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The renormalization properties of two local gauge invariant composite operators ðO;Ra
μÞ corresponding,

respectively, to the gauge invariant description of the Higgs particle and of the massive gauge vector boson,
are analyzed to all orders in perturbation theory by means of the algebraic renormalization in the SUð2Þ
Higgs model, with a single scalar in the fundamental representation, when quantized in the Landau gauge in
Euclidean space-time. The present analysis generalizes earlier results presented in the case of the Uð1Þ
Higgs model. A powerful global Ward identity, related to an exact custodial symmetry, is derived for the
first time, with deep consequences at the quantum level. In particular, the gauge invariant vector operators
Ra
μ turn out to be the conserved Noether currents of the above-mentioned custodial symmetry. As such,

these composite operators do not renormalize, as expressed by the fact that the renormalization Z-factors of
the corresponding external sources, needed to define the operators Ra

μ at the quantum level, do not receive
any quantum corrections. Using this Ward identity, one can also prove that the longitudinal component of
the two-point correlation function hRa

μðpÞRb
νð−pÞi exhibits only a tree level nonvanishing contribution

which, moreover, is momentum independent, thus it is not associated to any physical propagating mode.
Finally, we point out that the renowned nonrenormalization theorem for the ghost-antighost-vector boson
vertex in Landau gauge remains true to all orders, also in the presence of the Higgs field.

DOI: 10.1103/PhysRevD.105.065018

I. INTRODUCTION

In a previous work [1], we studied the SUð2Þ Higgs
model with a complex scalar field in the fundamental
representation. In particular, we analyzed a set of two-point
Green’s functions of local gauge invariant composite
operators, a scalar OðxÞ and a triplet ðRa

μðxÞ; a ¼ 1; 2; 3Þ
of vector operators, namely

OðxÞ ¼ 1

2
ð2vhðxÞ þ h2ðxÞ þ ρaρaðxÞÞ; ð1Þ

Ra
μðxÞ ¼ −

1

2

�
ðvþ hÞ∂μρ

a − ρa∂μhþ εabcρb∂μρ
c

−
g
2
Aa
μðvþ hÞ2 þ gεabcAb

μρ
cðvþ hÞ

þ g
2
Aa
μρ

bρb − gAb
μρ

aρb
�
; ð2Þ

where Aa
μ is the gauge field, h stands for the Higgs field, ρa

(a ¼ 1; 2; 3) are the Goldstone bosons, and v is the
vacuum expectation value of the scalar complex field.
These gauge invariant composite operators were first
introduced by ’t Hooft [2] and later on formalized by
Fröhlich-Morchio-Strocchi (FMS) [3,4] in order to study
the Higgs phenomenon in a gauge invariant fashion, see
Refs. [5–9] for recent accounts on the subject and [10,11]
for a more historical account. In the Uð1Þ case, a gauge
invariant reformulation of the Higgs model was also
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proposed in [12], see also Ref. [10], but we notice that the
nonlinear field redefinition invoked there misses a (non-
trivial) Jacobian at the quantum level, see Ref. [13], which
complicates matters. That such care is needed can also be
appreciated from the observation that the (classical) refor-
mulation of [10,12] eventually leads to equivalence with the
original model in the unitary gauge, famous for not being
renormalizable.
The relevance of the gauge invariant operators ðO;Ra

μÞ
can be captured by noticing that, from Eqs. (1), (2) it
follows that

hOðpÞOð−pÞi ∼ hhðpÞhð−pÞitree þ � � � ;
PμνhRa

μðpÞRa
νð−pÞi ∼ PμνhAa

μðpÞAb
νð−pÞitree þ � � � ; ð3Þ

where Pμν ¼ ðδμν − pμpν

p2 Þ is the transverse projector and

where … denote the higher order loop corrections [1].
Equation (3) show that the two-point functions of ðO;Ra

μÞ
are related to those of the elementary fields ðh; Aa

μÞ.
Concerning the quantum corrections, from the one-loop

computations reported in [1] by employing ’t HooftRξ gauge,
it turns out that hOðpÞOð−pÞi and PμνhRa

μðpÞRa
νð−pÞi are

independent of the gauge parameter ξ, while sharing the same
pole-mass of the corresponding elementary correlators
hhðpÞhð−pÞi andPμνhAa

μðpÞAb
νð−pÞi. It is worth reminding

here that the independence of the pole masses from the gauge
parameter ξ is in fact a consequence of the so-called Nielsen
identities [14–16]. Moreover, both hOðpÞOð−pÞi and
PμνhRa

μðpÞRa
νð−pÞi exhibit a suitably subtracted Källén-

Lehmann representation [17] with positive spectral densities.
These features make apparent the fact that the composite
operators ðO;Ra

μÞ provide a fully consistent gauge invariant
setup for the Higgs particle as well as for the vector gauge
boson. These results can be contrasted with those obtained for
the elementary correlators, hhðpÞhð−pÞi, hAa

μðpÞAb
νð−pÞi,

which explicitly depend on the gauge prameter ξ as well as
their spectral densities which, for some values of ξ, are found
to violate positivity, see Ref. [1].
So far, the investigation of the properties of the composite

operators ðO;Ra
μÞ in the SUð2ÞHiggs model remains limited

at the one-loop order, having not yet reached the all order (or
even exact) status achieved in the case of the Uð1Þ Higgs
model [13,18–20], where the analogous of the SUð2Þ
operators, denoted by ðO;VμÞ in [13,18–20], were shown
to obey a set of powerful Ward identities. In particular, in
[13,20], wewere able to identify theUð1Þ vector operatorVμ

as the conserved Noether current of the global Uð1Þ
symmetry of the model. This feature has led to a powerful
Ward identity showing that the operator Vμ does not get
renormalized, a result consistent with Vμ being a Noether
current. Moreover, we also showed that the longitudinal
component of hVμðpÞVνð−pÞi does not receive any quantum
correction to the tree level value, which is completely

independent from the momentum p2. The momentum
independence of the longitudinal component of
hVμðpÞVνð−pÞi is in fact a necessary condition for a
consistent description of a physical vector massive particle
[21]. Let us underline that, in the Uð1Þ case, the above-
mentioned results hold to all orders, having been established
by means of the algebraic renormalization framework
[22–25].
The aim of the present paper is to fill the gap between the

Uð1Þ and the SUð2Þ case, investigating the properties of the
operators ðO;Ra

μÞ to all orders. As we shall see, most of
the features established in the Uð1Þ case generalize
to SUð2Þ.
More precisely:
(i) a set of Ward identities can be established when the

composite operators ðO;Ra
μÞ are included in the

starting action by means of a suitable set of external
sources. These Ward identities have major conse-
quences for the renormalization of ðO;Ra

μÞ to all
orders in perturbation theory;

(ii) similarly to theUð1Þ case, the gauge invariant vector
operators Ra

μ are the conserved Noether currents of a
global custodial exact symmetry of the SUð2Þ Higgs
model. This relevant observation will have deep
consequences at the quantum level, implying the all
order nonrenormalization of the currents Ra

μ, in
agreement with their conserved nature;

(iii) as happens in theUð1Þ case [13,20], the longitudinal
component of the two-point correlation function
hRa

μðpÞRb
νð−pÞi can be proven to not receive any

quantum correction to its tree level value which,
moreover, is momentum independent. As such, the
longitudinal component of hRa

μðpÞRb
νð−pÞi is not

associated to any propagating mode;
(iv) the nonrenormalization theorem of the ghost-anti-

ghost-gauge boson vertex of the Landau gauge
[26,27], which plays a key role in nonperturbative
analyses such as the Schwinger-Dyson setup [28–30],
remains true in presence of the Higgs field.

The paper is organized as follows. In Sec. II, we briefly
review the particular SUð2Þ Higgs model and its BRST
quantization in the Landau gauge. In Sec. III we present
a study of the operators ðO;Ra

μÞ in terms of the BRST
cohomology in order to identify other possible operators
with the same quantum numbers which can mix with them
at the quantum level. After that, a tree level action including
all needed composite operators and related external sources
will be written down. Such an action will be taken as the
starting point for the quantum analysis of the model to all
orders. In Sec. IV, we discuss the exact custodial symmetry,
showing that the vector operators ðRa

μÞ are nothing but the
corresponding conserved Noether currents, a feature which
will be translated into a quite powerful Ward identity.
Section V collects the whole set of Ward identities obeyed
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by the tree level action. Section VI is devoted to the all
orders algebraic proof of the renormalizability of the
model. We shall characterize the most general local
invariant counterterm compatible with all Ward identities
and we shall show that it can be reabsorbed into the starting
action by a redefinition of the fields, parameters and
external sources. In Sec. VII we look at the longitudinal
part of the two-point correlation function of the vector
operators ðRa

μÞ by showing that it does not get any quantum
correction beyond a momentum independent tree level one.
In Sec. VIII we present our conclusion and perspectives.

II. THE SUð2Þ HIGGS MODEL AND ITS BRST
QUANTIZATION

A. The Higgs action

The Euclidean action of the SUð2Þ Higgs model with a
complex scalar field φ in the fundamental representation of
the gauge group reads

SHiggs¼
Z

d4x
�
1

4
Fa
μνFa

μνþðDμφÞ†ðDμφÞþλ

�
φ†φ−

v2

2

�
2
�
;

ð4Þ

with the field strength Fa
μν given by

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gεabcAb

μAc
ν; ð5Þ

and the covariant derivative

Dμφ ¼ ∂μφ − i
g
2
τaAa

μφ; ð6Þ

where τa (a ¼ 1; 2; 3) are the Pauli matrices and εabc the
Levi-Civita symbols. The theory has two coupling con-
stants, namely, the gauge coupling g and the quartic self-
coupling of the scalar field λ. The massive parameter v
stands for the vacuum expectation value of φ. The action
SHiggs is invariant under the gauge transformations

Aμ→UAμU†þ 1

ig
ð∂μUÞU†; φ→Uφ; φ†→φ†U†; ð7Þ

where U ¼ exp ð−ig τa

2
θaÞ ∈ SUð2Þ and θa are local

parameters. Since we are working in the fundamental
representation of SUð2Þ, we can adopt the following
convenient parametrization for the scalar field

φðxÞ ¼ 1ffiffiffi
2

p
�

πðxÞ þ iρ3ðxÞ
−ρ2ðxÞ þ iρ1ðxÞ

�

¼ 1ffiffiffi
2

p ðπðxÞI þ iρaðxÞτaÞ
�
1

0

�
ð8Þ

where π, ρ1, ρ2, and ρ3 are real scalar fields. Looking at the
Higgs potential

VðφÞ ¼ λ

�
φ†φ −

v2

2

�
2

; ð9Þ

one can see that its absolute (classical) minimum occurs
when jφj2 ¼ v2

2
. Choosing the representative minimum

configuration as φo ¼ 1ffiffi
2

p ðv
0
Þ, one can consider φ − φo as

the relevant field, which leads to

φðxÞ ¼ 1ffiffiffi
2

p ððvþ hðxÞÞI þ iρaðxÞτaÞ
�
1

0

�
; ð10Þ

where hðxÞ ¼ πðxÞ − v. Rewriting (4) in terms of hðxÞ and
ρaðxÞ, one finds

SHiggs ¼
Z

d4x

�
1

4
Fa
μνFa

μν þ λv2h2 þ λvh3 þ λvhρaρa

þ 1

4
λh4 þ 1

2
λh2ρaρa þ 1

4
λðρaρaÞ2

þ 1

2
ð∂μhÞ2 þ

1

2
ð∂μρ

aÞ2 þ 1

2
gAa

μρ
að∂μhÞ

−
1

2
gðvþ hÞAa

μð∂μρ
aÞ þ 1

2
gεabcAa

μρ
bð∂μρ

cÞ

þ 1

8
g2Aa

μAa
μðvþ hÞ2 þ 1

8
g2Aa

μAa
μρ

bρb
�
: ð11Þ

Looking at (11), we can see all the features of the Higgs
mechanism: the gauge field Aa

μðxÞ and the Higgs field hðxÞ
have acquired masses given by

m ¼ 1

2
gv; mh ¼

ffiffiffiffiffi
2λ

p
v ð12Þ

respectively, while the Goldstone fields ρaðxÞ remain
massless.

B. Gauge fixing and BRST symmetry

In order to quantize the theory, we shall adopt the Landau
gauge, i.e., ∂μAμ ¼ 0. For the corresponding Faddeev-
Popov term we have

Sgf ¼
Z

d4x½iba∂μAa
μ þ c̄a∂μDab

μ cb�; ð13Þ

where ba is the Nakanishi-Lautrup field implementing the
transversality condition, ∂μAμ ¼ 0, and ðca; c̄aÞ are the
ghost and antighost fields. For the gauge fixed action we
thus get

S ¼ SHiggs þ Sgf : ð14Þ
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As is well known, expression (14) is left invariant by the
nilpotent BRST transformations [22–24]:

sAa
μ ¼ −Dab

μ cb;

sca ¼ g
2
εabccbcc;

sc̄a ¼ iba;

sba ¼ 0;

sh ¼ g
2
caρa;

sρa ¼ −
g
2
caðvþ hÞ þ g

2
εabccbρc;

sv ¼ 0 ð15Þ

with

sS ¼ 0; s2 ¼ 0: ð16Þ

III. INTRODUCTION OF THE GAUGE INVARIANT
COMPOSITE OPERATORS ðOðxÞ; Ra

μðxÞÞ
A. The scalar operator OðxÞ

In order to achieve a better understanding of the gauge
invariant local composite operators ðOðxÞ; Ra

μðxÞÞ, Eqs. (1),
(2), let us look at them from the viewpoint of the
cohomology [25] of the BRST operator s. Let us begin
with the scalar operator O.
From expression (1), one observes that the operator O

has dimension two. Let us find out the solution of the
cohomology equation

sΔðxÞ ¼ 0; ð17Þ

where ΔðxÞ is the most general local colorless scalar
polynomial of dimension two in the fields ðAa

μ; h;
ρa; ba; ca; c̄aÞ and in the parameter v with vanishing ghost
number. It is not difficult to check out that the most general
solution of Eq. (17) is given by

ΔðxÞ ¼ b1OðxÞ þ b2v2 ð18Þ

with b1 and b2 arbitrary constants andO ≠ sÔ for any local
field polynomial Ô. Equation (18) shows that, apart from
the constant term v2, the operator O is the unique term
belonging to the cohomology of the BRST operator in the
class of the colorless field polynomials of dimension two
and with vanishing ghost number. Let us also notice that, in
terms of the complex scalar field φ, the operator O can be
rewritten as

O ¼ φ†φ −
v2

2
; ð19Þ

from which its gauge invariance is apparent.

B. The vector operators Ra
μðxÞ

In order to introduce the gauge invariant vector operators
Ra
μðxÞ let us shortly recall ’t Hooft’s original construction

[2]. The first gauge invariant vector quantity can be
obtained from

O3
μ ¼ φ†Dμφ: ð20Þ

Following [2], the remaining two operators can be con-
structed as

Oþ
μ ¼ φT

�
0 1

−1 0

�
Dμφ;

O−
μ ¼ ðOþ

μ Þ†; ð21Þ

the gauge invariance of which easily follows from the group
properties of SUð2Þ. The operators fO3

μ; Oþ
μ ; O−

μ g yield
thus a set of three independent gauge invariant vector
quantities with dimension three. The operators Ra

μ,
a ¼ 1; 2; 3, can now be obtained out of fO3

μ; Oþ
μ ; O−

μ g as:

R1
μ ¼

i
2
ðOþ

μ −O−
μ Þ;

R2
μ ¼

1

2
ðOþ

μ þO−
μ Þ;

R3
μ ¼ O3

μ −
i
2
∂μO: ð22Þ

The operators R1
μ and R2

μ are simple combinations of
ðOþ

μ ; O−
μ Þ, while the operator R3

μ is obtained from O3
μ by

subtracting the divergence of the scalar operator OðxÞ,
Eq. (1). As O is gauge invariant, it turns out that R3

μ is as
well. Putting all together, we end up with the gauge
invariant expressions fRa

μg given in Eq. (2). It is worth
underlining that the index a ¼ 1; 2 ; 3 in Eq. (2) can be
associated to the adjoint representation of SUð2Þ. In fact,
as we shall see in the next section, the operators fRa

μg
transform as a triplet when both ðAa

μ; ρaÞ undergo a global
transformation in the adjoint representation of SUð2Þ under
which the Higgs field h is a singlet, i.e., left invariant.
As done for the scalar operator O, let us have a look at

the vector operators Ra
μ in terms of the cohomology of the

BRST operator, amounting to solve the equation

sΔa
μðxÞ ¼ 0; ð23Þ

where Δa
μðxÞ is now a local polynomial in the fields and in

the parameter v with dimension three and vanishing ghost
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number. After a rather lengthy algebraic calculation, the
most general solution of Eq. (23) can be written as

Δa
μðxÞ ¼ c1Ra

μ þ sðc2εabcAb
μc̄c − c3i∂μc̄aÞ

¼ c1Ra
μ þ c2ð−εabcðDbd

μ cdÞc̄c þ iεabcAb
μbcÞ

þ c3ð∂μbaÞ; ð24Þ

where c1, c2, and c2 are arbitrary constants and Ra
μ ≠ sR̂a

μ,
for any local polynomial R̂a

μ. This Eq. (24) has a deep
meaning. It shows that, apart from the BRST exact terms,
sðc2εabcAb

μc̄c − c3i∂μc̄aÞ, the operators Ra
μ are the unique

nontrivial elements of the cohomology of the BRST
operator in the sector of the field vector polynomials with
dimension three and vanishing ghost number. Since Ra

μ

depends neither on the Faddeev-Popov ghosts ðca; c̄aÞ nor
on the auxiliary field ba, this is equivalent to state that Ra

μ

are the unique local gauge invariant composite vector
operators of dimension three, a feature which will have
several consequences at the quantum level. Of course, the
same statement holds true for the scalar operatorO, Eq. (1),
which, apart from the constant quantity v2, is the unique
scalar local gauge invariant field polynomial of dimen-
sion two.
In short, identifying the physical observables with the

nontrivial elements of the BRST cohomology of ghost
number zero, we have identified a physical representation
of the scalar and vector degrees of freedom.

IV. THE VECTOR OPERATORS Ra
μ AS THE

NOETHER CURRENTS OF THE CUSTODIAL
SYMMETRY

This section is devoted to the analysis of the vector
operators fRa

μðxÞg which, as we shall see, are the Noether
currents of an exact global symmetry of the action
S, Eq. (14).
More precisely, let us consider the transformations:

δCAa
μ ¼ gεabcωbAc

μ;

δCh ¼ 0;

δCρa ¼ gεabcωbρc;

δCca ¼ gεabcωbcc;

δCc̄a ¼ gεabcωbc̄c;

δCba ¼ gεabcωbbc; ð25Þ

with ωa a constant parameter. Equation (25) have a rather
transparent meaning: all fields ðAa

μ; ρa; ba; ca; c̄aÞ undergo
an adjoint SUð2Þ transformation while the Higgs field h is a
singlet. It is almost immediate to realize that the trans-
formations (25) yield an exact symmetry of the action S

δCS ¼ 0: ð26Þ

We shall refer to Eq. (26) as the custodial symmetry, see
Ref. [1]. An important feature of the transformations (25) is
expressed by

½s; δC� ¼ 0; fs;…g ≠ δC; ð27Þ

which tell us that δC commutes with the BRST operator s,
while it cannot be obtained as the anticommutator between
s and another suitable operator. When translated in terms
of Noether currents, Eq. (27) imply that the conserved
currents associated to δC belong to the cohomology of the
BRST operator s, i.e., the currents are given by BRST
invariant local operators which cannot be written in a BRST
exact fashion.
The relevance of the Eq. (27) can be captured by

observing that the action S is left invariant by a second
set of global transformations:

δRAa
μ ¼ gεabcωbAc

μ;

δRh ¼ 1

2
gωaρa;

δRρa ¼ 1

2
gωbð−ðvþ hÞδab þ εabcρcÞ;

δRca ¼ gεabcωbcc;

δRc̄a ¼ gεabcωbc̄c;

δRba ¼ gεabcωbbc; ð28Þ

with

δRS ¼ 0; ð29Þ

which we shall call R-symmetry. Nevertheless, unlike the
operator δC, Eq. (25), it can be checked that

½s; δR� ¼ 0; fδG; sg ¼ δR; ð30Þ

where δG is given by

δGAa
α ¼ 0;

δGh ¼ 0;

δGρa ¼ 0;

δGca ¼ ωa;

δGc̄a ¼ 0;

δGba ¼ iεabcωbc̄c; ð31Þ

and

δGS ¼ 0: ð32Þ
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Therefore, unlike the Noether currents associated to δC,
those corresponding to the R-symmetry will be expressed
as an exact BRST variation, as such they are cohomolog-
ically trivial and do not describe observable excitations, in
fact leading to zero norm states.
Let us turn now to the explicit computation of the

Noether currents of the custodial symmetry. To that end
let us rewrite Eq. (26) as

Z
d4xCaðxÞS ¼ 0; ð33Þ

where CaðxÞ stands for the local operator

CaðxÞ¼−gεabc
�
Ac
μðxÞ

δ

δAb
μðxÞ

þρcðxÞ δ

δρbðxÞ

þccðxÞ δ

δcbðxÞþ c̄cðxÞ δ

δc̄b
þbcðxÞ δ

δbbðxÞ
�
: ð34Þ

According to Noether’s theorem, the custodial invariance of
S implies that

CaðxÞS ¼ ∂μðJCÞaμðxÞ: ð35Þ

The output of a direct calculation reads

ðJCÞaμ ¼ gRa
μ −

δS
δAa

μ
− sðDab

μ c̄bÞ; ð36Þ

from which we learn that, modulo equations of motion and
a BRST exact term, the local operators Ra

μ are, indeed,
precisely the Noether currents of the custodial symmetry.
We underline that Eq. (36) is in perfect agreement with the
analysis of the BRST cohomology done in the previous
section, according to which the invariant operators fRa

μg
belong to the cohomology of s and cannot be cast in a
BRST exact form. As we shall see in the following,
Eqs. (35) and (36) can be translated into a local powerful
Ward identity, which will result into strong constraints on
the quantum correlation functions, including the renorma-
lizability properties of Ra

μ.

V. WARD IDENTITIES

A. Dealing with composite operators at the quantum
level: Identifying the complete tree-level action Σ
We are now ready to start with the all order analysis

of the renormalization of the composite operators ðO;Ra
μÞ.

We remind that, in order to construct and renormalize
the Green’s functions of the operators ðO;Ra

μÞ, we have to
introduce them in the starting action by means of external
(local) sources: J and Ωa

μ, respectively. Moreover, follow-
ing the algebraic formalism reviewed in [25], one needs to
introduce external fields for the whole set of quantities

entering the cohomology of the BRST operator, Eqs. (18),
(24). In particular, in the case of the vector operators fRa

μg,
we have to take into account the two BRST exact terms
ð−εabcðDbd

μ cdÞc̄c þ iεabcAb
μbcÞ and ð∂μbaÞ. Since

ð−εabcðDbd
μ cdÞc̄cÞ þ iεabcAb

μbc ¼ sðεabcAb
μc̄cÞ; ð37Þ

it can be introduced by means of a BRST doublet1 of
external sources ðϒa

μ; ζaμÞ, namely

sϒa
μ ¼ ζaμ; sζaμ ¼ 0; ð39Þ

so that

sðϒa
με

abcAb
μc̄cÞ

¼ ζaμε
abcAb

μc̄c þϒa
μð−εabcðDbd

μ cdÞc̄c þ iεabcAb
μbcÞ: ð40Þ

On the other hand, the term ∂μba is linear in the quantum
fields, so it can be introduced in a simple way through the
external source Θa

μ.
Therefore, for the whole term accounting for all quan-

tities entering the cohomology of the BRST operator with
the same quantum numbers as the composite operators
ðO;Ra

μÞ, we have

SΔ ¼
Z

d4xfJOþ ηv2 þΩa
μRa

μ

þ ζaμε
abcAb

μc̄c þϒa
μð−εabcðDbd

μ cdÞc̄c
þ iεabcAb

μbcÞ þ iΘa
μð∂μbaÞg ð41Þ

where the sources ðJðxÞ; ηðxÞ;Ωa
μðxÞ;Θa

μðxÞÞ are BRST
invariant, i.e.,

sΩa
μ ¼ sΘa

μ ¼ sJ ¼ sη ¼ 0; ð42Þ

a feature which guarantees that

sSΔ ¼ 0: ð43Þ

Nevertheless, in addition to the term SΔ, a second term, Ss,
accounting for the nonlinearity of the BRST transforma-
tions of ðAa

μ; ca; h; ρaÞ, Eq. (15), needs to be added

Ss¼
Z

d4x½Ka
μðsAa

μÞþLaðscaÞþHðshÞþPaðsρaÞ�; ð44Þ

1It is worth reminding the reader here that a pair ðα; βÞ is a
BRST doublet if

sα ¼ β; sβ ¼ 0: ð38Þ
It can be proven that BRST doublets contribute always to the
trivial part of the cohomology of the BRST operator s, see
Ref. [25].
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where the external sources ðKa
μ; La; H; PaÞ are BRST

invariant

sKa
μ ¼ sLa ¼ sH ¼ sPa ¼ 0; ð45Þ

so that

sSs ¼ 0: ð46Þ

Summing up all pieces, we can introduce the complete tree
level action Σ which will be taken as the starting point for
the quantum analysis, namely

Σ ¼ Sþ Ss þ SΔ: ð47Þ

Evidently

sΣ ¼ 0: ð48Þ

B. Ward identities

The complete tree level action Σ obeys a huge number of
Ward identities which we enlist below:

(i) the Slavnov-Taylor identity translating at the func-
tional level the BRST invariance of Σ

SðΣÞ ¼ 0; ð49Þ

where

SðΣÞ ¼
Z

d4x

�
δΣ
δKa

μ

δΣ
δAa

μ
þ δΣ
δLa

δΣ
δca

þ iba
δΣ
δc̄a

þ δΣ
δH

δΣ
δh

þ δΣ
δPa

δΣ
δρa

þ ζaμ
δΣ
δϒa

μ

�
; ð50Þ

(ii) the ba Ward identity expressing in functional form the Landau gauge condition

δΣ
δba

¼ i∂μAa
μ − i∂μΘa

μ − iεabcAb
μϒc

μ; ð51Þ

Notice that the right-hand side (rhs) of Eq. (51) is a linear breaking. As such, it will be not affected by quantum
corrections [25],

(iii) the antighost equation

δΣ
δc̄a

þ ∂μ
δΣ
δKa

μ
þ εabcϒb

μ
δΣ
δKc

μ
¼ εabcAb

μζ
c
μ; ð52Þ

(iv) the local linearly broken ghost Ward identity

δΣ
δca

− gεabcic̄b
δΣ
δbc

þ gεabcϒb
μ
δΣ
δζcμ

þ g∂μ

�
δΣ
δζaμ

�
¼ Δa

cl; ð53Þ

where Δa
cl stands for the local linear breaking

Δa
cl ¼ −∂2c̄a −Dab

μ Kb
μ þ gεbacLbcc − gεabcð∂μΘc

μÞc̄b −
g
2
Hρa þ g

2
Paðvþ hÞ − g

2
εbacPbρc þ εbac∂μðϒb

μc̄cÞ: ð54Þ

It is worth noticing that, unlike the usual ghost Ward identity of the Landau gauge [25,27] which is an integrated
equation, the ghost identity (53) is local, that is nonintegrated. In the present case, this feature is due to the presence
of the external sources ðϒ; ζÞ,

(v) the exact R symmetry

RaðΣÞ ¼ 0; ð55Þ
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where

Ra ¼ gεabcAb
μ

δ

δAc
μ
þ gεabcKb

μ
δ

δKc
μ
þ gεabccb

δ

δcc
þ gεabcLb δ

δLc þ gεabcc̄b
δ

δc̄c
þ gεabcbb

δ

δbc

þ 1

2
gρa

δ

δh
þ 1

2
gPa δ

δH
þ 1

2
gð−δcaðvþ hÞ þ εcabρbÞ δ

δρc

−
1

2
gðHδca − εabcPbÞ δ

δPc þ gεabcϒb
μ

δ

δϒc
μ
þ gεabcζbμ

δ

δζcμ
; ð56Þ

(vi) the c-c̄ Ward identity

τðΣÞ ¼ −
1

g

Z
d4xζaμð∂μcaÞ; ð57Þ

where

τðΣÞ ¼
Z

d4x

�
ca

δΣ
δc̄a

− i
δΣ
δba

δΣ
δLa þ

1

g
ζaμ

δΣ
δKa

μ
−
�
1

g
ð∂μϒa

μÞ þ ið∂μΘa
μÞ
�

δΣ
δLa

�
; ð58Þ

(vii) the linearly broken integrated equation of the Higgs field h

Z
d4x

�
δΣ
δh

− 2λv
δΣ
δJ

�
−
∂Σ
∂v ¼

Z
d4xvðJ − 2ηÞ; ð59Þ

(viii) the local custodial Ward identity

CaðΣÞ ¼ 1

4
gv2∂μΩa

μ þ iεbac∂μðϒb
μbcÞ þ εbac∂μðζbμc̄cÞ − igεbac∂μðbcΘb

μÞ − i∂2ba; ð60Þ

where

CaðΣÞ ¼ gεabc
�
Ab
μ
δΣ
δAc

μ
þ ρb

δΣ
δρc

þ cb
δΣ
δcc

þ c̄b
δΣ
δc̄c

þ bb
δΣ
δbc

þ Kb
μ
δΣ
δKc

μ
þ Lb δΣ

δLc þ Pb δΣ
δPc þ Ωb

μ
δΣ
δΩc

μ

þϒb
μ
δΣ
δϒc

μ
þ ζbμ

δΣ
δζcμ

þ Θb
μ
δΣ
δΘc

μ

�
þ ∂μ

δΣ
δAa

μ
− g∂μ

δΣ
δΩa

μ
−
1

2
g∂μ

�
Ωa

μ
δΣ
δJ

�
þ g∂μ

δΣ
δϒa

μ
; ð61Þ

(ix) the external sources η and Θ Ward identities

δΣ
δη

¼ v2; ð62Þ

δΣ
δΘa

μ
¼ i∂μba: ð63Þ

VI. ALL ORDERS ALGEBRAIC ANALYSIS OF THE
RENORMALIZABILITY

A. Characterization of the local invariant counterterm

From the power counting, the invariant local counterterm
Σct which can be freely added at any given loop order in
perturbation theory, is a local, integrated polynomial of

dimension four in the fields, sources and parameters with
vanishing ghost number. According to algebraic setup [25],
the characterization of Σct is done by requiring that the so-
called bare action Σbare defined as

Σþ ϵΣct ¼ Σbare þOðϵ2Þ; ð64Þ

where ϵ is an expansion parameter, satisfies, up to the order
ϵ2, the sameWard identities obeyed by the tree level actionΣ.
At the end, one has to check that Σbare can be obtained from
the tree level action Σ by a suitable redefinition of the fields,
coupling constants, mass parameters and external sources.
Notice that this can amount to allowing mixing between
quantities with identical quantum numbers. Requiring thus
thatΣbare fulfills the sameWard identities ofΣ, it follows that:
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SðΣbareÞ ¼ 0; ð65Þ

δΣbare

δba
¼ i∂μAa

μ − ∂μΘa
μ − iεabcAb

μϒc
μ; ð66Þ

δΣbare

δc̄a
þ ∂μ

δΣbare

δKa
μ
þ εabcϒb

μ
δΣbare

δKc
μ

¼ εabcAb
μζ

c
μ; ð67Þ

Z
d4x

�
δΣbare

δca
þ gεabc

�
−ic̄b

δΣbare

δbc
þϒb

μ
δΣbare

δζcμ

��

¼
Z

d4xΔa
cl; ð68Þ

τðΣbareÞ ¼ −
1

g

Z
d4xζaμð∂μcaÞ; ð69Þ

Z
d4x

�
δΣbare

δh
− 2λv

δΣbare

δJ

�
−
∂Σbare

∂v ¼
Z

d4xvðJ − 2ηÞ;

ð70Þ

CaðΣbareÞ ¼
1

4
v2∂μΩa

μ þ
1

g
iεbac∂μðϒb

μbcÞ

þ 1

g
εbac∂μðζbμc̄cÞ − iεbac∂μðbcΘb

μÞ −
i
g
∂2ba;

ð71Þ

δΣbare

δη
¼ v2; ð72Þ

δΣbare

δΘa
μ

¼ i∂μba: ð73Þ

FromEq. (64), the invariant counterterm Σct is found to obey
the following constraints:

δΣct

δba
¼ 0; ð74Þ

δΣct

δη
¼ 0; ð75Þ

δΣct

δΘa
μ
¼ 0; ð76Þ

δΣct

δc̄a
þ ∂μ

δΣct

δKa
μ
þ εabcϒb

μ
δΣct

δKc
μ
¼ 0; ð77Þ

Z
d4x

�
δΣct

δca
þ gεabc

�
−ic̄b

δΣct

δbc
þϒb

μ
δΣct

δζcμ

��
¼ 0; ð78Þ

Z
d4x

�
δΣct

δh
− 2λv

δΣct

δJ

�
−
∂Σct

∂v ¼ 0; ð79Þ

CaðΣctÞ ¼ 0: ð80Þ

Due to the nonlinearity of the Slavnov-Taylor identity, it
follows that

SðΣbareÞ ¼ SðΣÞ þ ϵBΣðΣctÞ þOðϵ2Þ; ð81Þ

where

BΣ ¼
Z

d4x

�
δΣ
δKa

μ

δ

δAa
μ
þ δΣ
δAa

μ

δ

δKa
μ
þ δΣ
δLa

δ

δca
þ δΣ
δca

δ

δLa

þ iba
δ

δc̄a
þ δΣ
δH

δ

δh
þ δΣ

δh
δ

δH
þ δΣ
δPa

δ

δρa

þ δΣ
δρa

δ

δPa þ ζaμ
δ

δϒa
μ

�
ð82Þ

is the so-called linearized nilpotent Slavnov-Taylor
operator [25]:

BΣBΣ ¼ 0: ð83Þ

Since SðΣÞ ¼ 0, we have the condition

BΣðΣctÞ ¼ 0; ð84Þ

implying thatΣct belongs to the cohomology of the linearized
operator BΣ in the space of the integrated local polynomials
in the fields and sources with dimension four and vanishing
ghost number, see Tables I and II.
In order to find out the most general expression for Σct

we start with the condition (84) which enables us to set

Σct ¼ Δþ BΣΔð−1Þ; ð85Þ

where Δ and BΣΔð−1Þ identify the nontrivial and trivial
cohomology, respectively, of the linearized Slavnov-Taylor
operator BΣ. Taking already into account the constraints
(74)–(76) and making use of the general results on the
cohomology of non-Abelian gauge theories, see Ref. [25],
we get

TABLE I. Mass dimensions and ghost numbers of the fields.

Aa
μ h ρa ca c̄a ba

Dimension 1 1 1 0 2 2
Ghost number 0 0 0 1 −1 0

TABLE II. Mass dimensions and ghost numbers of the sources.

Ka
μ H Pa La J η ϒa

μ ζaμ Θa
μ

Dimension 3 3 3 4 2 2 1 1 1
Ghost number −1 −1 −1 −2 0 0 0 1 1
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Δ ¼
Z

d4x

�
a0

1

4
Fa
μνFa

μν þ a1O2 þ a2v2Oþ a3JOþ a4Jv2 þ a5v4 þ a6Ωa
μRa

μ þ a7Ωa
μΩa

μv2 þ a8Ωa
μΩa

μO

þ a9J2 þ a10JΩa
μΩa

μ þ a11ð∂μΩa
μÞð∂νΩa

νÞ þ a12Ωa
μ∂2Ωa

μ þ a13εabcΩa
μΩb

ν∂μΩc
νþa14Ωa

μΩa
μΩb

νΩb
ν þ a15Ωa

μΩa
νΩb

μΩb
ν

�

ð86Þ

and

Δð−1Þ ¼
Z

d4xfc̄a½d1∂μAa
μ þ d2∂μΩa

μ þ d3∂μϒa
μ þ d4εabcAb

μΩc
μ þ d5εabcAb

μϒc
μ þ d6εabcΩb

μϒc
μ

þd7εabcc̄bcc þ d8hρa þ d9vρa� þ Ka
μ½d10Aa

μ þ d11Ωa
μ þ d12ϒa

μ� þH½d13vþ d14h�þd15Paρa þ d16Lacag; ð87Þ

where ða0;…; a15Þ and ðd1;…:; d16Þ are free dimensionless parameters.
After imposing all the remaining constraints, a tedious but purely algebraic analysis gives the following results:

Δ ¼
Z

d4x

�
a0

1

4
Fa
μνFa

μν þ a1

�
O2 þ 1

λ
JOþ 1

4λ2
J2 −

1

4λ
Ωa

μΩa
μO −

1

8λ2
JΩa

μΩa
μ þ

1

64λ2
Ωa

μΩa
μΩb

νΩb
ν

�

þ a2

�
v2O −

1

λ
JOþ 1

2λ
Jv2 −

1

2λ2
J2 −

1

8λ
Ωa

μΩa
μv2 þ

1

4λ2
JΩa

μΩa
μ þ

1

4λ
Ωa

μΩa
μO −

1

32λ2
Ωa

μΩa
μΩb

νΩb
ν

�

þ a5

�
v4 − 2

1

λ
Jv2 þ 1

λ2
J2 þ 1

2λ
Ωa

μΩa
μv2 −

1

2λ2
JΩa

μΩa
μ þ

1

16λ2
Ωa

μΩa
μΩb

νΩb
ν

�
−
1

2
a12F a

μνðΩÞF a
μνðΩÞ

�
; ð88Þ

and

Δð−1Þ ¼
Z

d4x

�
−d1ðKa

μ þ ∂μc̄a þ εabcϒb
μc̄cÞ

�
Aa
μ −

1

g
ϒa

μ

�
þ d13½Hðvþ hÞ þ Paρa�

�
; ð89Þ

where

F a
μνðΩÞ ¼ ∂μΩa

ν − ∂νΩa
μ − εabcΩb

μΩc
ν: ð90Þ

We see thus that the most general final form of the local
invariant counterterm Σct contains seven free parameters,
namely: ða0; a1; a2; a5; a12Þ and ðd1; d2Þ. In particular,
from expression (88), one notices the presence of nonlinear
terms in the BRST invariant external sources ðJ;Ωa

μÞ which
are not present in the tree level action Σ. Nevertheless, these
terms, which start from one-loop onward [21], are needed
to renormalize the two-point correlation functions
hOðxÞOðyÞi, hRa

μðxÞRb
νðyÞi, defined as

hOðxÞOðyÞi ¼ δ2Zc

δJðxÞδJðyÞ
				
sources¼0

;

hRa
μðxÞRb

νðyÞi ¼
δ2Zc

δΩa
μðxÞδΩb

νðyÞ
				
sources¼0

: ð91Þ

where Zc is the functional generator of the connected Green
functions of the model:

Zc ¼ Γþ
X
fieldsϕ

Z
d4xJϕϕ; ð92Þ

with Γ the generator of the 1PI Green functions.
Let us also remind the reader that the presence of the

BRST invariant counterterm a2v2O, which also starts from
one-loop onward, is well known in the renormalization of
the Higgs model, see Refs. [22,31]. The free coefficient a2
is fixed, order by order in the loop expansion, so as to kill
the tadpoles, i.e., to ensure that hhi ¼ 0. Notice also that the
expression (88) contains the vacuum counterterm a5v4

which is allowed by power counting and dimensionality. As
discussed in [13], the parameter a5 can be chosen in such a
way that the perturbative dimension two condensate hOipert
vanishes order by order: hOipert ¼ 0. In turn, the Ward
identity (59), taken together with the two conditions hhi ¼
0 and hOipert ¼ 0, then ensures that the (quantum) vacuum
energy Ev attains its minimum still at v [13], namely
∂Ev∂v ¼ 0. We shall come back to this point in Sec. VII.
Finally, let us spend a few words on the nonlinear

counterterm a12F a
μνðΩÞF a

μνðΩÞ in the external source Ωa
μ
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showing up in Eq. (88). As one can easily figure out, its
peculiar form is dictated by the local custodial Ward
identity, Eqs. (60), (61), according to which both Aa

μ and
Ωa

μ undergo a similar transformation:

δAa
μ ¼ −∂μω

a þ gεabcωbAc
μ;

δΩa
μ ¼ gð∂μω

a þ εabcωbΩc
μÞ; ð93Þ

which gives rise to the invariant term F a
μνðΩÞF a

μνðΩÞ.

B. Identifying the bare action and the
renormalization Z-factors

Having characterized the most general local invariant
counterterm Σct, Eqs. (88), (89), compatible with all Ward
identities, we can now proceed to write down the bare action
Σbare from which the Z-factors of all fields, coupling con-
stants, parameters and external sources can be read off. Taking
into account the nonlinear terms in the external sources
needed from one-loop onward as well as the BRST invariant
counterterms to enforce the vanishing of the tadpoles,
hhi ¼ 0, and of the dimension two perturbative condensate,
hOipert ¼ 0, from Eq. (64) for the bare action Σbare we obtain

ΣbareðΦ0Þ ¼
Z

d4x

�
1

4
Fa
μνðA0ÞFa

μνðA0Þ þ λ0v20h
2
0 þ λ0v0h30 þ λ0v0h0ρa0ρ

a
0

þ 1

4
λ0h40 þ

1

2
λ0h20ρ

a
0ρ

a
0 þ

1

4
λ0ðρa0ρa0Þ2 þ

1

2
ð∂μh0Þ2 þ

1

2
ð∂μρ

a
0Þ2

þ 1

2
g0Aa

0μρ
a
0ð∂μh0Þ−

1

2
g0ðv0 þ h0Þð∂μρ

a
0ÞAa

0μ þ
1

2
g0εabcAa

0μρ
b
0∂μρ

c
0

þ 1

8
g20A

a
0μA

a
0μðv0 þ h0Þ2 þ

1

8
g20A

a
0μA

a
0μρ

b
0ρ

b
0 þ iba0∂μAa

0μ þ c̄a0∂μDab
μ ðA0Þcb0

−Ka
0μD

ab
μ ðA0Þcb0 þ La

0

g0
2
εabccb0c

c
0 þH0

g0
2
ca0ρ

a
0 þPa

0

�
−
g0
2
ca0ðv0 þ h0Þ þ

g0
2
εabccb0ρ

c
0

�

þ J0O0 þ η0v20 þΩa
0μR

a
0μ þϒa

0μð−εabcðDbd
μ ðA0Þcd0Þc̄c0 þ iεabcAb

0μb
c
0Þ þ ζa0με

abcAb
0μc̄

c
0 þΘa

0μ∂μba0

þ ðZλ − 1Þλ0
�

1

4λ20
J20 −

1

4λ0
Ωa

0μΩa
0μO0 −

1

8λ2
J0Ωa

0μΩa
0μ þ

1

64λ20
Ωa

0μΩa
0μΩb

0νΩb
0ν

�
þ δσ0v20O0ðδσ0 − λ0ðZh − 1ÞÞ

×

�
−

1

2λ20
J20 −

1

8λ0
v20Ωa

0μΩa
0μ þ

1

4λ20
J0Ωa

0μΩa
0μ þ

1

4λ0
Ωa

0μΩa
0μO0 −

1

32λ20
Ωa

0μΩa
0μΩb

0νΩb
0ν

�

þ δa0

�
v40 þ

1

λ20
J20 þ

1

2λ0
Ωa

0μΩa
0μv

2
0 −

1

2λ20
J0Ωa

0μΩa
0μ þ

1

16λ20
Ωa

0μΩa
0μΩb

0νΩb
0ν

�

−δθ0F a
μνðΩ0ÞF a

μνðΩ0Þ þ Z
1
2

Aϒð−Ka
0μζ

a
0μ − ð∂μc̄a0Þζa0μ − iba0∂μϒa

0μÞ
�
; ð94Þ

where fΦ0g is a short-hand notation for all bare fields, coupling constants, parameters and sources, while

O0 ≔ Oðh0; v0; ρa0Þ ð95Þ

and

Ra
0μ ≔ Ra

μðAa
0μ; h0; ρ

a
0; v0; g0Þ: ð96Þ

Bare quantities and renormalized quantities are found to be related as follow:

Aa
0μ ¼ Z

1
2

AAA
a
μ þ Z

1
2

Aϒϒ
a
μ; h0 ¼ Z

1
2

hh; ρa0 ¼ Z
1
2
ρρa; v0 ¼ Z

1
2
vv; ca0 ¼ Z

1
2
cca; c̄a0 ¼ Z

1
2
c̄c̄

a;

ba0 ¼ Z
1
2

bb
a; g0 ¼ Zgg; λ0 ¼ Zλλ; Ka

0μ ¼ ZKKa
μ; La

0 ¼ ZLLa; H0 ¼ ZHH;

Pa
0 ¼ ZPPa; Ωa

0μ ¼ ZΩΩa
μ; ϒa

0μ ¼ Zϒϒa
μ; ζa0μ ¼ Zζζ

a
μ; Θa

0μ ¼ ZΘΘa
μ;

J0 ¼ ZJJJ þ ZJηη; η0 ¼ ZηJJ þ Zηηη; δσ0 ¼ ϵδσ; δa0 ¼ ϵδa; δθ0 ¼ ϵδθ; ð97Þ
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where ϵ is the expansion parameter. For instance, in a loop expansion in power series of ℏ, where the counterterm is determined
recursively, order by order, the expansion parameter ϵ is nothing but the loop expansion parameter ℏ.
By direct inspection of the most general counterterm Σct, Eqs. (88), (89), for the Z-factors we have

Z
1
2

AA ¼ Z
−1
2

b ¼ ZL ¼ ZΘ ¼ 1þ ϵ
1

2
ða0 − 2d1Þ; Zg ¼ 1 − ϵ

1

2
a0; Z

1
2

h ¼ Z
1
2
ρ ¼ Z

1
2
v ¼ Z

−1
2

ηη ¼ 1þ ϵd13;

Z
1
2

Aϒ ¼ −
1

g
ðZ1

2

AA þ Zg − 2Þ; ZΩ ¼ Zϒ ¼ 1; Zλ ¼ 1þ ϵa1;

Z
1
2
c ¼ Z

1
2
c̄ ¼ ZK ¼ 1þ ϵ

1

2
d1 ¼ Z

−1
2

g Z
−1
4

AA;

ZH ¼ ZP ¼ Z
−1
2

g Z
1
4

AAZ
−1
2

h ; Zζ ¼ Z
1
2
gZ

−1
4

AA; ZJJ ¼ 1þ ϵ

�
−
a2
λ
þ a1

�
;

ZJη ¼ 0; ZηJ ¼ ϵ

�
a2
2λ

− 2
a5
λ
þ d13

�
; δσ ¼ ða2 þ 2λd13Þ; δθ ¼ a12

2
; δa ¼ a5: ð98Þ

One notices that fδσ0; δa0; δθ0g as well as fZJη; ZηJg start
from one-loop onward. In particular, the renormalization
factors fZJη; ZηJg give rise to a 2 × 2 mixing matrix
between the external sources ðJ; ηÞ coupled, respectively,
to the operator O and to the parameter v2, a feature already
observed in the case of the Uð1Þ Higgs model [13,20].
Also, due to the introduction of the BRST exact

composite operator ½sðεabcAb
μc̄cÞ� coupled to the source

ϒa
μ, see Eq. (40), from the expression for Aa

0μ in Eq. (97) we
see that there is a mixing between the gauge field Aa

μ and
the external source ϒa

μ which has precisely the same
quantum numbers of Aa

μ. Both Aa
μ and ϒa

μ have dimension
one, vanishing ghost number and are share the property of
being not BRST invariant. Let us elaborate a little bit more
on this point. First, from expressions (98), it turns out that

Z
1
2

Aϒ ¼ −ϵ
d1
g
; ð99Þ

from which it follows that the mixing factor Z
1
2

Aϒ starts from
one-loop onward too. The existence of such a mixing
means essentially that the elementary field Aa

μ has a
nonvanishing overlap with the composite operator
½sðεabcAb

μc̄cÞ�, namely

hAp
ν ðxÞ½s½ðεabcAb

μc̄cÞðyÞ��i ¼
δ2Zc

δJpAνðxÞδϒa
μðyÞ

				
sources¼0

≠ 0;

ð100Þ

where Zc is the connected generating functional, Eq. (92),
and

Ap
ν ðxÞ ¼ δZc

δJpAνðxÞ
: ð101Þ

The renormalization factor Z
1
2

Aϒ would be needed to take
into account the divergences present in correlation func-
tions of the type of Eq. (100). Though, it is worth it to recall
that the source ϒa

μ belongs to a BRST doublet:

sϒa
μ ¼ ζaμ; sζaμ ¼ 0;

meaning that it can only enter in the exact part of the BRST
cohomology. As a consequence, the composite operator
½sðεabcAb

μc̄cÞ� has no overlap with the two local operators
ðO;Ra

μÞ we are interested in, due to

hOðx1Þ…:OðxnÞðsQðyÞÞi¼ hsðOðx1Þ…:OðxnÞQðyÞÞi¼ 0;

ð102Þ

hRa1
μ1ðx1Þ…:Ran

μnðxnÞðsQðyÞÞi
¼ hsðRa1

μ1ðx1Þ…:Ran
μnðxnÞQðyÞÞi ¼ 0; ð103Þ

for an arbitrary quantity QðyÞ. Equations (102) and (103)
follow from the fact that, as we have seen before in Sec. III,
the operators ðO;Ra

μÞ are nontrivial (physical) elements of
the cohomology of the BRST operator s and cannot be cast
in the form of an exact s-variation.
Taking into account that after differentiating the con-

nected functional Zc with respect to ðΩa
μ; JÞ all sources will

be set to zero, we see that the mixing term in the external
source ϒa

μ present in the bare field Aa
0μ, Eq. (97), has in fact

no practical consequences for the BRST invariant correla-
tion functions of Eq. (91).
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Let us end this section by underlining two relevant
results, valid to all orders, which follow from the algebraic
analysis presented here:

(i) the nonrenormalization theorem [26,27] of the
ghost-antighost-gauge boson vertex expressed by
the relationship

ZgZcZ
1
2

AA ¼ 1; ð104Þ

generalizes to the case with a fundamental Higgs
field present as well. As mentioned in the introduc-
tion, this theorem is playing an important role in the
study of the infrared properties of the correlation
functions of non-Abelian gauge theories, see for
instance [28–30] for applications to the study of the
Schwinger-Dyson equations.

(ii) as a consequence of the nonrenormalization of the
source Ωa

μ, Eq. (98), coupled to the gauge invariant
operator fRa

μg, i.e.,

ZΩ ¼ 1; ð105Þ

the anomalous dimension of fRa
μg vanishes to all

orders: γR ¼ μ∂μ logðZΩÞ ¼ 0 where μ stands for
the renormalization scale energy. This result is in
perfect agreement with the fact that fRa

μg are the
conserved Noether currents of the custodial sym-
metry, see Sec. IV.

VII. TADPOLES, VACUUM ENERGY, AND THE
PERTURBATIVE CONDENSATE hOi

For the benefit of the reader, in this section we briefly
recall a few properties related to the Ward identity (59)
which, when written in terms of the 1PI generating
functional Γ, takes the following form

Z
d4x

�
δΓ
δh

− 2λv
δΓ
δJ

�
−
∂Γ
∂v ¼

Z
d4xvðJ − 2ηÞ: ð106Þ

As already emphasized in the case of the Uð1Þ Higgs
model, see Refs. [13,20], this Ward identity can be written
down only when the composite operators ðO;Ra

μÞ, Eqs. (1),
(2), are introduced in the action from the very beginning. In
particular, as shown in [13], the Ward identity (106) has
quite nice consequences on the vacuum energy Ev of the
theory. In fact, setting all sources to zero, one gets

∂Ev

∂v ¼ hhi − 2λvhOi; ð107Þ

implying a relationship between the vacuum energy Ev, the
tadpoles hhi and the dimension two condensate hOi. Notice
that the condensate here is not necessarily the perturbative
one, i.e., the relation (107) is exact.

At the perturbative level, as we have seen, the most
general local nontrivial invariant counterterm, Eq. (88),
contains the two BRST invariant counterterms ða2v2OÞ and
ða5v4Þ, where a2 and a5 are free parameters which start
from one-loop onward. The presence of the counterterm
a2v2O is a well known property of both Uð1Þ and SUð2Þ
Higgs models [22,31]. The parameter a2 can be chosen so
as to ensure the vanishing of the tadpoles, hhi ¼ 0, order by
order in the loop expansion. On the other hand, as discussed
in [13], the free coefficient a5 can be fixed by requiring the
vanishing to all orders of the perturbative dimension two
condensate, namely hOipert ¼ 0. Therefore, the Ward iden-
tity (107) ensures that the perturbative vacuum energy
keeps its minimum at v during the renormalization process:

∂Ev;pert

∂v ¼ 0: ð108Þ

We highlight that Eq. (108) follows from a Ward identity,
Eq. (106), which can be written down only when the
composite operators ðO;Ra

μÞ are taken into account in the
starting action. To some extent, the gauge invariant setup
for the Higgs particle and the gauge vector boson provided
by ðO;Ra

μÞ gives us a very nice way to check out, by means
of the Ward identity (107), that the perturbative vacuum
energy Ev;pert displays the desired property of attaining
its minimum at v. Once the perturbative setup is settled
in this fashion, it leads to the interesting question how
the potential generation of a nonperturbative condensate
hOinonpert would influence the dynamics, including the new
vacuum, since enforced by the exact identity (107), this will
shift the minimum configuration. We hope to come back to
this issue in future work.

VIII. THE LONGITUDINAL COMPONENT OF THE
TWO-POINT CORRELATION FUNCTION OF

hRa
μðxÞRb

νðyÞi
This section is devoted to the study of the consequences

stemming from the custodial Ward identity, Eq. (60), on the
longitudinal component of the two-point correlation func-
tion of hRa

μðxÞRb
νðyÞi. At the quantum level, the Ward

identity (60) reads

CnðΓÞ¼ 1

4
gv2∂μΩn

μþ iεmnp∂μðϒm
μ bpÞ

þ εmnp∂μðζmμ c̄pÞ−gεmnp∂μðbpΘm
μ Þ− i∂2bn: ð109Þ

Moving to the connected generating functional Zc,
Eq. (92), one obtains
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− gεmnpðJAÞpα
δZc

δðJAÞmα
− gεmnpðJρÞp

δZc

δðJρÞm
− gεmnpðJcÞp

δZc

δðJcÞm
− gεmnpðJc̄Þp

δZc

δðJc̄Þm
− gεmnpðJbÞp

δZc

δðJbÞm

þ gεmnpKp
μ
δZc

δKm
μ
þ gεmnpLp δZc

δLm þ gεmnpPp δZc

δPm þ gεmnpΩp
μ
δZc

δΩm
μ
þ gεmnpϒp

μ
δZc

δϒm
μ
þ gεmnpζpμ

δZc

δζmμ

þ gεmnpΘp
μ
δZc

δΘm
μ
− ∂μðJAÞnμ − g∂μ

δZc

δΩn
μ
−
1

2
g∂μ

�
Ωn

μ
δZc

δJ

�
þ g∂μ

δZc

δϒn
μ

¼ 1

4
gv2∂μΩn

μ þ iεmnp∂μ

�
ϒm

μ
δZc

δðJbÞp
�
þ εmnp∂μ

�
ζmμ

δZc

δðJc̄Þp
�
− gεmnp∂μ

�
Θm

μ
δZc

δðJbÞp
�
− i∂2

δZc

δðJbÞn
; ð110Þ

where ðJAÞaμ, ðJρÞa, ðJcÞa, ðJc̄Þa, and ðJbÞa are the sources of Aa
μ, ρa, ca, and c̄a, respectively. Acting with δ=δΩl

ν on (110)
and setting all sources to zero, we find

g∂x
μhRl

ν ðyÞRn
μðxÞi −

1

2
gδnl∂x

νðδðx − yÞhOipertÞ ¼
1

4
gv2δnl∂x

νδðx − yÞ þ ið∂xÞ2hRl
ν ðyÞbnðxÞi:

This result can be simplified even more, since:
(i) hRl

ν ðyÞbnðxÞi ¼ −ihs½Rl
νðyÞc̄nðxÞ�i ¼ 0, due to the exact BRST invariance of the theory,

(ii) as we have seen in the previous section, we can adjust the vacuum counterterm a5v4 so as to ensure that the
dimension two condensate hOipert vanishes order by order: hOipert ¼ 0.

As a consequence, we get the important result that

∂x
μhRl

νðyÞRn
μðxÞic ¼

1

4
v2δnl∂x

μδðx − yÞ ⇒ LμνhRl
νðyÞRn

μðxÞic ¼
1

4
v2δnl; ð111Þ

where Lμν ¼ ∂μ∂ν

∂2 stands for the longitudinal projector.
Equation (111) states that the longitudinal component of
the two-point correlation function of hRa

μðxÞRb
νðyÞi does

not receive any quantum correction to its tree level
contribution which, moreover, is fully momentum inde-
pendent. This means that the longitudinal component of the
gauge invariant composite operator Ra

μ cannot be associated
to any propagating physical mode. Only the transverse
component of fRa

μg matters. Equation (111) yields a
nontrivial consistency check of the usefulness of the
conserved operator Ra

μ to provide a gauge invariant picture
for the massive vector bosons.

IX. CONCLUSION

In this work, we have studied the renormalization
properties of two BRST invariant local operators, the scalar
OðxÞ and the vector RμðxÞ, which were first introduced in
a previous work [18]. These operators provide a BRST-
invariant framework to describe the Higgs particle and
the gauge vector boson in the SUð2Þ Higgs model. The
renormalization properties of ðOðxÞ; RμðxÞÞ were studied
by coupling them to the action via their respective external
sources ðJðxÞ;ΩðxÞÞ, followed by analyzing the renorm-
alization properties by means of the algebraic renormaliza-
tion framework. As could be seen in Sec. VI, the composite
BRST-invariant framework for the physical degrees of

freedom of the SUð2Þ Higgs model is renormalizable to
all orders in perturbation theory.
By choosing the Landau gauge, the system enjoys the

existence of a large set of Ward identities, which ends up
to strongly restrict the set of free parameters needed to
renormalize the theory. One especially interesting Ward
identity is connected to the custodial symmetry, as
discussed in Sec. IV. This symmetry is a generalization
of the custodial symmetry discussed in the Uð1Þ Higgs
case [18]. The particular construction of the vector
operators Ra

μ in Sec. III means that these operators are
the conserved currents of the custodial symmetry. As a
consequence, the corresponding source terms Ωa

μ does not
receive any quantum corrections, i.e., ZΩ ¼ 1. This is a
very powerful result, as it is rooted in a Ward identity,
which should also hold nonperturbatively. Our findings
here could also be of relevance to the lattice study of the
gauge invariant vector operators and the corresponding
part of the spectrum they describe. In general, to extract
physical information, one should properly renormalize
lattice correlation functions of gauge invariant operators,
cf. Ref. [32] for a recent account and references. Although
we have now established the nonrenormalizability in the
continuum, due to the discretization on a lattice, (finite)
renormalizations might still be necessary [33], but the
conserved nature of the current should also be of
help here.
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Another consequence of the custodial symmetry is found
in Sec. VIII, where we have investigated the longitudinal
part of the correlation function hRa

μðxÞRb
νðyÞi. In line with

the conclusions on the one-loop perturbative corrections
found in [1], we conclude that the longitudinal part is tree
level exact.
In Sec. VII the consequences of introducing the local

gauge invariant composite operator OðxÞ from the begin-
ning were discussed. Besides the custodial symmetry, the h
Eq. (59) plays a central role in the renormalization of O.
Particularly, we found that the number of free parameters
needed to renormalize the scalar sector is the same as in the
Abelian-Higgs model, i.e., as ifOwas absent. Furthermore,
the symmetry (106) establishes a connection between the
vacuum energy E, the hOðxÞi and hhðxÞi. In particular, at
any order of perturbation theory, one may choose a suitable
vacuum configuration and renormalization scheme such
that hOipert ¼ 0 and hhðxÞi ¼ 0. It will be interesting to
investigate the interplay of the exact Ward identity (106)
and a potential nonperturbative condensate hOinonpert,
which will influence both the vacuum energy and corre-
lation functions.
Finally, in [13], in theUð1Þ case, we also set first steps in

explicitly rewriting the effective action in terms of the

newly defined gauge invariant operators, via means of a
nontrivial path integral transformation. This amounts to
considering the equivalence theorem, [34–38], which we
reinterpreted in terms of an extended (constraint) BRST
cohomology. Albeit that the full scope of this needs to be
established still even in the Uð1Þ case, one can already
speculate that something similar, albeit more complicated,
should also work out for the non-Abelian case, paving the
way toward a potentially novel, explicitly gauge invariant
and renormalizable, scheme to deal with quantum gauge
field theories with a Higgs mechanism.
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