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We study the magnetized strangelets in the baryon density-dependent quark mass model, including the
effects of both confinement and lead-order perturbation interactions. The properties of magnetized
strangelets are investigated under the field strength 2 × 1017 G, where the anisotropy caused by the strong
magnetic field is insignificant and can be treated approximately as an isotropic system. The consideration
of anomalous magnetic moments in the energy spectrum naturally solves the difficulty of infrared
divergence encountered in integrating the density of states. The Coulomb interaction is accounted for using
a self-consistent treatment. The energy per baryon, mechanically stable radius, strangeness, and electric
charge of magnetized strangelets are presented, where their dependence on the field strength and parameter
of confinement and perturbation are investigated.
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I. INTRODUCTION

Strange quark matter (SQM) is one type of matter
comprised of deconfined up, down, and strange quarks,
which could be the ground state of QCD, rather than
56Fe [1]. This idea is first suggested by Bodmer [2] and
developed by Witten [3]. The small lumps of SQM, whose
baryon number A≲ 107 is called a strangelet, named by
Berger and Jaffe [4], are so small that electrons cannot exist
in its interior, as the electron Compton’s wavelength is
much larger than the radius of strangelets [1].
It is possible that strangelets can be produced by high-

energy cosmic rays that collide with each other or the core
of neutron stars [5–8], strange star collisions could release
strangelets as part of the energetic cosmic rays [9–13].

In addition, strangelets could also be found as the products
of high energy heavy ion collision [14–16].
The strong magnetic field could exist in heavy-ion

collisions and compact stars, e.g., pulsars and magnetars.
For pulsars, the typical magnitudes of surface magnetic
fields are about 1014 G [17–19], and the observed magnetic
field strength on the surface of magnetars could be
1014–1015 G [20]. Moreover, the strong magnetic fields
might be generated in noncentral high-energy heavy ion
collisions, reaching the value of 1019 G [21].
Due to the difficulties of perturbation calculations at low

energy and high density region, and the sign problem in
lattice point simulations, the study of quark matter depends
on various phenomenological models, e.g., the magnetized
strange quark matter (MSQM) with bag model [22–24],
the Nambu-Jona-Lasinio (NJL) model [21,25,26], the
mass-density-dependent model [27], the quark quasipar-
ticle model [28], the confined-isospin-density-dependent
mass model [29], and the magnetized strangelets with the
bag model [30,31]. At present, the MIT bag model has been
widely used and obtained some important results. Madsen
considered the finite size effects of strangelets [32].
Lugones and Grunfeld studied the effects of surface tension
and vector interactions on the existence of a strangelet crust
in the MIT bag model [33,34]. Recently, they have revisited
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the quark-mass density-dependent model and showed that
thermodynamic inconsistencies that have plagued the model
for decades can be solved if the model is formulated in the
canonical ensemble instead of the grand canonical one [35].
Presently, we adopt a thermodynamically self-consistent
mass-density-dependent model, so called the baryon den-
sity-dependent quark mass model [36,37], to investigate the
properties of magnetized strangelets at zero temperature.
As is shown in Ref. [38], due to the existence of uniform

magnetic field, theOð3Þ rotation symmetry breaks intoOð2Þ
symmetry, and therefore, distinction between longitudinal-
and transverse-to-the-field pressures is caused. Nevertheless,
we assume a spherical symmetry of strangelets when
magnetic field strength B≲ 2 × 1017 G. Using the method
adopted in Refs. [30,38], we calculate the quantity δ ¼
jPk − P⊥j=jPðB ¼ 0Þj and use it as a measure to distinguish
between isotropic and anisotropic regions [30].
The electric charge of strangelets is an important

property of strangelets. In the absence of electrons, gen-
erally, strangelets carry a slight charge. Some authors
propose that positively charged strangelets would repel
nuclei, while negatively charged ones would attract them,
leading to catastrophic transition from normal matter into
SQM [1]. We treat the Coulomb interaction in a thermo-
dynamically self-consistent manner, where the chemical
potential contributed by the Coulomb energy is included.
The present paper is organized as follow. In Sec. II, we

give the thermodynamic treatment of strangelets in a strong
magnetic field with the baryon density-dependent quark
mass model, while the contribution of Coulomb interaction
is accounted for in a thermodynamically self-consistent
approach. In Sec. III, we adopt the quark mass scaling at
zero temperatures, where both the confinement interaction
and perturbation interaction are considered with the equiv-
alent mass of quarks. In Sec. IV, the numerical results of the
magnetized strangelets are presented, e.g., their energy per
baryon, radius, and charges, as well as the dependence of
energy per baryon and radius on the parameters of mass
scaling. Finally, a short summary is given in Sec. V.

II. THERMODYNAMIC TREATMENT
IN A STRONG MAGNETIC FIELD

A. Thermodynamic framework

The thermodynamic potential density Ω0 at zero temper-
ature is given for a free quasiparticle system due to its
dependence on μ�, i.e.,

Ω0 ¼
X
i

Z � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

q
− μ�i

�
ρiðpÞd3p; ð1Þ

where index i goes over the particle types of the system,
and ρi is the density of state. In previous quark mass-
density-dependent models, the quark acts like a free particle
with a density-dependent mass mi ¼ m0;i þmIðnbÞ, where

nb ¼ 1
3

P
i ni and m0;i are the baryon number density

and the quark current mass with mu0 ¼ 5 MeV,
md0 ¼ 10 MeV, and ms0 ¼ 100 MeV. In terms of the
multiple reflection expansion method [32,39], the function
ρi of strangelets can be given by

ρi ¼
gi

ð2πÞ3V
�
V þ S

p
fS

�
mi

p

�
þ Cr

p2
fC

�
mi

p

��
; ð2Þ

where V, S, and Cr are volume, area, and extrinsic
curvature of strangelets, and gi is the corresponding degree
of freedom. For a spherical system, we have V ¼ 4πR3=3,
S ¼ 4πR2, Cr ¼ 8πR. The functions fS and fC are given
by [4,40]

fS ¼ −
1

2
arctan

�
mi

p

�
; ð3Þ

fC ¼ 1

6

�
1 −

3p
2mi

arctan

�
mi

p

��
: ð4Þ

Note that the density of states in Eq. (2) becomes
negative and is hence unphysical at small radii and
momenta. An infrared cutoff [41] is usually introduced
to treat the unphysical contributions, which is not included
here since their contributions are small and the natural
truncation caused by anomalous magnetic moments has
been considered.
At the zero temperature, within the framework of an

equivalent mass model [42], the particle mass depends on
baryon number density nb. Given that the baryon number
density is defined as nb ≡P

i Ni=ð3VÞ, this implies that
the particle mass becomes a function of volume and particle
numbers. In such a model, if we adopt the expressions of
free particles for the thermodynamic potential density and
chemical potential as presented in Eq. (1) to represent the
actual values for the system, then it would lead to
thermodynamic inconsistencies [43].
To avoid this issue, it is necessary to incorporate the

corrections arising from the dependence of mass on the
state variables. Based on the consideration, the analysis
starts with the energy ĒðV; fNigÞ ¼ V

R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

p
ρid3p,

which is a function of the state variables such as volume
and particle number. At the zero temperature, the energy is
given by

ĒðV; fNig; fmigÞ ¼ Ω0V þ
X
i

μ�i Ni: ð5Þ

Considering mass as an intermediate variable, the differ-
ential of Eq. (5) is given by
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dĒ ¼
"
Ω0 þ V

�
∂Ω0

∂V

�
fmig;fNig

#
dV þ

X
i

μ�i dNi

þ
X
i

V

�
∂Ω0

∂mi

�
fNig;V

dmi: ð6Þ

The differential of mi is as follows:

dmi ¼
∂mi

∂nb

��
∂nb
∂V

�
Ni

dV þ
X
j

�
∂nb
∂Nj

�
V

dNj

�

¼ 1

3V2

X
j

∂mi

∂nb
ðVdNj − NjdVÞ: ð7Þ

The fundamental thermodynamic differential relations of
energy are

dĒ ¼ −PdV þ
X
i

μidNi; ð8Þ

where P, V, μi, and Ni correspond to the pressure, volume,
chemical potential, and particle number of the system,
respectively.
For a uniform system, the energy density is E ¼ Ē=V

and particle number density is ni ¼ Ni=V. Comparing
Eq. (6) with Eq. (8), we can derive the following thermo-
dynamic relationships:

P ¼ −Ω0 − V

�
∂Ω0

∂V

�
fmig;fNig

þ nb
X
j

∂mj

∂nb

�
∂Ω0

∂mj

�
fNig;V

; ð9Þ

μi ¼ μ�i þ
1

3

X
j

∂mj

∂nb

�
∂Ω0

∂mj

�
fNig;V

: ð10Þ

Based on E ¼ Ω0 þ
P

i μ
�
i ni ¼ ΩþP

i μini, we have

Ω ¼ Ω0 − nb
X
j

∂mj

∂nb

�
∂Ω0

∂mj

�
fNig;V

; ð11Þ

where the second term is under a fixed volume, i.e.,
∂Ω0=∂V ¼ ∂Ω=∂V. By Eqs. (9)–(11), we obtained

E ¼ −Pþ
X
i

μini − V

�
∂Ω0

∂V

�
fmig;fNig

¼ −Pþ
X
i

μini − V

�
∂Ω
∂V

�
fmig;fNig

; ð12Þ

P ¼ −Ω − V

�
∂Ω0

∂V

�
fmig;fNig

¼ −Ω − V

�
∂Ω
∂V

�
fmig;fNig

: ð13Þ

Because of the presence of the surface and curvature terms,
the thermodynamic potential density needs to be derived
for the volume. When R is large enough, the surface and
curvature terms tend to vanish, i.e., ∂Ω=∂V ¼ 0. The
system transitions from strangelets to strange quark matter
in such large R, thus E ¼ −PþP

i μini and P ¼ −Ω. The
Euler equation at zero temperature is validated.
By Eq. (8), we have

P ¼ −
dðVEÞ
dV

����
fNig

; ð14Þ

i.e.,

P ¼ −
dðVEÞ
dnb

dnb
dV

����
fNig

¼ −
NdðE=nbÞ

dnb

�
−

N
V2

�

¼ N2

V2

dðE=nbÞ
dnb

¼ n2b
dðE=nbÞ
dnb

: ð15Þ

It can be easily seen from the relationship that the pressure
must be zero at the minimum energy per baryon, which
provides a simple and intuitive method for testing thermo-
dynamic self-consistency.
Based on EðV; fnig; fmigÞ ¼ Ω0 þ

P
i μ

�
i ni ¼ ΩþP

i μini, we have ∂E=∂μ�i ¼ ∂Ω0=∂μ�i þ ni ¼ 0. The par-
ticle number densities are

ni ¼ −
∂Ω0

∂μ�i
: ð16Þ

This is the same as the formula derived from the equivalent
particle model [43].

B. Charged fermion in a uniform magnetic field

In the nonrelativistic case, the energy levels of charged
particles under a uniform magnetic field were given by
Landau in 1930. Transitioning from classical theory to
quantum mechanics, taking into account the spin of
charged particles, the Hamiltonian operator in electromag-
netic fields is

Ĥ ¼ 1

2m
ðp̂ − qAÞ2 − μ̂ · Bþ qϕ; ð17Þ

whereB is the magnetic field strength (in the natural system
of units, taking into account that the vacuum permeability is
taken to be 1, the magnetic field strength is equal to the
magnetic induction strength H ¼ B), A is the magnetic
vector potential, and ϕ is the electric potential. The intrinsic
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magnetic moment μ̂ ¼ μŝ=s, where μ is the magnetic
moment value, ŝ is the particle spin operator, and s is
the spin quantum number. Let the uniform magnetic field
B ¼ ð0; 0; BÞ, then the vectorial potential can be taken as

Ax ¼−By; Ay ¼Az¼ 0: ð18Þ
The electric potential is taken to be 0 and the Hamiltonian
operator becomes

Ĥ ¼ 1

2m
ðp̂x þ qByÞ2 þ p̂2

y þ p̂2
z

2m
−
μ

s
ŝzB: ð19Þ

Noting that ŝz is commutative with the Hamiltonian, this
operator can be replaced by the eigenvalue σ, then the spin
part of the wave function does not matter, and the
Schrödinger equation is taken to be

1

2m
½ðp̂x þ qByÞ2 þ p̂2

y þ p̂2
z �ψ −

μ

s
σBψ ¼ Eψ : ð20Þ

Further note that the Hamiltonian is commutative with p̂x
and p̂z, and ψ can be taken as ψ ¼ expðiðpxxþ pzzÞÞχðyÞ.
The χ satisfies

χ00 þ2m

��
EþμσB

s
−
p2
z

2m

�
−
1

2
mω2ðy−y0Þ2

�
χ¼ 0; ð21Þ

where y0 ¼ −px=qB, ω ¼ jqjB=m. Let E0 ¼ Eþ μσB=s−
p2
z=2m, then Eq. (21) is equivalent to the equation of a

linear harmonic oscillator with energy E0 and frequency ω.
The energy eigenvalues of the linear harmonic oscillator are
E0 ¼ ðnþ 1=2Þω, n ¼ 0; 1; 2;….
As a result, the energy level of a charged particle in a

uniform magnetic field is

En ¼
�
nþ 1

2

�
ωþ p2

z

2m
−
μσB
s

: ð22Þ

The first term in the above equation corresponds to the
motion in the transverse plane, and these energy levels n are
known as Landau energy levels. For charged fermions,
μ=s ¼ sgnðqÞjqj=m, where sgnðqÞ is the sign function.
Thereby, Eq. (22) can be rewritten as

Ep;q ¼
p2
z

2m
þ ejqjB

2m
½2nþ 1 − 2σsgnðqÞ� ¼ p2

2m
: ð23Þ

In the case of relativity, the energy of particles

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
: ð24Þ

Taking η ¼ 2σsgnðqÞ, it can be seen from (23)

that the transverse momentum is p⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijqjBð2n þ 1 − ηÞp

. Thus, the energy of a charged

particle in a uniform magnetic field in the relativistic case
should be

Epz;q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ ejqjBð2nþ 1 − ηÞ þm2

q
: ð25Þ

For multibody systems, to determine the state in which
the system is in, it is usually necessary to integrate in
momentum space. Notice that the transverse momentum is
discretized, and the integration in the transverse direction
should become a summation, such that 2ν ¼ 2nþ 1 − η.
The rules for substituting integrals for summation are given
by [44]Z

∞

−∞

Z
∞

−∞
dpxdpy → 2πejqijB

X∞
ν¼0

ð2 − δν;0Þ: ð26Þ

In addition to having an impact on particle energy levels
and momentum, a strong magnetic field can also cause the
pressure distribution of the system to be anisotropic. The
pressure also split in Pk and P⊥, which denote parallel and
transverse to the magnetic field direction [38]. The expres-
sions of Pk and P⊥ for a magnetized fermion system can be
written as

Pk ¼
X
i

μini − E − V

�
∂Ω
∂V

�
; ð27Þ

P⊥ ¼
X
i

μini − E − V

�
∂Ω
∂V

�
þ B2 −MB; ð28Þ

where M is the magnetization of the system, which is
given by

M ¼ −
∂Ω
∂B

: ð29Þ

Details of the derivation of the parallel and transverse
pressures from the energy-momentum tensor are provided
in the Appendix. It can been see that the parallel pressure
Pk satisfies the Hugenholtz-Van Hove theorem [45], while
the transverse pressure P⊥ has extra contributions from the
magnetic field, which will result in the zero-pressure point
density being consistent with the density at the minimum of
the energy per baryon for Pk but not for P⊥ [46].
Considering a strong magnetic field, the energy density

at zero temperature is given by [38]

E ¼ Ω0 þ
X
i

μ�i ni þ
B2

2

¼ Ωþ
X
i

μini þ
B2

2
: ð30Þ

Due to ∂Ω0=∂V ¼ ∂Ω=∂V, the parallel and transverse
pressures in a strong magnetic field are given by
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Pk ¼ −Ω − V
∂Ω
∂V

−
B2

2

¼ −Ω − V
∂Ω0

∂V
−
B2

2
; ð31Þ

P⊥ ¼ −Ω − V
∂Ω
∂V

þ B2

2
−MB

¼ −Ω − V
∂Ω0

∂V
þ B2

2
−MB: ð32Þ

We can use a quantity δ to quantify the anisotropy of
SQM, which is defined by

δ ¼
���� Pk − P⊥
PðB ¼ 0Þ

����: ð33Þ

We assume the spherical shape for strangelets and Pk ≃ P⊥
when δ≲ 0.1. For SQM, the magnetic field strength that
satisfies the above assumption is up to approximately
2 × 1017 G [30] when μ�d ¼ μ�s ¼ μ�u þ μe ¼ 400 MeV.
In our calculation, we adopt that the mechanical stability
condition is Pk ¼ 0 for B ≤ 2 × 1017 G since the strange-
lets is a self-bound system, which is equivalent to minimize
the total free energy at fixed Ni as usually adopted in the
literature [47,48].

C. Anomalous magnetic moment

Strictly speaking, the energy formula under the relativ-
istic case should be given by the Dirac equation and, in
addition to the intrinsic magnetic moments, the anomalous
magnetic moments of charged particles should be taken
into account. In 1950, Johnson and Lippman first consid-
ered the anomalous moments in the Dirac equation [49].
However, the formula they gave was not covariant. Bjorken
and Drell provided a formula for covariation,�

γμð∂μ þ ijqjAμÞ −
iμ
2
Fμνγ

μγν þm

�
ψ ¼ 0: ð34Þ

Then, the energy of charged particles containing anomalous
magnetic moments can be obtained,

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ejqjBð2nþ 1 − ηÞ þm2

q
− ηjQjBÞ2

r
: ð35Þ

It should be noted that ðn ¼ ν; η ¼ 1Þ and ðn ¼ ν − 1;
η ¼ −1Þ are no longer equivalent due to the existence of
anomalous magnetic moment Q, then the integral replace-
ment rule Eq. (26) becomesZ

∞

−∞

Z
∞

−∞
dpxdpy → 2πejqijB

X
η¼�1

X∞
n¼0

: ð36Þ

Considering that the components of the quark mo-
mentum must be real and that the Fermi momentum

νq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�2q −m2

q

q
is an upper limit to the quark momentum

at zero temperature, there must be

μ�2q −m2
q − p2⊥ ≥ 0: ð37Þ

By Eq. (37), we have

n ≤
μ�2q −m2

q

2ejqqjB
þ η − 1

2
: ð38Þ

Thus, the upper limit for the sum of Landau energy levels in
Eq. (36) is

nmax ¼ int

�
μ�2q −m2

q

2ejqqjB
�
þ η − 1

2
; ð39Þ

where int½x� is an integer function that means taking the
integer part of argument x.
The anomalous magnetic moments of electrons and

quarks are given by

Qe ¼ 0.0016μB; Qu ¼ 1.85μN;

Qd ¼ −0.97μN; Qs ¼ −0.58μN; ð40Þ

where μB≃5.79×10−15MeV=G, μN≃3.15×10−18MeV=G.
We can see that these anomalous magnetic moments are
very small and, unless in extremely strong magnetic field
environments, the contribution of anomalous magnetic
moments can be completely ignored. Taking Q ¼ 0,
Eq. (35) returns to Eq. (25). The contribution of anomalous
magnetic moments is not significant, but they play a crucial
role in the study of the properties of strangelets under
strong magnetic fields.
If the anomalous magnetic moment is not considered,

then the integration of the density of states under a
magnetic field will encounter difficulties in infrared
divergence due to the presence of surface and curvature
terms. When n ¼ 0 and η ¼ 1 there are two infrared
divergences lnðp⊥;iÞ and lnðp⊥;iÞ − 1=p⊥;i for density of
states under magnetic field, caused by the second and third
term of Eq. (2), so-called surface term and curvature term,
respectively.
To address this issue, we introduce an infrared cutoff for

pz. The anomalous magnetic moment provides a natural
cutoff ð2m − jQjBÞjQjB [23], meaning that when n ¼ 0
and η ¼ 1, the lower limit of the integral for pz becomes
ð2m − jQjBÞjQjB. The natural cutoff arises due to the
mass-shell condition

p2 ¼ E2 −m2 ≥ 0: ð41Þ

When n ¼ 0 and η ¼ 1, Eq. (35) gives us

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ ðm − jQjBÞ2

q
: ð42Þ
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Substituting Eq. (42) into Eq. (41), we obtain

p2
z þm2 − 2mjQjBþ jQj2B2 −m2 ≥ 0; ð43Þ

i.e.,

pz ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m − jQjBÞjQjB

p
: ð44Þ

In essence, under the condition n ¼ 0 and η ¼ 1, the
minimum allowed value of pz is determined by the “natural
cutoff” derived from the interplay between the particle’s
effective mass m and the external magnetic field B. This
natural cutoff circumvents infrared divergences arising
from surface and curvature terms.
Considering the anisotropy caused by a strong magnetic

field and the anomalous magnetic moment of quarks, the
Eq. (1) becomes

Ω0 ¼
X
i

X
η¼�1

Xnmax

n¼0

2πejqijB
Z

pðn;ηÞ
i

−pðn;ηÞ
i

ðEp;i−μ�i Þρidpz; ð45Þ

where pðn;ηÞ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
F;i − p2⊥

q
, pF;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�2i −m2

i

p
is the

Fermi momenta of quark with flavor i. Due to the very
small value of the anomalous magnetic moment, the
contribution of the anomalous magnetic moment to the
energy levels is negligible. Taking Q ¼ 0 in Eq. (35),
the energy spectrum Ep;i of the quark with flavor i is

Ep;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ p2⊥ þm2

i

q
; ð46Þ

p⊥¼mi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B
Bc
i
ð2nþ1−ηÞ

s
; Bc

i ¼
m2

i

ejqij
; ð47Þ

i.e.,

p⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ejqijBð2nþ 1 − ηÞ

p
: ð48Þ

Here, mi are the quark masses, n indexes the Landau level,
η ¼ 2sgnðqiÞs ¼ �1 correspond to the orientations of the
particle magnetic moment parallel or antiparallel to the
magnetic field. The sign function sgnðxÞ equals to 1 with a
positive argument and to −1 with a negative argument, s ¼
� 1

2
are spin projections onto the magnetic field direction.

Bc
i are the critical magnetic fields [23], qi denote the quark

electric charges (e.g., qu ¼ 2=3, qd ¼ qs ¼ −1=3), and e
represents the elementary charge. Note that breaking spin
degeneracy is caused by the magnetic field, so the degen-
eracy gi ¼ 3 for quarks.
Consequently, the number densities of quarks are given by

ni ¼ −
∂Ω0

∂μ�i
¼

X
η¼�1

Xnmax

n¼0

2πejqijB
Z

pðn;ηÞ
i

−pðn;ηÞ
i

ρidpz: ð49Þ

D. Coulomb interaction

The size of strangelets with A ≪ 107 is smaller than the
electron Compton wavelength, thus electrons cannot coex-
ist with quarks in strangelets; in present calculations, the
electron is ignored. Therefore, generally, strangelets are not
electric neutrality; this leads to a small Coulomb energy
and, in addition, the chemical potential of the electron is
treated as zero. Thus, combining with Eq. (30), the energy
density and energy per baryon of strangelets are given by

E ¼ Ωþ
X
i

μini þ EC þ B2

2

¼ Ω0 þ
X
i

μ�i ni þ EC þ B2

2
; ð50Þ

E
nb

¼ VE
A

¼ 4πR3E
3A

; ð51Þ

where EC is the Coulomb energy density, which is given
by [50]

EC ¼ 2

15
πR2αðQ2

V þ 5Q2Þ; ð52Þ

where α ≈ 1=137 is the fine structure constant, and QV is
the volume term of the total electric charge density Q, i.e.,
Q ¼ P

i qini and QV ¼ P
i qini;V . Here, ni;V is given by

ni;V ¼
X
η¼�

Xnmax

n¼0

2πejqijB
Z

pðn;ηÞ
i

−pðn;ηÞ
i

gi
ð2πÞ3 dpz

¼
X
η¼�

Xnmax

n¼0

ejqijBgi
2π2

pðn;ηÞ
i : ð53Þ

For strangelets, taking into account the contribution of
Coulomb interaction, the parallel and transverse pressures
are given by

Pk ¼ −Ω − V
∂Ω0

∂V
þ PC −

B2

2

¼ −Ω0 −
R
3

∂Ω0

∂R
−
X
i

niμI þ PC −
B2

2
; ð54Þ

P⊥ ¼ −Ω − V
∂Ω0

∂V
þ PC þ B2

2
−MB: ð55Þ

In terms of the basic thermodynamic differential relation
related to Coulomb interaction at zero temperature, i.e.,

dðVECÞ ¼ −PCdV þ
X
i

μC;idðniVÞ; ð56Þ

the pressure and chemical potential contributions of
Coulomb interaction are given by [50]
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PC ¼ 2

9
πR2α

�
3QV

5π2
X
i

qigip2
F;i

n0i

×
�
ni þ

R
3

∂ni
∂R

−
∂ni
∂mi

dni
dnb

nb

�
þQ2 −Q2

V

�
; ð57Þ

μC;i ¼
4

15
πR2αqi

�
5Qþ gip2

F;iQV

2π2n0i

�

−
2αR2QV

45π

X
j

qjgjp2
F;j

n0j

∂nj
∂mj

dmj

dnb
; ð58Þ

where n0i is defined by

n0i ≡ ∂ni
∂pF;i

: ð59Þ

Thus, the actual chemical potential of quark with flavor i
is given by

μi ¼ μ�i − μI þ μC;i: ð60Þ

III. DENSITY AND/OR TEMPERATURE
DEPENDENT PARTICLE MASSES

Originally, the quark mass in the quark mass-density-
dependent model is given by [51]

mi ¼ m0;i þ
Bbag

3nb
; ð61Þ

where i goes over u, d, and s, m0;i is the current mass of
quark with flavor i, and Bbag is the bag constant. Based on
the in-medium chiral condensates and linear confinement, a
cubic root scaling was derived [52],

mi ¼ m0;i þ
D

n1=3b

; ð62Þ

where D is the confinement parameter, which are deter-
mined by stability arguments of Witten-Bodmer hypoth-
esis. On this foundation, quark mass scaling containing the
effects of linear confinement and one-gluon-exchange
interaction was obtained [53],

mi ¼ m0;i þ
D

n1=3b

− Cn1=3b ; ð63Þ

where D is still the confinement parameter, and C repre-
sents the effect of one-gluon-exchange interaction. Xia and
Peng noted that the mI in Eq. (63) can be understood as a
Laurent series of Fermi momentum. From this point of
view, considering the perturbative effect, a new mass
scaling was formulated as [43]

mi ¼ m0;i þ
D

n1=3b

þ C0n1=3b ; ð64Þ

where C0 represents the leading order perturbative
interaction.
To facilitate the comparison of the effects of one-gluon-

exchange and perturbative effect on the properties of
strangelets, we will unify formulas Eqs. (63) and (64) in
writing

mi ¼ m0;i þ
D

n1=3b

þ Cn1=3b ; ð65Þ

where it corresponds to the perturbation and one-gluon-
exchange effect, respectively, when C > 0 and C < 0.

IV. PROPERTIES OF MAGNETIZED
STRANGELETS

At a given baryon number, A, with the quark number
density ni given in Eq. (49), the baryon number conserva-
tion is given by

A ¼ 1

3

X
i

niV: ð66Þ

In the absence of electrons, the beta equilibrium con-
dition of strangelets should be replaced by

μu ¼ μd ¼ μs: ð67Þ

In this section, we solve numerically the equation of
mechanical equilibrium Pjj ¼ 0, with baryon number con-
servation conditions and the beta equilibrium, i.e., Eqs. (66)
and (67). We use Z to denote the electric charge (in units of
e), then we have

Z ¼
X
i

niqiV: ð68Þ

In present calculations, we use the quark mass scaling
given by Eq. (65). Note that for a negative parameter C, the
quarkmass scaling Eq. (65) is equivalent to the mass scaling
considering one-gluon-exchange effect, i.e., Eq. (63).
In Fig. 1, we present the anisotropy of SQM as a function

of the field strength B for fixed parameters C and D. The
dashed, dotted, dashed dotted, and solid curves correspond,
respectively, to the baryon number density nb ¼ 4n0, 5n0,
6n0, and δ ¼ 0.1, where n0 ¼ 0.165 fm−3 is the nuclear
saturation density. It can be seen from the Fig. 1 that the
anisotropy of SQM increases with the increase of magnetic
field strength B, but the anisotropy is not significant for the
pressure when the field strength B ≤ 2 × 1017 G. In addi-
tion, the anisotropy of SQM decreases with increasing
baryon number density. This is consistent with the con-
clusion of previous studies [38,54]. For different values of
parameter C, we notice that the anisotropy of SQM takes
the maximum value when C ¼ 0. When nb is large, the
anisotropy of SQM of C > 0 is more clearly larger than that
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of C < 0. There are some interesting points, which we
explain in combination with Fig. 2. From Fig. 2, we can see
that this is mainly because the pressure P0 (B ¼ 0) of
strange quark matter is minimum at C ¼ 0, centered at
C > 0, and maximum at C < 0, respectively. At the same
time, there is not much difference in the degree of deviation
between Pk and P⊥ from P0.
Figure 3 shows the dependence of energy per baryon

E=nb given by Eq. (51) on the baryon number A in both
B ¼ 2 × 1017 G and B ¼ 0 for fixed parameters C and D.
The solid, dashed, and dotted curves correspond, respec-
tively, to B ¼ 2 × 1017, 0 G, and 56Fe. The magenta,
orange, blue, and red curves correspond, respectively, to
the parameter sets (C,

ffiffiffiffi
D

p
in MeV): (0.1, 160), (0, 160),

ð−0.1; 160Þ, and ð−0.3; 140Þ. It can be seen that the
strangelets under ð−0.3; 140Þ are absolutely stable at zero

magnetic field strength, while the strangelets under
ð−0.1; 160Þ are metastable at B ¼ 2 × 1017 G when
A > 8000. The energy per baryon decrease with increasing
baryon number A. This is consistent with Jensen and
Madsen’s results at B ¼ 0 [55], and the value is slightly
smaller. This indicates that strangelets with large baryon
numbers could be absolutely stable under strong magnetic
field strength, which opens up the possibility of detecting
strangelets from the particles emitted by unknown astro-
physical sources that may have strong magnetic fields and
high baryon numbers. In addition, it is found that the first-
order perturbation interaction (C > 0) increases energy per
baryon, while the one-gluon-exchange interaction (C < 0)
decreases energy per baryon, and the stronger the one-
gluon-exchange interaction, the lower energy per baryon.
The dependence of each component’s energy per baryon

on the baryon number is depicted in Fig. 4 in B ¼ 2 ×
1017 G for fixed parameters C and D. The black, magenta,
red, green, and blue curves correspond, respectively, to the
total energy per baryon Etotal=nb, lowest Landau level
(LLL) energy per baryon ELLL=nb, higher Landau level
(HLL) energy per baryon EHLL=nb, magnetic energy per
baryon EB=nb, and Coulomb energy per baryon EC=nb,
which the lowest Landau level energy ELLL and higher
Landau level energy EHLL correspond to the n ¼ 0 and
n > 0 parts of the first two terms of Eq. (50), and the
magnetic energy EB and Coulomb energy EC correspond to
the third and fourth terms of Eq. (50). It can be seen that the
higher Landau level energy EHLL accounts for the majority
of the total energy and decreases as the number of baryons
increases, however, the lowest Landau level energy ELLL
decreases first and then increases, and tends to be stable.
The magnetic energy EB decreases as the number of
baryons increases. In addition, the Coulomb energy EC
increases first and then decreases, and eventually tends to
be zero. This is consistent with the electrically neutral of
strange quark matter.

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

B/B0

nb = 4n0
nb = 5n0
nb = 6n0

D1/2 = 160 MeV

FIG. 1. The anisotropy of SQM as a function of magnetic field
strength, where B0 ¼ 1017 G.
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FIG. 2. The parallel and transverse pressures of SQM as a
function of magnetic field strength at nb ¼ 4n0. The correspond-
ing pressures P0 at B ¼ 0 are included for comparison.
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FIG. 3. The energy per baryon as a function of the baryon
number in both B ¼ 0 and B ¼ 2 × 1017 G.
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The dependence of mechanically stable radius of
strangelets on the baryon number at B ¼ 2 × 1017 G and
B ¼ 0 is shown in Fig. 5 by solving numerically the
equation of mechanical equilibrium Pjj ¼ 0 in Eq. (54),
with baryon number conservation conditions and the beta
equilibrium, i.e., Eqs. (66) and (67). The red and blue
curves correspond, respectively, to the field strength B ¼
2 × 1017 G and B ¼ 0. The solid and dashed curves
correspond, respectively, to the parameter sets (C,

ffiffiffiffi
D

p
in MeV): (0.1, 160) and ð−0.1; 160Þ. It can be seen that the
ratio R=A1=3 decreases with baryon number A and tends to
be a constant as A approaches infinity, corresponding to an
equation R ¼ r0A1=3 with a constant r0. This is consistent
with the conclusion of previous model studies such as the
NJL model [56].
We use the ratio of the strange quark number to tripling

of baryon number ρs ¼ Ns=3A to express the strangeness

of strangelets, which is shown in Fig. 6. It is increasing with
the baryon number and tends to constant values at a large
baryon number. Moreover, one-gluon-exchange interaction
compared to perturbative interactions gives a larger ρs. The
strangeness of strangelets under a strong magnetic field is
greater than that without a magnetic field.
The ratios of electric charge to the baryon number Z=A

as a function of baryon number A is shown in Fig. 7. For a
larger baryon number, generally, the strangelets and mag-
netized strangelets tend to be electrically neutral, while the
finite size effect becomes weaker, i.e., they tend to be the
SQM and MSQM. At a small baryon number, the radio
Z=A of magnetized strangelets is larger than the strangelets,
however, with the increasing of A, they become close.
In Fig. 8, we note that the energy per baryon of

strangelets and magnetized strangelets is a monotone
increasing function of the perturbative parameter C when
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b
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Etotal
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EHLL
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D1/2= 160 MeV, C= 0
B = 2 × 1017 G

FIG. 4. Each component’s energy per baryon Ei=nb as a
function of the baryon number in B ¼ 2 × 1017 G.
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FIG. 5. The mechanically stable radius as a function of the
baryon number in both B ¼ 0 and B ¼ 2 × 1017 G.
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FIG. 6. The ratios of the strange quark number to tripling in
baryon number ρs as a function of the baryon number in both
B ¼ 0 and B ¼ 2 × 1017 G.
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FIG. 7. The charge per baryon Z=A as a function of the baryon
number.
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A is 100. Furthermore, we notice that the larger confine-
ment interaction and strong magnetic field increases the
energy per baryon of strangelets for A ¼ 100.
Next, the relationship between the charge per baryon of

strangelets and magnetized strangelets and perturbative
parameter C is studied in Fig. 9. It can be seen that the
perturbative parameter C increases the charge per baryon of
strangelets in B ¼ 0 and B ¼ 2 × 1017 G, and the rate of
increase of magnetized strangelets is faster than strangelets.
The perturbative parameterC dependence of the mechan-

ically stable radii of strangelets and magnetized strangelets
are presented in Fig. 10. The mechanically stable radius is
increased with the increasing of the perturbative parameter
C, both in B ¼ 0 and B ¼ 2 × 1017 G, and a strong
magnetic field will reduce the mechanically stable radii
of the strangelets. This is consistent with the conclusion of
previous model studies such as the MIT bag model [31]. In
the model of the article, that also means the perturbative

effects lead to larger mechanically stable radii of both
strangelets and magnetized strangelets than the one-
gluon-exchange effects. In addition, it is found that the
stronger confinement interaction reduces the mechanically
stable radii of strangelets and magnetized strangelets.
The dependence of energy per baryon and the mechan-

ically stable radius of magnetized strangelets on the
magnetic field strength are depicted in Fig. 11. A parameter
set C ¼ 0.1, D1=2 ¼ 160 MeV is chosen, where the energy
per baryon increases with field strength, inversely, the
mechanically stable radii decreases with field strength. This
is consistent with the result of the energy per baryon and
mechanically stable radii in Figs. 8 and 10.
The dependence of each component’s energy per baryon

on the magnetic field strength is depicted in Fig. 12 for
fixed parameters C and D. It is found that the higher
Landau level energy EHLL accounts for the majority of
the total energy and decreases as magnetic field strength
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FIG. 8. The energy per baryon as a function of perturbative
parameter with different confinement parameters.
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FIG. 9. The charge per baryon Z=A as a function of perturbative
parameter with different confinement parameters.
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increases, while the lowest Landau level energy ELLL is the
opposite. This could be visualized from energy per baryon
of strangelets at n ¼ 0 in Eq. (50) and the reduction of
energy levels in Eq. (39), respectively. The magnetic energy
EB increases as the magnetic field strength increases. In
addition, the Coulomb energy EC decreases with magnetic
field strength, which is consistent with the phenomenon of
the mechanical stability radius decreasing with magnetic
field strength in Fig. 11.
Figure 13 shows the dependence of the particle abun-

dances of quarks of the strangelets on the magnetic field
strength. The solid curves correspond to the parameter set
C ¼ 0.1, D1=2 ¼ 160 MeV. The black, red, and blue
curves correspond, respectively, to the quarks u, d, and
s. As the magnetic field strength increases, the particle
abundance of u and d quarks decreases, while that of s
quarks increases because u and d quarks are converted to s
quarks under strong magnetic field strength.

V. SUMMARY

We have investigated the properties of magnetized
strangelets by the baryon density-dependent quark mass
model with a quark mass scaling containing confinement
and perturbative effects. The contribution of Coulomb
interaction has been treated in a thermodynamic self-
consistent way, where the contribution of Coulomb inter-
action to the chemical potential and pressure is accounted
for. Considering the anisotropy caused by a strong mag-
netic field and the anomalous magnetic moment of quarks,
the thermodynamic quantities of the magnetized strangelets
that satisfy thermodynamic consistency are obtained.
It is found that the dependencies of energy and charge

per baryon and mechanically stable radius of magnetized
strangelets on the baryon number and perturbative param-
eter are similar to the strangelets in zero magnetic field. The
electric charge per baryon of strangelets and magnetized
strangelets become close at a large baryon number, and
both tend to electric neutrality. However, the strong
magnetic field leads to larger energy and charge per baryon,
larger strangeness, and smaller mechanically stable radii of
strangelets for fixed parameters, compared with the zero
magnetic field one. For fixed confinement parameters, the
energy and charge per baryon and mechanically stable
radius increase as perturbative parameter C increases, and
the rate of charge per baryon of magnetized strangelets is
faster than strangelets. In addition, the dependence of
energy per baryon and mechanically stable radius on
magnetic field strength are obtained, where the strong
magnetic field leads to larger energy and smaller stable
radius of strangelets with the same baryon number.
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APPENDIX: THERMODYNAMICS OF QUARK
MATTER IN A UNIFORM MAGNETIC FIELD

In the presence of electromagnetic fields, the energy-
momentum tensor can be decomposed into matter and field
parts, i.e.,

Tμν ¼ Tμν
matter þ Tμν

fields; ðA1Þ
where the field part is fixed by

T00
fields ¼

1

2
ðE2 þ B2Þ; ðA2Þ

T0i
fields ¼ Ti0

fields ¼ ðE⃗ × B⃗Þi; ðA3Þ

Tij
fields ¼

1

2
ðE2 þ B2Þδij − EiEj − BiBj: ðA4Þ
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FIG. 12. Each component’s energy per baryon Ei=nb as a
function of magnetic field strength, where B0 ¼ 1017 G.
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To obtain the matter part of the energy-momentum tensor
Tμν
matter ≡ T μν in the local rest frame of the system, we first

write the Lagrangian density of the equivparticle model for
quark matter, i.e.,

L ¼
X
i

ψ i

�
iγμDμ −miðnbÞ þ

1

2
Qiσ

μνFμν

�
ψ i; ðA5Þ

where qi is the charge of quark i, Qi the anomalous
magnetic moment, Dμ ¼ ∂μ þ iqiAμ, mi ¼ m0i þmIðnbÞ,
and σμν ¼ i½γμ; γν�=2. The baryon number density is
obtained with nb ¼

P
ihψ̄ iγ

0ψ ii=3. The equations of
motion for ψ i can be determined by Euler-Lagrange
equation, i.e.,

∂L
∂ψ̄ i

− ∂μ

�
∂L

∂ð∂μψ̄ iÞ
�

¼ 0: ðA6Þ

This gives the Dirac equation for quarks, i.e.,

�
iγμDμ − VVγ

0 −miðnbÞ þ
1

2
Qiσ

μνFμν

�
ψ i ¼ 0; ðA7Þ

where the term VV arises from the density-dependent quark
masses, i.e.,

VV ¼ 1

3

dmI

dnb

X
i

hψ̄ iψ ii: ðA8Þ

The energy-momentum tensor is then obtained with

T μν ¼ 1

2

X
i

ψ̄ i

h
iðγμDν þ γνDμÞ

i
ψ i

þ 1

2

X
i

ψ̄ i

h
QiðσμαFν

α þ σναFμ
αÞ
i
ψ i

− 3nbVVgμν: ðA9Þ

Note that we have adopted the relation L ¼ 3nbVV during
derivation using the Minkowski space metric gμν ¼
diagð1;−1;−1;−1Þ, which is obtained multiplying
Eq. (A7) by ψ̄ i.
If the magnetic field is uniform and pointing to the

z-direction, then we can adopt the vector potential
Aμ ¼ð0;−By;0;0Þ, which gives Fμν ¼ Bðδμxδνy − δνxδμyÞ
and, consequently,

1

2
Qiσ

μνFμν ¼ iQiBγxγy ¼QiB

�
σ3 0

0 σ3

�
≡QiBS3: ðA10Þ

The Dirac equation for stationary states ψ ¼ e−iεtΨiðx⃗Þ can
then obtained with

εΨi ¼
h
−α⃗ · ði∇!− qiA⃗Þ þ qiA0

i
Ψi

þ ½qiA0 þ VV þ βmi −QiBβS3�Ψi: ðA11Þ

Here α⃗ ¼ γ0γ⃗ ¼ ð0σ⃗ σ⃗
0
Þ and β ¼ γ0 ¼ ðI

0
0
−IÞ. The diagonal

components of T μν in a constant magnetic field are then
given by

T 00 ¼
X
i

ψ̄ iðiγ0D0Þψ i − 3nbVV; ðA12Þ

T xx ¼
X
i

ψ̄ iðiγxDx −QiBσxyÞψ i þ 3nbVV; ðA13Þ

T yy ¼
X
i

ψ̄ iðiγyDy −QiBσxyÞψ i þ 3nbVV; ðA14Þ

T zz ¼
X
i

ψ̄ iðiγzDzÞψ i þ 3nbVV: ðA15Þ

For uniform matter comprised of u, d, and s quarks, the
electric field vanishes. The energy-momentum tensor for a
uniform magnetic field B in parallel to the z-axis is
determined by

Tμν
fields ¼

B2

2
diagð1; 1; 1;−1Þ: ðA16Þ

The Dirac equation (A11) can be solved by assuming

Ψiðx⃗Þ ¼ eipxxeipzzuðsÞn ðyÞ with

uðsÞn ðyÞ¼

0
BBB@
c1ϕνðyÞ
c2ϕν−1ðyÞ
c3ϕνðyÞ
c4ϕν−1ðyÞ

1
CCCA and ν¼ nþ1

2
−
s
2

qi
jqij

; ðA17Þ

where n ¼ 0; 1; 2;… and the spin s ¼ �1. The function ϕm
is determined by

ϕmðyÞ ¼ Nme−ξ
2=2HmðξÞ with ξ¼

ffiffiffiffiffiffiffiffiffiffi
jqijB

p �
yþ px

qiB

�
;

ðA18Þ

where m ≥ 0 is an integer, Hm is a Hermite polynomial,
and Nm ¼ ðqiBÞ1=4ð

ffiffiffi
π

p
2mm!Þ−1=2 is a normalization con-

stant which ensures
R∞
−∞ dyϕ2

nðyÞ ¼ 1. Inserting this to the
Dirac equation (A11) gives

0
BBB@
m−QB 0 pz pν

0 mþQB pν −pz

pz pν −mþQB 0

pν −pz 0 −m−QB

1
CCCAχ¼Eχ; ðA19Þ
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where χ ¼ ðc1c2c3c4ÞT, pν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqijBν

p
, and E ¼

ε − qiA0 − VV . The eigenstates for particles are

χs ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2λαsβs
p

0
BBB@

sαsβs
−pzpν

sβspz

αspν

1
CCCA; ðA20Þ

where αs ≡ Es −QiBþ sλ and βs ≡ λþ smi. The corre-
sponding eigenvalues are

Es ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ ðλ − sQiBÞ2

q
; ðA21Þ

with λ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ p2
ν

p
. The general positive energy states can

be constructed by

ψ iðxÞ ¼
X
s¼�1

jqjB
2π

X
n

Z
∞

−∞

dpz

2π

1ffiffiffiffiffiffiffiffi
2Es

p bsðpÞuðsÞðpÞeip̃μxμ ;

ðA22Þ

where bsðkÞ obeys the following relation:

fbrðpÞ; b†sðkÞg ¼ ð2πÞδrsδmnδðpz − kzÞ; ðA23Þ

p ¼ ðn; kzÞ with n ¼ 0; 1; 2;…, p̃ ¼ ðEs; px; 0; pzÞ. For
details, see Ref. [57].
The energy density for infinite quark matter is then

E ¼ hT 00i ¼
X
i

jqijB
2π

X
s¼�1

X
n

Z
∞

−∞

dpz

2π

× EsfþðEs; T; μ�i Þ; ðA24Þ

with the Fermi-Dirac distribution of particles fixed by

hb†sðpÞbsðpÞi ¼ fþðEs; T; μ�i Þ ¼
1

eðEs−μ�i Þ=T þ 1
: ðA25Þ

Note that we have adopted the relation Es¼ εs−qiA0−VV
in deriving Eq. (A24). The number density can be deter-
mined by

ni ¼ hψ̄ iγ
0ψ ii ¼

jqijB
2π

X
s¼�1

X
n

Z
∞

−∞

dpz

2π
fþðEs; T; μ�i Þ;

ðA26Þ

while the baryon number density is nb ¼
P

i ni=3.
According to Eq. (A11), we have

ðε − qiA0 − VVÞΨ†
iΨi ¼ Ψ†

i

h
−α⃗ · ði∇!− qiA⃗Þ

i
Ψi

þ Ψ†
i ½βmi −QiBβS3�Ψi: ðA27Þ

Upon taking the derivative of the equation above with
respect to mass, we obtain the following result:

Ψ†
i βΨi ¼

∂E
∂mi

Ψ†
iΨi; ðA28Þ

where E ¼ ε − qiA0 − VV . Note that ψ̄ iψ i ¼ ψ†
i γ

0ψ i and
β ¼ γ0; we obtain

hψ̄ iψ ii ¼
jqijB
2π

X
s¼�

X
n

Z
∞

−∞

dpz

2π

∂Es

∂mi
hb†sðpÞbsðpÞi

¼ jqijB
2π

X
s¼�

X
n

Z
∞

−∞

dpz

2π

∂Es

∂mi
fþðEs;T;μ�i Þ: ðA29Þ

Thus, for vanishing temperatures with T ¼ 0, the expres-
sion of VV is given by

VV ¼ 1

3

dmI

dnb

X
i

hψ̄ iψ ii ¼
1

3

dmI

dnb

X
i

∂E
∂mi

: ðA30Þ

The longitudinal pressure along magnetic field lines is

Pk ¼ hT zzi

¼
X
i

jqijB
2π

X
s¼�1

X
n

Z
∞

−∞

dpz

2π

p2
z

Es
fþðEs; T; μ�i Þ

þ 3nbVV: ðA31Þ

The transverse pressure is fixed by

P⊥ ¼ hT yyi ¼ hT xxi

¼
X
i

jqijB2

2π2
X
s¼�1

X
n

Z
∞

−∞
dpz

1

Es
fþðEs; T; μ�i Þ

×

"
jqijνm̄iðνÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ 2νjqijB
p − sQim̄iðνÞ

#
þ 3nbVV; ðA32Þ

where m̄iðνÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ 2νjqijB
p

− sQiB.
For vanishing temperatures with T ¼ 0, the thermody-

namic potential density is then fixed by Ω ¼ E − μini ¼
−Pk with μi ¼ μ�i þ VV . A relationship between Pk and P⊥
is obtained according to the magnetization M≡
−∂Ω=∂B ¼ ∂Pk=∂B, which gives P⊥ ¼ Pk −MB. These
relations can be derived through direct integration, as
detailed in Ref. [57].
If we further include the field contributions to energy-

momentum tensor, then the energy density, longitudinal
and transverse pressures at T ¼ 0 are fixed by
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E¼
X
i

jqijB
2π

X
s¼�1

X
n

Z
∞

−∞

dpz

2π
EsΘðμ�i −EsÞ

þ1

2
B2; ðA33Þ

Pk ¼ −Ω −
1

2
B2; ðA34Þ

P⊥ ¼ −Ω −MBþ 1

2
B2 ¼ Pk þ B2 −MB; ðA35Þ

where

Ω ¼
X
i

jqijB
2π

X
s¼�1

X
n

Z
∞

−∞

dpz

2π
ðEs − μiÞ

× Θðμ�i − EsÞ; ðA36Þ

μi ¼ μ�i þ VV; ðA37Þ

M ¼ −
∂Ω
∂B

: ðA38Þ

Due to the independence of chemical potential μi on mass
mi, combining with Eq. (A30), we derive the relationship
between VV and the thermodynamic potential density as
follows:

VV ¼ 1

3

dmI

dnb

X
i

∂Ω
∂mi

: ðA39Þ

For a finite system, the contributions from surface
corrections and Coulomb interactions need to be consid-
ered, which introduce additional terms to the energy
density and pressures.
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