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A search for interactions from solar 8B neutrinos elastically scattering off xenon nuclei using PandaX-4T
commissioning data is reported. The energy threshold of this search is further lowered compared with the
previous search for dark matter, with various techniques utilized to suppress the background that emerges
from data with the lowered threshold. A blind analysis is performed on the data with an effective exposure
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of 0.48 tonne year, and no significant excess of events is observed. Among the results obtained using the
neutrino-nucleus coherent scattering, our results give the best constraint on the solar 8B neutrino flux. We
further provide a more stringent limit on the cross section between dark matter and nucleon in the mass
range from 3 to 9 GeV=c2.

DOI: 10.1103/PhysRevLett.130.021802

Because of complex fusion processes inside the Sun,
neutrinos are continuously generated in large amount. As
liquid xenon (LXe) detectors dedicated to dark matter
(DM) direct search [1–3] have been developed into the
multitonne scale in recent years, they are now able to reach
the sensitivity to detect solar neutrinos via coherent elastic
nuclear scattering (CEνNS). Among all sources of solar
neutrinos, neutrinos produced in the β decay of 8B are the
most likely ones to be detected due to the 15 MeVQ value.
The flux of 8B solar neutrinos on Earth has been measured
to be approximately 5 × 106 cm−2 s−1 [4,5], and its CEνNS
has an energy spectrum hardly distinguishable from that of
a 6 GeV=c2 DM particle in LXe. No experimental deter-
mination of the solar neutrino flux using its CEνNS signal
has been made yet. Recently, the XENON1T collaboration
published a search for the 8B CEνNS signal using
0.6 tonne year data with no excess found [6]. Because of
the low nuclear recoil (NR) energy from the 8B CEνNS, it is
crucial to lower the energy threshold. In this Letter, we
report a search for CEνNS induced by the solar 8B
neutrinos using the commissioning data of PandaX-4T
(Run0) based on a blind analysis, with a dedicated data
selection, which lowered the energy threshold (defined as
the energy having signal acceptance of 1%) from 1.33 to
0.95 keV.
The PandaX-4T dark matter direct search experiment is

located in the China Jinping underground laboratory
(CJPL) [7,8]. The PandaX-4T experiment utilizes a dual-
phase xenon time projection chamber (TPC) with a
sensitive volume of 3.7 tonne of LXe, and two arrays of
photomultipliers (PMTs) on the top and bottom of the TPC,
consisting of 169 and 199 Hamamatsu 3-inch R11410-23
PMTs, respectively. Both the primary scintillation (S1) and
the delayed proportional scintillation from drifted electrons
(S2) of an event are collected by the PMTs, allowing 3D
position reconstruction with a resolution of about a few
millimeter for S2s of ∼100 photoelectron (PE) on the
longitudinal and transverse directions, based on the time
difference between the S1 and S2, and the PMT pattern of
the S2, respectively. The waveforms of the PMTs are
digitized by CAEN V1725 digitizers and read out under the
self-trigger mode when the pulse amplitude is approxi-
mately 1=3 PE above the baseline [9]. More details of the
detector apparatus can be found in Refs. [9–11]. PandaX-
4T has reported the most stringent constraint on the spin-
independent cross sections between the nucleon and DM
with the DMmass from 5 GeV=c2 to 10 TeV=c2 [10] using
the 0.63-tonne-year data from Run0.

Compared with the search reported in Ref. [10], new data
selections are developed to enhance the detection efficiency
and to minimize the extra background that emerged from
data. Thresholds of the S1 and S2 are lowered to 0.3 PE and
65 PE (both in charge), respectively, as compared with the
2 PE and 80 PE in Ref. [10]. The systematics of the
background and the energy reconstruction at such a low
threshold form the core of this analysis. With these
thresholds, two sets of data used in Ref. [10] with a total
live time of about 7.5 days show a higher noise rate, likely
due to microdischarging in the TPC, and are removed from
this analysis. The data selection cuts used in this analysis
are described as follows. We adopt four selection cuts from
the previous analysis [10], the diffusion cut (S2 widths
compatible with the expected fluctuation on the electron
arrival time), the veto PMT cut (no signal in the PMTs
outside the field cage), the fiducial volume cut (FV,
2.67 tonnes), and the single scatter cut (only one S2 above
50 PE in the 1-ms event window). Events with large signals
are observed to be followed by small afterglow signals in
PandaX-4Tand other experiments [12,13]. These afterglow
signals usually are single electrons (SEs) which have a
strong correlation with the previous large S2 in both time
and position. Compared with Ref. [10], a more stringent
afterglow veto based on the time and position difference to
the previous event is implemented. Events with a time
difference to previous S2 (> 2000 PE) less than 50 ms or
position difference smaller than 100 mm are excluded. In
addition, we veto the event unless the total charge per unit
time and the number of S1s in the preceding 1-ms window
have returned to normal. The afterglow veto cut also
includes a set of “activity” requirements on an event
waveform, that the ratio between the main S2 charge
and the total event charge F S2 ¼ qS2=qevent > 5=6−
150=qevent, the integrated charge in the preceding event
window to be less than 20 PE, and the main S1 to be the
only signal within 4 μs around it. The effective live time of
this analysis is estimated to be 64.7 days.
The signal expectation in this analysis is produced by a

two-step simulation. The first step is the same as in
Ref. [10], in which the correlated distributions in S1 and
S2 are produced according to a fit to the calibration data,
later referred to as the signal model. In the second step, a
dedicated waveform simulation (WS) is developed. The
waveform of the S1 is assembled using sampled S1 hits
from the neutron calibration data, similar to the procedure
in Ref. [14]. The waveform of the S2 at any given position
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is assembled using individual SE waveforms from the data,
with the reconstructed position within a 40-mm radius
circle. The width of the overall assembled waveform at a
given depth in the TPC is required to satisfy the diffusion
relation observed from the data. Effects of PMT after-
pulsing, delayed electrons [13,15–17], and photoionization
of impurities after a large S2 are implemented in the WS
according to the data. More details can be found in the
Appendix.
The total efficiency to the 8B CEνNS consists of four

components (see Fig. 1): (1) the signal reconstruction,
(2) the data selections discussed two paragraphs earlier,
(3) the region of interest (ROI), and (4) a cut based on
boosted decision tree (BDT, see later text). The signal
reconstruction includes clustering of PMT hits into signal
pulses, classification of the signal pulses into S1s and S2s,
and pairing of the classified S1s and S2s into incident
events. Each step of the signal reconstruction is affected by
the presence of dark noises and stray electrons. For the
ROI, we require the number of coincident PMT hits in an
S1 to be either 2 or 3 in this analysis. The events with only a
single-hit S1 are mostly accidental background originating
from the PMT dark noises, and are excluded from the ROI
due to a poor signal-to-background ratio. The S2 charge
range, uncorrected for spatial dependence, is further opti-
mized to be 65–230 PE for 2-hit S1 and 65–190 PE for 3-hit
S1 based on the expected signal-to-background ratio. This
ROI requirement has dominating effects on the signal
efficiency. The efficiencies of (1), (2), and (3) are estimated

using the WS and validated by the neutron calibration data,
with their fractional difference (14%) taken as the system-
atic uncertainty.
We take the calculated deposit energy spectrum of the

solar 8B CEνNS in LXe from Ref. [18], which is shown in
Fig. 1. The signal model implements the light and charge
production in LXe following the NEST v2.3.6 parametri-
zation [19], and the response of signal detection in the
PandaX-4T detector, similar to Ref. [10]. The light and
charge yields are extrapolated from the one used in
Ref. [10], which has its model parameters fit to the neutron
calibration data in the energy region of the DM search (see
Fig. 2). We adopt the relative uncertainties of the light and
charge yields from NEST [20], which is based on a global
fit to all available measurements, and conservatively
assume them to be uncorrelated.
The background composition is the same as Ref. [10].

With loosened S1 and S2 selections, the accidental coinci-
dence (AC) background increases significantly in compari-
son to Ref. [10], which dominates the overall background.
The electronic recoil (ER), NR, and surface background are
estimated using the same method as in Ref. [10] but with
the new data selections and the ROI cut.
The rate of the AC background is estimated using

random S1s and S2s identified in the data. The S2s are
first selected from a waveform (∼1000 per day within 65 to
300 PE); then we search backward for 1.5 ms for a main S1.
The 1.5-ms window is chosen so that the corresponding
“activity” cuts are sufficiently similar to those mentioned
earlier. The AC pair is formed when the time difference
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FIG. 1. Total efficiency (red solid line) to the solar 8B neutrino
CEνNS in this analysis with the number of S1 hits to be 2 or 3.
The blue, green, cyan, and magenta solid lines represent the
signal efficiencies due to the signal reconstruction, data selection,
ROI, and BDT, respectively. The signal efficiency in the previous
study [10] is also given in the pink dashed line as a reference. The
ideal spectra of the solar 8B CEνNS and the DM-nucleus
interaction with the DM mass of 4ð8Þ GeV=c2 with an assumed
DM-nucleon cross section of 10−44 cm2 are overlaid as well in
the black solid and gray dashed (dotted) curves, respectively, with
the scale indicated on the right axis.
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yields are shown in the gray bands.
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between the S1 and S2 is within [0.9, 1.5] ms, beyond the
TPC’s maximum drift time (off window), to guarantee that
there is no correlation. To enlarge the statistics of the AC
samples, a “scrambled” waveform dataset is constructed.
The waveform of the selected S2 is concatenated after a
1-ms segment randomly selected from our recorded data,
which on average contains 6.3 (0.01) of the S1-like signals
with the S1 hit equals to (larger than) 1, primarily from dark
noises. This “scrambled” data get passed to the aforemen-
tioned software reconstruction and data selection. The
predicted number of AC events in the ROI in the 2- and
3-hit regions can be found in Table I. The diffusion cut is
the most effective cut, which suppresses the AC by a factor
of 8 or so. The AC model is validated using the events with
the S2 in the range from 300 to 800 PE (referred to as the
sideband data) and within the FV, which is dominated by
the AC (see Table II). The comparison between the side-
band data and the prediction is given in Table II, yielding a
good agreement. The comparison between the S1 and S2
spectra of the prediction and the sideband data for the 2-hit

region is shown in Fig. 3. To be conservative, we take 30%,
which is the difference (error-weighted standard deviation)
in the normalized S2 spectra, as the systematic uncertainty
of the AC model.
A BDT algorithm [25] is trained to optimize the 8B

CEνNS selection against the AC background. The S2s of
the AC events are mostly generated out of the fiducial
region (such as the surface of electrodes and the gas
region), and the S1s are mostly dark noises (see
Ref. [26]), both having different characters from the
physical events. The input variables of the BDT concern
features related to the charge, width, top-bottom asymme-
try, and PMT top patterns of the S1 and S2 signals. The
training and testing samples of the 8B signal in the BDT are
from the WS with the (S1, S2) distribution following our 8B
signal model. The BDT cut value and the S2 range for each
S1 hit bin are determined by maximizing the probability of
discovering a 8B signal under our background model,
with results summarized in Table I. The optimized BDT
efficiency of the 8B signal is shown in Fig. 1. The BDT
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FIG. 3. The S1 (left panels) and S2 (right panels) spectra in the sideband (top panels) and ROI (bottom panels) for the 2-hit data, with
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overlay the expected 8B CEνNS spectra (scaled up by 50) in the bottom panels, shown in blue solid lines. The goodness-of-fit p values of
the S1 and S2 spectra in the sideband and ROI are all no less than 0.1.

TABLE I. ROI comparison: Prediction vs observation in the optimized S2 ranges. The number of pre- and post-
BDT events are listed in separate rows. The observed events after unblinding are shown in the last column.

Nhit S2 range (PE) BDT ER NR Surface AC Total prediction 8B Observation

2 65–230 pre 0.04 0.10 0.14 62.43 62.71 2.32 59
post 0.02 0.04 0.03 1.41 1.50 1.42 1

3 65–190 pre 0.01 0.05 0.08 0.79 0.93 0.42 2
post 0.00 0.02 0.03 0.02 0.07 0.29 0
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reduces the 8B CEνNS signal (AC background) by about
39% (98%) and 31% (96%), respectively, for the 2- and
3-hit bins. Most of the rejection power against the AC is
gained through the parameters related to the S2 waveform
shape and its top charge pattern, and we observe almost no
correlation in the S1 and S2 discriminants. The uncertain-
ties of the BDT efficiency to the 8B CEνNS and the DM
signals are studied using the neutron calibration data. To
improve the statistics in the ROI, especially for S2 less than
100 PE, the minor S2s of the neutron double-scatter events
are used. A difference of 14% and 13% are observed for the
2-hit and 3-hit ROI, respectively, taken as the systematic
uncertainties. The systematic uncertainty of the BDT
efficiency to the AC background is estimated by checking
the performance on an alternative AC model using a more
traditional approach based on the random pairing of the
isolated S1s and S2s [26], leading to an uncertainty of 19%
and 18% in the 2-hit and 3-hit bins.
The data within the ROI were blinded before we

finalized the data selection, the background and signal
models, the ROI, and the BDT optimization. We then
unblinded the data and checked the events before and after
applying the BDT. We show the comparison of the S1 and
S2 spectra between the prediction and data before applying
the BDT in Fig. 3. The observed number of the events in the
ROI for the 2- and 3-hit regions are given in Table I. After
unblinding, 1 (with S1 ¼ 1.6 PE and S2 ¼ 165 PE) and 0
events that survive the BDT are found in the 2- and 3-hit
ROI, respectively.
We perform a simple statistical interpretation based on

2-bin profile likelihood ratio (PLR) analysis [27] using the
2- and 3-hit data. The binned likelihood is defined as [28]

L ¼ GðδϵÞGðδsÞGðδbÞGðδΦÞ

×

�Y
i

GðδiBDT;sÞGðδiBDT;bÞ
λNi
i

Ni!
e−λi

�
; ð1Þ

where the index i represents the hit number of S1 (2 or 3),
and δ (δi) is series of the constrained nuisance parameters,
which are correlated (independent) between the 2- and 3-hit
bins with a Gaussian penalty G with the mean at zero. The
set of parameters includes δϵ, δs, δb, δiBDT;s, δ

i
BDT;b, and δΦ,

corresponding to the relative uncertainties of the pre-BDT
efficiency (including the signal reconstruction, data selec-
tion, and ROI), the NR signal rate, the AC background rate,

the BDT cut efficiency to the NR signals, the BDT
efficiency to the AC background, and the 8B neutrino flux,
respectively. The 1σ values of the nuisance parameters are
summarized in Table III. The parameter δs is factored
together with the fractional uncertainty of the signal rate fi
which depends on the signal spectrum (fνi for the 8B
CEνNS signal and fχi for the DM signal), in order to reflect
the common origin of fi. Typical numbers of fi are 0.45
(0.60), 0.29 (0.39), and 0.16 (0.24) for 4-GeV=c2 DM, the
8B CEνNS, and 8-GeV=c2 DM in the 2-hit (3-hit) region. λi
is the expected count while Ni is the observed count.
Specifically, under the hypotheses of (a) the solar 8B
neutrino CEνNS without the DM, and (b) the low mass
DM with the 8B CEνNS background, the expected counts
can be written as

λνi ¼ Nνð1þ δsfνi Þð1þ δϵÞð1þ δiBDT;sÞ
þ NACð1þ δbÞð1þ δϵÞð1þ δiBDT;bÞ þ Nother;

λχi ¼ Nχð1þ δsf
χ
i Þð1þ δϵÞð1þ δiBDT;sÞ

þ Nνð1þ δsfνi Þð1þ δϵÞð1þ δiBDT;sÞð1þ δΦÞ
þ NACð1þ δbÞð1þ δϵÞð1þ δiBDT;bÞ þ Nother; ð2Þ

where Nν, NAC, Nother, and Nχ are the nominal numbers of
counts for the 8B CEνNS, AC, other background events
(including ER and neutron), and low mass DM, respec-
tively. The total backgrounds predicted in the 2- and 3-hit
ROI for the solar 8B neutrino search are 1.50 and 0.07,
respectively, in an exposure of 0.48 tonne year, as shown in
Table I. The observed number of events is consistent with
both background-only hypotheses in searching for the 8B
CEνNS and the low mass DM in Eq. (2), representing a
probability of 53% and 17% of observing the same or fewer
number of events than the data, respectively.
Using a similar procedure as in Refs. [10,27], we give the

90% confidence level (C.L.) upper limit on the solar 8B
neutrino flux using the CEνNS channel, pushing the upper
limit to 9.0 × 106=cm2=s, in comparison to ð5.46� 0.66Þ ×
106=cm2=s from the standard solar model B16-GS98 [29].

TABLE II. Sideband comparison: Prediction vs observation for
S2 within [300, 800] PE.

Nhit Physical AC Total Observation

1 9.4 2060.5 2069.9 2043
2 10.1 33.8 43.9 47
3 6.9 2.2 9.1 7

TABLE III. List of the constrained nuisance parameters that are
included in the final statistical interpretation (see text), along with
the standard deviations (stdev.) of their Gaussian constraints.

Stdev.

Nuisance parameters 2-hit 3-hit Estimated by

Pre-BDT
efficiency

δϵ 0.14 WS vs NR

NR signal rate δsfi fi NEST uncertainty [20]
AC rate δb 0.30 Prediction vs sideband
BDT efficiency
to signal

δiBDT;s 0.14 0.13 WS vs NR

BDT efficiency
to AC

δiBDT;b 0.19 0.18 Alternative models [26]

Solar 8B flux δΦ 0.04 Ref. [5]
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If the signal model adopted by XENON1T [6] is used, the
upper limit of the solar 8B neutrino flux will be lowered by
13%. If the signal model uncertainty (δs) is eliminated from
the fit, the upper limit will be reduced by 10%. Under the
nominal 8B CEνNS rate, we also obtain the best constraints
on the spin-independent DM-nucleon cross section with
mass in the range of 3 to 9 GeV=c2. The results are
summarized in Fig. 4. In Fig. 4, we also show the 8B
neutrino floor curves from Ref. [18] under ideal back-
ground assumption. The current stage of PandaX has
clearly entered into the sensitive region for neutrinos, so
this result could also be cast into interesting parameter
space of neutrino interactions. The lack of CEνNS excess
from this Letter and XENON1T [6] also motivates further
investigations on the response of LXe TPC to ultralow
energy nuclear recoils.
In summary, a search for CEνNS from the solar 8B

neutrinos as well as the low-mass DM-nucleon interactions
is performed using the PandaX-4T commissioning data
with 0.48 tonne year exposure. In the analysis, we have

further optimized the data selection and developed various
techniques to lower the energy threshold and to control the
accidental background. No significant excess is observed,
leading to the strongest upper limit on the solar 8B neutrino
flux using CEνNS, and on the spin-independent DM-
nucleon cross section within the mass range from 3 to
9 GeV=c2. This manifests the potential of PandaX-4T as a
highly sensitive multipurpose dark matter and astrophysical
neutrino observatory.
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Appendix: Waveform simulation.—To have sufficient
high-purity samples for estimating the efficiency in the
ROI and for training the BDTalgorithm, a WS is developed,
which includes our best knowledge from the data. The WS
not only simulates the S1 and S2 pulses, but also simulates
the accompanying noises that could appear in the event
waveform, such as the PMT afterpulsing, the delayed elec-
trons, the photoionization, and the spurious S1s [13,15–17].
The simulation of the S1 and S2 pulse waveforms is data

driven. The simulated S1 pulse waveform is sampled using
the real S1 hits from the neutron calibration data with the
charge from 20 to 80 PE. The width distribution of the
simulated S1s and S1s from the neutron calibration data in
the ROI can be found in the top panel of Fig. 5. The
simulated S2 pulse waveform is reassembled using the SE
waveforms obtained from the data. The SEs are sampled
within a circle with a radius R0 ¼ 40 mm based on their
reconstructed positions. R0 is tuned to match the root-
mean-square distance of all fired top PMTs, weighted by
charge, from the position of the top PMT that sees the most
S2 charge (σpos). With R0 ¼ 40 mm, the comparison of σpos
between the neutron calibration data and WS are shown in
the middle panel of Fig. 5. The pileup of the SEs is required
to follow a Gaussian distribution with the Gaussian σ equal
to

ffiffiffiffiffiffiffiffiffiffi
2DT

p
, where D is the longitudinal diffusion coefficient

in LXe and T is the drift time of the simulated S2. The value
of D is obtained to be 28 cm2=s by matching the S2
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FIG. 4. Top panel: our constraint on the solar neutrino flux
using the CEνNS analysis, along with the XENON1T results [6]
using the same detection channel and the B16-GS98 standard
solar model prediction [29]. Bottom panel: updated constraints on
the DM-nucleon spin-independent cross section. The red solid
and dashed lines represent the PandaX-4T results from this and
the previous searches [10], respectively. The black solid and
dashed lines represent the results from XENON1T with and
without optimization in the low-energy region [6,30]. Several
results from other experiments [31,32] are also shown. The
neutrino floors (probability for an ideal xenon detector to see less-
than-3σ-significance DM signal) [18] under different exposure
assumptions (1, 10, and 1000 tonne-year from top to bottom) are
shown in the gray shaded regions. The green region represents the
�1σ sensitivity band for the DM search.
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width vs drift time distribution of the neutron calibration
data. The comparison of the S2 width distribution between
the neutron calibration data and WS in the ROI can be
found in the bottom panel of Fig. 5.

Dark counts and noises are included by inserting
randomly picked 1-ms-long waveforms from all the
recorded waveforms into the simulated event window.
PMT afterpulsing are already included, since the simulated
S1 and S2 are both sampled using the waveforms from the
data. Delayed electrons and impurity photoionization can
cause small delayed S2 signals after a large S2. The time
profile and probability of such delayed S2s are obtained by
analyzing the data waveforms after the main S2. The
parameter which is mostly sensitive to the noise and
afterglows is the F S2 that is defined in the main text.
Figure 6 shows the comparison between the F S2 distribu-
tions from the neutron calibration data and the WS.
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