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Magnetized strangelets with anomalous magnetic moment and Coulomb interactions
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We study the magnetized strangelets in the baryon density-dependent quark mass model, including the
effects of both confinement and lead-order perturbation interactions. The properties of magnetized
strangelets are investigated under the field strength 2 x 10'7 G, where the anisotropy caused by the strong
magnetic field is insignificant and can be treated approximately as an isotropic system. The consideration
of anomalous magnetic moments in the energy spectrum naturally solves the difficulty of infrared
divergence encountered in integrating the density of states. The Coulomb interaction is accounted for using
a self-consistent treatment. The energy per baryon, mechanically stable radius, strangeness, and electric
charge of magnetized strangelets are presented, where their dependence on the field strength and parameter

of confinement and perturbation are investigated.
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I. INTRODUCTION

Strange quark matter (SQM) is one type of matter
comprised of deconfined up, down, and strange quarks,
which could be the ground state of QCD, rather than
56Fe [1]. This idea is first suggested by Bodmer [2] and
developed by Witten [3]. The small lumps of SQM, whose
baryon number A < 107 is called a strangelet, named by
Berger and Jaffe [4], are so small that electrons cannot exist
in its interior, as the electron Compton’s wavelength is
much larger than the radius of strangelets [1].

It is possible that strangelets can be produced by high-
energy cosmic rays that collide with each other or the core
of neutron stars [5-8], strange star collisions could release
strangelets as part of the energetic cosmic rays [9-13].
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In addition, strangelets could also be found as the products
of high energy heavy ion collision [14-16].

The strong magnetic field could exist in heavy-ion
collisions and compact stars, e.g., pulsars and magnetars.
For pulsars, the typical magnitudes of surface magnetic
fields are about 10'* G [17-19], and the observed magnetic
field strength on the surface of magnetars could be
10'-10'5 G [20]. Moreover, the strong magnetic fields
might be generated in noncentral high-energy heavy ion
collisions, reaching the value of 10" G [21].

Due to the difficulties of perturbation calculations at low
energy and high density region, and the sign problem in
lattice point simulations, the study of quark matter depends
on various phenomenological models, e.g., the magnetized
strange quark matter (MSQM) with bag model [22-24],
the Nambu-Jona-Lasinio (NJL) model [21,25,26], the
mass-density-dependent model [27], the quark quasipar-
ticle model [28], the confined-isospin-density-dependent
mass model [29], and the magnetized strangelets with the
bag model [30,31]. At present, the MIT bag model has been
widely used and obtained some important results. Madsen
considered the finite size effects of strangelets [32].
Lugones and Grunfeld studied the effects of surface tension
and vector interactions on the existence of a strangelet crust
in the MIT bag model [33,34]. Recently, they have revisited
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the quark-mass density-dependent model and showed that
thermodynamic inconsistencies that have plagued the model
for decades can be solved if the model is formulated in the
canonical ensemble instead of the grand canonical one [35].
Presently, we adopt a thermodynamically self-consistent
mass-density-dependent model, so called the baryon den-
sity-dependent quark mass model [36,37], to investigate the
properties of magnetized strangelets at zero temperature.

As is shown in Ref. [38], due to the existence of uniform
magnetic field, the O(3) rotation symmetry breaks into O(2)
symmetry, and therefore, distinction between longitudinal-
and transverse-to-the-field pressures is caused. Nevertheless,
we assume a spherical symmetry of strangelets when
magnetic field strength B <2 x 10'7 G. Using the method
adopted in Refs. [30,38], we calculate the quantity 6 =
|P| — P.|/|P(B = 0)| and use it as a measure to distinguish
between isotropic and anisotropic regions [30].

The electric charge of strangelets is an important
property of strangelets. In the absence of electrons, gen-
erally, strangelets carry a slight charge. Some authors
propose that positively charged strangelets would repel
nuclei, while negatively charged ones would attract them,
leading to catastrophic transition from normal matter into
SQM [1]. We treat the Coulomb interaction in a thermo-
dynamically self-consistent manner, where the chemical
potential contributed by the Coulomb energy is included.

The present paper is organized as follow. In Sec. II, we
give the thermodynamic treatment of strangelets in a strong
magnetic field with the baryon density-dependent quark
mass model, while the contribution of Coulomb interaction
is accounted for in a thermodynamically self-consistent
approach. In Sec. III, we adopt the quark mass scaling at
zero temperatures, where both the confinement interaction
and perturbation interaction are considered with the equiv-
alent mass of quarks. In Sec. IV, the numerical results of the
magnetized strangelets are presented, e.g., their energy per
baryon, radius, and charges, as well as the dependence of
energy per baryon and radius on the parameters of mass
scaling. Finally, a short summary is given in Sec. V.

II. THERMODYNAMIC TREATMENT
IN A STRONG MAGNETIC FIELD

A. Thermodynamic framework

The thermodynamic potential density €, at zero temper-
ature is given for a free quasiparticle system due to its
dependence on y*, i.e.,

Q = Z/(vpz +m; —#?)pf(p)d% (1)

where index i goes over the particle types of the system,
and p; is the density of state. In previous quark mass-
density-dependent models, the quark acts like a free particle
with a density-dependent mass m; = myq; + m;(n;), where

ny :%Zini and mg; are the baryon number density
and the quark current mass with m,, =5 MeV,
myy = 10 MeV, and my = 100 MeV. In terms of the
multiple reflection expansion method [32,39], the function
p; of strangelets can be given by

el 0G) () o

where V, S, and C, are volume, area, and extrinsic
curvature of strangelets, and g; is the corresponding degree
of freedom. For a spherical system, we have V = 4zR3/3,
S = 4zR?, C, = 8zR. The functions fg and f are given
by [4,40]

fs= —%arctan (%), (3)
fe :% {1 - 23”1; arctan <%)] (4)

Note that the density of states in Eq. (2) becomes
negative and is hence unphysical at small radii and
momenta. An infrared cutoff [41] is usually introduced
to treat the unphysical contributions, which is not included
here since their contributions are small and the natural
truncation caused by anomalous magnetic moments has
been considered.

At the zero temperature, within the framework of an
equivalent mass model [42], the particle mass depends on
baryon number density n,,. Given that the baryon number
density is defined as n, = >_; N;/(3V), this implies that
the particle mass becomes a function of volume and particle
numbers. In such a model, if we adopt the expressions of
free particles for the thermodynamic potential density and
chemical potential as presented in Eq. (1) to represent the
actual values for the system, then it would lead to
thermodynamic inconsistencies [43].

To avoid this issue, it is necessary to incorporate the
corrections arising from the dependence of mass on the
state variables. Based on the consideration, the analysis
starts with the energy E(V,{N,;}) =V [/p> + m?p,d®p,
which is a function of the state variables such as volume
and particle number. At the zero temperature, the energy is
given by

E(V. AN} {m;}) =QoV+ZM?Ni- (5)

Considering mass as an intermediate variable, the differ-
ential of Eq. (5) is given by
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Q)
QO+V< ) dv+§ uidN;
V') {miy N2}

oQ,
+ZV( °> dm;. (6)
i/ N}V

The differential of m; is as follows:

-2, (8]

- izam (VAN — N;dV). (7)

The fundamental thermodynamic differential relations of
energy are

dE = —PdV + ) udN;, (8)

where P, V, u;, and N; correspond to the pressure, volume,
chemical potential, and particle number of the system,
respectively.

For a uniform system, the energy density is E = E/V
and particle number density is n; = N;/V. Comparing
Eq. (6) with Eq. (8), we can derive the following thermo-
dynamic relationships:

Q.
P=-Q)— V(D>
OV /) tmy.{v))

am‘ 090
Ty _,< ) )
z}:dnb M) iy
w5 (G) (10)
3 ] énb 6m {N}V

Based on E = Q)+ >, uin; = Q+ >, u;n;, we have

09
Q=Q,—- — , 11
’ nbz ony, (amj>{1v.},v )

where the second term is under a fixed volume, i.e.,
0Q,/0V = 0Q/dV. By Egs. (9)—(11), we obtained

FloN
E=-P+ Hill ( )
Z {1V}
—-p+ -V (57) (12)
Z (v}

oy (aszo>
V') (3 N}

Q
- _a- v<a> | (13)
OV ] mh 4N}

Because of the presence of the surface and curvature terms,
the thermodynamic potential density needs to be derived
for the volume. When R is large enough, the surface and
curvature terms tend to vanish, i.e., dQ/dV = 0. The
system transitions from strangelets to strange quark matter
in such large R, thus E = —P + >, y;n; and P = —Q. The
Euler equation at zero temperature is validated.
By Eq. (8), we have

d(VE)
dv

9
N}
1.e.,

d(VE)dn,
dl’lb av {N;}

_ Nd(E/m)( N
a dl’lb V2
_N_Zd(E/nb)
N V2 dnb
_ n% d(E/ny) .

d}’lb

(15)

It can be easily seen from the relationship that the pressure
must be zero at the minimum energy per baryon, which
provides a simple and intuitive method for testing thermo-
dynamic self-consistency.

Based on E(V,{n;}.{m;})=Q+> ;puin;=Q+

> imin;, we have 0E/ou’ = 0Q/ou; + n; = 0. The par-
ticle number densities are
0Q
np=——2. (16)
Op;

This is the same as the formula derived from the equivalent
particle model [43].

B. Charged fermion in a uniform magnetic field

In the nonrelativistic case, the energy levels of charged
particles under a uniform magnetic field were given by
Landau in 1930. Transitioning from classical theory to
quantum mechanics, taking into account the spin of
charged particles, the Hamiltonian operator in electromag-
netic fields is

H=s (p-gAP—i Btap (1)
m

where B is the magnetic field strength (in the natural system
of units, taking into account that the vacuum permeability is
taken to be 1, the magnetic field strength is equal to the
magnetic induction strength H = B), A is the magnetic
vector potential, and ¢ is the electric potential. The intrinsic
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magnetic moment fi = u§/s, where u is the magnetic
moment value, § is the particle spin operator, and s is
the spin quantum number. Let the uniform magnetic field
B = (0,0, B), then the vectorial potential can be taken as

A,=-By, A,=A,=0. (18)
The electric potential is taken to be 0 and the Hamiltonian
operator becomes

PI+P: u,

1
H=_—(p,+qBy)*+ 5 5B (19)

2m
Noting that §, is commutative with the Hamiltonian, this
operator can be replaced by the eigenvalue o, then the spin
part of the wave function does not matter, and the
Schrodinger equation is taken to be

LN SO H
5, [(Px+aBY)* + py + pilw =~ oBy = Ew. (20)
Further note that the Hamiltonian is commutative with p,
and p_, and y can be taken as y = exp(i(px + p.z))x(y).
The y satisfies

B p?\ 1
)("+2m[< +’w —;—Z> —Emwz(y—yo)z}XO, (21)
where yo = —p./qB, ® = |q|B/m.Let E' = E + uoB/s —

p?/2m, then Eq. (21) is equivalent to the equation of a
linear harmonic oscillator with energy E’ and frequency w.
The energy eigenvalues of the linear harmonic oscillator are
EF=n+1/2)w,n=0,1,2,....

As a result, the energy level of a charged particle in a
uniform magnetic field is

1 p?  uoB
E, = —Jo+—=-—. 22
o= (n43)o 2 22)

The first term in the above equation corresponds to the
motion in the transverse plane, and these energy levels n are
known as Landau energy levels. For charged fermions,
u/s =sgn(q)|q|/m, where sgn(q) is the sign function.
Thereby, Eq. (22) can be rewritten as

B 2
41 1o 11~ 20sen(q)] = é’— (23)
m

E Pz
P 2m+ 2m

In the case of relativity, the energy of particles
E, =\/p*+m’. (24)

Taking n = 20sgn(g), it can be seen from (23)

that the transverse momentum is p; = \/p? + p; =

V/1q|B(2n + 1 —n). Thus, the energy of a charged

particle in a uniform magnetic field in the relativistic case
should be

= \/pf +elqgB2n+1—-n)+m?  (25)

For multibody systems, to determine the state in which
the system is in, it is usually necessary to integrate in
momentum space. Notice that the transverse momentum is
discretized, and the integration in the transverse direction
should become a summation, such that 2v =2n + 1 —17.
The rules for substituting integrals for summation are given
by [44]

/ / dp,dp, — 2nelg|BS (2= 6,0).  (26)
— J—0o0 v=0

In addition to having an impact on particle energy levels
and momentum, a strong magnetic field can also cause the
pressure distribution of the system to be anisotropic. The
pressure also splitin P and P, which denote parallel and
transverse to the magnetic field direction [38]. The expres-
sions of P and P, for a magnetized fermion system can be

written as
0Q
Py = Zﬂz i <av) (27)
0Q
PJ_ - ZM’ n; <6V> + Bz MB? (28)

where M is the magnetization of the system, which is
given by

M = B (29)
Details of the derivation of the parallel and transverse
pressures from the energy-momentum tensor are provided
in the Appendix. It can been see that the parallel pressure
P satisfies the Hugenholtz-Van Hove theorem [45], while
the transverse pressure P has extra contributions from the
magnetic field, which will result in the zero-pressure point
density being consistent with the density at the minimum of
the energy per baryon for P but not for P [46].
Considering a strong magnetic field, the energy density
at zero temperature is given by [38]

2

B

(30)

BZ
:Q+§i:/4,~n,-+7.

Due to 0Q/0V = 0Q2/0V, the parallel and transverse
pressures in a strong magnetic field are given by
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Q B
P=-Q-V_—"_"_
I v 2
0Q, B
- Q-y=20_~ 31
v 2 (31)
P, =-Q V‘erB2 MB
L+ v 2
0Q, B
- Qv ” _ MB. 32
v T2 M (32)

We can use a quantity § to quantify the anisotropy of
SQM, which is defined by

P —-P,

BE=0)| (33)

o=

We assume the spherical shape for strangelets and P ~ P
when 6 £ 0.1. For SQM, the magnetic field strength that
satisfies the above assumption is up to approximately
2x 10" G [30] when uf) =u; = u; + pu. =400 MeV.
In our calculation, we adopt that the mechanical stability
condition is P = 0 for B <2 x 10" G since the strange-
lets is a self-bound system, which is equivalent to minimize
the total free energy at fixed N; as usually adopted in the
literature [47,48].

C. Anomalous magnetic moment

Strictly speaking, the energy formula under the relativ-
istic case should be given by the Dirac equation and, in
addition to the intrinsic magnetic moments, the anomalous
magnetic moments of charged particles should be taken
into account. In 1950, Johnson and Lippman first consid-
ered the anomalous moments in the Dirac equation [49].
However, the formula they gave was not covariant. Bjorken
and Drell provided a formula for covariation,

. iu
70, lalay) =% By =0, G4
Then, the energy of charged particles containing anomalous
magnetic moments can be obtained,

E =92+ (yfeldB@n+ 1-n) + w2 = lQIBP. (35

It should be noted that (n =v,n=1) and (n=v—1,
n = —1) are no longer equivalent due to the existence of
anomalous magnetic moment Q, then the integral replace-
ment rule Eq. (26) becomes

/ / dp,dp, — Zﬂe\qi|BZ Z (36)
- J =0 n==+1 n=0

Considering that the components of the quark mo-
mentum must be real and that the Fermi momentum

_ 2
Vg = q

at zero temperature, there must be

/4;2 — m is an upper limit to the quark momentum

pi? —my—pi >0. (37)

By Eq. (37), we have
%2 2
gt Mg n—]
= 2e|q,|B 2

(38)

Thus, the upper limit for the sum of Landau energy levels in
Eq. (36) is

*2 2
- —1
My = int {” a mq} Iy (39)

where int[x] is an integer function that means taking the
integer part of argument x.

The anomalous magnetic moments of electrons and
quarks are given by

0, =0.0016u5, O, = 1.85uy,
Qd = _097MN7 Q‘\‘ = _OSSMNv (40)

where p15~5.79x 10" MeV /G, py~3.15x 10718 MeV//G.
We can see that these anomalous magnetic moments are
very small and, unless in extremely strong magnetic field
environments, the contribution of anomalous magnetic
moments can be completely ignored. Taking Q =0,
Eq. (35) returns to Eq. (25). The contribution of anomalous
magnetic moments is not significant, but they play a crucial
role in the study of the properties of strangelets under
strong magnetic fields.

If the anomalous magnetic moment is not considered,
then the integration of the density of states under a
magnetic field will encounter difficulties in infrared
divergence due to the presence of surface and curvature
terms. When n =0 and n =1 there are two infrared
divergences In(p, ;) and In(p, ;) — 1/p, ; for density of
states under magnetic field, caused by the second and third
term of Eq. (2), so-called surface term and curvature term,
respectively.

To address this issue, we introduce an infrared cutoff for
p.. The anomalous magnetic moment provides a natural
cutoff (2m —|Q|B)|Q|B [23], meaning that when n =0
and n = 1, the lower limit of the integral for p, becomes
(2m — |Q|B)|Q|B. The natural cutoff arises due to the
mass-shell condition

pP=E>-m>>0. (41)

When n =0 and n = 1, Eq. (35) gives us

E=\/p2+ (m-|QB). (42)
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Substituting Eq. (42) into Eq. (41), we obtain
p2+m?>=2m|Q|B + |Q*B> —m?> >0, (43)

i.e.,

p. >/ (2m—

In essence, under the condition » =0 and 5 =1, the
minimum allowed value of p, is determined by the “natural
cutoff” derived from the interplay between the particle’s
effective mass m and the external magnetic field B. This
natural cutoff circumvents infrared divergences arising
from surface and curvature terms.

Considering the anisotropy caused by a strong magnetic
field and the anomalous magnetic moment of quarks, the
Eq. (1) becomes

Tmax (nn)
Q=> > ZZﬂe|q,|B/ (E,

i n==x1n=0

|0|B)[Q|B. (44)

i—H)pdp,,  (45)

where p["" =\ /pti = pl. pri=\/u® - m?

Fermi momenta of quark with flavor i. Due to the very
small value of the anomalous magnetic moment, the
contribution of the anomalous magnetic moment to the
energy levels is negligible. Taking Q =0 in Eq. (39),
the energy spectrum E,; of the quark with flavor i is

is the

E,;=\/p}+pi+mi, (46)
pL= 2n—|— 1- (47)
EIq,
i.e.,
pL=+elg;[B2n+1-n). (48)

Here, m; are the quark masses, n indexes the Landau level,
n = 2sgn(q;)s = 1 correspond to the orientations of the
particle magnetic moment parallel or antiparallel to the
magnetic field. The sign function sgn(x) equals to 1 with a
positive argument and to —1 with a negative argument, s =
j:% are spin projections onto the magnetic field direction.
B¢ are the critical magnetic fields [23], g; denote the quark
electric charges (e.g., ¢, = 2/3, q; = q, = —1/3), and e
represents the elementary charge. Note that breaking spin
degeneracy is caused by the magnetic field, so the degen-
eracy g; = 3 for quarks.

Consequently, the number densities of quarks are given by

aQO Mmax 1( )
- = Zz2ﬂ6|q,|3 o pidp.. (49)

aﬂi n==x1 n=0

n; =

D. Coulomb interaction

The size of strangelets with A < 107 is smaller than the
electron Compton wavelength, thus electrons cannot coex-
ist with quarks in strangelets; in present calculations, the
electron is ignored. Therefore, generally, strangelets are not
electric neutrality; this leads to a small Coulomb energy
and, in addition, the chemical potential of the electron is
treated as zero. Thus, combining with Eq. (30), the energy
density and energy per baryon of strangelets are given by

B2
E=Q+> wn+Ec+—
+ i”1n1+ C+2
BZ
= Qo+ Y ping+Ec+ 50
o+ iﬂz”z‘f‘ C+2 (50)

E VE 4zR’E
n, A 3A °

(51)

where E. is the Coulomb energy density, which is given
by [50]

Ec = e nRa(Q} + 50, (52)

where a ~ 1/137 is the fine structure constant, and Qy is
the volume term of the total electric charge density Q, i.e.,

0 =) ;qn; and Qy = >, q;n;y. Here, n;y is given by

M o
Zz2ﬂe|q,|B/ 2 l) dp,

n=+ n=0

max

_ ZZe|ql|Bgl vn,n (53)

n=+ n=0

For strangelets, taking into account the contribution of
Coulomb interaction, the parallel and transverse pressures
are given by

0Q, B?
P=-Q-VELl 4 po——
I v TeT
RoQ, B
== o—gﬁ—zniﬂl+lgc 5 (54)
09, LB
P, =—-Q-V——+P ——MB. 55
1 0V+ c+ 3 M (55)

In terms of the basic thermodynamic differential relation
related to Coulomb interaction at zero temperature, i.e.,

d(VEc) = =PcdV + Y “pcd(n;V), (56)

the pressure and chemical potential contributions of
Coulomb interaction are given by [50]
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30y qgth
2 i
pe= ke { 2

Ron; on; dn;
3 0R am dnb

4 9iPE. Qv
Hei = EﬂRzaqz (5Q + %

2aR2QV Zq]g,ppj an dm

> +0° - sz], (57)

58
451 n  om; dnb (58)
where n) is defined by
on;
nh=—. 59
opr.i 39)

Thus, the actual chemical potential of quark with flavor i
is given by

Wi = p; — pr+ pe (60)

III. DENSITY AND/OR TEMPERATURE
DEPENDENT PARTICLE MASSES

Originally, the quark mass in the quark mass-density-
dependent model is given by [51]

Bbag
3nb ’

m; = mO’,' + (61)
where i goes over u, d, and s, m; is the current mass of
quark with flavor i, and By, is the bag constant. Based on
the in-medium chiral condensates and linear confinement, a
cubic root scaling was derived [52],

(62)

m; =mo; + 73,

np
where D is the confinement parameter, which are deter-
mined by stability arguments of Witten-Bodmer hypoth-
esis. On this foundation, quark mass scaling containing the
effects of linear confinement and one-gluon-exchange
interaction was obtained [53],

m; = mg; +—=—Cn)/>, (63)

1/3
ny,

where D is still the confinement parameter, and C repre-
sents the effect of one-gluon-exchange interaction. Xia and
Peng noted that the m; in Eq. (63) can be understood as a
Laurent series of Fermi momentum. From this point of
view, considering the perturbative effect, a new mass
scaling was formulated as [43]

+C n,lj/ 3, (64)

m; = my; +—= 1/3

where C’
interaction.

To facilitate the comparison of the effects of one-gluon-
exchange and perturbative effect on the properties of
strangelets, we will unify formulas Eqgs. (63) and (64) in
writing

represents the leading order perturbative

m;=mgy; +—= 1/3 + Cnl/3, (65)

where it corresponds to the perturbation and one-gluon-
exchange effect, respectively, when C > 0 and C < 0.

IV. PROPERTIES OF MAGNETIZED
STRANGELETS

At a given baryon number, A, with the quark number
density n; given in Eq. (49), the baryon number conserva-
tion is given by

1
=3 Zi:niv. (66)

In the absence of electrons, the beta equilibrium con-
dition of strangelets should be replaced by

oy = Ha = Hy- (67)

In this section, we solve numerically the equation of
mechanical equilibrium P = 0, with baryon number con-
servation conditions and the beta equilibrium, i.e., Egs. (66)
and (67). We use Z to denote the electric charge (in units of
e), then we have

Z= Zniqu. (68)

In present calculations, we use the quark mass scaling
given by Eq. (65). Note that for a negative parameter C, the
quark mass scaling Eq. (65) is equivalent to the mass scaling
considering one-gluon-exchange effect, i.e., Eq. (63).

In Fig. 1, we present the anisotropy of SQM as a function
of the field strength B for fixed parameters C and D. The
dashed, dotted, dashed dotted, and solid curves correspond,
respectively, to the baryon number density n;, = 4n,, Sn,
6ny, and 6 = 0.1, where ny, = 0.165 fm™ is the nuclear
saturation density. It can be seen from the Fig. 1 that the
anisotropy of SQM increases with the increase of magnetic
field strength B, but the anisotropy is not significant for the
pressure when the field strength B < 2 x 10'7 G. In addi-
tion, the anisotropy of SQM decreases with increasing
baryon number density. This is consistent with the con-
clusion of previous studies [38,54]. For different values of
parameter C, we notice that the anisotropy of SQM takes
the maximum value when C = 0. When n,, is large, the
anisotropy of SQM of C > 0 is more clearly larger than that
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FIG. 1. The anisotropy of SQM as a function of magnetic field

strength, where B, = 10'7 G.
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FIG. 2. The parallel and transverse pressures of SQM as a
function of magnetic field strength at n, = 4n,. The correspond-
ing pressures P, at B = 0 are included for comparison.

of C < 0. There are some interesting points, which we
explain in combination with Fig. 2. From Fig. 2, we can see
that this is mainly because the pressure P, (B =0) of
strange quark matter is minimum at C = 0, centered at
C > 0, and maximum at C < 0, respectively. At the same
time, there is not much difference in the degree of deviation
between P and P, from P,.

Figure 3 shows the dependence of energy per baryon
E/n,, given by Eq. (51) on the baryon number A in both
B =2x10" G and B = 0 for fixed parameters C and D.
The solid, dashed, and dotted curves correspond, respec-
tively, to B =2x 10", 0 G, and %Fe. The magenta,
orange, blue, and red curves correspond, respectively, to
the parameter sets (C, VD in MeV): (0.1, 160), (0, 160),
(=0.1,160), and (—0.3,140). It can be seen that the
strangelets under (—0.3, 140) are absolutely stable at zero

1200
B=2x10"7 0G
--- D"2=160 MeV, C= 0.1
—— --- D"=160MeV, C= 0
1100 ’
00 —— --- D'"2=160MeV, C=-0.1
%\ —— --- D"™=140MeV, C=-0.3
= 1000 f
el
c
~
0 .
900 |-
800 F e
1 1 e L
0 2000 4000 6000 8000 10000
A
FIG. 3. The energy per baryon as a function of the baryon

number in both B =0 and B =2 x 10" G.

magnetic field strength, while the strangelets under
(=0.1,160) are metastable at B =2x 107 G when
A > 8000. The energy per baryon decrease with increasing
baryon number A. This is consistent with Jensen and
Madsen’s results at B = 0 [55], and the value is slightly
smaller. This indicates that strangelets with large baryon
numbers could be absolutely stable under strong magnetic
field strength, which opens up the possibility of detecting
strangelets from the particles emitted by unknown astro-
physical sources that may have strong magnetic fields and
high baryon numbers. In addition, it is found that the first-
order perturbation interaction (C > 0) increases energy per
baryon, while the one-gluon-exchange interaction (C < 0)
decreases energy per baryon, and the stronger the one-
gluon-exchange interaction, the lower energy per baryon.

The dependence of each component’s energy per baryon
on the baryon number is depicted in Fig. 4 in B =2 X
10'7 G for fixed parameters C and D. The black, magenta,
red, green, and blue curves correspond, respectively, to the
total energy per baryon E,,/n,, lowest Landau level
(LLL) energy per baryon Ej;;/n,, higher Landau level
(HLL) energy per baryon Ey;;/n,, magnetic energy per
baryon Eg/n,, and Coulomb energy per baryon E./n,,
which the lowest Landau level energy E;;; and higher
Landau level energy Ey;; correspond to the n = 0 and
n > 0 parts of the first two terms of Eq. (50), and the
magnetic energy Ep and Coulomb energy E - correspond to
the third and fourth terms of Eq. (50). It can be seen that the
higher Landau level energy Ep;; accounts for the majority
of the total energy and decreases as the number of baryons
increases, however, the lowest Landau level energy Fyj;.
decreases first and then increases, and tends to be stable.
The magnetic energy Ep decreases as the number of
baryons increases. In addition, the Coulomb energy E.
increases first and then decreases, and eventually tends to
be zero. This is consistent with the electrically neutral of
strange quark matter.
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FIG. 4. Each component’s energy per baryon E;/n, as a
function of the baryon number in B = 2 x 107 G.
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FIG. 5. The mechanically stable radius as a function of the

baryon number in both B =0 and B =2 x 10'7 G.

The dependence of mechanically stable radius of
strangelets on the baryon number at B =2 x 10'7 G and
B =0 is shown in Fig. 5 by solving numerically the
equation of mechanical equilibrium P =0 in Eq. (54),
with baryon number conservation conditions and the beta
equilibrium, i.e., Eqs. (66) and (67). The red and blue
curves correspond, respectively, to the field strength B =
2x 10" G and B=0. The solid and dashed curves
correspond, respectively, to the parameter sets (C, /D
in MeV): (0.1, 160) and (—0.1, 160). It can be seen that the
ratio R/A'/3 decreases with baryon number A and tends to
be a constant as A approaches infinity, corresponding to an
equation R = ryA'/3 with a constant r,. This is consistent
with the conclusion of previous model studies such as the
NJL model [56].

We use the ratio of the strange quark number to tripling
of baryon number p, = N,/3A to express the strangeness

0.20

——D"=160MeV,C=0.1 B=0

< 9ol --- D"2=160MeV, C=-0.1
——D"?=160MeV, C=01 B=2x10"7G
--- D" =160 MeV, C=-0.1
0.05 |
OOO 1 1 1 1
0 2000 4000 6000 8000 10000

A

FIG. 6. The ratios of the strange quark number to tripling in
baryon number p; as a function of the baryon number in both
B=0and B=2x10" G.

0.7
\ ——D"=160MeV,C=0.1 B=0
0.6 L\ --- D" =160 MeV, C=-0.1
"\ ——D"™=160MeV, C=01 B=2x10"7G
"\ ___ pl2_ -
05F N\ D2 =160 MeV, C =-0.1
\\\
0.4
< N
N 2
03} NN
\\\\
0.2}
\\\
0.1 \
00 1 1 1
1 10 100 1000 10000
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FIG. 7. The charge per baryon Z/A as a function of the baryon
number.

of strangelets, which is shown in Fig. 6. It is increasing with
the baryon number and tends to constant values at a large
baryon number. Moreover, one-gluon-exchange interaction
compared to perturbative interactions gives a larger p,. The
strangeness of strangelets under a strong magnetic field is
greater than that without a magnetic field.

The ratios of electric charge to the baryon number Z/A
as a function of baryon number A is shown in Fig. 7. For a
larger baryon number, generally, the strangelets and mag-
netized strangelets tend to be electrically neutral, while the
finite size effect becomes weaker, i.e., they tend to be the
SQM and MSQM. At a small baryon number, the radio
Z /A of magnetized strangelets is larger than the strangelets,
however, with the increasing of A, they become close.

In Fig. 8, we note that the energy per baryon of
strangelets and magnetized strangelets is a monotone
increasing function of the perturbative parameter C when
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FIG. 8. The energy per baryon as a function of perturbative

parameter with different confinement parameters.
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FIG.9. The charge per baryon Z/A as a function of perturbative
parameter with different confinement parameters.

A is 100. Furthermore, we notice that the larger confine-
ment interaction and strong magnetic field increases the
energy per baryon of strangelets for A = 100.

Next, the relationship between the charge per baryon of
strangelets and magnetized strangelets and perturbative
parameter C is studied in Fig. 9. It can be seen that the
perturbative parameter C increases the charge per baryon of
strangelets in B = 0 and B = 2 x 10! G, and the rate of
increase of magnetized strangelets is faster than strangelets.

The perturbative parameter C dependence of the mechan-
ically stable radii of strangelets and magnetized strangelets
are presented in Fig. 10. The mechanically stable radius is
increased with the increasing of the perturbative parameter
C, both in B=0 and B=2x 10" G, and a strong
magnetic field will reduce the mechanically stable radii
of the strangelets. This is consistent with the conclusion of
previous model studies such as the MIT bag model [31]. In
the model of the article, that also means the perturbative

1.6
——D"?=140MeV B=0
- D1/2=160Mev
14F 77 D1/2=180Mev
_ ——D'"”=140MeV B=2x10"G
§ -—- D1/2=160Mev
(:/ ~~~~~ D1/2=180Mev
=, 1.2
< B
R —:::55:"
1'0=======:=:==:=_
0.8 L . . . | | |
06 -04 -02 00 02 04 06 08 10
C

FIG. 10. The mechanically stable radius as a function of
perturbative parameter with different confinement parameters.

1065 1.06
11.04
S 10551 —
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m R/AVG é
1045 p'2=160 MeV, C=0.1
A =100 41.00
1035 L L L L 0.98
0 1 2 3 4 5
B/B,
FIG. 11. The mechanically stable radius and energy per baryon

as a function of magnetic field strength, where B, = 10!7 G.

effects lead to larger mechanically stable radii of both
strangelets and magnetized strangelets than the one-
gluon-exchange effects. In addition, it is found that the
stronger confinement interaction reduces the mechanically
stable radii of strangelets and magnetized strangelets.

The dependence of energy per baryon and the mechan-
ically stable radius of magnetized strangelets on the
magnetic field strength are depicted in Fig. 11. A parameter
set C = 0.1, D'/2 = 160 MeV is chosen, where the energy
per baryon increases with field strength, inversely, the
mechanically stable radii decreases with field strength. This
is consistent with the result of the energy per baryon and
mechanically stable radii in Figs. 8 and 10.

The dependence of each component’s energy per baryon
on the magnetic field strength is depicted in Fig. 12 for
fixed parameters C and D. It is found that the higher
Landau level energy Eyp; accounts for the majority of
the total energy and decreases as magnetic field strength
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FIG. 12. Each component’s energy per baryon E;/n, as a
function of magnetic field strength, where B, = 10'7 G.

0.5
04}
u
—d
0.3
S s
~
= D' =160 MeV, C = 0.1
o2l A =100
0.1F
00 PR S SR SR [N TR SN SN SR T SR SR ST SR [N SN SR SR S [ S S 1
0 1 2 3 4 5
B/B,
FIG. 13. The particle abundances N;/3A of quarks of the

strangelets under fixed parameter set as a function of the magnetic
field strength.

increases, while the lowest Landau level energy Ey; is the
opposite. This could be visualized from energy per baryon
of strangelets at n = 0 in Eq. (50) and the reduction of
energy levels in Eq. (39), respectively. The magnetic energy
Ep increases as the magnetic field strength increases. In
addition, the Coulomb energy E. decreases with magnetic
field strength, which is consistent with the phenomenon of
the mechanical stability radius decreasing with magnetic
field strength in Fig. 11.

Figure 13 shows the dependence of the particle abun-
dances of quarks of the strangelets on the magnetic field
strength. The solid curves correspond to the parameter set
C=0.1, DV? =160 MeV. The black, red, and blue
curves correspond, respectively, to the quarks u, d, and
s. As the magnetic field strength increases, the particle
abundance of u# and d quarks decreases, while that of s
quarks increases because u# and d quarks are converted to s
quarks under strong magnetic field strength.

V. SUMMARY

We have investigated the properties of magnetized
strangelets by the baryon density-dependent quark mass
model with a quark mass scaling containing confinement
and perturbative effects. The contribution of Coulomb
interaction has been treated in a thermodynamic self-
consistent way, where the contribution of Coulomb inter-
action to the chemical potential and pressure is accounted
for. Considering the anisotropy caused by a strong mag-
netic field and the anomalous magnetic moment of quarks,
the thermodynamic quantities of the magnetized strangelets
that satisfy thermodynamic consistency are obtained.

It is found that the dependencies of energy and charge
per baryon and mechanically stable radius of magnetized
strangelets on the baryon number and perturbative param-
eter are similar to the strangelets in zero magnetic field. The
electric charge per baryon of strangelets and magnetized
strangelets become close at a large baryon number, and
both tend to electric neutrality. However, the strong
magnetic field leads to larger energy and charge per baryon,
larger strangeness, and smaller mechanically stable radii of
strangelets for fixed parameters, compared with the zero
magnetic field one. For fixed confinement parameters, the
energy and charge per baryon and mechanically stable
radius increase as perturbative parameter C increases, and
the rate of charge per baryon of magnetized strangelets is
faster than strangelets. In addition, the dependence of
energy per baryon and mechanically stable radius on
magnetic field strength are obtained, where the strong
magnetic field leads to larger energy and smaller stable
radius of strangelets with the same baryon number.
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APPENDIX: THERMODYNAMICS OF QUARK
MATTER IN A UNIFORM MAGNETIC FIELD

In the presence of electromagnetic fields, the energy-
momentum tensor can be decomposed into matter and field
parts, i.e.,

T" = Thater + Thietass (A1)
where the field part is fixed by
THeas = % (E* + B?), (A2)
Thes = Thiugs = (E x B),, (A3)
T = 5 (B + B)o, ~ EE,~ BB, (A4
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To obtain the matter part of the energy-momentum tensor
Th wer = 7™ in the local rest frame of the system, we first
write the Lagrangian density of the equivparticle model for
quark matter, i.e.,

L= ZW;{W"D —m(nb)+ Q" Fy|wi,  (AS)

where ¢; is the charge of quark i, Q; the anomalous
magnetic moment, D, = d, + iq;A,, m; = mg; + my(ny),
and o = i[y*,7"]/2. The baryon number density is
obtained with n, = >, (7;¥"w;)/3. The equations of
motion for yw; can be determined by FEuler-Lagrange

equation, i.e.,
oL oL
—t—'—(z,(————:——> =0
oy (9, ;)

This gives the Dirac equation for quarks, i.e.,

(A6)
1
iy*D, — Vyr® —m;(ny) + 5 Qia"”Fﬂb} w; =0, (A7)

where the term V', arises from the density-dependent quark
masses, i.e.,

1 dmI
A8
V 3 dl’l Z ll//l ( )
The energy-momentum tensor is then obtained with
1 77 7 4 v
T = Ezi:l//i (D +7D") |y
1
+ 3 Z:ll_/i [Qi(UM(IFDa + O'WF”a)} Vi
- 3n,Vyg". (A9)

Note that we have adopted the relation £ = 3n,Vy during
derivation using the Minkowski space metric ¢" =
diag(1,—1,—1,—1), which is obtained multiplying
Eq. (A7) by ;.

If the magnetic field is uniform and pointing to the
z-direction, then we can adopt the vector potential
A#* =(0,-By,0,0), which gives F* = B(§"*6*> — §**6")
and, consequently,

1 . ) 03 0
EQiGWFm/ =iQ;By'y’ = QiB< 0 o > =Q,BS;. (A10)
3

The Dirac equation for stationary states y = e~ **'¥;(X) can
then obtained with

e, — [—a iV - q,A) + ino} v,

+[qiAo + Vy + pm; — Q;BS;|¥ (A11)
Here a = y% = (J’) and f=7°=(]°). The diagonal
components of 7#¥ in a constant magnetic field are then
given by

7% = ZV_/i(i}’ODO)V/i = 3mVy, (A12)
T =) iy D" = QiBo®)y; +3mVy.  (A13)
T =) w(ir' DY = QiBo®)y; +3mVy.  (Al4)
T = ZWi(iYZDZ)V/i +3n,Vy. (A15)

For uniform matter comprised of u, d, and s quarks, the
electric field vanishes. The energy-momentum tensor for a
uniform magnetic field B in parallel to the z-axis is
determined by

2

B
Thags = = diag(1, 1,1, =1). (A16)

The Dirac equation (All) can be solved by assuming
P (X) = PUEPIENS (y) with

C1¢u(y)
(s) 62¢v—1(y) 1 s qi
up’ (y) = and v=n+-—=—, (Al7)
C3¢v(y) 2 2|‘11|
C4¢y—1(y)
wheren = 0, 1, 2, ... and the spin s = +£1. The function ¢,,

is determined by

() = Nue=CPH () with &= /[q)1B (

i)

(A18)

where m > 0 is an integer, H,, is a Hermite polynomial,
and N,, = (¢;B)"/*(y/72"m!)~'/? is a normalization con-
stant which ensures [*_dy¢2(y) = 1. Inserting this to the
Dirac equation (Al1l) gives

m_QB 0 P Py
0 m+0OB ¥ -
0 p r: y—Er (AI19)
D p, —m+Q0B 0
Py —P: 0 _m_QB
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where  y = (cicc3¢4)Y,  p, =+/2|qi|Bv, and E =
e —q;Ao — Vy. The eigenstates for particles are
sasﬂs
1 —P:Pv
Ky = ————— , (A20)
S V24 spsp.
aSpl/

where a, = E, — Q;B + sA and f; = A + sm;. The corre-
sponding eigenvalues are

with A = \/m? + p2. The general positive energy states can
be constructed by

|Q|B / dp, 1
Wl( -
il Z 27 \/2E

§=

(A—5Q,;B)?, (A21)

by(p)u®) (p)e'?,
(A22)
where b,(k) obeys the following relation:
[b,(p). LK)} = (218,806 — k..
p=(nk,) with n=0,1,2,.

details, see Ref. [57].
The energy density for infinite quark matter is then

,2-()() Z|%|B / dpz
s= j:l n

S Esf+(Es’ T,/,li),

(A23)

(ES’pX’O pZ) For

(A24)

with the Fermi-Dirac distribution of particles fixed by

(b3 (P)bs(p)) = [+ (s T.pf) = (A25)

e E)IT 1

Note that we have adopted the relation E, =&, —q;Ag —
in deriving Eq. (A24). The number density can be deter-
mined by

IqllB

siln

dp
= (i w) = / Zf+ E. T, u}),

(A26)

>.ini/3.

while the baryon number density is n, =
According to Eq. (A11), we have

(8 = qiAp — Vv)q’j\Pi = le [_‘_i' (zﬁ - in)i| ¥,

+ W[ [Bm; — Q;BFS:]®;.  (A27)

Upon taking the derivative of the equation above with
respect to mass, we obtain the following result:

oE

YipY, = — WY, A28

=y, (a28)
where E = & — q;Ay — V. Note that w; = |y y; and
B =7"; we obtain

_ |%|B / dp, aE
= b,
) =S [ )
2 7i n 27z am o

Thus, for vanishing temperatures with 7' = 0, the expres-
sion of Vy is given by

ldml
V 3 d}’l Z lll/l

A30
3 dn ( )

The longitudinal pressure along magnetic field lines is

P =(T%)
qi B dp. p:
_Zl | / sz+ES,T/l)
s= il n -
+3n,Vy. (A31)
The transverse pressure is fixed by
PL = (T7) = (T
ql B
s= il n -
X M—sQiﬁii(v) +3n,Vy, (A32)
Vm? + 2v|q;|B

where m;(v) = \/m? + 2v|q,|B — sQ;B.

For vanishing temperatures with 7" = 0, the thermody-
namic potential density is then fixed by Q = & — u;n; =
—P| with y; = pi + Vy. Arelationship between P\ and P
is obtained according to the magnetization M =
—0Q/0B = 0P| /0B, which gives P, = P|| — MB. These
relations can be derived through direct integration, as
detailed in Ref. [57].

If we further include the field contributions to energy-
momentum tensor, then the energy density, longitudinal
and transverse pressures at 7 = 0 are fixed by
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B d
Z|f1z| / PzE O —E,)
s= j:l n

1
+_B27

A
: (A33)
1
P =-Q _EB , (A34)
1
L=—Q-MB+IB =P+ B - MB, (A35)
where
i|B d
ZICJI / Pz g )
s= :tl n
x @(u} — E,), (A36)

0Q
p— A
M=-22. (A38)

Due to the independence of chemical potential y; on mass
m;, combining with Eq. (A30), we derive the relationship
between Vy and the thermodynamic potential density as
follows:

 ldmy < 00

Vy=s—"5>» —.
v 3 dnj, <~ om;

(A39)

For a finite system, the contributions from surface
corrections and Coulomb interactions need to be consid-
ered, which introduce additional terms to the energy
density and pressures.
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