particular, as m2
3

grows linearly in tan β, one finds m2
A ∝ f2(1 + tan2 β). The splitting between the heavy

CP-even state and the CP-odd scalar (or, equivalently, the charged Higgs) is shown in

figure 9(b). The mass difference mH −mA spans from −20 GeV to 60 GeV while a quite

definite prediction exists for the splitting between A and H±, indeed of high degeneracy,

since m2
H± − m2

A = (λ5 − λ4)v2/2 is mainly controlled by the gauge contribution and

scales like g′2/(16π2)g2
ρ. Hence, the ability to establish A → Z∗H or H → Z∗A signals,

respectively, at the LHC will be a strong hint towards a C2HDM dynamics for EWSB,

especially if accompanied by the absence of A → W±∗H∓ and H± → W±∗A decays.

Clearly, also H → W±∗H∓ or H± → W±∗H decays would simultaneously be possible in

the C2HDM.
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However, similar decay patterns may also emerge in the E2HDM.4 Notwithstanding

this, though, an intriguing situation [23] could occur when, e.g., in the presence of an

established deviation (of, say, a few percents) from the SM prediction for the hV V (V =

W±, Z) coupling, the E2HDM would require the mixing between the h and H states to be

non-zero whereas in the C2HDM compliance with such a measurement could be achieved

also for the zero mixing case. Hence, in this situation, the H → W+W− and ZZ decays

would be forbidden in the composite case, while still being allowed in the elementary

one. (Similarly, Higgs-strahlung and vector-boson-fusion would be nullified in the C2DHM

scenario, unlike in the E2HDM, while potentially large differences would also appear in

the case of gluon-gluon fusion and associated production with bb̄ pairs.) Clearly, also

intermediate situations can be realised. Therefore, a close scrutiny of the aforementioned

signatures of a heavy CP-even Higgs boson, H, would be a key to assess the viability

of either model. Regarding the CP-odd Higgs state, A, in the case of non-zero(zero)

mixing in the E2HDM(C2HDM), again, it is the absence of a decay, i.e., A → Z∗h, in

the C2HDM that would distinguish it from the E2HDM. In the case of the H± state,

a similar role is played by the H± → W±∗h decay. Obviously, for both these states

too, intermediate situations are again possible,5 so that one is eventually forced to also

investigate the fermionic decays of heavy Higgs states, chiefly, those into top quarks. (We

will dwell further on all this in an upcoming section.)

6.2.1 Comments on the exact C2 symmetry scenario

An interesting limit of our model is ζ̄t = 0 (Y1 = 0) which corresponds to a restored C2

symmetry. This scenario realises a composite version of the inert 2HDM. The presence of

a C2 symmetry is consistent with the fact that only one Higgs doublet develops a VEV.

By performing a numerical computation of the Higgs potential in the C2 symmetric case

we verified that m2
2 gives the mass of the physical components of the second Higgs doublet.

We also checked the absence of solutions providing the spontaneous breaking of C2. The

predicted value of the mass of the heavy CP-even Higgs is shown in figure 10 where we

include all the points generated by the scan without implementing direct and indirect

experimental constraints.

In the case where C2 is also preserved by lighter quarks and leptons, the neutral

component of the second Higgs doublet can be a Dark Matter (DM) candidate. For this

to happen and also to avoid strong constraints, at least one neutral component should be

lighter than H± (this is always the case in the parameter space explored). The possibility

to have DM as the neutral component of an inert Higgs doublet has been thoroughly

discussed in the literature, see for instance [38]. In this context we notice that reproducing

the DM relic density ΩDM requires a specific value of the couplings λhHH,hAA for any

mass point. The same couplings are also important for direct detection which occurs via

tree level Higgs-exchange and loops of W±’s. The tree level contribution is a direct test

4Albeit not in its Supersymmetric incarnation [17].
5As far as A and H± production modes which are accessible at the LHC, i.e., gluon-gluon fusion and

associate production with bb̄ pairs (for the A) and associated production with bt̄ pairs (for the H+), are

concerned though, practically no difference appears between the two scenarios [23].

– 27 –



J
H
E
P
1
2
(
2
0
1
8
)
0
5
1

Figure 10. (a) Correlation between mH and f and (b) mass splittings in the case of an exact C2

symmetric scenario.

Figure 11. Correlation between the coupling λ345 and the mass of the inert doublet mH in the

C2 symmetric potential.

of the quartic coupling λ345, which then receives an upper bound from direct detection

experiments, λ345 . 1 for mH,A & 200 GeV [38]. As we can see from the size of the

coupling λ345 presented in figure 11, the model could allow for a DM candidate, providing

the observed value of the relic abundance, while complying with direct detection bounds,

for mH,A & 800 GeV [38].

6.3 Flavour constraints

In this model, even though we assume a flavour symmetric composite sector, we find

modifications to rare flavour transitions in the SM from the exchange of pNGBs. As already

stressed previously, in CHMs, there are several effects in flavour physics, depending on

which composite resonance is integrated out at low energy. In the literature large attention

has been given to vector mediators, while in this section we would only consider effects

originating from the scalar sector since this is strongly correlated to the phenomenology

discussed in this work.

Under the assumption of a flavour symmetric composite sector, the heavy Higgs bosons

can only mediate tree level effects in charged current processes and loop effects in the

neutral ones. Since, by virtue of the flavour symmetries, the SM-like Higgs and the heavy

companions have interactions with the fermions aligned in flavour space, all the flavour

constraints are due to a rescaling of the corresponding SM rates. Therefore, the bounds
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arise because of the relative precision of the SM observables, which roughly ranges from 1 to

10% accuracy. We review in turn the most stringent ones for our construction. The relevant

interactions have been detailed in eq. (5.6) and involve, in particular, the couplings of the

charged Higgs with SM quarks and leptons which are proportional to the ξfA parameter

given in eq. (5.7).

• Meson decay M → `ν. The charged Higgs H± can mediate charged current processes

aligned in flavour space alongside the W± mediated decay of pseudoscalar mesons.

The expectation value of the scalar operator ūd, between the vacuum and the M

(mesonic) state, can be related to that of the divergence of the axial current ūγµγ5d.

By means of this relation, one can then write the relative variation of the BR of the

meson to leptons simply as

δBR(M → `ν)

BR(M → `ν)
≈ 2

muξ
u
A −mdξ

d
A

mu +md
ξlA

m2
M

m2
H+

. (6.8)

For example, in the case of the B meson decay B → τν, the deviation is proportional

to ξdAξ
l
Am

2
B/m

2
H+ . This shows that tree level charged current processes are sensitive

(mainly) to composite parameters that enter the expressions for ξd,lA and f , since mH+

is linear in f . Notice, however, that the ξd,lA ’s are not directly related to the Higgs

potential, since they originate from the down sector which contributes negligibly to v

and mh, so they can be taken small enough to reduce effects in the charged currents.

Furthermore, under the assumption of a flavour symmetric sector, D → τν is sensitive

to ξuA and therefore to the parameters of the Higgs potential but still suppressed by

the small ratio m2
D/m

2
H+ .

• Transition b → sγ. Among the best measured quantities are B → Xsγ transitions.

Differently from tree level ∆F = 1 transitions, here, the relevant couplings are the

ones of H± to the top, given that the main contributions arise from the Wilson

coefficients C7,8 in the weak Hamiltonian which are generated by box diagrams with

two H±’s. From loops of heavy (pseudo)scalars we get

Ci =
(ξtA)2

3
G1
i

(
m2
t

m2
H+

)
+ ξtAξ

b
AG

2
i

(
m2
t

m2
H+

)
(6.9)

with

G1
7(x) =

y(7− 5y − 8y2)

24(y − 1)3
+
y2(3y − 2)

4(y − 1)4
log x,

G2
7(x) =

y(3− 5y)

12(y − 1)2
+
y(3y − 2)

6(y − 1)3
log x ,

G1
8(x) =

y(2 + 5y − y2)

8(y − 1)3
− 3y2

4(y − 1)4
log x,

G2
8(x) =

y(3− y)

4(y − 1)2
− y

2(y − 1)3
log x . (6.10)
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Figure 12. Correlation between the mass of the charged Higgs mH+ and its coupling to the top

quark, ξtH+ = ξtA. Green points are allowed by current direct and indirect searches at the LHC.

Red and purple shaded regions are excluded at 2σ level by measurements of the B → Xsγ rate

under the assumption ζb = ζt and of Bs → µ+µ− transitions, respectively.

• Transition Bs → µ+µ−. In the SM the leading contributions arise from Z penguin

diagrams contributing to the Wilson coefficient C10. In this model we predict at the

scale of the resonances that

C10 = (ξtA)2m
2
t

8

[
1

m2
H+ −m2

t

+
m2
H+

(m2
H+ −m2

t )
log

m2
t

m2
H+

]
. (6.11)

We finally depict in figure 12 the impact of the flavour bounds discussed above on the

parameter space of the C2HDM. The constraints at 2σ level have been extracted from [39,

40] and shown by the red and purple shaded regions. The constraint from the measurement

of theM → lν meson decay is usually important only for small charged Higgs masses and/or

large couplings and, as such, does not affect the range of parameters discussed here even

though ζτ is taken as large as ζt. The bound from the B → Xsγ transition depends on

the interplay between the top and the bottom contributions and on the relative size of

the ξtA and ξbA couplings. In the scenario discussed here, in which C2 is broken equally

in the top and bottom quark sectors (ξtA = ξbA), the corresponding constraint is shown

in figure 12 by the red shaded excluded region. Needless to say, in different scenarios

realising ζb < ζt, the bound from the b → sγ transition can be greatly relaxed so that all

the points survive the constraint. For example, the same exclusion bound computed for

ζb < 0.1ζt lies well below the distribution of points (the latter does not sensibly change if the

constraints from HiggsBounds and HiggsSignals are enforced for ζb = 0.1ζt). The bound

from the measurement of the Bs → µ+µ− transition is, instead, more robust as it only

depends on ξtA and not on the particular realisation of C2 breaking in the bottom quark

sector. Moreover, the corresponding excluded region does not overlap with the distribution

of points.

6.4 Phenomenology of the heavy scalars

The LHC phenomenology of the second Higgs doublet is determined by the couplings to

fermions given in eq. (5.6) and by the trilinear couplings in eq. (5.11) setting the decay to
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Figure 13. Correlation between ζt and λHhh (left) and between sin θ and λHhh (right).

Figure 14. (Left) The BRs of the H state in the tt̄ (blue), hh (orange) and W+W− (green)

channels. (Right) The BRs of H into W−∗H+ (blue) and Z∗A (orange). For readability, we

refrain from presenting here BR(H → ZZ): in virtue of eq. (6.13) this is about half that of

BR(H →W+W−).

di-Higgs final states. As repeatedly stressed, a key feature of the C2HDM is the strong

correlation between the former and the latter, since they are both generated by the breaking

of the NGB shift symmetry. This correlation is exemplified in figure 13 where we show the

parameters ζt, controlling the couplings of the heavy scalars to the top quark, λHhh, which

is responsible for the decay channel H → hh, and sin θ, the sine of the mixing angle of the

CP-even scalars which sets the size of the H decay into the SM gauge bosons. From our

numerical studies, as already mentioned, we have verified that we are always in the region

where mH > mh, therefore we focus on the following three scenarios, each addressing a

distinctive C2HDM phenomenology for the three heavy physical states of its spectrum, i.e.,

H,A and H±, respectively.

• Scalar H. Our numerical analysis allows us to fully compute the relevant observ-

ables for the H state and, amongst these, it is instructive to study first the inter-

play between SM-like decays to di-boson final states and those with third generation

fermions. While it is true that H couplings to fermions have several contributions

(see eq. (5.7)), for f � vSM, the leading contribution to the H → tt̄ decay rate is

given by ζt, with

Γ(H → tt̄) ≈ 3y2
t

16π
|ζt|2mH , (6.12)
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which represents the main decay mode above the tt̄ threshold. The other important

decay channel is H → hh that, when the tt̄ mode is kinematically closed, can reach

a BR of 80%, with the remaining decay space saturated by H → ZZ,W+W−. The

corresponding BRs are shown in figure 14 (left). In the H → hh case, there are

potentially many contributions due to quartic couplings in the scalar potential and

higher dimensional operators from the strong sector Lagrangian. The leading contri-

butions are rather simple, though, since, for f larger than vSM, λHhh ' 3/2vSM Λ6,

where Λ6 is the scalar quartic coupling previously defined in the Higgs basis. In this

regime we find

Γ(H → hh) ≈ 9

32πmH
(v2

SMΛ2
6) ,

Γ(H →W+W−) ≈ 2Γ(H → ZZ) ≈ 1

16πmH
sin2 θ

m4
H

v2
SM

, (6.13)

hence, the study of these three decay topologies would enable one direct access to

three key parameters of the C2HDM, i.e., ζt, θ and λHhh, as well as to attest their

correlations which are shown in figure 13.

Furthermore, according to the predicted mass splittings shown in figure 9, also non-

SM-like, i.e., H → AZ∗ and H → H+W−∗ (off-shell) decays are possible but limited

to mH . 400 GeV, in which regime the mass splitting between H and A or H+ is

larger. The corresponding BRs are shown in figure 14 (right). These two decay modes

are controlled by cos2 θ which delineates the region of the parameter space where the

two decay modes can be sizeable, namely, small θ, that also closes the other SM-like

decay modes.

The H production cross section is simply dominated by gluon fusion, where H is

produced via its coupling to the top. So it is simply obtained from SM gluon fusion

Higgs production (calculated at mH) rescaled by ζ2
t .

We conclude this part by showing some prospects for H phenomenology at the forth-

coming runs of the LHC. Here we focus on the H → hh channel and on its bbγγ

final state which has been recently addressed in [41] by the CMS collaboration using

data from the LHC at the collider energy
√
s = 13 TeV and (integrated) luminosity

L = 35.9 fb−1. In particular, we illustrate in figure 15 the interplay between direct

and indirect searches and the ability of the High-Luminosity LHC (HL-LHC) and

High-Energy LHC (HE-LHC) upgrades to investigate the gg → H → hh→ bb̄γγ sig-

nal over regions of the C2HDM parameter space projected onto the (mH , ζt) plane,

even when no deviations are visible in the coupling strength modifiers κi of the SM-

like Higgs state h (red points) at the end of Run 3 at L = 300 fb−1 and at the

end of the HL-LHC at L = 3000 fb−1. The compliance with the coupling modifiers

is achieved by asking that |1 − κi| is less than the uncertainty quoted in ref. [42],

where i = V V, γγ and gg, while the 95% CL exclusion limits are extracted from

the gg → H → hh → bb̄γγ search by adopting the sensitivity projections of [41]

(orange points). The HE-LHC, assuming
√
s = 27 TeV and L = 15 ab−1, will im-
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Figure 15. Interplay between direct and indirect C2HDM searches projected onto the (mH , ζt)

plane. Colour coding is as follows. Green: all points that pass present constraints at 13 TeV.

Red: points that, in addition to the above, have κV V , κγγ and κgg within the 95% CL projected

uncertainty at L = 300 fb−1 (left) and L = 3000 fb−1 (right). Orange: points that, in addition to

the above, are 95% CL excluded by the direct search gg → H → hh → bb̄γγ, at L = 300 fb−1

(left) and L = 3000 fb−1 (right). In the right plot the yellow points are 95% CL excluded by the

same search at the HE-LHC with L = 15 ab−1. Points below the dashed line are excluded by the

measurement of Bs → Xsγ under the assumption ζb = ζt.

prove the reach in the H high mass region up to 1.3 TeV by studying the process

gg → H → hh→ bb̄γγ (yellow points).

The dashed line in figure 15 delimits the excluded region from the measurement of

the Bs → Xsγ transition under the assumption ζb = ζt which has been employed

to compute the Higgs branching ratios discussed in this section. We stress again

that other scenarios with ζb < ζt would significantly relax the flavour bound from

Bs → Xsγ measurements while will not change, at the same time, the distribution of

points allowed by current direct and indirect searches. Figure 15 shows the interplay

between the HE-LHC reach and the impact of present flavour constraints which can

be independently exploited to explore same regions of the parameter space. For

example, if the gg → H → hh → bb̄γγ signal will be established at the future

upgraded phases of the LHC in a region of parameter space with large and negative

ζt (namely, below the dashed line in figure 15), this would clearly point to a scenario

with ζb < ζt.

• Pseudoscalar A. Since we consider a CP-symmetric composite sector, the phe-

nomenology of the CP-odd scalar is, as far as decays to SM states are concerned,

very constrained, since it can basically only decay to SM fermions and Zh. Indeed,

according to figure 9, the exotic off-shell decays A → HZ∗ and A → H±W∓∗ are

strongly suppressed by the very tight phase space available. In figure 16 (left) we

show the BRs for the leading decay modes of A as function of its mass. The A→ tt̄

channel clearly dominates when kinematically open while, below the tt̄ threshold,

the main channel is represented by A→ Zh, with A→ bb̄ reaching 70% at most for

mA ∼ 200 GeV. The latter depends on the Higgs coupling to b quarks, namely, on the

parameter ζb which has been fixed to ζt in our scan under the reasonable assumption
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Figure 16. (Left) The BRs of the A state in the tt̄ (blue), Zh (orange) and bb (green) channels.

(Right) The BRs of the charged Higgs in the tb (blue) and Wh (orange) channels.

that C2 is broken with the same strength in all the strong fermionic sectors. In the

limit mA � mt, the BRs into SM fermions are particularly simple:

BR(A→ tt̄) ≈ 1, BR(A→ bb̄) ≈ 8 × 10−4

(
ζ2
b

ζ2
t

)
,

BR(A→ τ+τ−) ≈ 4 × 10−5

(
ζ2
τ

ζ2
t

)
. (6.14)

Searches for A → tt̄ can then be used to constrain the couplings of A to top quarks

(as the production cross section is again ∝ ζ2
t ) and then one can access ζb and ζτ .

The decay channel A→ Zh is, instead, controlled by the square of the coupling (1−
ξ/2) sin θ. Suitable search strategies are, for instance, performed by reconstructing

the Z boson from its leptonic decays and the SM-like Higgs from h→ bb or h→ ττ .

• Charged H±. As far as decays into SM objects are concerned, here, the phenomenol-

ogy is dictated by H+ → tb̄ and H+ → W+h, while H+ → τ+ντ is found to be

negligible with BR(H+ → τ+ντ ) ≈ 4 × 10−5ζ2
τ /ζ

2
t in the large mH+ limit. The

non-SM-like modes H+ → W+∗A and H+ → W+∗H are also suppressed due to the

small mass splittings between the heavy scalars, see figure 9. The BRs of the two

dominant channels are shown in figure 16 (right) with H+ → tb̄ being the leading

one as mH± > mt. The partial decay width of H+ → tb̄ is determined by ζ2
t (the

contribution of ζb is suppressed by the ratio mb/mt) while H+ → W+h is driven by

the square of (1− ξ/2) sin θ.

As for the H± production cross section, in the relevant mass range (i.e., mH± > mt),

this is governed by the bg → tH− + c.c. channel, which is proportional to the same

coupling entering H+ → tb̄ decays.

In short, if deviations will be established at the LHC in the couplings of the discovered

Higgs state to either SM gauge bosons or matter fermions, then, not only a thorough inves-

tigation of the 2HDM hypothesis is called for (as one of the simplest non-minimal version

of EWSB induced by the Higgs mechanism via doublet states, like the one already discov-

ered) but also a dedicated scrutiny of the production and decay patterns of all potentially
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accessible heavy Higgs states, including data from the HL-LHC and HE-LHC options of

the CERN machine, could enable one to separate the E2HDM from the C2HDM. In this

endeavour, key roles will be played by interactions amongst the Higgs bosons themselves

(with or without gauge bosons intervening) and with top quarks [23].

7 Conclusions

In summary, in this paper, we have used compositeness as a possible remedy to the hierarchy

problem of the SM, in particular, assuming a pNGB nature of the discovered Higgs state.

In this respect, an intriguing setting is the C2HDM, as it builds upon the experimentally

established existence of a doublet structure with a SM-like Higgs state h triggering EWSB,

and the need for BSM physics. This scenario in fact surpasses the SM by providing one

more composite doublet of Higgs states that can be searched for at the LHC, i.e., the

familiar H, A and H± states of a 2HDM, alongside additional composite gauge bosons

and fermions. In fact, in order to obtain an acceptable fine-tuning at the EW scale, the

compositeness scale f , which drives the masses of these (heavy) non-SM Higgs states, must

be in the TeV region. The C2HDM framework advocated here is thus a BSM setting which

is both natural and minimal, offering as byproducts Higgs mass and coupling spectra within

the LHC reach.

In fact, the entire physical content of the C2HDM, unlike the case of an elementary

2HDM, is actually predicted by a new confining strong dynamics. Our set up is based

on the spontaneous symmetry breaking of the global symmetry of a new strong sector,

SO(6) → SO(4) × SO(2), with the residual symmetry in turn explicitly broken by the

linear mixing between the (elementary) SM and the (composite) strong sector fields via

the so-called partial compositeness mechanism.

In this construct, the scalar potential emerges at one-loop level and governs the dy-

namics of the aforementioned Higgs states, all realised as pNGBs, i.e., it predicts their

properties. We have therefore calculated the mass and coupling spectra of the Higgs sec-

tor of this C2HDM explicitly and for the first time in literature. In particular, we have

truncated the potential to the quartic order in the (pseudo)scalar fields, further assuming

that the dynamics discussed here is CP symmetric yet C2 broken, so that, in order to avoid

Higgs-mediated FCNCs, we had to enforce an alignment in the Yukawa couplings. In order

to do so, we had to also account for the corresponding gauge and fermionic spectra. While

the structure of the former is dictated by the gauge symmetry and the breaking pattern,

there is arbitrariness in the choice of the latter. Here, we have placed the fermions in the

fundamental representation of SO(6) and we have further required a LR structure, as it

guarantees UV finiteness and reduces the number of free parameters in the new strong

sector. Ultimately, this implies that the scalar potential, and thus the couplings amongst

(pseudo)scalars and fermions, depend on the composite fermion mass spectrum.

We have highlighted here the presence of correlations among the Higgs sector param-

eters and the strong sector ones, in particular, the dependence of the extra-Higgs mass

scale on the extra-fermion masses. In fact, within this framework, we have obtained that

the mass mH2 of the second Higgs doublet is mainly proportional to the m3 parameter
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in the scalar potential, which arises from the breaking of C2 in the composite sector and

correlates with the masses of the two lightest top-partners. Then, as m3 is driven by f ,

we have highlighted the fact that all heavy Higgs masses decouple for large f from the

SM-light Higgs one, which is maintained light as it emerges from the SM VEV. Hence, as

f →∞, the SM is recovered.

Another interesting limit that we discussed is obtained when the above Yukawa align-

ment is dismissed and one of the two relevant couplings is set to zero (i.e., Y1 → 0) to

prevent tree level FCNCs. This generates a C2 symmetric case, wherein one VEV is zero

(i.e., tan β = 0) and no mixing exists between the first and second doublet (i.e., sin θ = 0).

This generates a 2HDM structure with one inert doublet, thus offering a DM candidate

(in the form of the lightest between the additional neutral Higgs states, H and A). The

proposed scenario thus provides a concrete realisation of models with two doublets (one

playing the role of the SM Higgs and the other being active or inert) originating from a

strong confining dynamics.

We have then proceded to discuss the phenomenological implications of this C2HDM

at the LHC, in relation to both measurements of the discovered SM-like Higgs state and

the (potential) discovery of its heavy companions. In this respect, we have assessed that

the mass and coupling patterns that emerge from the strong dynamics embedded in the

C2HDM are rather prescrictive, so that simultaneous h measurements and detection of

heavy Higgs decays into themselves (e.g., H → AZ∗ and H → H±W∓∗ or A → HZ∗

and H± → HW±∗, depending on the actual mass hierarchy), with absence of any decays

involving A and H±, would be a hallmark signature of the C2HDM. With this in mind, we

have finally tested the scope of the standard LHC, HL-LHC and HE-LHC in accessing the

C2HDM in both the above self-interacting Higgs channels and others involving (primarily)

production and decay modes with top (anti)quarks involved.

As we have produced all these phenomelogical results in presence of up-to-date ex-

perimental (notably including limits from both void searches for heavy Higgs bosons and

measurements of the 125 GeV discovered Higgs state as well as flavour data) constraints,

we are confident to have set the stage for pursuing dedicated analyses aimed at separating

the C2HDM from the E2HDM hypothesis, in turn potentially enabling one to distinguish

the composite from the fundamental nature of any Higgs boson accessible at the LHC by

the end of all its already scheduled and currently discussed future stages.

8 Outlook

In this work we have studied a scenario based on the coset SO(6)/SO(4) × SO(2) with

fermions embedded into the fundamental SO(6) representations. This represents the sim-

plest scenario with maximal subgroup H providing exactly two Higgs doublets as pNGBs,

which was the Higgs sector content conceived here as natural next step up from the discov-

ery of a ‘doublet’ Higgs field. However, despite its simplicity, some of the phenomenologi-

cal features described by this setup (as, in particular, the scenario with a composite inert

Higgs) are also typical of other realisations. More involved patterns can be constructed by

allowing for subsequent breakings as in the case of SO(6) → SO(4) in which the two scalar
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doublets are accompanied by an extra SM singlet state. Focusing on scenarios with only

two Higgs doublets, another interesting model is realised by the coset Sp(6)/SU(2)×Sp(4)

in which large corrections to the T parameter are automatically avoided by the extended

custodial symmetry of the corresponding subgroup. In this setup the left-handed qL and

right-handed tR components of the top quark can be embedded in the 12/3 and 142/3,

respectively. Since two inequivalent embeddings are present for qL, even though only one

invariant can be build among the two representations and the Higgs doublets, the absence

of dangerous tree-level FCNCs in the scalar sector must be ensured by enforcing the align-

ment in flavour space as in our case. A scenario that shares even more similarities with the

one addressed in this paper is instead described by the same coset SO(6)/SO(4) × SO(2)

but with fermions in the 12/3 for the tR and in the 20′2/3, containing two different em-

beddings, for the qL [12]. Either requiring CP or C2 unavoidably selects one of the two

qL embeddings. This also avoids the presence of Higgs-mediated FCNCs without resorting

to the flavour alignment. If C2 is preserved, the composite inert 2HDM, described in sec-

tion 6.2.1, is obtained. In contrast, if only CP is required, C2 still arises at leading order

as an accidental symmetry in the scalar potential with an almost-inert Higgs doublet. As

such its phenomenology is expected to be vey similar to the one discussed in section 6.2.1.

The construction discussed in this paper has the advantage to encompass several scenarios

with very different phenomenological features like, for instance, the C2 symmetric case

that provides an inert Higgs doublet which, as discussed above, is also common to other

realisations of CHMs, but also much more peculiar scenarios like the CP -invariant and

C2-broken case that has been extensively studied in this work.
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A The C2HDM with the CCWZ formalism

Let us review some of the main topics discussed in the present work by using the CCWZ

formalism and focusing only on the fermion sector. This methodology is based on an

effective Lagrangian approach and, as such, does not require the specification of an UV

completion and only relies on the features of the symmetry breaking pattern. Therefore, it

is possible to draw general conclusions without specifying the details of the model in the

strong sector, in contrast to what we have done in the sections above, where we provided

an explicit realisation of the C2HDM. Needless to say, the two approaches are completely

equivalent at low energy.

In order to keep the discussion as general as possible, we introduce two families of

resonances, ψ4 and ψ2, the first one transforming in the fundamental of SO(4) and the
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other one in the fundamental of SO(2). The Lagrangian for the elementary and composite

fermions is

Lfermion
CCWZ = iq̄iLγ

µDµqiL + iūiRγ
µDµuiR

+iψ̄i4γ
µDµψi4 −m4,iψ̄

i
4ψ

i
4 + iψ̄i2γ

µDµψi2 −m2,iψ̄
i
2ψ

i
2

+yikL4 f
(
q̄6 iL U

)
4
ψk4 + yikL2 f

(
q̄6 iL U

)
2
ψk2 + yik

L2̂
f
(
q̄6 iL U

)
2̂
ψk2

+yikR4 f
(
ū6 iR U

)
4
ψk4 + yikR2 f

(
ū6 iR U

)
2
ψk2 + yik

R2̂
f
(
ū6 iR U

)
2̂
ψk2 + h.c. (A.1)

In order to simplify the discussion, the down-quark dR has not been explicitly written

in the previous equation but it will be reintroduced back when needed. The index i

runs over the three SM families while k runs over the fermionic resonances for which the

multiplicity can be, in principle, different for each of the two families. The notation q6L
and u6R denotes, as usual, the embedding of the SM fields in the fundamental of SO(6),

while the subscripts on the pNGB matrix U represent its projections onto the different

SO(4) × SO(2) representations. In particular, the subscripts 2 and 2̂ denote how the two

invariants 2·2 and 2∧2 are built from the fundamental representation of SO(2), specifically,

by exploiting the contraction with δαβ and εαβ , respectively. Restricting to the top-quark

sector and considering only two families of resonances, eq. (A.1) can be easily mapped

onto the Lagrangian given in eq. (3.10). After integrating out the heavy resonances, the

momentum space Lagrangian for the quark fields reads as

Leff = q̄iL /pΠij
L q

j
L + ūiR /pΠij

Ru
j
R −

(
q̄iLΠij

LRu
j
R + h.c.

)
, (A.2)

where the gauge interactions arising from the fermionic covariant derivates have been ne-

glected as they play no role in the present discussion. The form factors are

Πij
L = δij − f2

∑
k

Υ†L

{
yikL4 y

jk∗
L4

p2 −m2
4,k

[U4 · 4U †] +
yikL2 y

jk∗
L2 + yik

L2̂
yjk∗
L2̂

p2 −m2
2,k

[U2 · 2U †]

+
yik
L2̂
yjk∗L2 − yikL2 y

jk∗
L2̂

p2 −m2
2,k

[U2 · 2̂U
†]

}
ΥL,

Πij
R = δij − f2

∑
k

Υi†
R

{
yikR4 y

jk∗
R4

p2 −m2
4,k

[U4 · 4U †] +
yikR2 y

jk∗
R2 + yik

R2̂
yjk∗
R2̂

p2 −m2
2,k

[U2 · 2U †]

+
yik
R2̂
yjk∗R2 − yikR2 y

jk∗
R2̂

p2 −m2
2,k

[U2 · 2̂U
†]

}
Υj
R,

Πij
LR = f2

∑
k

Υ†L

{
yikL4m4,k y

jk∗
R4

p2 −m2
4,k

[U4 · 4U †] +
yikL2m2,k y

jk∗
R2 + yik

L2̂
m2,k y

jk∗
R2̂

p2 −m2
2,k

[U2 · 2U †]

+
yik
L2̂
m2,k y

jk∗
R2 − yikL2m2,k y

jk∗
R2̂

p2 −m2
2,k

[U2 · 2̂U
†]

}
Υj
R , (A.3)

where ΥL and Υi
R are the spurions with their VEV defined as in eq. (3.9). Notice that,

differently from its L-handed counterpart, the Υi
R spurion carries a flavour index because
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each of the three R-handed fields uiR can be embedded into a 6 of SO(6) in two different

inequivalent ways. This freedom is parameterised by an angle θi. The contractions of the

pNGB matrices in the form factors above encode all the dependence on the Higgs fields

and are explicitly defined as

[U4 · 4U †] = UiδijU
†
j , [U2 · 2U †] = UαδαβU

†
β , [U2 · 2̂U

†] = UαεαβU
†
β , (A.4)

where i, j and α, β run over the fundamental representations of SO(4) and SO(2),

respectively.

In order to make a closer contact with the results presented in the previous sections,

where the model in the strong sector has been explicitly specified, we notice that the

contractions of the pNGB matrix are related to the Σ matrix by

[U4 · 4U †] = 1 + Σ2, [U2 · 2U †] = −Σ2, [U2 · 2̂U
†] = Σ . (A.5)

Considering only the top-quark and two families of heavy resonances, the effective La-

grangian after the integration of the heavy resonances can be schematically written in the

same form as eq. (3.11), namely,

Leff = q̄6L/p
[
Π̃qt

0 + Π̃qt
1 Σ + Π̃qt

2 Σ2
]
q6L + t̄6R/p

[
Π̃t

0 + Π̃t
1 Σ + Π̃t

2 Σ2
]
t6R

+q̄6L

[
M̃ t

0 + M̃ t
1 Σ + M̃ t

2 Σ2
]
t6R + h.c., (A.6)

where the individual form factors are extracted from eq. (A.3) as follows:

Π̃qt
0 = 1− f2

∑
k

|ykL4|2

p2 −m2
4,k

, Π̃qt
1 = −2if2

∑
k

Im(yk
L2̂
yk∗L2)

p2 −m2
2,k

,

Π̃qt
2 = −f2

∑
k

[
|ykL4|2

p2 −m2
4,k

+
|ykL2|2 + |yk

L2̂
|2

p2 −m2
2,k

]
,

Π̃t
0 = 1− f2

∑
k

|ykR4|2

p2 −m2
4,k

, Π̃t
1 = −2if2

∑
k

Im(yk
R2̂
yk∗R2)

p2 −m2
2,k

,

Π̃t
2 = −f2

∑
k

[
|ykR4|2

p2 −m2
4,k

+
|ykR2|2 + |yk

R2̂
|2

p2 −m2
2,k

]
,

M̃ t
0 = −f2

∑
k

ykL4m4,k y
k∗
R4

p2 −m2
4,k

, M̃ t
1 = −f2

∑
k

m2,k(y
k
L2̂
yk∗R2 − ykL2 y

k∗
R2̂

)

p2 −m2
2,k

,

M̃ t
2 = −f2

∑
k

[
ykL4m4,k y

k∗
R4

p2 −m2
4,k

+
ykL2m2,k y

k∗
R2 + yk

L2̂
m2,k y

k∗
R2̂

p2 −m2
2,k

]
, (A.7)

with k running only on two families of heavy resonances. After integrating out the heavy

degrees of freedom, as naively expected, the CCWZ approach leads to an effective La-

grangian with the same structure of the one derived from an explicit model. The only

difference appears in the parameterisation of the form factors in terms of masses and cou-

plings. For instance, we immediately notice that the dependence on the proto-Yukawa

– 39 –



J
H
E
P
1
2
(
2
0
1
8
)
0
5
1

couplings is the same, that Π̃0 and Π̃2 are real while Π̃1 is imaginary and that Π̃1 = 0 in a

CP invariant scenario. The calculation of the effective potential in terms of the form factors

remains completely unchanged, so are eqs. (4.3) and (4.4). As we anticipated above, the

form factors obtained in the 2-site model can be easily mapped onto the ones in eq. (A.7)

once the Lagrangian of eq. (3.10) is recasted into the basis in which, for ∆L,R → 0, the res-

onance fields Ψt are mass eigenstates. Notice also that, despite the equivalence of the form

factors obtained after the integration of the heavy resonances, the effective Lagrangian in

eq. (A.1), which is used as the starting point of the CCWZ construction, does not capture

all the information encoded in eq. (3.10) such as, for instance, the interaction among the

resonances and the NGBs.

An issue with flavour changing neutral currents. The most general effective La-

grangian in the fermion sector can be easily constructed using the CCWZ formalism and

reads as

− Lyuk = aAijψ̄
i
LUPAU

†ψjR + h.c., (A.8)

where ψL,R denote SM quark fields embedded into incomplete G multiplets while the index

A spans over all the possible invariants in the subgroup H with PA being the corresponding

projector operator. As described above, we embed the L- and R-handed components of

the elementary SM quarks into the fundamental representation of SO(6) using the spurion

fields. At this level, all the information on the interactions with the composite resonances,

which have been integrated out, is encoded in the coefficients aAij . With the fermions in

the 6 of SO(6), where 6 = 4 ⊕ 2 under SO(4) × SO(2), three different invariants of H
can be constructed with δij , δαβ and εαβ , respectively, where latin (greek) indices belong

to SO(4) (SO(2)). The sum of the first two invariants is trivial such that only two of them

are independent. These can be chosen to be, for instance, δαβ and εαβ . The possibility

to build several invariants naturally introduces dangerous FCNCs in the Higgs sector,

unless one imposes particular conditions on the coefficients aAij or discrete symmetries to

single out only one invariant. One of the two invariants can be removed by imposing a

C2 symmetry in the strong sector. But, even in that case, since the R-handed quarks

can be embedded in the 6 of SO(6) into two independent ways (as already mentioned,

this freedom is described by the θi angle), an extra symmetry must be advocated in order

to select one of the two embeddings. For instance, the CP symmetry uniquely picks up

the θi = 0 direction. Therefore, Higgs mediated FCNCs are avoided if one considers a

C2 and CP invariant scenario. If the strong sector does not enjoy such symmetries that

prevent the appearance of multiple invariants, FCNCs can only be avoided by restricting

the structure of the aAij matrices as in the flavour alignment limit. The absence of leading

contributions to FCNCs is thus ensured if the three matrices (in flavour space) appearing

in the form factor Πij
LR, namely the ones proportional to the three independent invariants

in eq. (A.4), are proportional to each other in the small momentum regime. This condition

can be satisfied by requiring, e.g., the following: (a) a1y
ik
L4 = a2y

ik
L2 = a3y

ik
L2̂
≡ yikL and

b1y
ik
R4 = b2y

ik
R2 = b3y

ik
R2̂
≡ yikR , so that yikL y

jk∗
R can be factorised, (b) the alignment of

the R-handed spurion fields, θi ≡ θ and (c) the proportionality of the resonance masses
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c1m4,k = c2m2,k ≡ mk for all k = 1 . . . Nψ, where the number of resonances Nψ has been

chosen to be the same for the two families.

Under the flavour alignment assumption, the Yukawa Lagrangian can be finally recast

in the following form:

−Lyuk = qiLY
ij
u gu(H1, H2)ujR + qiLY

ij
d gd(H1, H2)djR, (A.9)

where we have reintroduced back the dR quark field. The gu,d(H1, H2) are functions of the

Higgs fields and the SM Yukawa couplings Y ij
u,d are defined by

Y ij
u =

Nψ∑
k=1

yikL y
jk∗
uR

mk
, Y ij

d =

Nψ∑
k=1

yikL y
jk∗
dR

mk
. (A.10)

The Yukawa structure in eq. (A.9) clearly ensures the absence of Higgs mediated FCNCs.

B Form factors

The form factors characterising the gauge part of the effective Lagrangian in eq. (3.5) are

Π̃0 = −
m2
ρ

g2
ρ(q

2 −m2
ρ)
, Π̃1 = −

2m4
ρ(m

2
ρ̂ −m2

ρ)

f2g2
ρ(q

2 −m2
ρ)(q

2 −m2
ρ̂)
,

Π̃2 = −Π̃1, Π̃X = −
m2
ρX

g2
ρX

(q2 −m2
ρX

)
(B.1)

and, by choosing for simplicity gρX = gρ, which implies mρX = mρ as shown in eq. (3.4),

we get the normalised form factors

ΠW =
Π̃1

Π̃W

= −
2rWm

4
ρ(m

2
ρ̂ −m2

ρ)

f2(q2 −m2
ρ̂)[q

2 − (1 + rW )m2
ρ]
,

ΠB =
Π̃1

Π̃B

= −
2rBm

4
ρ(m

2
ρ̂ −m2

ρ)

f2(q2 −m2
ρ̂)[q

2 − (1 + 2rB)m2
ρ]

∣∣∣∣∣
gρX=gρ

, (B.2)

with

Π̃W = Π̃0 +
1

g2
W

,

Π̃B = Π̃0 + Π̃X +
1

g2
B

, (B.3)

where rW,B = g2
W,B/g

2
ρ. The couplings gW,B are implicitly defined by

1

g2
=

1

g2
W

+
1

g2
ρ

,
1

g′2
=

1

g2
B

+
1

g2
ρ

+
1

g2
ρX

, (B.4)

where g and g′ are the SM SU(2)L and U(1)Y coupling constants. The form factors appear-

ing in eq. (4.3) are normalised as Π̄W,B = f2/q2 ΠW,B. Finally, the form factors extracted
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after the integration of the heavy spin-1/2 resonances coupled to the top quark are explicitly

given by

Π̃qt
0 = 1−

q2∆t
L∆t T

L + (∆t
Lσ2)MT

Ψt
MΨt(∆

t
Lσ2)T

q4 − q2trMΨtM
T
Ψt

+ detM2
Ψt

,

Π̃t
0 = 1−

q2∆t
R∆t T

R + (∆t
Rσ2)MΨtM

T
Ψt

(∆t
Rσ2)T

q4 − q2trMΨtM
T
Ψt

+ detM2
Ψt

,

Π̃qt
1 = Π̃t

1 = 0,

Π̃qt
2 =

q2∆t
L∆t T

L + (∆t
Lσ2)(Y t T

1 Y t
1 + Ȳ t T

2 Ȳ t
2 )(∆t

Lσ2)T

q4 − (trY t
1Y

t T
1 + trȲ t

2 Ȳ
t T

2 )q2 + f(Y t
1 , Ȳ

t
2 )

−
q2∆t

L∆t T
L + (∆t

Lσ2)MT
Ψt
MΨt(∆

t
Lσ2)T

q4 − q2trMT
Ψt
MΨt + detM2

Ψt

,

Π̃t
2 =

q2∆t
R∆t T

R + (∆t
Rσ2)(Y t

1Y
t T

1 + Ȳ t
2 Ȳ

t T
2 )(∆t

Rσ2)T

q4 − (trY t
1Y

t T
1 + trȲ t

2 Ȳ
t T

2 )q2 + f(Y t
1 , Ȳ

t
2 )

−
q2∆t

R∆t T
R + (∆t

Rσ2)MΨtM
T
Ψt

(∆t
Rσ2)T

q4 − q2trMΨtM
T
Ψt

+ detM2
Ψt

,

M̃ t
0 = −

q2∆t
LM

T
Ψt

∆t T
R + (∆t

Lσ2)(MT
Ψt
σ2MΨtσ2M

T
Ψt

)(∆t
Rσ2)T

q4 − q2trMΨtM
T
Ψt

+ detM2
Ψt

,

M̃ t
1 =

q2∆t
LY

t T
1 ∆t T

R + ∆t
Lσ2(Y t T

1 σ2Y
t

1σ2Y
t T

1 + Ȳ t T
2 σ2Y

t
1σ2Ȳ

t T
2 )(∆t

Rσ2)T

q4 − (trY t
1Y

t T
1 + trȲ t

2 Ȳ
t T

2 )q2 + f(Y t
1 , Ȳ

t
2 )

,

M̃ t
2 =

q2∆t
LȲ

t T
2 ∆t T

R + ∆t
Lσ2(Ȳ t T

2 σ2Ȳ
t

2σ2Ȳ
t T

2 + Y t T
1 σ2Ȳ

t
2σ2Y

t T
1 )(∆t

Rσ2)T

q4 − (trY t
1Y

t T
1 + trȲ t

2 Ȳ
t T

2 )q2 + f(Y t
1 , Ȳ

t
2 )

+ M̃ t
0, (B.5)

where Ȳ t
2 = MΨt − Y t

2 and f(Y t
1 , Ȳ

t
2 ) = [det(Y t

1 ) − det(Ȳ t
2 )]2 + tr(σ2Y

t
1σ2Ȳ

t T
2 )2. Similar

results are obtained for the bottom quark and the tau lepton. The previous equations are

valid in the scenario with two sixplet fermions and, as such, MΨt , Y
t

1 , Y t
2 are understood

as 2 × 2 matrices, while ∆t
L,R are two-components vectors. From those we can define the

canonically normalised form factors as

Πqt
1,2 =

Π̃qt
1,2

Π̃qt
0

, Πt
1,2 =

Π̃t
1,2

Π̃t
0 − Π̃t

2

, M t
1,2 =

M̃ t
1,2√

Π̃qt
0 Π̃t

0

, (B.6)

which are then given by, under the LR assumption,

Πqt
2 = m2

Ψ1
∆2
L(Y 2−m2

Ψ12
)(q2−m2

Ψ2
)H−1[q2;Y 2, 0] (B.7)

×H−1[q2;m2
Ψ12

+∆2
L, (m

2
Ψ2

+m2
Ψ12

)∆2
L],

Πt
2 = m2

Ψ2
∆2
R(Y 2−m2

Ψ12
)(q2−m2

Ψ1
)H−1[q2;m2

Ψ12
, 0] (B.8)

×H−1[q2;Y 2+∆2
R, (m

2
Ψ1

+Y 2)∆2
R],

M t
1 = Y1

H1/2[q2;m2
Ψ12

, 0]

H1/2[q2, Y 2, 0]
M t ,
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M t
2 =

[
−Ȳ2

H1/2[q2;m2
Ψ12

, 0]

H1/2[q2, Y 2, 0]
+mΨ12

H1/2[q2;Y 2, 0]

H1/2[q2,m2
Ψ12

, 0]

]
M t,

M t
1M

t
2 = Y1

[
−Ȳ2

H[q2;m2
Ψ12

, 0]

H[q2, Y 2, 0]
+mΨ12

]
(M t)2 (B.9)

with

M t =
mΨ1mΨ2∆L∆R

H1/2[q2;m2
Ψ12

+ ∆2
L, (m

2
Ψ2

+m2
Ψ12

)∆2
L]H1/2[q2;Y 2 + ∆2

R, (m
2
Ψ1

+ Y 2)∆2
R]

(B.10)

and

H[q2; a, b] = q4 − q2(m2
Ψ1

+m2
Ψ2

+ a) +m2
Ψ1
m2

Ψ2
+ b . (B.11)

In the previous equations we used the shorthand notation

Y1 =(Y t
1 )12 , Ȳ2 = (Ȳ t

2 )12 = (MΨt)12 − (Y t
2 )12 , Y 2 = Y 2

1 + Ȳ 2
2 ,

∆L = (∆t
L)1 , ∆R = (∆t

R)2 mΨ1 = (MΨt)11 ,

mΨ2 = (MΨt)22 , mΨ12 = (MΨt)12 (B.12)

and we required

(∆t
L)2 = (∆t

R)1 = (MΨt)21 = (Y t
1 )11 = (Y t

1 )22 = (Y t
2 )11 = (Y t

2 )22 = (Y t
1 )21 = (Y t

2 )21 = 0

(B.13)

to enforce the LR symmetry.

Notice that, when m2
Ψ12
' Y 2

1 + Ȳ 2
2 , which is realised in our scan with a good approx-

imation as a result of the minimisation of the scalar potential, the ratio of H functions

appearing in the square brackets of M t
1M

t
2 in eq. (B.9) reduces to 1 and therefore

M t
1M

t
2 = Y1Y2(M t)2 . (B.14)

C The scalar potential in the Higgs basis

In this appendix we provide the relations between the parameters of the scalar potential

in the general and Higgs bases. We use capital letters for the latter case. In both cases,

the normalisation of the parameters follows from eq. (2.3). In the CP invariant scenario

we obtain

M2
11 = m2

1c
2
β +m2

2s
2
β −m2

3s2β ,

M2
12 =

1

2
(m2

1 −m2
2) +m2

3c2β ,

M2
22 = m2

1s
2
β +m2

2c
2
β +m2

3s2β ,

Λ1 = λ1c
4
β + λ2s

4
β +

1

2
λ345s

2
2β + 2s2β(λ6c

2
β + λ7s

2
β) ,

Λ2 = λ1s
4
β + λ2c

4
β +

1

2
λ345s

2
2β − 2s2β(λ6s

2
β + λ7c

2
β) ,
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Λ3 =
1

4
s2

2β(λ1 + λ2 − 2λ345) + λ3 − s2βc2β(λ6 − λ7) ,

Λ4 =
1

4
s2

2β(λ1 + λ2 − 2λ345) + λ4 − s2βc2β(λ6 − λ7) ,

Λ5 =
1

4
s2

2β(λ1 + λ2 − 2λ345) + λ5 − s2βc2β(λ6 − λ7) ,

Λ6 = −1

2
s2β(λ1c

2
β − λ2s

2
β − λ345c2β) + λ6cβc3β + λ7sβs3β ,

Λ7 = −1

2
s2β(λ1s

2
β − λ2c

2
β + λ345c2β) + λ6sβs3β + λ7cβc3β , (C.1)

with λ345 = λ3 + λ4 + λ5.
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