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We show how to use the worldline-instanton formalism to calculate the momentum spectrum of the
electron-positron pairs produced by an electric field that depends on both space and time.Using the Lehmann-
Symanzik-Zimmermann (LSZ) reduction formula with a worldline representation for the propagator in a
spacetime field, we make use of the saddle-point method to obtain a semiclassical approximation of the pair-
production spectrum. To check the final result, we integrate the spectrum and compare with the results
obtained using a previous instanton method for the imaginary part of the effective action.
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I. INTRODUCTION

The creation of particle pairs in the presence of a strong
electric field is a theoretical prediction of quantum electro-
dynamics (QED) which was first suggested by Sauter [1].
Schwinger [2] calculated the rate of pair production at one
loop level in a constant electric field. Today, this process is
also commonly referred to as Schwinger pair production.
The key feature is that the exponential scaling with respect
to the electric field strength1

P ∼ e−
π
E ð1Þ

implies that this is a nonperturbative effect, as (1) does not
have an expansion in powers of E when E → 0. Due to the
exponential scaling with respect to the electric field strength,
and the critical fieldbeingof the order of1018 V=m, to this day
it has not been possible to observe this effect experimentally.
There are very few exactly solvable field shapes (see e.g.

[3,4]), so one has either to turn to a full numerical treatment or
to approximate methods in order to deal with nonconstant
fields. However, it is challenging to obtain numerical results
for spacetime dependent fields2 and for the physically

relevant regime E ≪ 1. On the other hand, for E ≪ 1 we
can instead turn to semiclassical approximations. Time-
dependent fields have been studied in [7–11]. The semi-
classical approximation can in principle be obtained by
directly solving the Dirac equation using a Wentzel-
Kramers-Brillouin (WKB) approach. However, while this
has been done for time-dependent fields, there is so far no
WKB method that can be used for general spacetime
dependent fields; see [12] for the most recent study. A more
promising approach is the worldline instanton method
[10,11,13–15]. It is at this point a well developed method
for obtaining the total/integrated probability from
the imaginary part of the effective action. Indeed, a numeri-
cal code based on discretized instantons3 was developed
in [17,18] that can be used for general fields. As an example,
in [18] it was applied to the e-dipole field [19], which is an
exact solution to Maxwell’s equations that is localized in all
four spacetime coordinates. The only other method that has
been able to deal with such a complicated field [20] is the
locally constant-field approximation (LCFA), where one
takes the constant-field result and replaces the volume factor
with a spacetime integral, V4PðFμνÞ →

R
d4xPðFðxÞÞ. For

fields below the Schwinger limit, one can perform the d4x
integral with the saddle-point method, and then the result
agrees with the slowly varying-field limit of the instanton
approximation. Thus, the instanton approximation contains
physics beyond the LCFA4 but can still be used for realistic
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1We use units with c ¼ ℏ ¼ me ¼ 1 and absorb eE → E.
2Progress has been made, though, in the past couple of years,

and [5,6] have now shown how to numerically obtain the
spectrum for fields that depend on t and z and with components
in the x − y plane, with one important example being the field of
two head-on colliding plane waves.

3Discretized instantons were also used in [16] for pair
production by a combination of a constant electric field and a
thermal background.

4If one does not perform that d4x integral in the LCFAwith the
saddle-point method, then in principle the LCFA contains physics
beyond the weak-field limit, which would be relevant if one
approaches the Schwinger limit.
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four-dimensional (4D) fields. Our main goal is therefore to
develop the instanton method so that we can also obtain the
momentum spectrum and not just the total probability.
Starting from the Lehmann-Symanzik-Zimmermann

(LSZ) reduction formula, the key feature is the representation
of the exact propagator as a particle path integral [21–23]
with an integration over proper time [2]. In a previous paper
[24]we showed how to use theworldline instantonmethod to
compute, on the amplitude level, the spectrum of pair
production in a time-dependent background field. Unlike
the method used in [10,11,14,17,18], which uses periodic
(closed) instantons xμð0Þ ¼ xμð1Þ with the topology of the
circle, our instantons have open boundary conditions and
describe free particles asymptotically. Thus, our instantons
are complex near the tunneling region but approach real
particle trajectories at asymptotic times. Schwinger pair
production by a constant electric field has been studied with
open worldlines in [25,26].
For a time-dependent field it was possible to obtain

simple analytic expressions for the full amplitude using
saddle-point approximations for the worldline integrals. In
particular, the final prefactor is trivial because all the
contributions cancel each other out. Not surprisingly, this
is no longer true for more general fields. In the present work
we focus on linearly polarized fields which depend on time
and one space variable Aðz; tÞ such that Eðz; tÞ → 0
asymptotically. In particular, the z dependence breaks
the translation symmetry along the z axis, and therefore
the momentum along said direction is no longer conserved.
In practice, as we shall see, this means that p3 þ p0

3 ≠ 0 is
allowed, where p and p0 are, respectively, the electron and
positron momenta. We will show that the particle momenta
are related to the asymptotic conditions of the instantons.
In the “closed-loop” method, the starting point is the

effective action in the worldline representation [27–29],
i.e., in terms of a path integral over all closed spacetime
trajectories. Using unitarity, one obtains the total proba-
bility of pair production. The main advantage is that the
initial expression is simpler, and there is no need to worry
about external states or amputations. However, this method
only gives the probability summed over all possible
external momenta. The method we show here provides
the momentum spectrum, and performing all the momen-
tum integrals with the saddle-point method gives agreement
with the closed-loop method.
We use the saddle-point approximation in order to compute

the integrals analytically. However, we find the saddle points
of the path integral numerically, also known as “instantons,”
which are solutions to the Lorentz force equation with
asymptotic conditions determined by the momenta.
Although the solutions themselves depend on the para-

metrization, the final probability does not. We show that
one can for example choose a simple parametrization tilted
in the complex plane or a nontrivial one, such that the
instantons are parallel to the real axis asymptotically. In
Sec. II we give some basic definitions. In Sec. III we apply

the Gelfand-Yaglom method to compute the path integral
prefactor. In Sec. IV we calculate the ordinary integrals over
the spacetime coordinates and proper time. It is eventually
possible to obtain a simple expression of this contribution in
the asymptotic time limit. In Sec. V we calculate the spin
sum, putting everything together in Sec. VI. We explain the
procedure to find the instantons numerically in Sec. VII.
Oncewe have all the contributions to the spectrum, wemake
use once again of the saddle-point method to determine the
widths of the spectrum, in addition to the integrated/total
probability, in Secs.VIII and IX.We also show the agreement
with the discrete instanton method for the effective action
used in [17,18]. Finally, in Sec.Xwe consider the limitwhere
the spatial dependence becomes very slow compared to the
time dependence, which gives a regularized volume factor
rather than the infinite volume factor one finds if one starts
with a purely time-dependent field. This is done by expand-
ing the instantons in a suitable way.

II. BASIC DEFINITIONS

Our starting point is the worldline representation [23] of
the dressed fermion propagator5 in a background field Aμ,

Sðx; x0Þ ¼ ði=Dx þmÞ 1
2

Z
∞

0

dT
Z

qð1Þ¼x

qð0Þ¼x0
Dq exp

�
−i
�
Tm2

2

þ
Z

1

0

dτ

�
_q2

2T
þ AðqÞ _q

���

× P exp

�
−i

T
4

Z
1

0

dτσμνFμν

�
; ð2Þ

where Dμ ¼ ∂μ þ iAμ, Fμν ¼ ∂μAν − ∂νAμ, P means
proper-time ordering, and σμν ¼ i

2
½γμ; γν�. Note that (2)

holds for an arbitrary electromagnetic field. We obtain the
amplitude by amputating using the LSZ reduction formula6

M ¼ lim
t→þ∞

lim
t0→þ∞

Z
d3xd3x0eipjxj ūðasympÞ

r ðt;pÞγ0Sðx; x0Þ

× γ0eip
0
jx

0j
vðasympÞ
r0 ðt0;p0Þ; ð3Þ

where pjxj ¼
P

3
i¼1 pjxj, and the asymptotic states can be

replaced by their WKB/adiabatic approximations

Urðt;qÞ ¼ ðγ0π0 þ γiπi þ 1ÞGþðt;qÞRr;

Vrðt;−qÞ ¼ ð−γ0π0 þ γiπi þ 1ÞG−ðt;qÞRr; ð4Þ

where (tr ∈ R is a constant)

5Different representations can be found in [30–34].
6This version of the LSZ formula appears in textbooks such

as [35] as an intermediate step in the derivation of another, perhaps
more familiar version, which has a d4x integral. The version in (3)
has also been used for a constant electric field in [25].
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G�ðt;qÞ ¼ ½2π0ðπ0 � π3Þ�−1
2 exp

�
∓i

Z
t

tr

dt0π0ðt0Þ
�
; ð5Þ

and the spin basis is chosen according to γ0γ3Rs ¼ Rs, s ¼ 1,
2, and π⊥ ¼ q⊥, π3ðtÞ ¼ q3 − AðtÞ, π0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ π23ðtÞ

p
,

m⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2⊥

p
. (Recall, weworkwith units wherem ¼ 1.)

These nontrivial solutions are in general needed for fields
with Aðt ¼ −∞Þ ≠ Aðt ¼ þ∞Þ. However, in this paper we
will focus on fields that also depend on z, such as

A3 ¼
E
ω
tanhðωtÞsech2ðkzÞ; ð6Þ

and, although Aðt ¼ −∞Þ ≠ Aðt ¼ þ∞Þ, the worldline
starts and ends at jzj → ∞, so we have A3 → 0 asymptoti-
cally. So, for any nonzero k we have a rather different
case compared to if one starts with k ¼ 0. We will refer to
the field in (6) as “the Sauter pulse,” since Eðt; zÞ ¼
Esech2ðωtÞsech2ðkzÞ is the product of a Sauter pulse in t
and a Sauter pulse in z.

III. PATH INTEGRAL AND GELFAND-YAGLOM

We start by performing the path integral. Expanding
around the instanton (i.e. the saddle point) gives us a
quadratic path integral that we can perform using the
Gelfand-Yaglom method [11]. We change variables and
notation as

qμðτÞ → qμðτÞ þ δqμðτÞ; ð7Þ

so that from now on qμðτÞ is the instanton and δqμðτÞ is the
integration variable. The part of the exponent in (2) with σμν

scales as TFμν ∼OðE0Þ, compared to the other terms which
scale as 1=E ≫ 1. One can compare this with the following
integral:

Z
dxpðxÞ exp

�
fðxÞ
E

þ gðxÞ
�
: ð8Þ

The saddle point for this integral is determined by
f0ðxsÞ ¼ 0. After a change of variable from x ¼
xs þ

ffiffiffiffi
E

p
δx to δx, one can expand the integrand in a series

in E ≪ 1, which to leading order gives

ð8Þ ≈
ffiffiffiffi
E

p
pðxsÞ exp

�
fðxsÞ
E

þ gðxsÞ
�Z

dðδxÞef00ðxsÞ
2

δx2 :

ð9Þ
The σμν term corresponds to gðxÞ, so the saddle point, i.e.
the instanton, does not depend on the spin. The instantons
are therefore determined by the Lorentz-force equation

q̈μ ¼ TFμν _qν: ð10Þ

For the class of fields that we consider in this paper we have

̈t ¼ TEðt; zÞ_z; ̈z ¼ TEðt; zÞ_t; ð11Þ

where Eðt; zÞ ¼ ∂A3ðt; zÞ=∂t. Since we now use tðτÞ and
zðτÞ for the instanton, and since it is usually convenient to
suppress the argument τ, we rename t, t0, z, and z0 in (3) as

t0 → t0 ¼ tðτ ¼ 0Þ; t → t1 ¼ tðτ ¼ 1Þ ð12Þ

and

z0 → z0 ¼ zðτ ¼ 0Þ; z → z1 ¼ zðτ ¼ 1Þ: ð13Þ

It will often be convenient to change the proper-time
variable from τ to

u ¼ Tðτ − σÞ; ð14Þ

where σ is a constant such that the instanton passes through
the field around u ∼ 0. For a symmetric instanton it would
be convenient to choose σ ¼ 1=2, but, in general, different
choices of σ just correspond to arbitrary shifts of the u
variable. The start and end points, τ ¼ 0 and τ ¼ 1, are now
denoted

u0 ¼ −Tσ; u1 ¼ Tð1 − σÞ: ð15Þ

In the asymptotic limit t0; t1 → ∞, we also have T → ∞
and hence u0 → −∞ and u1 → þ∞.
The δq integrand is given by

exp
�
−

i
2T

Z
1

0

ð δt δz ÞΛ
�
δt

δz

��
; ð16Þ

where

Λ ¼ T
�− 1

T ∂
2
τ þ Att _z Atz _zþ At∂τ

Atz _z − ∂τAt
1
T ∂

2
τ − Atz_t

�
; ð17Þ

where Atz¼∂
2A3=∂t∂z, etc., and ∂τAt¼Att_tþAtz _zþAt∂τ.

The path integral can be performed using the Gelfand-
Yaglom method, which gives

detΛ ¼ ðϕð1Þ
1 ϕð2Þ

2 − ϕð1Þ
2 ϕð2Þ

1 Þjτ¼1; ð18Þ

in terms of two solutions, ϕð1Þ and ϕð2Þ, of the Jacobi
equation [11]

Λϕ ¼ 0 ð19Þ

with initial conditions
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ϕð1Þð0Þ ¼ ϕð2Þð0Þ ¼
�
0

0

�
ð20Þ

and

_ϕð1Þð0Þ ¼
�
1

0

�
; _ϕð2Þð0Þ ¼

�
0

1

�
: ð21Þ

Equation (19) can (after being multiplied by σ3) also be
expressed as

½−∂2u þ Eðt; zÞσ1∂u þ fz0ðuÞ; t0ðuÞg∇Eðt; zÞ�ϕ ¼ 0; ð22Þ

where σ1 is one of the Pauli matrices and

∇E ¼ fAtt; Atzg: ð23Þ

For the normalization we use the free part (Dδq ¼
Dδq0Dδq1Dδq2Dδq3)

Z
δqð1Þ¼0

δqð0Þ¼0

Dδq exp

�
−i

Z
1

0

dτ
δ _q2

2T

�
¼ 1

ð2πTÞ2 : ð24Þ

So the nontrivial part is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detΛfree

p
=

ffiffiffiffiffiffiffiffiffiffi
detΛ

p ¼
1=

ffiffiffiffiffiffiffiffiffiffi
detΛ

p
.

Our instantons have nontrivial behavior in the region
where jEj is significantly nonzero and straight lines in the
asymptotic regions, i.e. outside the field. While (19) can be
solved numerically as it stands, it is better to separate out
the asymptotic parts. This will allow us to show analytically
that t0 and t1 drop out in the t0; t1 → ∞ limit.
Before the instanton enters the field region we have (“≈”

could be replaced by “¼” for a field with finite support)

ϕð1Þ ≈
�
τ

0

�
; ϕð2Þ ≈

�
0

τ

�
: ð25Þ

We follow this solution to a point ũ0 where Eðtðũ0Þ; zðũ0ÞÞ
starts to be significantly nonzero, where

τ ¼ u − u0
T

: ð26Þ

At this point we start the numerical computation with initial
conditions

ϕð1Þðũ0Þ ≈
� ðũ0 − u0Þ=T

0

�
;

dϕð1Þ

du
ðũ0Þ ≈

�
1=T

0

�

ð27Þ

and similarly for ϕð2Þ. For t0 → ∞ we have (t0 ¼ dt=du)

ũ0 − u0 ¼
Z

t̃0

t0

dt
t0
¼ t0

p0
0

þOð1Þ; ð28Þ

where we have anticipated that t0 → −p0
0 at u0. In general,

we can already at this point anticipate the values of the
saddle points for all integration variables and substitute
them into Λ and T in (16). We will show below that the
saddle-point value of T is, in the asymptotic limit, given by

T ¼ t0
p0
0

þ t1
p0

þOð1Þ; ð29Þ

so T is on the same order of magnitude as t0, t1. Thus

ϕð1Þðũ0Þ ≈
�
t0=ðTp0

0Þ
0

�
þOð1=TÞ: ð30Þ

At this point it might thus seem like we could approximate
dϕð1Þ
du ðũ0Þ ≈ f0; 0g, but we will show that we need to keep
this derivative equal to f1=T; 0g. Instead we write

ϕðjÞ ¼ t0
Tp0

0

ϕðjÞ
d þ 1

T
ϕðjÞ
n ; ð31Þ

where

ϕð1Þ
d ðũ0Þ ¼

�
1

0

�
;

dϕð1Þ
d

du
ðũ0Þ ¼

�
0

0

�
; ð32Þ

ϕð1Þ
n ðũ0Þ ¼

�
0

0

�
;

dϕð1Þ
n

du
ðũ0Þ ¼

�
1

0

�
; ð33Þ

and similarly for ϕð2Þ
d and ϕð2Þ

n .
We always have one solution to Λϕ ¼ 0 given by

ϕ ¼ ft0; z0g. Since ft00; z00g ¼ 0 outside the field, we can
write

ϕð1Þ
d ðuÞ ¼ c1ft0ðuÞ; z0ðuÞg − c2φðuÞ;

ϕð2Þ
d ðuÞ ¼ c2ft0ðuÞ; z0ðuÞg þ c1φðuÞ; ð34Þ

where the two constants are given by

c1 ¼
t0ðũ0Þ

t02ðũ0Þ þ z02ðũ0Þ
; c2 ¼

z0ðũ0Þ
t02ðũ0Þ þ z02ðũ0Þ

; ð35Þ

and where φ is a second independent solution, with
orthogonal initial conditions

φðũ0Þ ¼
�−z0ðũ0Þ

t0ðũ0Þ

�
;

dφ
du

ðũ0Þ ¼
�
0

0

�
: ð36Þ

The contribution to (18) involving products of ϕðjÞ
d and no

ϕðjÞ
n can now be expressed as
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D1ðuÞ ≔
�

t0
Tp0

0

�
2

ðϕð1Þ
d1 ϕ

ð2Þ
d2 − ϕð1Þ

d2 ϕ
ð2Þ
d1 Þ

¼
�

t0
Tp0

0

�
2 t0ðuÞφ2ðuÞ − z0ðuÞφ1ðuÞ

t02ðũ0Þ þ z02ðũ0Þ
: ð37Þ

In the end we only need the asymptotic value ofD1ðu1Þ (u1
corresponds to τ ¼ 1). Since φ grows linearly in u, we have

D1ðu1Þ ≈ ðu1 − ũ1ÞD0
1ðũ1Þ; ð38Þ

where ũ1 is chosen such that, for u > ũ1, the instanton has
left the region where the field is significantly nonzero. In
the asymptotic limit we have [cf. (28)]

u1 − ũ1 ¼
t1
p0

þOð1=TÞ: ð39Þ

We therefore have

D1ðu1Þ ≈
t0t1

Tp0
0p0

t0
Tp0

0

hðũ1Þ; ð40Þ

where

hðuÞ ¼ t0ðuÞφ0
2ðuÞ − z0ðuÞφ0

1ðuÞ
t02ðũ0Þ þ z02ðũ0Þ

: ð41Þ

A second contribution is given by cross terms between

ϕðjÞ
d and ϕðjÞ

n ,

D2 ≔
t0

T2p0
0

	
ϕð1Þ
d1 ϕ

ð2Þ
n2 þ ϕð1Þ

n1 ϕ
ð2Þ
d2 − ϕð1Þ

d2 ϕ
ð2Þ
n1 − ϕð1Þ

n2 ϕ
ð2Þ
d1



:

ð42Þ
In the asymptotic limit, D2ðuÞ grows quadratically in u, so
we have

D2ðu1Þ ≈
1

2
ðu1 − ũ1Þ2D00

2ðũ1Þ: ð43Þ

Taking the derivatives and throwing away terms with ϕ00, t00,
or z00, which anyway vanish asymptotically, we find

D2ðu1Þ ≈
t0t1

Tp0
0p0

t1
Tp0

gðũ1Þ; ð44Þ

where

gðuÞ ¼ c1
	
ϕð1Þ0
n1 ðuÞφ0

2ðuÞ − ϕð1Þ0
n2 ðuÞφ0

1ðuÞ



þ c2
	
ϕð2Þ0
n1 ðuÞφ0

2ðuÞ − ϕð2Þ0
n2 ðuÞφ0

1ðuÞ


: ð45Þ

D1ðuÞ and D2ðuÞ were introduced as functions of u
(which in the end we only need to evaluate at u1). Now we

have introduced two other functions of u, hðuÞ, and gðuÞ.
The reason for doing this is that hðũ1Þ ¼ gðũ1Þ and we can
prove this by showing that we in fact also have
hðuÞ ¼ gðuÞ, which we in turn can show by considering
h0ðuÞ and g0ðuÞ. In contrast, D1ðuÞ and D2ðuÞ are not
proportional; they have different behavior at finite u.
To simplify h0ðuÞ and g0ðuÞ, we first note that

d
du

ðt0ϕ0
1 − z0ϕ0

2Þ ¼ 0 ð46Þ

for any solution to Λϕ ¼ 0. This gives us a constant of
motion

νðϕÞ ¼ t0ϕ0
1 − z0ϕ0

2: ð47Þ

Using the initial conditions at ũ0 we find νðφÞ ¼ 0,
νðϕð1ÞÞ ¼ t0ðũ0Þ, and νðϕð2ÞÞ ¼ −z0ðũ0Þ. Second, we also
note that for any two solutions, ϕ and ϕ̃, we have

d
du

ðϕ0
1ϕ̃

0
2 − ϕ0

2ϕ̃
0
1Þ ¼ ∇E · ðνðϕÞϕ̃ − νðϕ̃ÞϕÞ ð48Þ

and

d
du

ðt0ϕ0
2 − z0ϕ0

1Þ ¼ m2⊥∇E · ϕ: ð49Þ

Using these relations we find

h0ðuÞ ¼ m2⊥
t02ðũ0Þ þ z02ðũ0Þ

∇E · φ ¼ g0ðuÞ: ð50Þ

Since hðũ0Þ ¼ gðũ0Þ ¼ 0, we therefore have hðuÞ ¼ gðuÞ.
The third contribution,

D3 ¼
1

T2

	
ϕð1Þ
n1 ϕ

ð2Þ
n2 − ϕð1Þ

n2 ϕ
ð2Þ
n1



; ð51Þ

is negligible, because, asymptotically, D3ðuÞ grows
quadratically in u, which makes D3 ∼Oð1Þ, while
D1 ∼D2 ∼OðTÞ.
Thus, together with (29) we find

detΛ ≈D1 þD2 ≈
t0t1

Tp0
0p0

hðũ1Þ: ð52Þ

Note that these approximate signs become exact in the
asymptotic limit t0; t1 → ∞, which we will always take in
the end. Remarkably, we see from (41) that we only need to
find one solution to Λϕ ¼ 0, namely ϕ ¼ φ.
We can simplify further by writing

φ̂ðuÞ ¼ φðuÞ
t02ðũ0Þ þ z02ðũ0Þ

; ð53Þ
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and then we note that any solution can be expressed as

ϕðuÞ ¼ ft0ðuÞ; z0ðuÞgχðuÞ

þ f−z0ðuÞ; t0ðuÞg ηðuÞ
t02ðuÞ þ z02ðuÞ ; ð54Þ

where we thus use χ and η rather than ϕ1 and ϕ2 to
represent the 2 degrees of freedom. From (47) we find

m2⊥χ0 ¼ νþ E
m4⊥ − 4t02z02

ðt02 þ z02Þ2 ηþ 2t0z0

t02 þ z02
η0; ð55Þ

which allows us to write (49) solely in terms of η,

η00 − ðE2 þ∇E · fz0; t0gÞηþ νE ¼ 0: ð56Þ

This is useful because [cf. (41)]

f−z0; t0g · ϕ0 ¼ η0 þ
�
m2⊥χ −

2t0z0

t02 þ z02
η

�
E; ð57Þ

so in the asymptotic limit this quantity also only involves η,

f−z0; t0g · ϕ → η0: ð58Þ

Thus, using this in (41) we find

hðũ1Þ ¼ η0ðũ1Þ; ð59Þ

where η is the solution of (56) with ν ¼ 0 and

ηðũ0Þ ¼ 1; η0ðũ0Þ ¼ 0: ð60Þ

To summarize, we started with an expression for detΛ in
terms of two two-component solutions, ϕð1Þ and ϕð2Þ;
separated out the factors of t0, t1 by expressing detΛ in

terms of three two-component solutions, φ, ϕð1Þ
n , and ϕð2Þ

n ;
then showed that only φ is needed; and finally we have now
showed that we need to find only one one-component
solution, η from (56) with initial conditions as in (60).
Thus, the calculation of the functional determinant (52) is
greatly simplified.

IV. ORDINARY INTEGRALS

We begin with the perpendicular integrals, which are
trivial relative to the other integrals. We make a shift in the
path integration variable,

q⊥ðτÞ → x0⊥ þ τðx⊥ − x0⊥Þ þ q⊥ðτÞ; ð61Þ

so that the new q⊥ðτÞ has boundary conditions
q⊥ð0Þ ¼ q⊥ð1Þ ¼ 0. Then

i
2T

Z
1

0

dτ _q2⊥ →
i
2T

ðx⊥ − x0⊥Þ2 þ
i
2T

Z
1

0

dτ _q2⊥ ð62Þ

and the q⊥ integral is just the free one [which gives one
factor of 1=2πT in (24)]. With x0⊥ ¼ φ⊥ − θ⊥=2 and
x⊥ ¼ φ⊥ þ θ⊥=2, the φ⊥ integral gives

ð2πÞ2δ2ðp⊥ þ p0⊥Þ ð63Þ

and the Gaussian θ⊥ integral gives a factor of

2πT ð64Þ

to the prefactor.
Next we turn to the integrals over z0 ¼ zðτ ¼ 0Þ,

z1 ¼ zðτ ¼ 1Þ, and T, which we will also perform using
the saddle-point method. We obtain the saddle-point
equations by differentiating the exponent in (2), where
qμ is now the instanton solution. At this point in the
calculation, qμ depends on z0, z1, and T. If we make a
variation in z0, z1, or T, then that leads to a variation in qμ,
which we denote δ0q.7 The corresponding variation of the
exponent is given by

δ0i
�
p3z1 þ p0

3z0 −
Tm2⊥
2

−
Z

1

0

dτ

�
_q2

2T
þ AðqÞ _q

��

¼ −
i
2
ðm2⊥ − a2Þδ0T þ ip3δ

0z1 þ ip0
3δ

0z0

− i

�
_q
T
þ A

�
δ0q

����
1

0

; ð65Þ

where

a2 ¼ _t2 − _z2

T2
¼ t02 − z02 ð66Þ

is a constant of motion. Thus, with f� � �g denoting the curly
brackets in (65),

∂

∂z0
if� � �g ¼ i½p0

3 − z0ðu0Þ�; ð67Þ

∂

∂z1
if� � �g ¼ i½p3 þ z0ðu1Þ�; ð68Þ

and

∂

∂T
if� � �g ¼ i

2
ða2 −m2⊥Þ: ð69Þ

The saddle points, zs0ðp0
3; p3; m⊥Þ, etc., are determined by

setting (67)–(69) to zero. These equations might look rather
complicated since they involve the instanton solution,

7We used δq for the path integration variable.
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which we have not found yet and which we in general can
only find numerically. Fortunately, these equations simplify
considerably in the asymptotic limit t0; t1 → ∞. We have

z0 ¼ z̃0 þ
Z

t0

t̃0

dt
z0

t0
¼ −

t0z0ðu0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z02ðu0Þ

p þOð1Þ; ð70Þ

z1 ¼ z̃1 þ
Z

t1

t̃1

dt
z0

t0
¼ t1z0ðu1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ z02ðu1Þ
p þOð1Þ; ð71Þ

and

T ¼
Z

t1

t0

dt
t0
¼ t1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ z02ðu1Þ
p þ t0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ z02ðu0Þ
p þOð1Þ;

ð72Þ

where we have used t0ðu1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z02ðu1Þ

p
and t0ðu0Þ ¼

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z02ðu1Þ

p
, which follows from (66). We can now

solve (70)–(72),

z0ðu0Þ ¼ −
z0
T

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 − z21

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t20 − z20

p
�
; ð73Þ

z0ðu1Þ ¼
z1
T

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t20 − z20

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 − z21

p
�
; ð74Þ

and

a2 ¼ 1

T2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
t20 − z20

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 − z21

q �
2

: ð75Þ

By substituting these into (67)–(69) we find

zs0 ¼ −
p0
3t0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2⊥ þ p02
3

p ; zs1 ¼ −
p3t1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ p2

3

p ; ð76Þ

and

Ts ¼
t0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2⊥ þ p02
3

p þ t1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ p2

3

p : ð77Þ

With p0
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ p02

3

p
and p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ p2

3

p
we have thus

proven (29), which we anticipated in the calculation of the
functional determinant. We will show below that the
dominant contribution comes from p0

3 ∼ −p3, so zs0 and
zs1 have different signs; i.e. the instanton starts and ends on
opposite sides of the field, or, in other words, the electron
and positron end up at opposite sides.
It is now also straightforward to calculate the Hessian

matrix H by differentiating (67)–(69). This gives us a
Gaussian integral

Z
d3X exp f−X ·H ·Xg; ð78Þ

where X ¼ fδz0; δz1; δTg with δz0 ¼ z0 − zs0, etc. The
expression for H is not particularly illuminating, but its
determinant is given by

detH ¼ ip03
0 p

3
0

8m2⊥t0t1T
: ð79Þ

Thus, the contribution from the ordinary integrals is
actually quite simple. We can now see that the factors of
t0, t1 cancel when combining (52) and (79).

V. SPIN PART

Now we turn to the spin part of the prefactor. Using

d
du

ln½t0ðuÞ � z0ðuÞ� ¼ �Eðt; zÞ ð80Þ

we can actually perform the proper time integral analytically,

−
iT
4
σμν

Z
1

0

dτFμν ¼
1

2
γ0γ3 ln ρ; ð81Þ

where

ρ ¼ t0ðu1Þ þ z0ðu1Þ
t0ðu0Þ þ z0ðu0Þ

¼ −
p0 − p3

p0
0 − p0

3

: ð82Þ

Note that this does not depend on the field. For the ði=Dx þ 1Þ
part in (2) we can perform partial integration in x, and in the
asymptotic limit we find

ði=Dx þ 1Þ → pþ 1: ð83Þ

So the calculation of the spin part reduces to

S ¼ R̄sðpþ 1Þγ0ðpþ 1Þ 1

2
ffiffiffi
ρ

p ðρ½1þ γ0γ3� þ 1 − γ0γ3Þ

× γ0ð−p 0 þ 1ÞRs0 ; ð84Þ

which is field independent. At this point S does perhaps not
look symmetric in p ↔ p0, but after some algebra we find
that the amplitude is proportional to δss0 , so summing over
spins gives a trivial factor of 2, and in the end we find

X
ss0

jSj2 ¼ 8p0p0
0: ð85Þ

So, for the fields we consider here, the spin factor is
rather simple. But when applying these methods to more
general spacetime dependent fields, e.g. with magnetic
components, one could study both the momentum and the
spin dependence of the probability.
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VI. FINAL FORMULA FOR THE GENERAL CASE

Combining all the separate contributions we finally find

P ¼
Z

d3p
ð2πÞ3

d3p0

ð2πÞ3 ð85Þ
���� 12 ð24Þð63Þð64Þ

π3=2ffiffiffiffiffiffiffiffiffið79Þp e…ffiffiffiffiffiffiffiffiffið52Þp
����
2

¼ V⊥
Z

d2p⊥
ð2πÞ2

dp3

2π

dp0
3

2π

4πm2⊥
p0p0

0jhðũ1Þj
e−A; ð86Þ

where V⊥ ¼ V1V2 is a perpendicular volume factor, and

A ¼ −2Rei
Z

∞

−∞
duqμ∂μAν

dqν

du
: ð87Þ

The factors of t0 and t1 have canceled, and we can now
take t0; t1 → ∞.

VII. INSTANTONS AND THE CHOICEOF EINBEIN

We have calculated (86) without actually having to find
any instantons. However, in contrast to the purely time-
dependent case [24], to evaluate (86) for a spacetime
dependent field we do need to find the instanton. When
writing “the” instanton, one should keep in mind the point
made in [24], i.e. that different choices of complex einbeins
lead to different trajectories. Two instantons that can be
(continuously) deformed to each other by deforming the
einbein are equivalent and give the same results, but some
choices of einbeins might be more convenient to work with
and others might facilitate a physical interpretation.
Before turning to einbeins, we first note that when

expressed in terms of E, γω ¼ ω
E, and γk ¼ k

E, the instantons
do not have any nontrivial dependence on E. This follows
from the fact that E ≪ 1 is the expansion parameter (i.e.
one should not expect to see any complicated functions of
E) and the final result has a simple dependence on E,

P ¼ EaF ðγω; γkÞ exp
�
−
Gðγω; γkÞ

E

�
; ð88Þ

where a is a constant. This is the leading order in a E ≪ 1
expansion. Corrections are suppressed with higher powers
of E.
To remove the trivial E dependence from the instantons

we first write the instanton equations (11)

t00 ¼ Eðt; zÞz0; z00 ¼ Eðt; zÞt0; ð89Þ

where the field can be expressed as

Eðt; zÞ ¼ EFðωt; kzÞ: ð90Þ

From this we see that we should rescale

q →
q
E

ð91Þ

so that the arguments become Fðγωt; γkzÞ. To remove the
remaining E from (89) we have to rescale

u →
u
E
: ð92Þ

The rescaled instanton equations are thus given by

t00 ¼ Fðγωt; γkzÞz0; z00 ¼ Fðγωt; γkzÞt0: ð93Þ

From (87) we also see that this gives an exponent on the
form (88). For the prefactor, the only nontrivial contribution
in (86) comes from h. From (56) with ν ¼ 0 and initial
conditions (60) we see that η is not rescaled with E, so
from (59) we see that h ¼ EHðγω; γkÞ. Thus, the prefactor
in (88) scales as 1=E, i.e. a ¼ −1, for the momentum
spectrum. As we will show below, each of the four momen-
tum integrals can be performed with the saddle-point
method, so each of themgives a factor of

ffiffiffiffi
E

p
to the prefactor.

Thus, the prefactor for the total/integrated probability scales
as E, i.e. a ¼ 1.
We now turn to the choice of einbein. In [15] one can

find a representation of the effective action with an addi-
tional path integral over an einbein field, together with a
gauge-fixing functional. However, for our purposes, we
simply note that one is free to make contour deformations
for the u integral, and so by different einbeins we simply
mean different complex, integration contours. We para-
metrize the complex contour using a real parameter r, and,
rather than specifying uðrÞ directly, we specify the velocity
along the contour as

du
dr

¼ fðrÞ ð94Þ

such that fð0Þ ¼ e−iθ and fðrÞ → 1 asymptotically by
simply defining a weighted combination

fðrÞ ¼ 1þ ðe−iθ − 1ÞψðrÞ; ð95Þ

FIG. 1. ψðrÞ for parameters L ¼ 1.6 and W ¼ 0.3.
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where ψðrÞ is some normalized bump function with
ψðrÞ ∼ 1 when r ∼ 0 and ψðrÞ → 0 when r becomes large.
As an example, we can take

ψðrÞ ¼ 1

2

�
tanh

�
rþ L
W

�
þ tanh

�
−rþ L

W

��
; ð96Þ

which is illustrated in Fig. 1. The parameters L and W can
be chosen such that the bump becomes larger and steeper
at will.
The parametrization is arbitrary, and all physical quan-

tities are of course independent of this choice. It is possible
to choose a parametrization such that tðrÞ runs parallel to
the imaginary axis from the turning point, then turns, and
becomes purely real. At the momentum saddle point,
Eq. (121) implies that z is also real. We have therefore
complex tunneling trajectories at r ∼ 0 and real particles
asymptotically, since both components are real. Such an
einbein can be found by setting θ ¼ π

2
and tuning the other

two parameters until we have the desired result. The
resulting instantons are shown in Fig. 2. Note that the
instantons still satisfy

�
dq
du

�
2

¼ 1 ð97Þ

because we have merely changed the contour into uðrÞ. Of
course, if we write it in terms of the real parameter r, then

�
dq
dr

�
2

¼ f2ðrÞ: ð98Þ

However, while tuning the einbein such that the instan-
ton goes along the real axis asymptotically may seem
natural, from a practical point of view this is actually a great
deal of unnecessary work, since we would need to re-tune
the einbein whenever we change the parameters of the field
or the particle momenta. So, for computational convenience

we used a simple tilted parametrization as uðrÞ ¼ e−iθr
instead, with one fixed value of θ. With the einbein (95), we
expect the instantons to deviate from the ones with the tilted
parametrization only when ψ drops to zero, and this is
indeed what happens. Instantons for a tilted parametrization
are shown in Fig. 3.
To find the instantons it is convenient to use “initial”

conditions in the middle of the instanton, at u ¼ 0, and then
vary the position and velocity, qμð0Þ and q0μð0Þ, until we
find a solution with the correct asymptotic momenta at
u → �∞. In the symmetric case we can choose zð0Þ ¼ 0

and t0ð0Þ ¼ 0, which implies z0ð0Þ2 ¼ −m2⊥, and then
different choices of tð0Þ lead to different asymptotic
momenta. tð0Þ is in general complex. We can determine
it using the condition

z0ðu1Þ ¼! p: ð99Þ

Note that this equation represents two real conditions; one
for Reðz0ðu1ÞÞ and another for Imðz0ðu1ÞÞ. Equation (99)
allows us to consider a generic momentum p, and then we

FIG. 2. Real and imaginary parts of t and z of the physical instantons, with W ¼ 0.1 and L ¼ 1.1636. The field parameters are
γk ¼ γω ¼ 1.

FIG. 3. Instanton plots for γω ¼ 1 and different values of γk.
The parametrization is given by u ¼ e−iθr with θ ¼ 0.2π.
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can vary p to find the saddle point ps. However, for p ¼ ps,
tð0Þ turns out to be purely imaginary, so then we only need
one real condition to determine tð0Þ. We have found that
one possible condition is

Im z0ðu1Þ ¼! 0: ð100Þ

Note that the momentum ps does not enter (100), so we can
actually find the dominant instanton without first determin-
ing ps. Once we have found this instanton, we can obtain
ps by simply evaluating ps ¼ z0ðu1Þ. This is significantly
faster than using the condition (99).
Another thing that can be crucial for finding instantons is

to use a numerical continuation [18], where we start with
some parameter values that lead to a simple instanton and
then we gradually change the parameters, which leads to a
gradual change in the instanton. This idea was used in [18]
to find discretized, closed-loop instantons for the imaginary
part of the effective action. Here we do not discretize the
instanton and our instantons are open lines, but we have
still found numerical continuation to be very useful. In
particular, if we know the instanton for some value of γk,

then we use the value of tð0Þ as a starting point for the
numerical root finding of tð0Þ for γk þ Δγk. If each stepΔγk
is sufficiently small, then the root finding converges fast.
For a purely time-dependent Sauter pulse we have

tð0Þ ¼ i
γω

arctanðγωÞ; ð101Þ

therefore we use this at the initial point γk ¼ 0. Without this
numerical continuation it is difficult to find the instantons at
larger γk.
Having obtained the instantons, we can now immedi-

ately obtain the results for the exponential part of the
probability using (87). The results are shown in Fig. 4. In
the limit γk → 0, where the field has a very slow spatial
dependence, we find agreement with the analytical result
for a purely time-dependent field [8,10]

A →
1

E
2π

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2ω

p : ð102Þ

Also shown are the results obtained using the discrete-
instanton code from [17,18]. We have perfect agreement.
For γω ∼ 1=4 we see a significant increase in the exponent
as γk increases. In contrast, for γω ∼ 2 the exponent is quite
flat; i.e. it is quite insensitive to the spatial width of
the field.

VIII. PERPENDICULAR MOMENTUM INTEGRAL

To obtain the total probability we can perform the
momentum integrals in (86) with the saddle-point method.
When doing so we actually obtain the relevant information
for the shape of the spectrum near the dominant peaks too,
as we will now explain.
We start with the perpendicular momentum integrals.

Since a nonzero p⊥ basically means making the fermions
heavier, we have a saddle point at p⊥ ¼ 0. Around this
point the spectrum is Gaussian,

Pðp⊥Þ ∝ exp

�
−
p2⊥
d2⊥

�
: ð103Þ

To find the width we go back and express the exponent as
in (3), but with the integration variables replaced by their
saddle-point values. Since this is already a function of p2⊥
rather than p⊥, we just have to make a linear expansion.
Since the partial derivatives with respect to the previous
integration variables vanish at the saddle point, we simply
find

d−2⊥ ¼ − lim
−u0;u1→∞

Re i

�
tðu1Þ
p0

þ tðu0Þ
p0
0

− u1 þ u0

�
: ð104Þ

We can see that this limit is finite by noting that the
derivatives with respect to u0 and u1 vanish outside the

FIG. 4. Exponential part of the probability A from (87)
(without the overall factor of 1=E) as a function of γk for various
values of γω. The dots are obtained with the discrete-instanton
code from [17,18]. The number of points used for the discrete
instantons varies depending on the γω value, from N ¼ 500 for
γω ¼ 2 to N ¼ 2000 for γω ¼ 1

4
. The γk → 0 limit is given by the

known analytical result (102).
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field. We can therefore choose any u0 and u1 that are large
enough so that the instanton at these points is outside the
field. Interestingly, note that, by using (104), we obtain
the transverse width d⊥ from instantons with p⊥ ¼ 0; i.e.
we do not need to find any instantons with p⊥ ≠ 0 for this.
From (91), (92), and (104) we see that d⊥ ∝

ffiffiffiffi
E

p
.

The results are shown in Fig. 5. We see that both the
exponent in Fig. 4 and d⊥ in Fig. 5 are, for γω ≳ 1, quite
insensitive to γk. As for the exponent, in the γk → 0 limit
we find agreement with the analytical result [8]

d−2⊥ →
1

E
πffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2ω
p : ð105Þ

IX. LONGITUDINAL MOMENTUM INTEGRAL
FOR SYMMETRIC FIELDS

For a space-independent field we would have a delta
function δðp3 þ p0

3Þ, which we do not have for the
spacetime dependent fields we now consider. However,
for symmetric fields we still have a saddle point at
p3 þ p0

3 ¼ 0. We therefore change variables from

p3 ¼ −Pþ Δp
2

; p0
3 ¼ Pþ Δp

2
ð106Þ

to P and Δp. It follows from the symmetry that there is a
saddle point at Δp ¼ 0, regardless of the value of P.

A. The component with trivial saddle point

To obtain the Gaussian width dΔ in

PðΔpÞ ∝ exp

�
−
Δp2

d2Δ

�
; ð107Þ

we start with the exponent expressed as in (3), where all the
integration variables have been replaced by their saddle-
point values. Since the partial derivatives of the exponent
with respect to the integration variables vanish at the saddle
point, we have

∂A
∂p3

¼ −2Rei
�
zðu1Þ þ

p3

p0

tðu1Þ
�

ð108Þ

and

∂A
∂p0

3

¼ −2Rei
�
zðu0Þ þ

p0
3

p0
0

tðu0Þ
�
: ð109Þ

As the width is given by

d−2Δ ¼ 1

2
A00ðΔp ¼ 0Þ; ð110Þ

we obtain it by expanding (108) and (109) to linear order
in Δp. So, we only need the first-order variation of the
instanton,

qμðuÞ → qμðuÞ þ ΔpδqμðuÞ: ð111Þ

It follows from (67) and (68) that

−t0ðu0Þ ¼ t0ðu1Þ ¼ p0; z0ðu0Þ ¼ z0ðu1Þ ¼ P; ð112Þ

δt0ðu0Þ ¼ δt0ðu1Þ ¼ −
P
2p0

; δz0ðu0Þ ¼ −δz0ðu1Þ ¼
1

2
;

ð113Þ

where p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ P2

p
. The expansion of the Lorentz

force equation gives

δt00 ¼ ∇E · fδt; δzgz0 þ Eδz0;

δz00 ¼ ∇E · fδt; δzgt0 þ Eδt0: ð114Þ

From (113) we find

d−2Δ ¼ 1

2
A00ðΔp ¼ 0Þ

¼ Rei

�
−
m2⊥
2p3

0

tþ P
p0

δt − δz

�����
u→∞

: ð115Þ

FIG. 5. d⊥ðγkÞ (without the overall factor of
ffiffiffiffi
E

p
) for different

values of γω, calculated using (104). The γk → 0 limit agrees with
the known analytical result (105).
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We can express this in terms of η ¼ t0δz − z0δt as

d−2Δ ¼ Re
im2⊥
2p2

0

�
ηa −

t
p0

�����
u→∞

; ð116Þ

where

η ¼ −
m2⊥
2p0

ηa ð117Þ

is a solution to (56) with ν ¼ 0 and

η0aðu0Þ ¼ η0aðu1Þ ¼ 1: ð118Þ

ηa is therefore antisymmetric in u. When rescaling as in
(91) and (92), we see from (118) that ηa ∝ 1=E, and so
from (116) it follows that dΔ ∝

ffiffiffiffi
E

p
.

The results are shown in Fig. 6. In contrast to Figs. 4 and
5, Fig. 6 shows that dΔ is much more sensitive to the value
of γk.

B. The component with nontrivial saddle point

Now that the Δp integral has been performed we have

p3 ¼ −P; p0
3 ¼ P: ð119Þ

To obtain the width in P we can use the same method as for
Δp. We write P → Pþ δP, where afterwards P now

denotes the saddle-point value, which is nontrivial, and
δP is the new integration variable. We again expand the
instanton to linear order

qμðuÞ → qμðuÞ þ δPδqμðuÞ: ð120Þ
The equations of motion for δqμ are the same, i.e. (114),
and we can still use (108) and (109). The difference is the
boundary/initial conditions,

δz0ðu0Þ ¼ δz0ðu1Þ ¼ 1; −δt0ðu0Þ ¼ δt0ðu1Þ ¼
P
p0

:

ð121Þ
So this time δt is symmetric, while δz is antisymmetric.
The saddle point for P is determined by

A0ðPÞ ¼ −4Re i
�
P
p0

tðu1Þ − zðu1Þ
�
¼! 0; ð122Þ

where we have used the symmetry to set tðu0Þ ¼ tðu1Þ and
zðu0Þ ¼ −zðu1Þ. This is independent of u1 (as long as it is
chosen sufficiently large), which follows from the asymp-
totic values of t0 and z0.
P for the spacetime Sauter pulse is plotted in Fig. 7. We

see that P decreases as γk grows, since the pairs are more
likely to be produced with smaller momenta when the size
of the field gets smaller in the z direction.
Using the asymptotic boundary conditions in (121) we

find

d−2P ¼ 1

2
A00ðδP ¼ 0Þ ¼ −2Re i

�
m2⊥
p3
0

tþ P
p0

δt − δz

�����
u→∞

:

ð123Þ

This too can be written in terms of η,

d−2P ¼ Re
2im2⊥
p2
0

�
ηs −

t
p0

�����
u→∞

; ð124Þ

FIG. 6. dΔðγkÞ (without the overall factor of
ffiffiffiffi
E

p
) for different

values of γω, calculated using (116) or (115). Here dΔ ¼ γkd̂Δ.

FIG. 7. Normalized saddle-point value of P for fixed γω as
function of γk. We always have Pð0Þ ¼ 1=γω.

DEGLI ESPOSTI and TORGRIMSSON PHYS. REV. D 107, 056019 (2023)

056019-12



where

η ¼ m2⊥
p0

ηs ð125Þ

is a solution to (56) with ν ¼ 0 and

−η0sðu0Þ ¼ η0sðu1Þ ¼ 1: ð126Þ

ηs is therefore symmetric in u. When rescaling as in (91)
and (92), we see from (126) that ηs ∝ 1=E, and so from
(124) it follows that dP ∝

ffiffiffiffi
E

p
.

The results for dP are shown in Fig. 8. As for the
exponent and d⊥, in the γk → 0 limit we find agreement
with the analytical result [8]

d−2P →
1

E
πγ2ω

ð1þ γ2ωÞ32
: ð127Þ

C. η solutions

Note that we have now expressed the contribution from
the functional determinant [see (59)], dΔ (116) and dP
(124) in terms of solutions of (56) with ν ¼ 0. The
difference between these three contributions is the initial/
boundary conditions in (60), (118), and (126). Since there

are only two linearly independent solutions to (56), we can
write e.g. the η solution with (60) as a superposition of the
symmetric and antisymmetric solutions,

ηðuÞ ¼ caηaðuÞ þ csηsðuÞ: ð128Þ

From (60), (118), and (126) we find

ca ¼ cs ¼
1

ηsðu1Þ − ηaðu1Þ
: ð129Þ

This means that we can write the contribution from the
functional determinant in terms of the same combinations
that appear in (116) and (124) for dΔ and dP as

hðu1Þ ¼ 2

��
ηs −

t
p0

�
−
�
ηa −

t
p0

��
−1
����
u→∞

: ð130Þ

In fact, once we have found one solution to (56) (ηa say),
then the other one (ηs) can be obtained using Abel’s
identity, as explained in the Appendix.

X. THE k → 0 LIMIT

In this section we will consider the limit where the field
depends very slowly on z, i.e. k → 0. In some contributions
to the probability we can simply set k ¼ 0. However, for a
space-independent field we would have a delta function in
δðp3 þ p0

3Þ, so we expect that the Gaussian width for Δp
should become increasingly narrow, i.e. dΔ → 0. We also
find that h → 0 [the contribution from the path integral; see
(86)]. Thus for dΔ and h we have to derive nontrivial k ≪ 1
approximations in order to obtain the probability to leading
order in k ≪ 1.
We have found that we can obtain such approximations

by making a power-series expansion in k2. We obtain h
from (56) with ν ¼ 0 going up to next-to-leading order
of the expansion of η in k2. The limit of dΔ follows
immediately after we have found h. To obtain this we first
need to find the first two terms in the k2 expansion of the
instanton.

A. Instanton

It turns out that the instanton can be expanded as

qμ ≈ qμð0Þ þ k2qμð1Þ: ð131Þ

To zeroth order we have

t0ð0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ A2

ð0Þ
q

; z0ð0Þ ¼ Að0Þ; ð132Þ

where Að0Þðtð0ÞÞ ¼ Aðk → 0Þ. For a Sauter pulse we
have Að0Þðtð0ÞÞ ¼ ðE=ωÞ tanhðωtð0ÞÞ. This gives an implicit
equation for t0ð0Þ in terms of tð0Þ, but at the turning point

FIG. 8. dPðγkÞ (without the overall factor of
ffiffiffiffi
E

p
) for different

values of γω, calculated using (124) or (123). The γk → 0 limit
agrees with the known analytical result (127).
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t0ð0Þð0Þ ¼ 0 we find an explicit expression for tð0Þð0Þ.
Setting p⊥ ¼ 0 we find

tð0Þð0Þ ¼
i
ω
arctanðγωÞ; ð133Þ

which agrees with (101) after the rescaling in (91). The
asymptotic momentum of this is fixed, i.e.

z0ð0Þðu0Þ ¼ z0ð0Þðu1Þ ¼
1

γω
; ð134Þ

so for this to be consistent with (112) we see that the
saddle-point value of the longitudinal momentum has to
scale as

P ≈
1

γω
− ck2 ð135Þ

for k ≪ 1, and where c is a constant. The leading order,
1=γω, agrees with the numerical results in Fig. 7. Thus, the
boundary conditions for the next-to-leading order is

z0ð1Þðu0Þ ¼ z0ð1Þðu1Þ ¼ −c ð136Þ

and the equations of motion

t00ð1Þ ¼ Eð0Þz0ð1Þ þ ðE0
ð0Þtð1Þ − ζEð0Þz2ð0ÞÞz0ð0Þ;

z00ð1Þ ¼ Eð0Þt0ð1Þ þ ðE0
ð0Þtð1Þ − ζEð0Þz2ð0ÞÞt0ð0Þ; ð137Þ

where Eð0Þðtð0ÞÞ ¼ Eðk → 0Þ, E0
ð0Þ ¼ dEð0Þ=dt, and ζ is

defined by

Eðt; zÞ ¼ Eð0ÞðtÞð1 − ζðkzÞ2 þOð½kz�4ÞÞ: ð138Þ

For a Sauter pulse we have Eð0ÞðtÞ ¼ Esech2ðωtð0ÞÞ and
ζ ¼ 1. Similar to what we did in Sec. VII, we can actually
solve for qð1Þ without knowing the constant c in (136). We
do this by setting the conditions

zð1Þð0Þ ¼ z0ð1Þð0Þ ¼ t0ð1Þð0Þ ¼ 0 ð139Þ

and vary the purely imaginary value tð0Þ until

Im z0ð1Þðu1Þ ¼! 0: ð140Þ

After we have found the solution, we can find c by simply
evaluating c ¼ −z0ð1Þðu1Þ.

B. Functional determinant and dΔ
To obtain the k → 0 limit of the Gelfand-Yaglom

determinant (59) we perform a Taylor expansion

ηðuÞ → ηð0Þ þ k2ηð1Þ ð141Þ

and observe that the equations for these two terms are
given by

η00ð0Þ ¼ ðE2
ð0Þðtð0ÞÞ þ E0

ð0Þðtð0ÞÞz0ð0ÞÞηð0Þ;
η00ð1Þ ¼ ðE2

ð0Þðtð0ÞÞ þ z0ð0ÞE
0
ð0Þðtð0ÞÞÞηð1Þ

þ ð2Eð0Þðtð0ÞÞ½E0
ð0Þðtð0ÞÞtð1Þ − ζEð0Þðtð0ÞÞz2ð0Þ�

− 2ζzð0ÞEð0Þðtð0ÞÞt0ð0Þ þ E00
ð0Þðtð0ÞÞtð1Þz0ð0Þ

þ E0
ð0Þðtð0ÞÞz0ð1Þ − ζz2ð0ÞE

0
ð0Þðtð0ÞÞz0ð0ÞÞηð0Þ: ð142Þ

With the initial conditions (60) we immediately find

ηð0ÞðuÞ ¼ −
t0ð0Þ
p0

; ð143Þ

and for ηð1Þ we solve (142) with initial conditions

ηð1Þðũ0Þ ¼ η0ð1Þðũ0Þ ¼ 0: ð144Þ

Since η0ð0Þðũ1Þ ¼ 0, the limit k → 0 of hðũ1Þ is simply

hðũ1Þ ≈ k2η0ð1Þðũ1Þ: ð145Þ

As for dΔ, the simplest way to obtain it is from (116)
using (130). Since dP is finite when k → 0 we simply have

d−2Δ ¼ Im
1

ð1þ 1
γ2ω
Þhðũ1Þ

: ð146Þ

Thus, we see that dΔ ∝ k indeed goes to zero as k → 0.

C. Total prefactor

In summary, in the k → 0 limit we have dΔ ¼ kd̂Δ and
h ¼ k2ĥ, so the total prefactor scales as

PðpÞ ∝ 1

2πk2ĥ
exp

�
−
Δp2

k2d̂2Δ

�
→

d̂Δ
2

ffiffiffi
π

p
kĥ

δðΔpÞ: ð147Þ

This factor would be VzδðΔpÞ had we started with k ¼ 0,
where Vz is a volume factor. Here we find a regularized
volume factor proportional to 1=k.
We plot the normalized probability without the factor

of 1=k by dividing by the leading order contribution as
γk → 0,

Pref0ðkÞ ≔ lim
k→0

PrefðkÞ ∝ 1

k
: ð148Þ

The results for the Sauter pulse are shown in Fig. 9. The
plot also demonstrates perfect agreement with the results
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obtained with the instanton code from [17,18], which deals
with closed instantons for the imaginary part of the
effective action. This prefactor is the product of several
different contributions in our new approach, it is in
particular a product of the widths of the spectrum, so this
agreement is not just a check for the integrated probability
but also for the spectrum, which one cannot obtain with the
closed-instanton approach.

XI. CONCLUSIONS

In this paper we developed a method that makes use of
worldline instantons with open lines to obtain the pair-
production spectrum in the presence of a background field
which depends not only on time, as in previous works, but
also on one space coordinate. To do so we made use of the
LSZ reduction formula with free asymptotic states and the
internal propagator expressed in its worldline representa-
tion with a particle path integral. From the spectrum, we
showed how the maximum changes with the field shape. In
particular, as one might expect, when the spatial extension
of the field gets smaller, it is more likely to produce
particles with smaller momenta. Since the field depends on
one spatial dimension, the momentum is not conserved

along that direction. Nonetheless, the spectrum is sym-
metric under electron/positron exchange.
From the integrated spectrum we could also obtain the

total probability, finding perfect agreement with results
obtained using the discrete-instanton code from [17,18].
This method should also work for fields which depend

on more spatial directions and have magnetic components.
For example, an interesting and more realistic field is the
e-dipole pulse [19], which is a solution to Maxwell’s field
equations localized in all four spacetime coordinates. This
field was considered in [18] using the closed-instanton
approach to obtain the total probability. Now with our new,
open-instanton approach we could also study the corre-
sponding momentum spectrum or the spin dependence.
We showed in [24] how to use open instantons for

nonlinear Breit-Wheeler pair production and nonlinear
Compton scattering in a time-dependent field. We expect
that these methods can also be used for such processes in
spacetime dependent fields.
The instanton and the usual WKB methods should give

equivalent results for the semiclassical approximation,
and in the 1D cases where it has been possible to use
both this has been confirmed. However, while WKB
methods are more well known, and usually easier to use
for 1D problems, the instanton approach seems more
promising when going beyond 1D fields.
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APPENDIX: ABEL’S IDENTITY

In this appendix we will explain how to obtain e.g. ηs
from ηa using Abel’s identity. In this case it says that, since
there is no η0 term in (56), the Wronskian is constant,

W ¼ ηsη
0
a − η0sηa ¼ const; ðA1Þ

which can be solved for ηs in terms of ηa. For u < 0 we can
write the solution as

ηsðuÞ ¼ ηaðuÞ
�

W
ηaðu0Þ

− 1 −W
Z

u

u0

dv
η2aðvÞ

�
: ðA2Þ

The limit of (A2) as u → 0 from u < 0 remains finite
despite the pole in the integrand due to ηa → 0. However,
we cannot directly evaluate (A2) for u > 0, since then the

FIG. 9. Prefactor PrefðγkÞ (without the overall factor of E)
for different values of γω. We have divided by either 1=γk or
Pref0ðγkÞ to remove the 1=k scaling. The dots are obtained with
the code in [17,18]. The number of points used for the discrete
instantons varies depending on the γω value from N ¼ 2000 for
γω ¼ 2 to N ¼ 4000 for γω ¼ 1

4
.
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integral would go over the pole [and the overall factor of
ηaðuÞ ≠ 0]. In principle this is not a big problem since ηs
for u > 0 follows from the symmetry ηsðuÞ ¼ ηsð−uÞ. But
it is nevertheless useful to rewrite (A2) by making a partial
integration as

ηsðuÞ ¼
W

η0aðuÞ
þ ηaðuÞ

�
−1þW

Z
u

u0

dv
η00a

ηaη
02
a

�
; ðA3Þ

where the integrand no longer has a pole. We can findW by
demanding that η0sð0Þ ¼ 0 (η0s is antisymmetric). We find

1

W
¼

Z
0

u0

dv
η00a

ηaη
02
a
: ðA4Þ

With this we can now write ηs in a manifestly symmetric
form,

ηsðuÞ ¼ W

�
1

η0aðuÞ
þ ηaðuÞ

Z
u

0

dv
η00a

ηaη
02
a

�
: ðA5Þ

However, at the end we actually only need ηsðu1Þ (we
use u0 ¼ −u1), which we obtain most easily by going back
to (A2),

ηsðu1Þ ¼ ηsðu0Þ ¼ W þ ηaðu1Þ: ðA6Þ

In particular, for the functional determinant we have

hðu1Þ ¼
2

W
: ðA7Þ

Here we have singled out ηa as the solution in terms of
which the other solutions are expressed. This is motivated
by the fact that for k → 0 it has a simple form. But for
numerical purposes it might be more convenient to instead
use a solution that is fixed by the value of η and η0 at one
point, e.g. as in (60), rather than at two points as in (118),
because with (60) we only have to solve (56) once, while if
we find the solution with (118) by varying η0ð0Þ we would
have to solve (56) several times until we found the value of
η0ð0Þ that gives the solution. Thus, for numerical purposes
it can be faster to write ηa as a superposition of two
solutions as

ηaðuÞ ¼ −
η2ðu1Þ

1þ η1ðu1Þ
η1ðuÞ þ η2ðuÞ; ðA8Þ

where η1 has initial conditions as in (60) while

η2ðũ0Þ ¼ 0; η02ðũ0Þ ¼ 1: ðA9Þ

However, for the cases we consider here, Eq. (56) is solved
quickly regardless of which approach we use.
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