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1 Introduction

Precision studies of semileptonic charged-current (CC) interactions involving light quarks,
mediating decays of mesons, neutrons, and nuclei, provide stringent tests of the Standard
Model (SM) and its possible extensions. Prominent examples are the precision tests of lepton
universality and quark-lepton (Cabibbo) universality [1]. The latter is encoded in the SM by
the first-row unitarity relation for the Cabibbo-Kobayashi-Maskawa (CKM) [1, 2] matrix:

∆CKM ≡ |Vud|2 + |Vus|2 + |Vub|2 − 1 = 0 . (1.1)

β decays and kaon decays allow one to extract Vud and Vus with fractional uncertainties of
0.03% and 0.22% respectively [3], leading to an uncertainty of ∼ 5× 10−4 in |Vud|2 + |Vus|2,
thus making |Vub|2 ≃ 1.5× 10−5 largely irrelevant for this test. In the last few years, mainly
due to the evolution of the theoretical input on radiative corrections in β decays [4–9] and on
the K → π vector matrix element in lattice QCD [10–12], several tensions have emerged with
the SM interpretation of semileptonic decays and Cabibbo universality. These are collectively
dubbed the Cabibbo Angle Anomaly (CAA). The two main features of the CAA can be
summarized as follows: first, the best-fit value of ∆CKM = −1.48(53) × 10−3, as obtained,
for example, in [13], deviates from zero at the 3σ level. Second, the extractions of Vus from
K → πℓν and Vus/Vud from Γ(K → µν)/Γ(π → µν) are by themselves inconsistent with
CKM unitarity at the 3σ level.

This state of affairs has generated significant activity on two fronts. On the one hand, the
community continues to scrutinize the theoretical aspects of the SM analysis, which involves
non-perturbative input for radiative corrections and more generally for hadronic and nuclear
matrix elements [13–25]. On the other hand, there is interest in looking for new physics
scenarios that might explain the CAA, should it persist [26–39]. On the latter front, previous
work has been rooted both in specific extensions of the SM and in effective field theory
(EFT) approaches. In turn, EFT approaches have followed different strategies. Motivated by
phenomenological considerations or specific classes of BSM scenarios, several groups have
analyzed the CAA within a subset of the dimension-six SMEFT operators that can affect
semileptonic decays [27–31, 33], with a global analysis still missing. In a different approach,
refs. [40, 41] performed a global analysis of low-energy charged-current data (including τ

decays in ref. [42]) using the full semileptonic operator basis in the EFT valid below the weak
scale (LEFT). The LEFT analysis by construction loses the correlation of charged-current
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precision measurements with other electroweak precision observables, which is explicit when
using SMEFT operators that are invariant under SU(2) × U(1).

In this work, we fill the gap described above by presenting a global SMEFT analysis
of the possible BSM origins of the CAA. This forces us to look at the CAA in conjunction
with other observables that have sensitivity to (a subset of the) SMEFT operators that
affect semileptonic charged-current decays. It turns out that a minimal analysis requires
including two additional sets of observables: (i) traditional electroweak precision observables
(EWPO), which are affected by vertex corrections and four-lepton operators (shifting the
Fermi constant GF ) also appearing in β decays; (ii) LHC charged-current and neutral-current
(NC) Drell-Yan (DY) processes, namely pp→ ℓν̄ℓ +X and pp→ ℓℓ̄+X, which are affected
by semileptonic four-fermion operators and vertex corrections also appearing in β decays. To
achieve a self-consistent analysis, we should consider the complete set of SMEFT operators
that affect low-energy CC processes, EWPO, and Drell-Yan processes, which is larger than
the set that affects only β decays. Note that by considering the EWPO we are also forced
to confront the so-called W mass anomaly [43].1

Given the considerations above, it is evident that the CAA and EWPO are interconnected.
Thus, a comprehensive analysis accounting for all constraints should encompass observables
from collider processes (‘C’), low-energy (‘L’) charged-current processes, and electroweak
precision observables (‘EW’). We will refer to this as a ‘CLEW’ analysis. The relevance of
the CLEW analysis framework can be appreciated by noting the following:

• If one focuses on BSM explanations of the CAA and only considers low-energy CC
observables, it is possible to select BSM scenarios that are incompatible with EWPO and
LHC Drell-Yan measurements. Only a global CLEW analysis down-selects explanations
of the CAA which are compatible with constraints from weak and TeV scales.

• Similarly, it has been shown that explanations of the W mass anomaly that focus only
on EWPO can select SMEFT parameters that aggravate the CAA [44, 45].

Although the CLEW framework was originally motivated by explaining anomalies in
low-energy charged-current processes, it is set up to perform nearly global SMEFT fits to
the precision observables that do not involve flavor-changing neutral currents (FCNC) and
CP violation. Consequently, in the majority of this work, we will assume that all Wilson
coefficients are real. CP violation and some of the constraints from EDMs and meson decays
are briefly discussed at the end of section 9.1. Our framework can be further extended in the
future to include other precision measurements, such as low-energy neutral-current phenomena
(e.g. atomic parity violation or parity-violating electron scattering) and semileptonic τ decays.
We currently do not include these additional observables because they either have lower
precision or constrain combinations of SMEFT operators that are orthogonal to the ones
affecting low-energy charged-current processes (see section 3.2 for details).

In SMEFT analyses, one has to confront the proliferation of parameters when considering
the most general flavor structure of the Wilson coefficients. This is usually dealt with by
imposing flavor symmetries. We start by presenting our results for a ‘warm-up’ scenario

1In light of tensions in the W mass measurements, we have performed the analysis both with and without
the CDF 2022 result [43].
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in which we impose the U(3)5 flavor symmetry on the SMEFT Wilson coefficients. This is
instructive because it closely parallels existing analyses. However, as we will discuss, this
assumption is quite restrictive and can lead to inconsistencies with low-energy observables if
they are not explicitly included in the analysis. We then present a general ‘flavor-assumption-
independent’ analysis, which is highly desirable because it avoids any model dependence.
We achieve this by focusing on a certain subset of Wilson coefficients that contribute to the
CLEW observables, but (mostly) leave FCNC processes unaffected. The main challenge in
setting up such an analysis is the need to decouple CC observables from FCNC observables
(EWPO and FCNC are relatively easily decoupled) by suitable choices of independent Wilson
coefficients. Although exact decoupling is not possible, we will describe a plausible scenario
and possible ways to test it in the future, with extended fits that include FCNC observables.

Based on the identified set of SMEFT operators and Wilson coefficients, we then analyze
the CAA systematically. We present a global fit with up to 37 independent operators and
use the Akaike Information Criterion (AIC) to investigate whether fits with fewer operators
perform better. We then identify, without making flavor assumptions, which set of SMEFT
operators provides the optimal resolution to the CAA.

The paper is organized as follows. In section 2 we set up the framework of our analysis,
identifying the operators and observables that we consider. In section 3 we describe our
strategy to deal with flavor structure and set up three classes of analyses in addition to
the SM analysis. In section 4 we summarize the statistical tools used in our work. We
present our results in sections 5–8 providing a discussion of the main features driving the
various fits. Apart from discussing the nearly-global analysis, we also consider a number
of simpler scenarios that involve subsets of SMEFT operators and investigate which one
leads to the most favored solution of the CAA. In section 9, we explore the potential of
future measurements and theoretical developments to probe the nonzero couplings, which
the statistical analysis identifies as the simplest explanation for the CAA. We offer our
conclusions and outlook in section 10, while technical details are provided in the appendices.
We collect the results of the ‘flavor-assumption-independent’ fit in the Supplemental Material.

2 Analysis framework

2.1 Standard Model Effective Field Theory

Assuming that BSM physics appears at a scale Λ well above the electroweak scale, Λ≫ v, its
effects can be captured by an EFT. If the BSM dynamics is weakly coupled, the resulting
TeV-scale effective Lagrangian linearly realizes the electroweak symmetry SU(2)× U(1) and
contains an SM-like SU(2) Higgs doublet. The relevant EFT is the SMEFT [46, 47], which
extends the SM with operators of canonical dimension d > 4, suppressed by powers of Λ4−d.
The first BSM operator appears at dimension five [48] and gives rise to neutrino Majorana
masses. The leading contributions to the observables of interest in this work arise from
dimension-six operators Qi, which are described by the following effective Lagrangian

L = LSM +
∑

i

CiQi , (2.1)

where the Wilson coefficients, Ci, have mass dimension −2. There are 2499 operators in
SMEFT at dimension six [49], and we adopt the widely used Warsaw basis [47]. As discussed
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in the Introduction, our analysis includes only the operators that affect low-energy CC
(semi)leptonic processes, EWPO, and Drell-Yan at the LHC. We list the relevant operators
in table 1 along with the classes of observables to which they contribute, making it clear that
a joint analysis of these three classes of observables is required for consistency.

Our notation is such that lT = (νL, eL) and qT = (uL, dL) stand for left-handed lepton
and quark SU(2) doublets, while u = uR, d = dR, and e = eR are the right-handed up-type,
down-type, and charged-lepton fields. We use p, r, s, t for generation indices and work in a
basis in which the electron and down-quark Yukawa matrices are diagonal. This implies
that the fields dL,R, eL,R correspond to the mass eigenstates, while for the up-type quarks
we have uL = V †umass

L , where V is the CKM matrix.2 For further details of our notation,
we refer to appendix A.

In this work, we will mainly be concerned with the SMEFT Lagrangian at tree level and
only consider loop effects to include sizable QCD corrections at leading-log accuracy. This
affects only the operators in the (L̄R)(L̄R) and (L̄R)(R̄L) classes in table 1. We will evaluate
these coefficients at a renormalization scale of µ = 1TeV when presenting the results. We use
the Lagrangian in eq. (2.1) to make predictions for observables at or above the electroweak
scale, such as the W mass, Z-pole observables, and Drell-Yan production cross sections. In
the EWPO analysis, we choose our input parameters as the Fermi constant GF , extracted
from muon decay, the Z mass, mZ , and the fine-structure constant, αem.

To predict the low-energy charged current processes in terms of the Wilson coefficients
Ci of eq. (2.1), we switch to the LEFT [50], the low-energy EFT valid below the weak scale.
This is formally done by integrating out the heavy SM fields and matching the operators
in eq. (2.1) to an SU(3)c × U(1)em-invariant Lagrangian relevant for kaon, pion, and β

decays. The matching to this Lagrangian, and the translation to conventions often used
in the literature, are discussed in appendix A.2.

2.2 Observables

The choice of SMEFT operators included in the fits is dictated by the observables that we want
to analyze. The observables fall into three classes: low-energy CC (semi)leptonic processes (L),
electroweak-precision observables (EW), and collider probes such as Drell-Yan at the LHC (C).

2.2.1 Low-energy charged-current observables

We include semileptonic processes involving electrons and muons mediated by light quark
(u, d, s) charged-current interactions. Relevant observables involve measurements of neutron
and nuclear β decays as well as pion and kaon decays.

Neutron and nuclear β decays:
We closely follow the analysis of ref. [51] and take into account the neutron lifetime,

0+ → 0+ transitions, and mirror decays. Within the SM, these measurements determine
Vud, which, when combined with the extraction of Vus discussed below, currently leads to a
deviation from CKM unitarity. In SMEFT, these measurements are sensitive to new vector
and scalar interactions. Apart from the decay rates, we consider correlation measurements,

2We will not be concerned with neutrino mass effects in the current work, implying we do not distinguish
between neutrino mass and flavor eigenstates.
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Operators L EW C

H4D2

QHD

(
H†DµH

)∗ (
H†DµH

)
parameter shift (mZ)

X2H2

QHW B H†τ IHW I
µνB

µν parameter shift (sin θW )

ψ2H2D

Q
(1)
Hl (H†i

←→
D µH)(l̄pγµlr) ✗ ✓ ✓

Q
(3)
Hl (H†i

←→
D I

µH)(l̄pτ Iγµlr) ✓ ✓ ✓

QHe (H†i
←→
D µH)(ēpγ

µer) ✗ ✓ ✓

Q
(1)
Hq (H†i

←→
D µH)(q̄pγ

µqr) ✗ ✓ ✓

Q
(3)
Hq (H†i

←→
D I

µH)(q̄pτ
Iγµqr) ✓ ✓ ✓

QHu (H†i
←→
D µH)(ūpγ

µur) ✗ ✓ ✓

QHd (H†i
←→
D µH)(d̄pγ

µdr) ✗ ✓ ✓

QHud + h.c. i(H̃†DµH)(ūpγ
µdr) ✓ ✗ ✓

(L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt) parameter shift (GF )

Q
(1)
lq (l̄pγµlr)(q̄sγµqt) ✗ ✗ ✓

Q
(3)
lq (l̄pγµτ I lr)(q̄sγµτ

Iqt) ✓ ✗ ✓

(L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj) ✓ ✗ ✓

(L̄R)(L̄R) + h.c.

Q
(1)
lequ (l̄jper)ϵjk(q̄k

sut) ✓ ✗ ✓

Q
(3)
lequ (l̄jpσµνer)ϵjk(q̄k

sσ
µνut) ✓ ✗ ✓

Table 1. The dimension-six SMEFT operators (in the Warsaw basis [47]) that are relevant for our
analysis, with subscripts p, r, s, t indicating weak-eigenstate generation indices. The last three columns
indicate which observables the operators contribute to. ‘L’ stands for the neutron, nuclear, and meson
decays discussed in appendices B.2.1 and B.2.2; ‘EW’ stands for the electroweak precision observables
of appendix B.1; ‘C’ stands for the pp→ ℓℓ and pp→ ℓν processes discussed in appendix B.3.
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such as those between neutrino and electron momenta ∼ p⃗e · p⃗ν , described by the coefficient
a, or between nuclear spin and electron momentum ∼ p⃗e · J⃗ , captured by the coefficient A.
These measurements allow one to extract the ratio of vector-to-axial couplings gA/gV , and
are sensitive to different combinations of SMEFT interactions.

The β-decay observables considered are listed in appendix B.2.1. We include them
in the fit using a χ2 function provided by the authors of ref. [51]. An important subset
of them, especially with respect to CAA, are the Ft values of superallowed transitions.
For a transition, i, these values are proportional to the inverse of the decay rate, 1/Γi,
with transition-dependent phase-space factors and radiative corrections taken out. Their
theoretical predictions can be written as

Fti =
4π3 log 2
M2

Fm
5
e

[
C2

V ± 2CV CSγi

〈me

Ee

〉
i

]−1
, (2.2)

where the upper (lower) sign corresponds to a β− (β+) decay and the Fermi matrix element
is M2

F = 2 for 0+ → 0+. Here

CV =
√
2GFVudgV

√
1 + ∆V

R(1 + ϵed
L + ϵed

R ) , CS =
√
2GFVudgSϵ

ed
S , (2.3)

and γi =
√
1− α2Z2

i , with Z the atomic number of the final-state nucleus. The Wilson
coefficients are given in terms of the ϵi that vanish in the SM, but are generally nonzero in
SMEFT, see appendix A.2. The second term in square brackets arises from the so-called
b Fierz interference term, where ⟨me/Ee⟩i denotes the averaged ratio me/Ee. This term
vanishes in the SM, but receives corrections from non-standard scalar interactions in SMEFT.
CV and CS depend on the nucleon vector and scalar charges, gV and gS , and short-distance
radiative corrections, ∆V

R , see appendix B.2.1. The latter have recently been the subject of
several re-evaluations [4–8, 18, 24], and we use the value from ref. [4].

To take into account the theoretical uncertainties associated with the transition-dependent
corrections, we follow the treatment in ref. [51]. Uncertainties enter eq. (2.2) through
Fti = (1 + δ′R)(1 + δV

NS − δV
C )fti, with fti denoting the uncorrected values of ft. Here

δ′R represents long-distance radiative corrections, δV
NS captures nuclear-structure-dependent

effects, and δV
C is an isospin-breaking correction. The theoretical uncertainties related to

these corrections are then taken into account through

Ftth.
i = Ftexpt.

i (1 + η1∆δ′ iR + η2∆δNS,A + η3∆δi
NS,E) , (2.4)

where η1,2,3 are treated as Gaussian parameters with a 1σ confidence interval of ηi ∈ [−1, 1].
The uncertainty ∆δ′ iR is taken to be one third of the Z2α3 term in δ′ iR [52–54], while ∆δNS,A =
3.3 · 10−4 [55], and ∆δi

NS,E = 0.8 · 10−4Q/MeV [56], with Q the transition energy. In
practice, the uncertainties related to η1 turn out to be negligible [51]. For the ‘experimental’
values, Ftexpt.

i , we use the results of ref. [55], while we employ the theoretical expressions
of ref. [51] for the left-hand side of eq. (2.4). As we will see below, the CAA will often
manifest itself through nonzero values of ∆V

R and η2,3. In such cases, the theory predictions
are unable to accommodate the measured rates of 0+ → 0+ without significantly altering
the corrections due to δi.

– 7 –



J
H
E
P
0
3
(
2
0
2
4
)
0
3
3

Kaon and pion decays. We closely follow ref. [40] and organize the two-body decays into
a decay rate, Γ(K → µνµ), and three ratios, Rπ = Γ(π → eνe)/Γ(π → µνµ), RK = Γ(K →
eνe)/Γ(K → µνµ), and Rµ = Γ(K → µνµ)/Γ(π → µνµ), see table 16 for their values. In the
SM, the ratio Rµ allows for a precise determination of Vus/Vud. Going beyond the SM, all
two-body decays receive contributions from axial and pseudoscalar SMEFT operators.

The two-body rate for a pseudoscalar meson P is given by

ΓP ℓ2 =
G2

F |Ṽ ℓ
uD|2f2

P±

8π mP±m2
ℓ

(
1− m2

ℓ

m2
P±

)2

(1 + δP ℓ
em)(1 + ∆P

ℓ2) , (2.5)

where mP± and fP± are, respectively, the meson mass and decay constant, δP ℓ
em captures

radiative corrections, and

Ṽ ℓ
uD =

(
1 + ϵℓD

L + ϵℓD
R − ϵ

µ
L

)
VuD ,

∆P
ℓ2 = −4ϵℓD

R −
2m2

P±

mℓ(mu +mD)ϵ
ℓD
P +O(v4/Λ4) , (2.6)

where D = d, s for P = π,K and the coefficients ϵi denote the contributions of the SMEFT
operators, see appendix A.2 for details. We see that Γ(π → ℓνℓ) and Γ(K → ℓνℓ) strin-
gently constrain pseudoscalar interactions whose contributions are enhanced by a factor of
(m2

P±)/[mℓ(mu + mD)], where ℓ = {e, µ}.
For the three-body decays, we include the rates of π+ → π0eνe, K → πeνe, and

K → πµνµ. The latter two kaon modes determine Vus in the SM, while all these three-body
decays are sensitive to vector, scalar, and tensor SMEFT interactions. For total rates, we have

ΓKℓ3 = G2
Fm

5
K

192π3 CKSew|Ṽ ℓ
us|2f+(0)2Iℓ

K(1 + δc + δ̄cℓ
em)2 , (2.7)

where CK = 1/2 or 1 for charged or neutral kaons. Sew, δc, and δ̄cℓ
em denote short-distance,

isospin, and radiative corrections. In practice, we do not use the theoretical determinations
of δc, and δ̄cℓ

em in our analysis. Instead, we employ the results of ref. [57], which provides
determinations of the combinations f+(0)|Ṽ ℓ

us|. Finally, f+(0) is the K → π form factor at
zero momentum, while IK is the phase-space integral that depends on the BSM scalar and
tensor interactions. In addition, we use measurements of the shape of the spectrum in these
Kl3 decays to constrain the scalar and tensor operators. The experimental and theoretical
inputs required are collected in appendix B.2.2.

2.2.2 Electroweak precision observables

We include the ‘traditional’ observables measured at the Z pole [58]. These include the
decay widths, asymmetries, and the hadronic cross section obtained from e+e− → Z → q̄q,
as well as the W mass. As noted earlier, the recent CDF determination of mW [43] deviates
significantly from the SM and the average of other measurements [3]. Therefore, in our
analyses we will consider two scenarios, one assuming the CDF determination and one where
we use the world average value in PDG. In addition, we include several measurements at
hadron colliders of processes at electroweak-scale energies, such as the branching ratios of
the W boson and asymmetries in pp → ℓ̄ℓ [59, 60].
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Some of the traditional EW observables are measured at the sub-permille level and
provide precise determinations of SM parameters, like mZ , as well as stringent tests of the
SM predictions. Due to their sensitivity to BSM physics, the study of EWPO in the SMEFT
has received considerable attention [61–68]. Recent analyses have highlighted the important
interplay between EWPO, Higgs observables, and diboson production at the LHC [69–72],
the role of dimension-eight SMEFT operators [73, 74], and the implications of quark flavor
assumptions [59, 60, 75]. Beyond the SM, the traditional EW observables receive mainly
corrections from operators that contribute to the fermion-Z couplings, i.e. operators in the
ψ2H2D class in table 1. The additional observables from hadron colliders are helpful in
closing free directions that would otherwise appear when considering SMEFT scenarios
that do not assume flavor universality. The observables used, as well as the relevant SM
predictions, are collected in appendix B.1 and table 12.

2.2.3 Collider probes

The measurement of Drell-Yan tails at the LHC has also been shown to be an effective probe
of BSM interactions, allowing us to probe semileptonic effective operators with different
quark and lepton flavors [76–79]. These constraints are complementary to those derived from
low-energy flavor-physics observables. To incorporate Drell-Yan observables into our analysis,
we implement the Mathematica package HighPT [80, 81], which includes the cross sections
for Drell-Yan dilepton (pp→ ℓ̄ℓ) and mono-lepton (pp→ ℓ̄ν) searches by ATLAS and CMS,
see appendix B.3 for details. HighPT includes the SMEFT contributions to the cross sections
at LO in QCD, with detector effects simulated with Pythia8 and Delphes3. Although NLO
QCD effects have been shown to be important, reaching up to 30% at high invariant mass [78],
the LO bounds are sufficient to provide a good estimate of the LHC sensitivity. The SM
and SMEFT DY predictions are affected by theoretical uncertainties, induced, for example,
by errors on the parton distributions or the omission of QCD corrections. Since the DY
sensitivity relies on large deviations from the SM shape, rather than on a high-precision
comparison with the SM prediction, and the uncertainty in high-transverse or invariant-mass
bins is dominated by experimental uncertainties, we neglect these theory errors in our analysis.

In principle, the dimension-six operators can induce corrections to the cross section
that scale as ∼ |Ci|2 ∼ v4/Λ4. Such terms formally appear at the same order as genuine
dimension-eight operators, which are not included in this work. Therefore, we only take into
account SMEFT effects up to O(v2/Λ2) for most of this work. Although not fully consistent,
we will make an exception in section 7 to estimate the sensitivity of the LHC to (pseudo)scalar
operators, whose contributions vanish at O(1/Λ2). In the future, it will be interesting to
extend the study to O(1/Λ4) in a consistent manner [82–84].

3 Analysis strategy

While the SMEFT framework provides a powerful tool to systematically and model-
independently perform a global analysis of particle physics experiments involving a broad
range of energies, there are technical difficulties towards a practical implementation. The
main complication is the large number of independent operators, for example, the 2499
baryon-number-conserving operators at dimension six. Even after restricting the operator

– 9 –



J
H
E
P
0
3
(
2
0
2
4
)
0
3
3

structures to a subset of the full basis as done in table 1, which focuses on the CLEW
observables, including all generation indices leads to an unmanageable number of Wilson
coefficients. This problem is often circumvented by making certain flavor and CP assumptions
on the operator basis. For example, the fit of EWPO can be greatly simplified if one assumes
a global U(3)5 flavor symmetry. This assumption implies that only 10 operators affect EWPO
at tree level [66] (more operators appear if loop corrections are implemented [75]). Similarly,
CP-invariance is often assumed as well.

These assumptions are not fully satisfactory as they essentially reintroduce model
dependence into the analysis. The downside of using a strong flavor assumption is that
it can miss interesting BSM explanations of anomalies. For example, as we shall see, the
CAA can be nicely explained by right-handed charged current operators in up-down and up-
strange transitions [13, 27, 85]. However, the corresponding SMEFT operators are forbidden
under U(3)5 and are strongly suppressed within minimal flavor violation (MFV) [86]. Entire
classes of BSM models, such as left-right symmetric models, are automatically discarded [87],
demonstrating that the analysis is no longer model independent.

Here, our goal will be to mitigate this loss of model independence, which is introduced
when flavor assumptions are made, as much as possible. To achieve this, the first task is to
identify the most general set of Wilson coefficients, denoted by Cn, that affect the CLEW
observables discussed in section 2.2 and table 1. As we shall see, some of these couplings,
denoted by C̃k, unavoidably affect observables not included in our analysis as well, such as
FCNC. A truly global analysis would thus need to include measurements of FCNCs explicitly,
along with the CLEW observables discussed here. However, we will argue that due to the
strength of FCNC constraints on the C̃k coefficients and the fact that the contributions
of C̃k to the CLEW observables are in many cases suppressed by powers of the Cabibbo
angle λ ∼ 0.2, the global fit can be approximated by setting C̃k = 0 in our analysis. This
makes use of the approximate decoupling of the global analysis into smaller fits, in particular,
into flavor-changing and flavor-conserving sectors. This corresponds to an approximate
factorization of the likelihood function. Consequently, we expect that the constraints on Cn

orthogonal to C̃k remain largely unchanged in a truly global fit.
In the following, we identify the Wilson coefficients relevant for the U(3)5 and flavor-

assumption-independent analyses, and present the associated fitting scenarios.

3.1 U(3)5

To compare with the existing literature and highlight possible drawbacks, we first consider a
scenario based on the symmetry group of flavor universality, namely U(3)l ×U(3)e ×U(3)q ×
U(3)u ×U(3)d. This flavor symmetry imposes strong constraints on the operators in table 1.
For the couplings that contribute to EWPO, neglecting terms proportional to the SM Yukawa
couplings, one finds the following relations

C
(1,3)
Hl ∝ 1 , CHe ∝ 1 C

(1,3)
Hq ∝ 1 , CHu ∝ 1 , CHd ∝ 1 . (3.1)

For operators that involve right-handed fields and contribute to low-energy CC observables,
the flavor symmetry implies

CHud = Cledq = C
(1,3)
lequ = 0 . (3.2)
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Semileptonic four-fermion operators involving left-handed fields induce 9 terms, all with
the same Wilson coefficient

C
(3)
lq ∝ 1ℓ × 1q . (3.3)

In the purely leptonic sector, Qll involves two bilinears with the lepton field L. In this case,
we can write two invariant structures

[Cll]ijℓm ∝ C0δ
ijδℓm + Ĉllδ

imδℓk . (3.4)

C0 does not induce charged-current decays of the muon or τ lepton, and, in particular, does
not affect GF . Ĉll = [Cll]1221 = [Cll]1331 = [Cll]2332 affects muon decay and the extraction
of GF . In the case of U(3)5, the corrections to µ → eν̄eνµ, τ → eν̄eντ , and τ → µν̄µντ are
the same, such that the effect of Ĉll on the lepton decays becomes invisible if GF is used as
input parameter. Finally, purely bosonic operators, QHD and QHW B also affect the EWPO.
However, it turns out that these contributions always appear in fixed combinations with
the vertex corrections in eq. (3.1). They therefore do not increase the effective number of
fit parameters, see section 6 for details.

In summary, for this scenario we will consider a set of 9 Wilson coefficients involving
the couplings in eq. (3.1) and (3.3) together with Ĉll.

3.2 Flavor-symmetry independent analysis

The first step towards a flavor-assumption-independent analysis is to identify the most general
set of Wilson coefficients that affect the CLEW observables, allowing for a general flavor
structure, starting from table 1. To this end, we need to pick a basis, and we find it convenient
to phrase the discussion in terms of the quark-mass basis, which is reached from the weak
basis by simply replacing uL → V †uL, where V is the CKM matrix. In addition, it will be
useful to identify the couplings that give rise to neutral-current interactions. In the quark
mass basis, the induced couplings of up- and down-type quarks to the Z boson are given
by the following linear combinations of Wilson coefficients

C
(u)
Hq = V

[
C

(1)
Hq − C

(3)
Hq

]
V † , C

(d)
Hq = C

(1)
Hq + C

(3)
Hq . (3.5)

Similarly, the semileptonic Wilson coefficients appear as

C
(u)
lq = V

[
C

(1)
lq − C

(3)
lq

]
V † , C

(d)
lq = C

(1)
lq + C

(3)
lq , C̄

(1,3)
lequ = V C

(1,3)
lequ , (3.6)

where C(u)
lq and C̄

(1,3)
lequ represent the neutral-current couplings between up-type quarks and

charged leptons, while C(d)
lq and Cledq control the neutral currents between down-type quarks

and charged leptons.
The contributions of these new Wilson coefficients to CLEW observables can be read off

in a straightforward way in the case of EWPO and neutral-current Drell-Yan, which involve
the diagonal entries of the above couplings. On the other hand, d, s→ u transitions in CC
processes, such as β-decay and CC Drell-Yan, are sensitive to the combinations (D = d, s)[

V C
(d)
Hq − C

(u)
HqV

]
uD

,
[
V C

(d)
lq − C

(u)
lq V

]
ℓℓuD

,[
V C†

ledq

]
ℓℓ11

,
[
V C†

ledq

]
ℓℓ22

,

[(
C̄

(1,3)
lequ

)†
V

]
ℓℓ11

. (3.7)
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These combinations depend on off-diagonal Wilson coefficients, thus inducing ‘cross-talk’
with FCNC observables not included in our analysis. Now we discuss the impact of these
probes in greater detail.

Contributions of left-handed interactions to CC processes are proportional to

VuDϵ
ℓD
L = v2

2
[
V C

(d)
Hq − C

(u)
HqV

]
uD
− v2

2
[
V C

(d)
lq − C

(u)
lq V

]
ℓℓuD

. (3.8)

Neglecting terms that are suppressed by more than one power of λ ≡ Vus, only a few
off-diagonal couplings are expected to contribute without CKM suppression,

ϵℓd
L ≃

v2

2

[
C

(d)
Hq
11
− C(u)

Hq
11

+ Vus

Vud
C

(d)
Hq
21
− Vcd

Vud
C

(u)
Hq
12

]
− (CHq → Clq) ,

ϵℓs
L ≃

v2

2

[
Vud

Vus
C

(d)
Hq
12
− Vcs

Vus
C

(u)
Hq
12

+ C
(d)
Hq
22
− C(u)

Hq
11
− Vts

Vus
C

(u)
Hq
31

]
− (CHq → Clq) . (3.9)

The off-diagonal couplings are stringently constrained by the decays of pseudoscalar mesons
to charged leptons. In particular, [C(d)

Hq]12,21 will have a large impact on kaon decays such
as K → πℓ̄ℓ, while [C(u)

Hq ]12 affects the analogous D meson decays. We discuss the resulting
constraints in more detail in appendix C, where the main conclusion is that the off-diagonal
elements appearing in eq. (3.9) are expected to have a minimal impact on low-energy
CC observables because of stringent FCNC constraints. Similarly, [C(u)

Hq ]31 in eq. (3.9) is
constrained by top-quark decays, and its contribution to ϵℓs

L is suppressed by a factor of
Vts/Vus, so that it cannot significantly affect the low-energy CC observables. These arguments
justify a basis that includes only the diagonal couplings of C(u,d)

Hq .
Very similar arguments hold for the coefficients [C̄(1,3)

lequ ]† and C†
ledq, whose contributions

to the effective low-energy couplings, ϵS,P,T , have a flavor structure analogous to the C(u)
Hq

and C
(d)
Hq terms in eq. (3.8), respectively.

The discussion of C(u,d)
lq is somewhat more involved. Although their appearance in

eq. (3.8) and (3.6) is analogous to the case of C(u,d)
Hq couplings, they differ due to the fact that

these operators also induce couplings to neutrinos of the form (ν̄ν)(q̄q). The flavor structures
that govern neutrino interactions with up- and down-type quarks are given by

C
(ν−u)
lq = V C

(d)
lq V † , C

(ν−d)
lq = V †C

(u)
lq V . (3.10)

Thus, off-diagonal entries of C(u,d)
lq can be stringently constrained by meson decays to charged

leptons and neutrinos. The latter are discussed in more detail in appendix C, where we find
that [C(ν−d)

lq ]12 is very stringently constrained by K → πνν̄, practically forcing [C(u)
lq ]ℓℓ12 ≃ 0

and [C(u)
lq ]ℓℓ11 ≃ [C(u)

lq ]ℓℓ22.
The inclusion of low-energy CC processes in the CLEW analysis also affects the linearly

independent combinations of the purely bosonic Wilson coefficients CHW B and CHD (directly
associated with the Peskin-Takeuchi oblique parameters S and T [88]) that can be constrained
by the data. While ten operators affect EWPO under U(3)5, only eight linear combinations
are actually constrained. We denote these combinations by Ĉi, see eq. (6.1), which indicates
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that C(3)
HF , with F = {l, q}, appear in a linear combination with CHW B and CHD, while C(1)

HF

and CHf , with f = {u, d, e}, appear in combination with CHD. Since the low-energy CC
observables (L) are affected by C

(3)
HF but not by CHW B and CHD (see table 1), they break

the degeneracy between C
(3)
HF and CHW B,HD present in the EW fits. The LEW data thus

constrain one linear combination of CHD and CHW B, which we call CST , while leaving the
orthogonal direction, CT S , unconstrained.

The combinations CST,T S take the form(
CST

CT S

)
≡ 1√

c2
w + 16s2

w

(
4sw cw

−cw 4sw

)(
CHW B

CHD

)
, (3.11)

where sw = sin θw and cw = cos θw, with θw being the weak mixing angle. C(1)
HF and CHf do

not affect the low-energy CC, but do influence the LHC observables by entering the Drell-Yan
process. Their corrections to the Drell-Yan cross section exhibit the same energy dependence
as the SM background. In contrast, the SMEFT 4-fermion operators give corrections with a
stronger energy dependence and dominate the high-energy tail of Drell-Yan processes. Thus,
although some constraints are exerted on C

(1)
HF and CHf by the LHC observables, they are

too weak to substantially lift the degeneracy with CHD. Thus, only the linear combination
CST is well constrained by our CLEW data sets. The orthogonal combination, CT S , on the
other hand, is poorly constrained and we do not include it.

For each class of operator in table 1 we can now summarize which Wilson coefficients
should be included in a general analysis of low-energy CC and EWPO data:

• ψ2H2D

For Q(1,3)
Hl and QHe,Hd,Hu we take into account the diagonal entries that appear in

EWPO, including couplings to all flavors apart from the top. QHud does not induce
neutral currents or effects in EWPO, and we include the terms that contribute to
low-energy CC processes, namely the 11 and 12 components. We include the diagonal
entries of the C(u,d)

Hq coefficients that enter in EWPO or low-energy observables, again
excluding the top coupling.

• (L̄L)(L̄L)

Here, the relevant couplings include [Cll]1221 that enters through its effect on muon
decay. We include the diagonal entries of the C

(u,d)
lq couplings that appear in low-

energy CC measurements, namely [C(u,d)
lq ]ℓℓ11 and [C(d)

lq ]ℓℓ22. In addition, we impose
the constraint that these coefficients do not induce large off-diagonal entries of C(ν−d)

lq ,
which implies [C(u)

lq ]ℓℓpr ∝ δpr[C(u)
lq ]ℓℓpr. Although this does not affect low-energy

observables, the existence of couplings to the heavier generations does have an effect on
collider observables.

• (L̄R)(R̄L)

Taking into account the diagonal terms that enter the low-energy measurements leads
to the inclusion of [Cledq]ℓℓ11 and [Cledq]ℓℓ22.
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• (L̄R)(L̄R)

The same analysis tells us that we should include [C̄(1,3)
lequ ]ℓℓ11.

• Finally, we include the linear combination CST of the two purely bosonic interactions
CHD and CHW B.

We summarize the Wilson coefficients involved in the left panel of table 2.
The above set of operators are chosen because they provide corrections to the EWPO

and CC processes while not being constrained to negligible levels by FCNC constraints. Four-
fermion operators give rise to contributions to Drell-Yan processes that grow with energy.
They are therefore strongly constrained by measurements of the high-invariant or transverse-
mass tails of the NC and CC Drell-Yan distributions. CC Drell-Yan is primarily sensitive
to four-fermion operators that affect β decays at low energy, namely [V C(d)

lq − C
(u)
lq V ]ℓℓud,

[V C(d)
lq − C

(u)
lq V ]ℓℓus, [Cledq]ℓℓ11, [Cledq]ℓℓ22, and [C(1,3)

lequ ]ℓℓ11. Operators with heavy c and b

quarks do contribute to the Drell-Yan cross section, but their effects are suppressed by the
heavy-quark PDFs and can, in the first approximation, be neglected. The above derived
operator basis is then complete for the analysis of CC Drell-Yan processes.

Through gauge invariance, the semileptonic CC four-fermion operators in principle also
contribute to NC Drell-Yan which is included in our analysis. Strictly speaking, these
measurements are affected by additional operators Cld, Clu, Ced, Ceu, and Cqe with their
respective flavor indices. Including these interactions would also require the extension of
the set of observables since these operators are probed by processes such as parity-violating
electron-proton scattering. Here, we do not discuss these operators further because they
do not modify the EWPO and low-energy CC processes. Nevertheless, explicitly including
these operators would be an interesting extension of the current framework, which we leave
for future work.

3.3 Three classes of analyses

Having discussed the relevant operators, we will perform fits in three different scenarios:

1. U(3)5 fit: we start with a scenario assuming U(3)5 flavor symmetry, neglecting terms
involving the SM Yukawa couplings. This scenario highlights the close connection
between EWPO, low-energy CC observables, and high-energy Drell-Yan processes. We
will show that fits considering only a single class of observables, as often done in the
literature, can lead to a poor description for observables in the other classes, and are
thus inconsistent.

2. Flavor-symmetry-independent intermediate fit: a scenario involving only the 22
Wilson coefficients that affect low-energy CC processes and the CAA (see the right panel
of table 2), but which nevertheless includes the EWPO and Drell-Yan data. Although
not self-consistent, we will see that this scenario provides a good description of the data,
in particular of the CAA, as long as the CDF measurement of mW is not considered.

3. Flavor-symmetry-independent global fit: a global fit in which all operators in the
left panel of table 2 are included.
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Global analysis Indices

C
(1,3)
Hl
pr

, CHe
pr

pr ∈ {ee, µµ, ττ}

C
(d)
Hq
pr
, CHd

pr
pr ∈ {11, 22, 33}

C
(u)
Hq
pr
, CHu

pr
pr ∈ {11, 22}

CHud
pr

pr ∈ {11, 12}

C
(d)
lq

ℓℓpr

, Cledq
ℓℓpr

ℓ ∈ {e, µ} , pr ∈ {11, 22}

C
(u)
lq

ℓℓ11
, C̄

(1,3)
lequ
ℓℓ11

ℓ ∈ {e, µ}

CST

C ll
2112

Low energy CC analysis Indices

C
(3)
Hl
pr

pr ∈ {ee, µµ}

C
(d)
Hq
pr

pr ∈ {11, 22}

C
(u)
Hq
11

CHud
pr

pr ∈ {11, 12}

C
(d)
lq

ℓℓpr

, Cledq
ℓℓpr

ℓ ∈ {e, µ} , pr ∈ {11, 22}

C
(u)
lq

ℓℓ11
, C̄

(1,3)
lequ
ℓℓ11

ℓ ∈ {e, µ}

C ll
2112

Table 2. Left panel: the 37 Wilson coefficients that are relevant to the global analysis, including
low-energy charged-current observables, EWPO, and CC Drell-Yan as described in section 3.2. Right
panel: the subset of 22 Wilson coefficients that contribute to low-energy charged-current observables
as described in section 3.2.

In addition, we will consider several simpler scenarios, involving subsets of the operators,
which will help build some intuition for the larger, more general analysis. In all cases, we
will study the role of different sets of observables. We will label each of these analyses by
the observables considered and the Wilson coefficients involved in the scenario. L denotes
the low-energy CC processes related to nuclear, neutron, and meson decay; EW stands for
traditionally defined electroweak precision observables (EWPO); and C (collider) stands for
the Drell-Yan processes described above. For instance, the fit L22 would describe a fit of
the 22 operators introduced in Scenario 2 to the low-energy CC observables only, whereas
CLEW22 would correspond to the same operators, but now also including EWPO and
Drell-Yan processes. For fits that include EW, we will often consider two separate cases
depending on whether we include or exclude the CDF measurement of mW .

4 Statistical tools

In the next section, we present results for a large number of fits. We will use χ2 minimization
to perform these analyses and employ the Akaike Information Criterion (AIC) [21] to
compare the quality of various fits. The method of χ2 minimization is a statistical tool
commonly used to fit theoretical models to empirical data. It measures the sum of the squared
differences between the observed data and the model predictions, weighted by their respective
uncertainties. By minimizing the function χ2, we obtain the best-fit parameters that most
closely align the theoretical model with the experimental observations.

A χ2-fit is performed to a given set of experimental measurements E = {E1, E2, . . .}
with a covariance matrix V , where each Ei is the experimental value of an observable. We
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denote the theoretical predictions for those observables as O = {O1, O2, . . .}, where each
Oi is a function of the model parameters. When fitting to the SM, the parameters are
λ, hadronic and nuclear matrix elements appearing in low-energy observables (such as the
ratio of Fermi and Gamow-Teller matrix elements in mirror transitions, see appendix B.2.1),
and the parameters that capture theoretical uncertainties related to corrections in β decays,
which are discussed below eq. (2.4). In SMEFT, Oi also depend on the Wilson coefficients
considered in the analysis. We construct our χ2 function by

χ2 = (O − E)TV −1(O − E) , (4.1)

where V −1 is the inverse of the covariance matrix, which is related to the variances of
the observables and their correlation matrix through, Vii = σ2

i and corrij = σ−1
i Vijσ

−1
j ,

respectively. Whenever they are available, we add theoretical calculations of hadronic and
nuclear matrix elements to the χ2 in the same way, effectively treating them as experimental
measurements. Similarly, η1,2,3, which appear in β decays, are also treated as Gaussian
parameters, see appendix B.2.1 for details.

Minimizing the χ2 function gives the best-fit values of the model parameters. We will
take the minimum of the χ2 of the SM as our benchmark and compare it with that of a
specific set of Wilson coefficients in SMEFT. The difference of their minimal χ2 values,

∆χ2 = χ2
SM − χ2

SMEFT , (4.2)

indicates the improvement on the fit provided by SMEFT. Note that this is only a useful
comparison when both χ2

SM and χ2
SMEFT involve the same set of observables. If the two fits

include different observables, then the two minimal χ2 values cannot be compared directly.
Generally speaking, the more parameters a model includes, such as Wilson coefficients,

the lower the minimal χ2, since the extra parameters provide more degrees of freedom to
shift the theoretical predictions towards the experimental values. To compare the quality
of two fits including the same set of observables but different parameters, instead of using
the χ2 per degree of freedom criterion, we apply the AIC [21].

AIC is often used in model selection. It is a measure that balances the goodness of fit
of a model against its complexity. The AIC is computed using the number of parameters
in the model and the maximum likelihood of the model. In our case, the AIC of a fit
can be presented as

AIC =
(
Minimal χ2

)
+ 2× (Number of the parameters) , (4.3)

where the parameters here refer to the considered Wilson coefficients and λ. Depending on
the observables that are considered, the parameters may also include several matrix elements
and parameters that describe theoretical uncertainties. The lower the AIC, the better the
model is considered to describe the data, so the difference AICi −AICj is a measure of the
improvement of model j over i. As more parameters (such as Wilson coefficients) are added
to a model, it may better fit the data, but it also becomes more complex and runs the risk
of overfitting. The AIC balances these considerations by penalizing models for introducing
more parameters without a corresponding decrease in ∆χ2. Used in conjunction with the χ2
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method, AIC tends to find a model that not only fits the experimental data well but also
avoids overcomplication, thus improving its predictive accuracy.

In our analysis, we will often be interested in comparing the SM fit with SMEFT scenarios.
We will thus take the SM as the reference model, and define differences in AIC as

∆AICi = AICSM −AICi , (4.4)

where i denotes a particular SMEFT model. Here and in what follows, we will define a ‘SMEFT
model’ as the SMEFT with a subset of Wilson coefficients turned on, with the remaining
couplings set to zero. An advantage of the definition in eq. (4.4) is that the SM parameter
λ, the matrix elements, and the parameters that describe the theoretical uncertainties drop
out in the calculation of ∆AICi. Notice that, with our definition, ∆AICi > 0 implies that
a model performs better than the SM.

In addition to the overall quality of the fit, as measured by the AIC, we are also interested
in the best-fit values, uncertainties, and correlations of the Wilson coefficients and the other fit
parameters. We use the fact that the observables are linear in the Wilson coefficients to rewrite

χ2 = χ2
min + (C − µ)T V̂ −1(C − µ) , (4.5)

where C and µ are vectors of model parameters (Wilson coefficients) and their best-fit values,
while V̂ is the covariance matrix of the model parameters

(V̂ −1)ij = 1
2

∂2χ2

∂Ci∂Cj

∣∣∣
C=µ

. (4.6)

The uncertainties of Ci can now be read from σ̂2
i = V̂ii, while the correlations between the

model parameters are given by ĉorrij = σ̂−1
i V̂ij σ̂

−1
j .

Because V̂ −1 is symmetric, it can be diagonalized by an orthogonal matrix, which implies
that there are linear combinations of Ci, corresponding to the eigenvectors of V̂ −1, that
are not correlated. This diagonalization allows one to see which combinations of Wilson
coefficients the observables are most sensitive to and which combinations are most favored to
be nonzero. This diagonalization can be performed through RT V̂ −1R = v̂, with v̂ a diagonal
matrix and R an orthogonal matrix. The uncorrelated combinations of Wilson coefficients
and the best-fit values are given by C ′ = RTC and µ′ = RTµ. Here, R is determined by the
eigenvectors of V̂ −1, while the uncertainties of C ′

i are determined by the eigenvalues of V̂ −1.

4.1 Model averaging

When considering a large number of scenarios involving different sets of operators, it becomes
interesting to see how (un)favored nonzero values of a particular Wilson coefficient are across
different fits. One robust method to tackle this is model averaging using the AIC. Here, we
follow Burnham and Anderson [89], who advocated for the assignment of weights to individual
models based on their AIC scores, thus allowing the derivation of model-averaged estimates
for the parameters. The weight of a model is defined by

wi =
e

1
2∆AICi∑

j e
1
2∆AICj

. (4.7)

– 17 –



J
H
E
P
0
3
(
2
0
2
4
)
0
3
3

Data sets EW L C LEW CLEW
Number of measurements 41 53 145 94 239
Degrees of freedom for SM 41 46 145 87 232

Table 3. Number of measurements included in different data sets and the number of degrees of
freedom relevant for the χ2 analysis of the SM.

Notice that the weights wi do not depend on the fact that we used the SM as a reference in
the definition of ∆AICj . The quality of the models that involve a given SMEFT coefficient, θ,
will be gauged by considering the sum of the weights of all the models in which θ is turned on,

Wθ =
∑

i

wiIθ(i) , (4.8)

where Iθ(i) = 1 if the model, i, contains the parameter θ, and Iθ(i) = 0 if it does not.
For the most significant coefficients, with Wθ = O(1), we will be interested in providing a
model-averaged central value and an estimator of the standard deviation [89],

θ̄ =
∑
wiIθ(i)θi

Wθ
, σθ =

∑
wiIθ(i)

√
σ2

θi
+ (θi − θ̄)2

Wθ
, (4.9)

where θi and σθi
are the best-fit value and uncertainty of the Wilson coefficient θ in model i,

respectively. Wilson coefficients which have Wθ ≪ 1 are only present in models of poor
quality, making their model-averaged values less important, and we will not consider them.

5 SM analysis

We begin our analysis by studying the Standard Model and the status of the CAA. The
numbers of measurements included in the different data sets are shown in table 3. For the
collider data, this represents the total number of bins extracted from the package HighPT.
Our most comprehensive data set, CLEW, contains 239 measurements in total.

The matrix elements affecting the low-energy fit are summarized in table 15. They do
not affect the number of degrees of freedom as we add a term in χ2 for each, effectively
treating the theoretical central value and uncertainty as a ‘measurement’. The parameters
η1,2,3, which capture theoretical uncertainties in superallowed β decays, are treated in a
similar manner. When counting degrees of freedom, in addition to the number of observables
and the fit parameters of a model, we need to include six ratios of Fermi and Gamow-Teller
matrix elements. They enter in mirror β decays and are fit at the same time as the SM
and SMEFT coefficients.

We begin with the low-energy CC observables, for which the relevant degrees of freedom
are Vus ≡ λ, as well as the six ratios of nuclear matrix elements that enter in mirror β decays.
The fit aligns λ with the determinations from leptonic kaon decays. Therefore, the anomalies
reside in the parameters and observables related to radiative corrections of β decays as well
as semileptonic kaon decays. The resulting value for λ and the minimum χ2 are given by

λ = 0.22497± 0.00027 , χ2
min = 53 , χ2/d.o.f. = 1.1 , (5.1)
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Figure 1. Chart of several low-energy CC observables, relevant to the CAA, showing the difference
between the SM prediction at the best-fit point and the experimental results in units of standard
deviation. For the matrix elements (fK±/fπ± , f+(0) and ∆V

R) and nuisance parameters (η2,3), the
chart shows the deviation from the central value of the theoretical prediction.

obtained when fitting the SM to the L observables. The fact that this fit gives a good χ2/d.o.f.
is in part due to the fact that the CAA is diluted by a large number of other observables,
which mostly show good agreement with the SM. However, the subset of observables related
to the extraction of Vud and Vus still shows significant tension with the SM as indicated in
eq. (1.1) and the discussions in e.g. refs. [13, 28].

In our SM analysis, the unitarity of the CKM matrix is fixed and Vud and Vus are not
independent. The CAA as presented in eq. (1.1) is then manifested in figure 1 where we show
the difference (in units of standard deviation) between the SM predictions at the best-fit point
and the experimental values for several observables. We also show the deviation of f+(0),
fK+/fπ, and ∆V

R and of the nuisance parameters η2,3 from their preferred theoretical values.
In the case of meson decays, the CAA appears mainly in Kℓ3 decays, as the corresponding
decay rates and the relevant form factor, f+(0), deviate from their experimental/theoretical
values by 2.5 standard deviations. Instead, the kaon decay constant fK± , which is related
to the leptonic decays (not shown in the figure), is in good agreement with the lattice
determination in table 15.

For neutron and nuclear β decays, the CAA mostly shows up through deviations in
the radiative corrections, ∆V

R , and the parameters η2,3, which parameterize theoretical
uncertainties related to nuclear-structure dependent corrections. The observables of interest,
the Ft values for the 0+ → 0+ transitions, typically show deviations of ≲ 1σ and are not
shown in figure 1. This means that the fit aims to align Ft values closely with experimental
determinations by selecting matrix elements and parameters η2,3 that deviate from their
predicted values.

Moving on to the class of EW observables, we find a minimal χ2 of

χ2
min = 42.2 , χ2/d.o.f. = 1.1 , (mPDG

W ) ,

χ2
min = 97.9 , χ2/d.o.f. = 2.4 , (mCDF

W ) , (5.2)
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Figure 2. Observables that deviate by more than 1σ from their experimental values at the best-fit
point of the EW fit. The red bar shows the 7.7σ deviation associated with the CDF value of the W
mass, while the blue bars implement the PDG value.

depending on which measurement of mW is used. We again show the discrepancy between
the fit and experiment in figure 2, now for all observables with a deviation greater than 1σ.
Clearly, the largest discrepancy arises in the case of mCDF

W , while pulls of a few σ appear
for several ratios of decay widths and asymmetries. The most significant ones appear for
asymmetries measured at LEP (e.g. A0,b

FB and Ae), measurements near the Z pole at the LHC
(one of the bins of the asymmetry A4), and the branching ratio of W → τν.

Finally, we consider the SM fit to the collider observables, which consist of the different
CC and NC Drell-Yan processes, pp → ℓ̄ℓ and pp → ℓν. In turn, each of these channels
involves a relatively large number of invariant and transverse mass bins. The minimal χ2

therefore tends to be fairly large, and we find

χ2
min = 104 , χ2/d.o.f. = 1.1 . (5.3)

The result of fitting multiple sets of observables, such as LEW or CLEW, corresponds to
simply combining individual fits, which implies that the χ2

min of the CLEW fit is given by the
sum of eqs. (5.1), (5.2), and (5.3). This is due to the fact that only the fit to low-energy data
involves free parameters in the form of λ, matrix elements, and parameters that describe
theoretical uncertainties, while the EWPO and collider data are, to a good approximation,
independent of these variables.

6 SMEFT analysis with U(3)5 flavor assumption

We start by considering a BSM scenario in which we impose a U(3)5 flavor symmetry on the
SMEFT coefficients. Ref. [66] investigated the impact of the measurement of the CDF W
mass on the EWPO fit under these assumptions. The EWPO depend on eight combinations
of Wilson coefficients [63], namely Ĉ

(1,3)
Hl , Ĉ(1,3)

Hq , ĈHe, ĈHu, ĈHd, and Ĉll. As mentioned
in section 3.1, the hat-notation is used to identify the linear combinations that cannot be
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separated using EWPO alone:

Ĉ
(3)
HF = C

(3)
HF + cw

sw
CHW B + c2

w

4s2
w

CHD ,

Ĉ
(1)
HF = C

(1)
HF −

YF

2 CHD ,

ĈHf = CHf −
Yf

2 CHD , (6.1)

for F = {l, q} and f = {u, d, e} and YF,f denotes the corresponding weak hypercharge. We
follow [44] and define

C∆ = 2
[
Ĉ

(3)
Hq − Ĉ

(3)
Hl + Ĉll

]
, (6.2)

where Ĉll = [Cll]1221. Defining C∆ will be useful, as it is the linear combination of Wilson
coefficients that appears in the EWPO that contributes to deviations from CKM unitarity.
Therefore, we will use this relation to trade Ĉll for C∆. The SMEFT corrections to the W
mass can be expressed in terms of these operators as [64, 90]

δm2
W

m2
W

= v2 swcw

s2
w − c2

w

[
2CHW B + cw

2sw
CHD + sw

cw

(
2C(3)

Hl − Ĉll

)]

= v2 s2
w

s2
w − c2

w

(
2 Ĉ(3)

Hl − Ĉll

)
= v2 s2

w

s2
w − c2

w

(
Ĉ

(3)
Hl + Ĉ

(3)
Hq −

1
2C∆

)
. (6.3)

The expression of sw in terms of the input parameters GF , mZ , and αem is given in eq. (A.7).
Finally, under the assumption of U(3)5 flavor symmetry, the violation of CKM unitarity
is described by

∆CKM = |Ṽud|2 + |Ṽus|2 − 1 = v2
(
C∆ − 2C(3)

lq

)
. (6.4)

Here, Ṽij are the effective CKM elements that are probed in low-energy measurements of
β and K decays, while Ṽub can be neglected at the current level of precision. C∆ entirely
captures the contribution to ∆CKM of the operators that enter EWPO, whereas C(3)

lq does
not play a role in EWPO and is therefore traditionally not included.

6.1 U(3)5 results including the CDF W mass

We begin our analysis by fitting the 8 linear combinations of Wilson coefficients to the set
of EWPO defined in appendix B.1 including, in particular, the 2022 CDF measurement of
the W mass. We list the best-fit values and the 1σ ranges in the EW column of table 4
labeled with EW. Within uncertainties, the results agree with refs. [44, 66]. As noted in [44],
the fit value of C∆ based on EWPO is nonzero at a significant level and corresponds to a
violation of CKM unitarity. Plugging C∆ in eq. (6.4), we find

∆CKM|EW = −0.009± 0.004 , (6.5)

indicating a percent-level deviation from CKM unitarity, significantly larger than allowed
by current experimental determinations [44].
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EW LEW1 LEW2 CLEW

Ĉ
(1)
Hl −0.0091± 0.011 −0.016± 0.011 −0.0091± 0.011 −0.016± 0.011

Ĉ
(3)
Hl −0.057± 0.015 −0.046± 0.014 −0.057± 0.015 −0.046± 0.014

ĈHe −0.024± 0.0086 −0.027± 0.0085 −0.024± 0.0086 −0.027± 0.0085

Ĉ
(1)
Hq −0.029± 0.043 −0.045± 0.042 −0.029± 0.043 −0.044± 0.042

Ĉ
(3)
Hq −0.095± 0.032 −0.041± 0.014 −0.095± 0.032 −0.040± 0.014

ĈHu −0.0046± 0.12 −0.12± 0.098 −0.0046± 0.12 −0.13± 0.098

ĈHd −0.55± 0.25 −0.33± 0.22 −0.55± 0.25 −0.33± 0.22

C∆ −0.15± 0.068 −0.030± 0.0083 −0.15± 0.068 −0.029± 0.0083

C
(3)
lq – – −0.063± 0.034 0.00029± 0.00058

∆χ2 66 73 77 73

χ2/d.o.f. 1.0 1.0 0.95 1.1

∆AIC 50 57 59 55

Table 4. U(3)5 fit results while including the CDF mW measurement. Coefficients are given in units
of TeV−2. In the EW and LEW1 fits, the U(3)5 invariant coefficient C(3)

lq is set to zero, while it is
included as a fit parameter in LEW2 and CLEW. The bottom three rows report several quantities
that measure the quality of the fits.

We can study the impact of the Wilson coefficients in the EW column of table 4 on
each of the low-energy CC observables. We do so by setting the Wilson coefficients at their
central values, while floating the relevant matrix elements, the parameters that describe
the uncertainties of the theory, and λ. In figure 3 we compare this scenario (in red) with
the SM (in blue) and the SMEFT (in green), fit to both the EWPO and low-energy CC
observables (LEW). We only show observables that change by more than 1σ from the SM
fit. The red bars show that, while the U(3)5 EW fit resolves the mW anomaly, it leads
to a very poor description of a wide range of low-energy observables when they are not
explicitly included in the analysis.

To get a sensible result, we must include low-energy CC observables in the fit. This leads
to the fit results in the second column of table 4. The inclusion of low-energy observables
significantly reduces the value of |C∆|, which also leads to lower values for |Ĉ(3)

Hl | and |Ĉ(3)
Hq|.

This confirms the conclusion of ref. [44] that the mW -anomaly, in general, cannot be studied
using EWPO alone. The modified fit leads to a much improved description of the low-energy
CC observables as can be seen by comparing the red and green bars in figure 3.

It can be argued that the above conclusion is too strong. Even within the U(3)5 flavor
symmetry it is possible to decouple the EWPO from the low-energy CC observables by
including C

(3)
lq in the fit, as can be seen from eq. (6.4). We demonstrate this in the third
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Figure 3. Comparison of three scenarios in the description of EWPO and low-energy CC observables,
including the CDF measurement of mW marked by a deviation of 7.7σ. In blue, we denote the results
of a SM fit to the LEW data. The red bars correspond to a SMEFT fit to just the EW data, under
the flavor assumption of U(3)5. The last three red bars, ∆V

R , η2, and η3, have off-the-charts deviations
greater than 6σ. The green bars correspond to a U(3)5 SMEFT fit to the LEW data.

column of table 4 where we observe in the EW and LEW columns that a nonzero value of C(3)
lq

can absorb violations of CKM unitarity, while leaving the other Wilson coefficients unchanged.
Although this may seem to be a reasonable resolution of both the mW anomaly and

the CAA, significant values of C(3)
lq modify the Drell-Yan processes measured at the LHC.

To test whether this leads to relevant deviations of the high-pT tails of Drell-Yan processes,
we include the observables in table 17. The fit results3 are given in the CLEW column
of table 4 and we see that the LHC observables essentially force |C(3)

lq | ≤ 10−3 TeV−2, far
too small to compensate for any significant low-energy effects induced by the other Wilson
coefficients. The resulting CLEW values in table 4 then exactly agree with the values of
the LEW1 column in the same table.

The quality of the fits are also shown at the bottom of table 4. The U(3)5 fit to the LEW
observables (corresponding to the LEW1 column) gives ∆χ2 = 73 and χ2

SMEFT/d.o.f. = 1.0,
which implies a very good fit and an improvement over the SM, ∆AIC = 57. The CLEW fit
that includes C(3)

lq gives a slightly worse ∆AIC = 55 due to the addition of a fit parameter.
The large difference between the SM and U(3)5 fits is mainly driven by the CDF

determination of mW . This is reflected in the nonzero values of several Wilson coefficients,
with three of them at 3 to 4σ: Ĉ(3)

Hl , Ĉ(3)
Hq, and ĈHe. Their values in the first column (EW)

of table 4 can be understood from the relation

Ĉ
(3)
Hl + Ĉ

(3)
Hq = 1

v2

(
1− c2

w

s2
w

)
δm2

W

m2
W

+ 1
2C∆ ≃ −0.15 TeV−2, (6.6)

which agrees well with the best-fit point

Ĉ
(3)
Hl + Ĉ

(3)
Hq = −(0.152± 0.047) TeV−2 . (6.7)

3We have checked that adding additional U(3)5-invariant four-fermion operators that only affect Drell-Yan
processes but not the LEW observables, does not change this conclusion.
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The value of ĈHe can be understood from the SMEFT correction to the partial width of
the Z boson that decays into right-handed electrons [91]

δΓ(Z → eR ēR)
Γ(Z → eR ēR)

= v2

c2
w − s2

w

[
2cw

sw
CHW B + 1

2 CHD +
(
2C(3)

Hl − Ĉll

)
+ s2

w − c2
w

s2
w

CHe

]

= − v2

s2
w − c2

w

(
2 Ĉ(3)

Hl − Ĉll

)
− v2

s2
w

ĈHe

= − 1
s2

w

(
δm2

W

m2
W

+ v2 ĈHe

)
, (6.8)

where Γ(Z → eR ēR) is derived from the total width R0
e and the forward-backward asymmetry

factor Ae. Therefore,

ĈHe = − 1
v2

[
δm2

W

m2
W

+ s2
w

δΓ(Z → eR ēR)
Γ(Z → eR ēR)

]
≃ −0.026 TeV−2 , (6.9)

which roughly agrees with the best-fit value of ĈHe = −(0.024± 0.0086)TeV−2 in the first
column (EW) of table 4.

Finally, ĈHd = −(0.54±0.25)TeV−2 in table 5 is approximately 2σ from zero (this is true
even without the CDF measurement of mW , see below), which is caused by the discrepancy in
the forward-backward asymmetry of the bottom quark, A0,b

FB (see figure 2). This leads to [91]

ĈHd = − 1
3v2

[
δm2

W

m2
W

+ s2
w

δΓ(Z → bR b̄R)
Γ(Z → bR b̄R)

]
≃ −0.55 TeV−2 . (6.10)

6.2 U(3)5 results without the CDF W mass

We briefly investigate the impact on the above results if we use the world average value of
the W mass in PDG, mW = 80.377± 0.012GeV. The SM fit to the LEW data results in the
blue bars of figure 4 corresponding to a total χ2

SM = 95 (χ2
SM/d.o.f. = 1) with an information

criterion of AICSM = 97. By excluding CDF mW , the total χ2 has been reduced by 56 (see
section 5), but there is still tension remaining due to the CAA.

We then performed a SMEFT fit to the EWPO (see the EW column in table 5) and
predicted the corresponding low-energy CC observables. Similar to the previous section,
this results in a fit that alleviates minor discrepancies in the EWPO (such as mW ), but it
provides an unsatisfactory description of the low-energy CC processes. Instead, if we perform
a SMEFT LEW fit, we obtain the LEW column of table 5 corresponding to the green bars in
figure 4. This fit gives χ2

SMEFT = 74 (∆χ2 = 21 and χ2
SMEFT/d.o.f. = 0.9). It has a better

∆AIC = 7 than the SM fit and addresses the CAA through C∆, which is nonzero at the
3σ level. From figure 4, we see that C∆ reduces the tension in superallowed β decays, but
cannot accommodate Kℓ3 at the same time. Compared to the fit using mW (PDG), the result
for C∆ remains the same. However, the 3σ deviations in Ĉ

(3)
Hl , ĈHe, Ĉ(3)

Hq disappeared. This
is not surprising, as all were driven by the value of mW measured by CDF.

– 24 –



J
H
E
P
0
3
(
2
0
2
4
)
0
3
3

EW LEW

Ĉ
(1)
Hl 0.0026± 0.011 −0.0014± 0.011

Ĉ
(3)
Hl −0.019± 0.016 −0.011± 0.015

ĈHe −0.0011± 0.0092 −0.0027± 0.0091

Ĉ
(1)
Hq −0.033± 0.043 −0.043± 0.042

Ĉ
(3)
Hq −0.056± 0.033 −0.022± 0.014

ĈHu −0.02± 0.12 −0.095± 0.098

ĈHd −0.54± 0.25 −0.41± 0.22

C∆ −0.11± 0.069 −0.029± 0.0083

Table 5. U(3)5 fit excluding the mW CDF measurement. We have set C(3)
lq = 0 as required from the

LHC Drell-Yan measurements. The coefficients are given in units of TeV−2.
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Figure 4. Same as figure 3, assuming the PDG value of mW .

6.3 Intermediate conclusions

The first conclusion is that within the U(3)5 scenarios it is not possible to decouple the
EWPO from the low- and high-energy CC observables. These observables depend on an
overlapping set of Wilson coefficients and have a similar sensitivity to BSM physics. We
have shown that fitting the SMEFT Wilson coefficients to the EWPO only, irrespective of
whether the CDF measurement of mW is included or not, generally leads to unacceptably
large BSM effects in low-energy β and meson decay processes. Furthermore, due to the
pronounced sensitivity of CC Drell-Yan, semileptonic four-fermion operators cannot offset
these effects. We are forced to combine the sets of observables. Given this perspective,
the conventional set of EWPO, as discussed in the literature, is no longer adequate. We
recommend consistently incorporating both low- and high-energy CC observables. Similar
conclusions were reached in refs. [44, 45, 92, 93].
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That being said, the inclusion of CDF mW obviously affects the fit results. Taken at
face value, it clearly shows that the SM provides a poor fit. We find that a U(3)5 scenario
can simultaneously account for the mW anomaly and part of the CAA. This fit performs
significantly better than the SM with ∆AIC = 57 and requires four Wilson coefficients that
are 3–4σ away from zero, which provides a clue for model building in U(3)5 scenarios. We
stress that different values of these coefficients will be obtained if the EWPO observables are
considered in isolation, which leads to severe problems in the description in the low-energy
CC observables, as shown in figure 3.

Excluding the CDF measurement, the picture is less clear. While the U(3)5 LEW fit can
partially accommodate the CAA — as evidenced by the enhanced descriptions of neutron,
nuclear, and meson decays — this improvement is offset by the inclusion of additional fit
parameters. When the dust settles, the AIC of the U(3)5 fit is still better (∆AIC = 7) than
the SM fit due to a partial resolution of the CAA.

7 Flavor-independent intermediate fit and the CAA in SMEFT

In this section, we consider scenario 2 of section 3.3 which focuses on the CAA and excludes
the CDF mW . We have argued that an analysis that does not rely on theoretical assumptions
regarding the flavor structure of BSM physics involves 37 independent SMEFT operators,
22 of which contribute to the low-energy CC processes. In the following, we start by
discussing scenarios including the 22 Wilson coefficients that affect the low-energy observables.
Although we will perform a global fit to the CLEW observables of all 22 Wilson coefficients,
the results are not straightforward to interpret. We will first explore several more focused
fits, considering only a subset of operators. This approach will assist in dissecting the results
and offer guidance for model building.

7.1 Right-handed operators

The analysis of the CKM anomaly performed in ref. [13] indicated that right-handed (RH)
charged-current interactions could provide a viable explanation for the CAA. These inter-
actions are induced by the SMEFT operator QHud, which is forbidden under U(3)5 and
strongly suppressed in MFV scenarios. We consider two independent Wilson coefficients
[CHud]11,12 and, when fitting to low-energy CC observables, we refer to this fit as L2(RH).
The results can be found in the L2(RH) column of table 6, showing nonzero values of the
RH up-down and up-strange interactions at more than 3σ, with a small correlation between
the two couplings, see figure 5 for details.

The corresponding eigenvectors are given by

0.28CHud
11

+ 0.96CHud
12

= −0.011× (4.2± 1)TeV−2 ,

0.96CHud
11
− 0.28CHud

12
= −0.0076× (2.1± 1)TeV−2 , (7.1)

and thus, respectively, 4.2σ and 2.1σ away from zero.
Compared to the SM fit, the minimal χ2 decreased from 52 to 30, an improvement of

∆χ2 = 22, which implies ∆AIC(RH2) = 18. In the left panel of figure 6, we display the
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Figure 5. Results of the L2(RH) fit to low-energy CC observables involving two Wilson coefficients
[CHud]11 and [CHud]12, given in units of TeV−2. Three contours illustrate the likelihoods of 1, 2, and
3σ. The best-fit point is marked by a yellow cross, whereas the origin (the SM point) is marked by a
blue dot.

L2(RH) L6(SPS) L8

[CHud]11 −0.030± 0.008 – −0.058± 0.079

[CHud]12 −0.040± 0.011 – 0.080± 0.35

[Cledq]1111 – −0.014± 0.006 0.0010± 0.0075

[Cledq]1122 – −0.014± 0.006 0.0009± 0.0075

[C̄(1)
lequ]1111 – −0.014± 0.006 0.0010± 0.0075

[Cledq]2211 – 0.0062± 0.0042 0.017± 0.039

[Cledq]2222 – 0.0006± 0.0045 −0.0096± 0.036

[C̄(1)
lequ]2211 – 0.0054± 0.0043 0.014± 0.036

Table 6. Central values and 1σ uncertainties for the Wilson coefficients in the L2 (RH), L6 (SPS)
and L8 (RS) fits, given in units of TeV−2.

observables that show improvement over the SM fit. Specifically, the RH currents align
the three-body kaon decays as well as nuclear β decays with observations, as evidenced by
the ∆V

R values and the η2,3 parameters.

7.2 Scalar/pseudoscalar operators

Scalar/pseudoscalar currents also influence the charged-current processes that determine Vud

and Vus. As shown in appendix A.2, there are six relevant Wilson coefficients that enter
at tree level. We label the fit to them as L6(SPS) and present the results in table 6 and
the middle panel of figure 6.
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Figure 6. Difference between the theoretical predictions at the best-fit point and the experimental
results or the theoretical central values, for observables and matrix elements relevant to low-energy
CC data. The blue bars represent the SM results, while the red bars correspond to three SMEFT
fits. Only SMEFT bars that differ by more than 1σ from the SM are shown. Left: L2(RH). Center:
L6(SPS). Right: L8(RS).

There are strong correlations between the different contributions. In the case of semilep-
tonic couplings to electrons, the pseudoscalar operators give contributions to Rπ and RK (de-
fined as Rπ,K = Γπ,K→eνe/Γπ,K→µνµ) that are enhanced by m2

π,K/[me(mu+md,s)] with respect
to the SM. As a consequence, the combinations ([Cledq]1111 − [C̄(1)

lequ]1111) and ([Cledq]1122 −
[C̄(1)

lequ]1111) are severely constrained. The scalar combination ([Cledq]1111 + [C̄(1)
lequ]1111) affects

0+ → 0+ transitions and must be nonzero to address the CAA. For the couplings to muons,
the contributions to Rπ and RK are only enhanced by 1/mµ, so the correlations are weaker,
while the scalar combination ([Cledq]2222 + [C̄(1)

lequ]2211) affects Kµ3. This discussion can be
neatly summarized by studying the eigenvectors of the fit:

σ (TeV−2) µ/σ C ledq
1111

C ledq
1122

C ledq
2211

C ledq
2222

C̄
(1)
lequ
1111

C̄
(1)
lequ
2211

2.7 · 10−6 0.2 −0.62 −0.15 0 0 0.77 0
5.8 · 10−6 1.2 0.53 −0.8 0 0 0.28 0
1.5 · 10−3 0.9 0 0 0.79 −0.2 0 −0.58
1.7 · 10−3 1.8 0 0 0.23 −0.78 0 0.58
6.7 · 10−3 1.1 0 0 0.57 0.59 0 0.57
1.1 · 10−2 2.3 −0.58 −0.58 0 0 −0.58 0

where µ and σ denote the best-fit values and uncertainties of the eigenvectors. The eigenvectors
reflect the correlations argued above, but also show that the picture is more complicated
than having a single eigenvector that is clearly nonzero.

The main differences between the L2(RH) and L6(SPS) fits can be seen from the two
left panels of figure 6. L2(RH) helps to resolve discrepancies in the three-body kaon decay
processes, specifically Ke3 and Kµ3. Additionally, it brings the η2,3 parameters associated
with 0+ → 0+ transitions closer to their predicted central values. L6(SPS) can also alleviate,
but to a lesser degree, the tensions in the three-body kaon decays, while also removing the
small tension in RK = Γ(K → eνe)/Γ(K → µνµ). However, this introduces extra tension
in the superallowed β decay of 14O and pushes the η2,3 parameters further away from their

– 28 –



J
H
E
P
0
3
(
2
0
2
4
)
0
3
3

Figure 7. The 1σ allowed region in the L8(RS) scenario, shown for several 2D slices in parameter
space. The red and blue regions correspond to those preferred by the low-energy CC and collider
observables, respectively.

central values. Taken together, the fit of L6(SPS) yields a ∆AIC ≈ 0, making its performance
on par with the SM, but significantly inferior to L2(RH).

Combining RH + SPS operators. We now combine the two RH operators and the
six pseudoscalar ones to perform an L8(RS) fit. The results show ∆χ2 = 25, which is
slightly higher than L2(RH), at the price of six additional Wilson coefficients and thus a
worse ∆AIC = 9. The relevant observables are shown in the right panel of figure 6. We
observe that L8(RS) closely mirrors L2(RH), with scalar/pseudoscalar interactions offering
a slight improvement of RK .

All best-fit values in L8(RS) are consistent with zero within 1σ. The larger deviations
from zero appearing in L2(RH) have been diluted due to the additional operators. However,
as shown in figure 7, several of the operators in L8(RS) are highly correlated. For example,
[CHud]11 and [CHud]12 are negatively correlated in L8 (RS), while they have almost no
correlation in L2(RH). In fact, if [CHud]12 = 0 then [CHud]11 < 0 by approximately 3σ. These
correlations demonstrate a strong interplay between the right-handed and scalar/pseudoscalar
operators, which affects the options for model building. Although we do not show all the
eigenvectors, it is worth noting that L8(RS) features a distinct eigenvector that almost
reaches the 4σ level

0.77CHud
11

+0.1C ledq
2222

+0.18CHud
12

+0.35
(
C ledq

1111
+ C ledq

1122
+ C̄

(1)
lequ
1111

)
= −0.0076×(3.9±1)TeV−2 ,

while all other eigenvectors have a significance of less than 2σ. Interestingly, compared
to L2(RH), this eigenvector is dominated by the up-down right-handed current operator
([QHud]11) instead of the up-strange one ([QHud]12) that appears in L2(RH).
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Figure 8. Same as figure 6, for four different SMEFT models. From left to right: L6(LH), L12(LH),
LEW12(LH), and CLEW12(LH).

All fits conducted with only right-handed and scalar/pseudoscalar operators remain
robust when expanding to a broader set of observables. Neither the RH nor the pseudoscalar
operators enter the EWPO or the collider data at linear order. As such, CLEW2(RH),
CLEW6(SPS), and CLEW8(RS) give the same results as previously reported.

Although the operators do not enter the collider observables at linear order, they do
contribute quadratically. To achieve a fully consistent analysis that includes these effects,
one must also consider genuine dimension-eight operators, as they formally emerge at the
same order. Such an analysis is beyond the scope of this work. However, we would like
to nonetheless gauge the sensitivity of the collider observables. To do so, we consider the
constraints set by the Drell-Yan measurements on the quadratic contributions assuming that
only the L8(RS) Wilson coefficients are turned on. The resulting constraints are shown by
the blue regions in figure 7, along with the region preferred by the low-energy data in red.
These preliminary collider constraints are beginning to explore areas of the parameter space
not yet ruled out by low-energy CC measurements. However, the collider processes have not
probed any of the nonzero values favored by the low-energy observables.

7.3 Left-handed operators and vertex corrections

Left-handed operators. Another way to explain the CKM anomaly could involve modifi-
cations of the left-handed charged currents. We investigate this by turning on the six Wilson
coefficients associated with left-handed semileptonic four-fermion operators: C(u)

lq and C
(d)
lq .

The fit, termed L6(LH), yields ∆χ2 = 12, which is on par with L6(SPS) and does not offer
an improvement in AIC compared to the SM. The pattern of observables differs between
fits, as shown in the left panel of figure 8. L6(LH) essentially requires less tension in the η2,3
parameters related to radiative corrections in superallowed β decays, but does not address
the tension in kaon observables. The sole eigenvector with a notable nonzero value is given by

0.69C(d)
lq

1111
− 0.72C(u)

lq
1111

= 0.0059× (3.1± 1)TeV−2 . (7.2)

In contrast to earlier fits, L6(LH) is not stable under the inclusion of more observables.
The four-fermion operators do not modify EWPO but they do affect Drell-Yan processes
at the LHC. After taking into account the latter, ∆χ2 reduces to 7. This results in a
less favorable ∆AIC = −5 relative to the SM, suggesting that the left-handed four-fermion
operators needed to address the CAA conflict with high-energy measurements.
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Vertex Corrections LEW
[CHud]11 −0.0047± 0.049
[CHud]12 −0.037± 0.013
[Ĉ(3)

Hl ]11 −0.0057± 0.0059
[Ĉ(3)

Hl ]22 −0.0063± 0.0052
[Ĉ(u)

Hq ]11 0.23± 0.41
[Ĉ(d)

Hq]11 0.20± 0.44
[Ĉ(d)

Hq]22 −0.010± 0.12

Table 7. Best fit for LEW7(V) including right- and left-handed vertex corrections. Wilson coefficients
are given in units of TeV−2.

The stability under the inclusion of LHC data might improve if we expand to the full set
of SMEFT operators that affect LH currents. We name the fit L12(LH). It encompasses the
six operators of L6(LH) as well as the operators associated with vertex corrections [C(3)

Hl ]ee,
[C(3)

Hl ]µµ, [C(d)
Hq]11, [C(d)

Hq]22, [C(u)
Hq ]11, and the purely leptonic four-fermion operator [Cll]2112.

As far as the low-energy CC observables are concerned, the additional six operators are
redundant. We can see this by comparing the first two panels on the left in figure 8, which are
identical. However, once we move to LEW12 (3rd panel on the left in figure 8), the additional
operators can reduce tension in the EWPO, in particular mW and R0µ, leading to a greater
∆χ2 = 16. If we also include the LHC data (the panel on the right of figure 8), we see that
∆χ2 of CLEW12 grows to 22. This increase is not tied to a singular observable, but results
from minor changes across multiple bins. However, even with these improvements, the AIC
of CLEW12 falls short compared to the SM, yielding ∆AIC = −2. This further underscores
that purely left-handed SMEFT operators do not provide an effective solution to the CAA.

Vertex corrections. We have seen that LHC measurements can strongly constrain the
semileptonic four-fermion operators. In light of this, we will investigate SMEFT operators
that provide vertex corrections, which are less stringently probed by DY measurements. Of
the 22 operators discussed in this section, only seven belong to this category: [C(3)

Hl ]ee,µµ,
[C(d)

Hq]11,22, [C(u)
Hq ]11, and [CHud]11,12. We will fit them to the low-energy CC observables and

the EWPO simultaneously, naming it LEW7(V), with V signifying vertex.
The best-fit values are given in table 7, while the impact on the observables is shown

in figure 9. The value of [CHud]12 is close to that obtained in L2(RH), indicating that the
RH up-strange interaction accounts for the kaon processes. The role of [CHud]11, however, is
diluted by left-handed vertex corrections that can also modify β-decay processes. In fact,
the only eigenvector that is nonzero at more than 2σ is given by

0.96CHud
12

+ 0.12Ĉ(3)
Hl
22
− 0.19Ĉ(u)

Hq
11

+ 0.18Ĉ(d)
Hq
11

= −0.011× (3.9± 1)TeV−2 , (7.3)

which is dominated by the up-strange RH current.
LEW7(V) has a ∆χ2 = 27 compared to the SM, which is slightly better than LEW2(RH)

due to mild improvements in mW (too small to appear in figure 9) at the price of five
additional operators. This leads to ∆AIC= 13, compared to 18 for the L2(RH) scenario.

– 31 –



J
H
E
P
0
3
(
2
0
2
4
)
0
3
3

0

1

2

3

4

5

0

1

2

3

4

5

Figure 9. Same as figure 6, for two different fits involving right- and left-handed vertex corrections.
Left: LEW7(V) without the CDF mW . Right: LEW7(V) including the CDF mW .

One advantage of LEW7(V) is its ability to partially reconcile with the CDF measurement
of mW , see the right panel of figure 9.

7.4 The full 22 fit

Now we turn the crank and fit all 22 operators simultaneously. For L22, we obtain ∆χ2 = 26,
only slightly better than L8(RS). This is reflected in the left panels of figures 10 and 6.
The L22 fit allows for essentially the same improvements over the SM as L8(RS), while the
additional small gain in ∆χ2 is due to a slightly better description of the neutron lifetime and
RK . When moving to LEW22, we see that, similar to LEW12(LH), the additional operators
can account for some small discrepancies in the EWPO, again mainly for mW and R0µ. Moving
to CLEW22, we find another small improvement of ∆χ2, but the pattern of observables
essentially stays the same, and therefore we only show the results for CLEW22 in figure 10.

Moving from L22 to LEW22 and finally to CLEW22 significantly reduces the number of
free directions in the fit. The resulting central values, uncertainties, and correlations can be
seen explicitly in the Supplementary Material. In particular, in CLEW22 there are no free
directions remaining and the magnitudes of each Wilson coefficient are constrained below
1/TeV2. All Wilson coefficients are consistent with zero within 2σ, while three eigenvectors
emerge, which deviate more than 2σ from zero. These linear combinations involve a large
number of Wilson coefficients. Truncating the contributions to the normalized eigenvectors
at 0.3, we find

0.42C(u)
Hq
11
−0.40C(d)

Hq
11
−0.37

(
C

(3)
Hl
22

+CHud
11

)
−0.59 C̄(3)

lequ
1111

=0.0091×(2.4±1)TeV−2 ,

0.60C(3)
Hl
22
−0.58C ll

2112
−0.30C ledq

2222
=0.0025×(3.1±1)TeV−2 ,

−0.96C(3)
Hl
11

=0.0051×(2.9±1)TeV−2 . (7.4)

However, the CLEW22 fit has the worst information criterion with ∆AIC = −7, indicating
that adding more parameters is simply not worth it.
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Figure 10. Same as figure 6, for three different SMEFT fits involving the 22 operators in the right
panel of table 2. Left: L22 fit. Right: CLEW22 without CDF mW . Bottom: CLEW22 including
CDF mW .

The role of CDF. In this section, we focused on the CAA and found that right-handed
currents have the best performance. The possible advantage of including additional operators
is that they can potentially account for the CDF measurement of mW . We already saw this
in the fits with left-handed operators which slightly improved the description of the EWPO.
While the inclusion of the CDF result is the main topic of the next section, we can already see
what happens in the context of the CLEW22 fit. As shown in the bottom panel of figure 10,
it is possible to reduce the tension in mW to 3σ. However, the 22 operators discussed here
can only do so by introducing a large tension with other EWPO. Although ∆AIC = 28 is
still very good, A0,b

FB obtained a 4σ discrepancy, which implies that the fit is not optimal.
In the next section, we transition to a scenario that does not rely on flavor assumptions,
encompassing all 37 coefficients in table 2. Our aim is to determine whether we can more
accurately represent both the CAA and mW at the same time.

7.5 Intermediate conclusions

We have investigated the CAA by including all SMEFT operators that contribute to low-
energy CC observables, without making use of flavor assumptions. Although there are 22
such operators, a detailed study of various fits indicates that many operators do not play
a big role in the CAA. We summarize the performance of the fits in table 8.

The best fit (with the highest ∆AIC) is given by just including the two RH CC operators.
The next best fit is obtained by adding LH vertex corrections, which can slightly improve
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L LEW CLEW
∆χ2 ∆AIC ∆χ2 ∆AIC ∆χ2 ∆AIC

2(RH) 22 18 22 18 22 18
6(SPS) 13 0 13 0 13 0
8(RS) 25 9 25 9 25 9
6(LH) 12 0 12 0 7 -5
12(LH) 12 -12 16 -8 22 -2

7(V) 23 9 27 13 27 13
22(All) 26 -18 31 -13 37 -7

Table 8. ∆χ2 and ∆AIC values with respect to the SM for various SMEFT scenarios and sets
of observables.

the EWPO but at the price of additional parameters. A similar quality of fit is obtained
by combining the RH CC operators with scalar/pseudoscalar four-fermion operators. Other
possibilities that do not include RH CC lead to an AIC that is comparable to or worse
than that of the SM.

Incorporating the CDF measurement of mW results in a suboptimal performance for
CLEW22. Although it has a positive ∆AIC, it keeps tension in mW at 3σ and severely
compromises other observables. To convincingly address both anomalies at the same time,
we must include more operators (the left panel of table 2). This will be discussed in the
following section.

8 A flavor-independent global analysis

In the final analysis, we would like to investigate the interplay of the CDF measurement of mW

and the CAA. We will expand our set of operators to include the Wilson coefficients listed in
the left panel of table 2. The fit incorporates 37 Wilson coefficients, the SM parameter λ, as
well as a collection of matrix elements and parameters characterizing theoretical uncertainties.

We present the predicted observables at the best-fit point of the global fit CLEW37 in
figure 11. CLEW37 successfully removes tension in the CDF W mass and the CAA, as well
as several other observables. We obtain ∆χ2 = 103 and ∆AIC = 29, indicating a significant
improvement over the SM, comparable to that of the CLEW22 fit. The best-fit results show
that all Wilson coefficients are consistent with zero within about 2σ (see the Supplemental
Material for the central values, uncertainties, and correlations). However, as in the CLEW22
fit, there are several eigenvectors that are nonzero with significance ≳ 3σ. Neglecting the
contributions to the normalized eigenvectors that are less than 0.3, we find

0.51CST +0.33C(3)
Hl
22

+0.45C ledq
2222
−0.40 C̄(1)

lequ
2211
−0.34C ll

2112
=−0.0016×(3.7±1)TeV−2 ,

0.41CST−0.47C(3)
Hl
22

+0.42C ll
2112

=−0.0030×(6.5±1)TeV−2 ,

−0.83CHe
11
−0.34C(1)

Hl
11
−0.31C(3)

Hl
11

= 0.0093×(3±1)TeV−2 . (8.1)
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Figure 11. Same as figure 6, for all of the 37 operators to the CLEW data set.

The significant improvement in ∆AIC is mainly due to the large tension of the CDF W
mass. Fitting CLEW37 with the PDG average of mW instead, we obtain ∆χ2 = 47 and
∆AIC = −27, a performance worse than the SM. In this case, there are too many operators
that do not contribute significantly to ∆χ2.

Even with the CDF mW , the inclusion of all 37 operators is inefficient, resulting in
overfitting and a suboptimal ∆AIC. In the next section, we perform a systematic analysis of
various scenarios to pinpoint the SMEFT operators that are most important in addressing
the CAA and the mW anomaly.

8.1 Finding the optimal fit

Section 7 focused on the CAA and we investigated scenarios with various subsets of SMEFT
operators. In these cases, we handpicked the operators that were likely to provide the most
efficient way to account for the apparent violation of the CKM unitarity. Now that we are also
including the W mass anomaly, this dissection by hand is complicated by the large number of
possible subsets. Therefore, we implement a more systematic approach to find the optimal fit.

Recall that we define a ‘model’ as the SMEFT Lagrangian with a specific subset of
Wilson coefficients turned on. For example, we found that models with CHud tend to give
the highest ∆AIC and thus provide a more likely explanation of the CAA. Although we have
explored a fair number of models, they represent only a fraction of the potential combinations
of SMEFT operators. However, evaluating every combination of the 37 operators would
amount to 237 = O(1011) fits, an impractical endeavor. We therefore group the operators
into ten categories that are summarized in table 9. Our underlying theoretical motivation is
that a particular BSM scenario is unlikely to produce just one quark/lepton flavor component
in a specific category. We therefore turn on, or off, all Wilson coefficients within a certain
category simultaneously. This assumption will be partially relaxed in section 8.4. For now,
we consider all possible combinations of these ten categories, resulting in 210 = 1024 models.
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Category Operators Description # of Ops. WPDG
θ WCDF

θ

I. CST Oblique corrections 1 0.55 1.00
II. CHud RH charged currents 2 0.99 0.96
III. C

(1)
Hl C

(3)
Hl LH lepton vertices 6 0.01 0.11

IV. CHe RH lepton vertices 3 0.09 0.42
V. C

(u)
Hq C

(d)
Hq LH quark vertices 5 0.03 0.13

VI. CHu CHd RH quark vertices 5 0.06 0.32
VII. Cll Lepton 4-fermion 1 0.37 0.87
VIII. C

(u)
lq C

(d)
lq Semileptonic 4-fermion 6 0.03 0.03

IX. Cledq C
(1)
lequ Scalar 4-fermion 6 0.02 0.04

X. C
(3)
lequ Tensor 4-fermion 2 0.13 0.13

Table 9. We divide the 37 operators identified in the left panel of table 2 into ten categories. In
the third column, each category is described by the type of operators within it, which are listed in
the second column. The fourth column counts how many operators among the 37 are included in
each category. The fifth column gives the total weights of all models that contain the corresponding
category, as described in eq. (4.8). The sixth column repeats this using the CDF mW .

8.2 PDG value of mW

We start by performing these fits with the PDG value of mW . We show the resulting ∆AIC
as a function of the number of parameters for all 1024 models in figure 12. The figure shows
that the models can be divided into roughly three ‘branches’:

1. Models that include the right-handed current coefficients CHud (green triangle)

2. Models that include both CST and Cll, but not CHud (orange diamond)

3. Rest of the models (blue circle)

The best-performing models fall into the first category which includes right-handed charged
currents. In fact, the optimal model contains λ, [CHud]11, [CHud]12, and CST as fit parameters
and has ∆AIC = 19. The best-fit results are given by

CHud
11

= (−0.030± 0.008)TeV−2 ,

CHud
12

= (−0.040± 0.011)TeV−2 ,

CST = (−0.0038± 0.0022)TeV−2 . (8.2)

The values for CHud are the same as those found in the L2(RH) discussed in the previous
section (see table 6). The nonzero value of CST accounts for the slight discrepancy in mW

that is present even when the CDF measurement is excluded. In fact, the observables
and matrix elements most improved in this model closely resemble those of L2(RH), which
are shown in the left panel of figure 6. In addition, the tension in mW is reduced from
approximately 2σ to less than 1σ.
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Figure 12. Excluding the CDF mW , we plot ∆AIC for the 1024 models with respect to their
number of parameters. Models containing the category CHud are marked with green triangles. Orange
diamonds represent those that contain both CST and Cll, but not CHud. The rest of the models are
denoted by blue circles. The purple stars denote the seven models we have analyzed in section 7 and
are labeled by their acronyms.

The second-best model (with ∆AIC = 18) is nothing more than L2(RH), while the
third-best model includes CHud and Cll. The two models L7 (V) and L8 (RS) that we studied
in section 7 also fall into this family, with the additional parameters causing a penalty in AIC.

Of the 41 models selected for their performance, where their values of ∆AIC are within
10 units below the best model, only two exclude the right-handed operator, while they include
both Cll and CST (marked by orange diamonds in figure 12). A three-parameter fit with only
λ, Cll and CST has a ∆AIC = 9, with both Cll and CST nonzero at more than 3σ,

Cll = (−0.013± 0.004) TeV−2, CST = −(0.0083± 0.0026) TeV−2 . (8.3)

The combination of Cll and CST performs significantly better than having just one of the
two. Cll can improve low-energy observables at the cost of a poorer description of several
EWPO. Similarly, CST can improve mW a bit but worsens other observables. However, the
combination performs better across the chart.

The nine-parameter model with CST , Cll, and six scalar/pseudoscalar operators yields
∆AIC = 10. It performs better than the L6(SPS) model, which only contains the
scalar/pseudoscalar operators and has a ∆AIC = 1, shown in figure 12 by a purple star right
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Figure 13. Model-averaged weights for each category of operators, as defined in eq. (4.8). Yellow
bars: PDG world average of mW . Blue bars: CDF measurement of mW .

above the SM line (∆AIC = 0). The remaining three models studied in section 7, also marked
by purple stars, all have a worse AIC than the SM and thus are disfavored.

Among all models that contain neither CHud nor the pair {CST , Cll} (marked by blue
circles), the best performance, ∆AIC = 5, is achieved by a model consisting of 13 parameters,
including CST , the left-handed quark vertices C(u)

Hq and C
(d)
Hq, and the scalar/pseudoscalar

four-fermion operators Cledq and C
(1)
lequ.

Using the sum of weights Wθ to assess the importance of a given operator, the yellow
bars in figure 13 show that CHud is the most important4 with W = 0.99. CST and Cll are
the second and third most important with W = 0.55 and 0.33, respectively, followed by the
tensor operator C(3)

lequ and the right-handed leptonic vertex corrections CHe, with W ∼ 0.1.
All other operators have W < 0.1. Using eq. (4.9), we can provide the model-averaged best-fit
values of the most important Wilson coefficients,

CHud
11

= −0.029± 0.016 TeV−2, CHud
12

= −0.039± 0.014 TeV−2,

CST = −0.0045± 0.0032 TeV−2, Cll = −0.001± 0.012 TeV−2. (8.4)

Compared with eq. (8.2), we see that even after model averaging there is evidence for an up-
strange RH current at the 2.7σ level, with σ defined in eq. (4.9). The evidence for an up-down
RH current is diluted to roughly 2σ. CST deviates from zero by slightly more than 1σ, while
Cll is compatible with zero. The values in eq. (8.4) may provide guidance for model building.

8.3 CDF value of mW

We now repeat our analysis including the CDF mW . We plot ∆AIC as a function of the
number of parameters for all 1024 fits in figure 14. Although it is harder to identify distinct

4A weight of 0.99 means that the 512 models that do not contain right-handed currents collectively carry
only 1% of the weight as defined in eq. (4.8).
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Figure 14. Including the CDF mW , we plot ∆AIC for the 1024 models with respect to their
corresponding number of parameters. The legend shows various categories of Wilson coefficients
contained in the models, denoted by the corresponding markers.

‘branches’ compared with the PDG results in figure 12, the same Wilson coefficients appear
in the highly performing models: CHud, CST , and Cll (models that include these operators
are denoted by yellow diamonds). In fact, the best model contains only these four operators
with their best-fit values given by

CHud
11

= 0.025± 0.024 TeV−2 , CHud
12

= −0.033± 0.011 TeV−2 ,

CST = −0.022± 0.004 TeV−2 , C ll
2112

= −0.028± 0.011 TeV−2 . (8.5)

This fit has a very high ∆AIC = 63. We show how it improves certain observables and matrix
elements in the left panel of figure 15. In particular, the four operators can reduce the tension
in mW to 1.5σ and take care of the problems in kaon and 0+ → 0+ decays. Compared to
the PDG results in eqs. (8.2) and (8.4), the CDF fit prefers to use Cll to reconcile mW . As
the same operator affects β decay observables as well, this leads to a modified (and positive)
value for [CHud]11. However, it increases the tension in forward-backward asymmetry of the
bottom quark, A0,b

FB. We also see this in figure 10 associated with the CLEW22 analysis.
Interestingly, the second-best model contains 12 independent Wilson coefficients. In

addition to those four in the best model, it includes three RH lepton vertices (CHe) and five
RH quark vertices (CHu and CHd). Despite the inclusion of eight additional parameters, it
achieves a similar ∆AIC = 62. The best-fit values are given in the third column of table 10,
and the improvements in observables are illustrated on the right of figure 15. Compared
to those of the best-fit model on the left, we see that the high tension in A0,b

FB disappears
due to the nonzero values of [CHe]11 and [CHd]33, which both have a significance level of 2σ.
This effect can be understood from eqs. (6.8) and (6.10). Apart from the RH currents, this
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Figure 15. Same as figure 6, for the optimal fits with the CDF mW . Left: best model. Right:
second-best model.

∆AIC = 63 ∆AIC = 62 Model Average
[CHud]11 0.025± 0.024 0.062± 0.027 0.025± 0.037
[CHud]12 −0.033± 0.011 −0.028± 0.011 −0.032± 0.016
CST −0.022± 0.004 −0.030± 0.005 −0.024± 0.006
Cll −0.028± 0.011 −0.046± 0.013 −0.036± 0.017

[CHe]11 – −0.016± 0.007 −0.017± 0.009
[CHe]22 – −0.021± 0.017 −0.016± 0.025
[CHe]33 – −0.035± 0.018 −0.032± 0.020
[CHu]11 – 0.13± 0.77 0.16± 0.79
[CHu]22 – 0.05± 0.16 0.06± 0.17
[CHd]11 – 0.5± 2.7 0.7± 2.9
[CHd]22 – −0.6± 1.3 −0.6± 1.3
[CHd]33 – −0.29± 0.12 −0.34± 0.19

Table 10. Best-fit and 1σ ranges for the best model (∆AIC = 63), the next-to-best model (∆AIC
= 62) and after model averaging, including the CDF mW . Wilson coefficients are given in units of
TeV−2.

model somewhat resembles the U(3)5 scenario we studied in section 6 with ∆AIC = 57. In
fact, the best-fit values are not inconsistent with U(3)5, except for the appearance of CHud.
Specifically, all [CHe]ii have a comparable central value.

The best model that does not contain all three categories of CHud, CST and Cll has a
∆AIC = 59. It only contains CHud and CST , corresponding to the leftmost purple triangle
in figure 14. The best model without CHud has ∆AIC = 56. It contains CST , Cll, and six
scalar four-fermion operators (Cledq and C

(1)
lequ).

Models without CST are notably inferior, lagging more than 10 units in ∆AIC behind
the best model, making them strongly disfavored. Models that do not contain any of the
operators in the categories CHud, CST , or Cll perform even worse, as marked by the blue
circles in figure 14.

We conclude that the most important operators are given by CHud, CST , and Cll.
Operators CHe, CHu, and CHd, while slightly less important, remain relevant. This is
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Model 1 Model 2 Model 3
[CHud]11 0.054± 0.026 0.052± 0.026 0.040± 0.024
[CHud]12 −0.029± 0.011 −0.029± 0.011 −0.031± 0.011
CST −0.028± 0.005 −0.028± 0.005 −0.025± 0.004
Cll −0.042± 0.013 −0.042± 0.012 −0.036± 0.012

[CHe]11 −0.014± 0.006 −0.014± 0.006 −0.009± 0.006
[CHe]33 −0.030± 0.018 −0.029± 0.018 –
[CHd]11 – −0.26± 0.18 –
[CHd]22 −0.29± 0.19 – –
[CHd]33 −0.26± 0.11 −0.27± 0.11 −0.30± 0.11

Table 11. Best-fit and 1σ ranges for the top three models discussed in section 8.4, all with ∆AIC ≃ 68.
Wilson coefficients are given in units of TeV−2.

reflected in the model-averaged weights that are illustrated by the blue bars in figure 13.
The model-averaged best-fit values of these coefficients are given in the fourth column of
table 10. The model-averaged results indicate a preference for nonzero values of CST and,
to a lesser extent, Cll, [CHud]12, [CHe]11, [CHe]33, and [CHd]33. It is essentially a mixture
of the best and second-best models.

8.4 Opening the categories

As mentioned in section 8.3, the second-best model with the CDF mW has a ∆AIC very close
to that of the best model. In addition to the four operators that appear in the best model
([CHud]11,12, CST , and Cll), eight operators are included in the categories of right-handed
lepton and quark vertices, namely [CHe]11,22,33, [CHu]11,22, and [CHd]11,22,33. This leads to an
improvement in χ2 by 15. It is possible that not all of the eight are necessary. To investigate
this, we open up the categories and consider all combinations of them, resulting in 28 = 256
models, while keeping [CHud]11,12, CST , and Cll in every model by default.

In doing so, we actually find three models that perform better than our previous best
model, all with ∆AIC ≃ 68, see table 11 for details. None of these three models contains
CHu. By including both CHu and CHd in category V, as defined in table 9, we may have
inadvertently introduced unnecessary complexity into some fits. Instead, the best three
models all contain [CHe]11 and [CHd]33, which confirms our observation in section 8.3, that
these operators help reduce the tension in A0,b

FB. Based on this analysis, the most important
SMEFT operators are [CHud]11,12, CST , Cll, [CHe]11, and [CHd]33.

9 Falsifying explanations of the Cabibbo anomaly

In section 8.1, we concluded that the preferred explanation for CAA within SMEFT involves
nonzero values of the RH CC coefficients [CHud]11 and [CHud]12. The CAA and CDF mW

can be explained by [CHud]12, CST , and Cll that deviate from zero by more than 2.5σ. In
this section we discuss how these Wilson coefficient could lead to signals in other observables,
which are currently less sensitive but may gain in sensitivity thanks to theoretical and
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experimental developments in the near future. Some of these observables, such as nucleon
axial coupling gA discussed in section 9.1, only receive contributions from the operators
appearing in table 1 at the tree level in SMEFT. In this case, the CLEW setup discussed in
this paper could be easily extended to incorporate new results as soon as they appear. For
other observables, such as K → ππ, h→ γγ, or collider observables that are quadratic in the
RH coefficients, the operators that contribute to the CAA and the mW anomaly are only
a subset of all possible SMEFT contributions. In these cases, a signal of the size predicted
by the nonzero Wilson coefficients in section 8.1 would offer a tantalizing confirmation of
the explanations identified so far. The absence of a signal would not necessarily rule out
the CAA and mW anomalies, but would imply correlations with additional operators not
considered in our analysis, such as ∆S = 1 four-quark operators or Higgs-gauge couplings,
thus providing additional guidance to model building.

9.1 RH CC at low energy: gA and the ∆I = 3/2 K → ππ amplitude

gA. At low energy, the axial nucleon coupling gA is uniquely sensitive to RH CC [49, 94].
The value extracted from neutron decay can be related to the axial coupling in pure QCD via

gA

gV
= gQCD

A

(
1 + δgA

RC − v
2 [CHud]11

Vud

)
, (9.1)

where δgA
RC denotes radiative corrections to the ratio of the axial and vector couplings. A RH

coupling of the u and d quarks to the W boson of the size necessary to explain the CAA (as, for
example, in eq. (8.4)) would shift gA by about 0.2%. Eq. (9.1) can thus provide a sensitive test
of RH CC if the experimental value of gA/gV , gA in pure QCD and the radiative corrections to
gA are all controlled at the permille level. gA/gV is currently measured with 0.1% precision [3]

gA

gV
= 1.2754± 0.0013, (9.2)

where the error is inflated by a scale factor of 2.7,5 due to a discrepancy between different
experimental results. The best measurement from PERKEO-III [95] has an even smaller
relative uncertainty of 0.4 · 10−3. The FLAG average of gQCD

A [12] is

gQCD
A = 1.246± 0.028 , Nf = 2 + 1 + 1 , (9.3)
gQCD

A = 1.248± 0.023 , Nf = 2 + 1 , (9.4)

with about 2% error. The result of the CalLat collaboration reaches a subpercent uncer-
tainty [96, 97]

gQCD
A = 1.2711± 0.0124 , (9.5)

with prospects of reaching 0.5% uncertainty in the near term and possible 0.2% in the exascale
computing era [96, 97]. The final theoretical input is the radiative correction δgA

RC. Dispersive
evaluations of the vector and axial Wγ box contributions to δgA

RC estimated that the correction
5Our analysis in the previous sections instead follows the strategy and experimental input used in ref. [51].

This effectively leads to a value of gA that is very similar to the one obtained in ref. [3], apart from the
mentioned scale factor.
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is well below 10−3 [8, 98]. In addition, gA gets contributions from hard photon exchanges
between hadrons (‘three-point function’). These have been estimated to be at the level of
a few percent using chiral perturbation theory (χPT) techniques [99], but are affected by
large uncertainties. Ref. [99] quoted

δgA
RC ∈ {0.014, 0.026}, (9.6)

with the range determined by an unknown combination of electromagnetic low-energy con-
stants, which was estimated by varying the renormalization scale in LO χPT loops, and
by the uncertainties in the couplings of the axial current to two nucleons and a pion that
affect NLO corrections to δgA

RC. For gA to provide a stringent test of the CAA, it is therefore
necessary to improve the theoretical calculations of both gQCD

A and δgA
RC.

K → ππ. In addition to semileptonic processes, CHud also induces nonleptonic four-
fermion operators. At low energy, one finds [100]

LLEFT = −
2∑

a=1

(
Cij lm

a LRO
ij lm
a LR + Cij lm ∗

a LR

(
Oij lm

a LR

)†)
, (9.7)

with the operators given by

Oij lm
1 LR = d̄mγµPLu

l ūiγµPRd
j , Oij lm

2 LR = d̄m
α γ

µPLu
l
β ū

i
βγµPRd

j
α , (9.8)

where α, β are color indices. Taking into account the QCD renormalization group evolution,
the matching coefficients at low energy are given by

Cijlm
1 LR(µ = 3GeV) = 0.9V ∗

lm [CHud]ij , Cijlm
2 LR(µ = 3GeV) = 0.4V ∗

lm [CHud]ij . (9.9)

The imaginary part of the Wilson coefficients in eq. (9.8) contributes to electric dipole
moments (EDM) and to CP violation in mesonic decays. As a result, the imaginary part
of [CHud]11 and [CHud]12 are strongly constrained, as we shall see below. The real part of
the ∆S = 1 operators affects the decay K → ππ. In particular, the amplitude A2 for the
decay into two pions with isospin I = 2 is suppressed in the SM and is therefore particularly
sensitive to BSM corrections. The RH CC corrections to A2 can be expressed as [100]

A2 = ASM
2 + F0

2
√
6

[(
Cudus

1LR − Cusud∗
1LR

)
A1 LR +

(
Cudus

2LR − Cusud∗
2LR

)
A2 LR

]
. (9.10)

The low-energy constants (LECs) A1 LR and A2 LR can be extracted from Lattice QCD
calculations of ϵ′/ϵ [100–104]

A1 LR(3GeV) = 1√
3F0
⟨(ππ)I=2|Q7|K0⟩+O

(
m2

K

)
≃ (2.2± 0.13)GeV2 ,

A2 LR(3GeV) = 1√
3F0
⟨(ππ)I=2|Q8|K0⟩+O

(
m2

K

)
≃ (10.1± 0.6)GeV2 , (9.11)

where Q7,8 denote electroweak penguin operators. With these values of the LECs, we find

Re(A2) = Re(ASM
2 ) +

[
11 · 10−8 GeV

]
Re (V ∗

us [CHud]11 − V
∗

ud [CHud]12) TeV
2 , (9.12)
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Figure 16. Left panel: the figure shows the L2(RH) scenario with the fit to L observables shown
in red, while the constraint from A2 is shown in blue. The combination of the two is depicted by
dashed black lines. Right panel: the constraints from EDMs (red) and ε′/εK (blue), as well as their
combination (black, dashed), on the imaginary parts of the CHud couplings.

where Re(A2) = 1.479(4) · 10−8 GeV [3]. Due to the chiral enhancement of the LR operators,
the suppression of the SM amplitude, and a further enhancement by V −1

us , the values of
[CHud]12 that can explain the CAA can provide a positive ∼ 30% correction to Re(A2). As
in the case of gA, the sensitivity of K → ππ to new physics is limited by the theoretical
prediction for the SM value. The RBC/UKQCD collaboration [102, 103] reported

Re(ASM
2 ) = 1.50(4)stat(14)syst × 10−8 GeV. (9.13)

In figure 16 we repeat the L2(RH) fit, including K → ππ with the assumption that CHud

is the only source of ∆S = 1 operators. The red ellipses are the results of the fit in section 7,
the constraint from A2 is shown by the blue bands, and the black ellipses denote the joint fit.
We can see that the regions preferred by the fits to β and kaon decays and the constraints
from A2 are compatible at the 1σ level. The joint fit gives

[CHud]11 = −0.030± 0.0084 , [CHud]12 = −0.026± 0.0085 . (9.14)

The addition of A2 to the fit currently somewhat shifts the best fit point of the L2(RH)
scenario discussed in section 7 (see table 6). The preferred value of [CHud]12 is most affected
by A2, although the shift is not greater than ∼ 1σ. Future improvements in the lattice
determination of ASM

2 could provide a more sensitive probe of the RH couplings.

EDMs and ϵ′/ϵ. The phases of the RH CC coefficients [CHud]11 and [CHud]12 induce
tree-level corrections to the neutron EDM, to atomic EDMs, and to direct CP-violation in
kaon decays (ϵ′/ϵ), through the non-leptonic operators O1 LR and O2 LR. These contributions
were studied in refs. [100, 105], and lead to very strong constraints, shown in the right
panel of figure 16. The constraints on the imaginary parts of [CHud]11 and [CHud]12 can
be naively translated into scales in the 250 to 500 TeV range, much larger than the scales
associated with the real part.
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Similarly, the CP-violating partner of QHW B contributes to the electron EDM at one
loop. In a single coupling scenario, its coefficient is restricted to below 3 × 10−6 TeV−2

(95% CL) [106, 107]. While the combination of right-handed charged currents and oblique
corrections provides an attractive explanation for the CAA and tensions in EWPO, when
matching to concrete UV-complete models, some care must be taken to ensure that their
phases are aligned with the SM.

9.2 Collider signatures

CHW B and CHD are degenerate in EWPO. The degeneracy is broken in Higgs observables,
WZ, and WW production data [45, 70, 108, 109]. With new and more precise data from
the LHC, Higgs properties and diboson production are becoming highly competitive with
EWPO [70]. For example, a SMEFT fit to H → γγ data [110] yields, in the single coupling
assumption,

CHW B = 0.0020+0.0044
−0.0042 TeV−2, CHD = −0.21+0.42

−0.44 TeV−2. (9.15)

These can be translated values of CST

CST |HW B = 0.0018+0.0040
−0.0038 TeV−2, CST |HD = −0.087+0.17

−0.18 TeV−2. (9.16)

The relatively weak sensitivity to CHD implies that, even under the single coupling assumption,
h→ γγ is not sufficient to exclude the CST explanation for mW . Eq. (9.16) however illustrates
the potential of Higgs measurements to provide constraints that are orthogonal to EWPO.
In addition to CHW B and CHD, the quark bilinear operators in table 2 give contributions
to Higgs and diboson production that are enhanced with respect to the SM and grow with
energy. In particular, C(3)

Hq contributes to the production of HW and WZ, C(1)
Hq, C(3)

Hq, CHu

and CHd to HZ and WW . Going forward, it will be important to perform combined fits
to EWPO, Higgs data, and diboson production at the LHC [45, 70, 108, 109]. It will be
desirable to minimize the flavor assumptions and to combine these fits with Drell-Yan and
low-energy data, in particular β decay and parity-violating electron scattering data.

Higgs and diboson data are also sensitive to the right-handed current operator CHud,
although in quadratic order. CHud is not strongly constrained by the charged-current Drell-
Yan processes because it gives rise to corrections with the same energy dependence as the SM
background. On the other hand, CHud gives large corrections to WH and WZ associated
production. In the former case, contact interactions between two quarks, one Higgs, and
a W induce corrections to WH that are enhanced by s/m2

W compared to the SM. In WZ

production, the presence of a right-handed current affects a cancellation between the t- and
s-channel diagrams in the SM and also leads to corrections that increase in energy as s/m2

W .
Corrections to the signal strengths of WH production were discussed in refs. [78, 105]

and can be written as

µW H = σW+H + σW−H

σSM
W+H + σSM

W−H

= 1 +
∑
ij

aij

∣∣∣∣v2CHud
ij

∣∣∣∣2 . (9.17)
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At NLO in QCD the coefficients aij are [105]

a11(13TeV) = 1.6(1) · 102 , a11(14TeV) = 1.7(1) · 102 ,

a12(13TeV) = 0.9(2) · 102 , a12(14TeV) = 1.0(1) · 102 , (9.18)

where the error comes from PDF and scale uncertainties. The latest results from the ATLAS
and CMS collaborations are [111, 112]

µW H(13TeV)|ATLAS = 1.2± 0.2 , µW H(13TeV)|CMS = 1.4± 0.3 , (9.19)

leading to

|[CHud]11| < 0.95 TeV−2 , |[CHud]12| < 1.3 TeV−2 . (9.20)

These limits are about one order of magnitude too weak to constrain the region preferred by
the CAA in eq. (8.4). As the scaling is quadratic in the SMEFT coefficients, measurements of
the signal strength alone will not be sufficient to competitively constrain CHud. However, the
enhancement of the SMEFT corrections is more pronounced at high Higgs or W transverse
momentum as well as large HW invariant mass, so that dedicated high pT measurements
could further constrain right-handed operators [78, 105].

For WZ, we calculated the cross section by extending the POWHEG implementation of
WZ production in the SM [113] to right-handed W couplings. Corrections to the inclusive
cross section are a factor of ten smaller compared to WH. For example, at 13 TeV

µW Z = σW+Z + σW−Z

σSM
W+Z + σSM

W−Z

= 1 + 19
[
v2CHud

]2
11

+ 9
[
v2CHud

]2
12
. (9.21)

However, the absolute cross section is larger, and there exist precise measurements of the
total cross section and differential measurements at high transverse momentum or invariant
mass [114], where the contribution of RH CCs is enhanced. At the High-Luminosity LHC
(HL-LHC), couplings of the size [CHud]12 ∼ 0.1TeV−2, which are relevant to the Cabibbo
anomaly, will generate hundreds of events with M(WZ) ≳ 1TeV, so that at least part of the
parameter space identified in section 8.1 will be probed. As RH CCs affect Higgs observables
and diboson production at O(Λ−4), the derivation of consistent bounds requires the inclusion
of genuine dimension-eight operators [115]. Should deviations from the SM be observed,
differential observables such as angular distributions could offer valuable insights into the
chiral structure of the SMEFT operators [78, 105].

10 Conclusions

In this work, we performed a model-independent SMEFT global analysis to investigate
potential BSM explanations of the Cabibbo Angle Anomaly. The SMEFT framework offers a
systematic approach to analyze experimental data globally, but its practical implementation
is challenging due to the vast number of dimension-six operators and the corresponding
effective couplings. To manage this, flavor assumptions are often invoked to simplify the
analysis. However, such assumptions can reintroduce model dependence and miss certain
BSM explanations.
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To avoid this, as discussed in section 3, we embrace a ‘flavor-assumption-independent’
analysis, which implements an approximate decoupling of the global fit into flavor-conserving
and flavor-changing sectors, corresponding to an approximate factorization of the likelihood
function. Therefore, we expect that the results we obtain in the flavor-conserving sector
would not be significantly changed in a truly global analysis that explicitly includes all ‘cross
talk’ generated by Wilson coefficients that contribute to multiple classes of observables (for
example, the set of observables considered here and FCNCs).

Observables across three key data sets (dubbed CLEW) that are relevant to the CAA
were analyzed: low-energy charged-current semileptonic processes (L), electroweak-precision
observables (EW), and collider data of the Drell-Yan tails at the LHC (C). We performed
fits by minimizing the χ2 and used the Akaike Information Criterion (AIC) to determine
the relative quality of the resulting fits. The AIC penalizes models for excessive complexity
and ensures a balance between goodness of fit and simplicity when selecting models. Before
considering the model-independent analysis outlined above, we first revisited a scenario that
does make flavor assumptions, namely, a U(3)5 scenario. We subsequently considered a case
that includes all 22 operators contributing to the L observables (see the right panel of table 2),
before finally moving to the global analysis with 37 Wilson coefficients (see the left panel
of table 2). The salient features of our results can be summarized as follows:

• As discussed in section 6, in the U(3)5 scenario it is impossible to separate the EWPO
from both low- and high-energy CC observables because of their interdependence on
similar operators and their comparable sensitivities to BSM physics. Focusing only
on fitting to the EWPO can result in unacceptably large BSM effects in low-energy
decay processes, which cannot be offset by semileptonic four-fermion operators without
upsetting collider constraints. Therefore, a consistent analysis should include both
sets of observables. The traditional set of EWPO as considered in the literature is no
longer sufficient, and we advocate always considering the combination with low- and
high-energy CC observables.

• For the intermediate flavor-symmetry-independent fit discussed in section 7, we explored
the CAA without relying on flavor assumptions. The corresponding fit involves 22
potential Wilson coefficients, the results of which are provided in the Supplemental
Material. Although initially considering all operators, it became evident that many play
an inconsequential role in alleviating the CAA, motivating analyses involving subsets
of Wilson coefficients. The optimal fit (based on the highest ∆AIC) involves only two
RH CC operators. These SMEFT operators are strongly suppressed when minimal
flavor violation is employed, illustrating the risk of flavor assumptions. Including LH
vertex corrections can slightly improve the description of the EWPO, but results in a
lower ∆AIC. Combining RH currents with scalar/pseudoscalar four-fermion operators
offers a fit of similar quality. Other combinations without RH currents might reduce
χ2

min, but often lead to an AIC similar to or worse than that of the SM. The more
general scenario involving 22 operators can address low-energy new physics phenomena
such as the CAA. However, when including the CDF measurement of the W mass, the
performance of CLEW22 is not optimal. Although it improves the AIC compared to
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the SM, it does retain a 3σ tension in mW and negatively impacts other observables.
Addressing anomalies, such as the W mass, requires incorporating additional operators.

• The model-independent CLEW37 scenario is not only able to address the CAA, but
can also successfully remove the tension due to the CDF W mass. Details of these
fits are also provided in the Supplemental Material. The resulting AIC shows a clear
improvement over the SM when including the CDF mW , as discussed in section 8. On
the other hand, if one uses the PDG value of mW , this scenario leads to an AIC that
is worse than the SM. The negative effect of the number of parameters outweighs the
improvement in χ2.
Inspired by this, we conducted an analysis focusing on specific SMEFT ‘models’, each
containing only a subset of the 37 Wilson coefficients. These subsets are systematically
organized by the ten categories we outline in table 9. Overall, we considered 1024 such
models and compared their quality with that of the SM. As summarized in figure 12,
we find that scenarios involving RH CC operators have large ∆AICs, with the best
model containing both CHud and CST . If one includes the CDF W mass, the best
scenario contains one additional operator, namely, the purely leptonic interaction Qll

(see figures 14 and 15 for details).

• While the model with CHud, CST , and Cll has the optimal AIC, a more complicated
model comes very close. This model contains SMEFT operators for the right-handed
neutral currents CHe, CHu, and CHd. Although this brings eight additional fit parame-
ters, and thus a severe penalty on the AIC, the fit improves several EWPO with respect
to the optimal model (see figure 15). Furthermore, by opening the individual categories,
we determined that the CHu coefficients are not essential. However, incorporating CHe

and CHd does result in an enhancement.

• Finally, in section 9 we discuss possible observables that could falsify or verify the
BSM explanations of the CAA, assuming the current deviation from CKM unitarity
is confirmed. Given the previous discussion, we focus on the most likely explanations
in terms of right-handed currents CHud and the oblique parameter CST . The former
can be probed at low energies by the axial charge of the nucleon and the isospin I = 2
channel in K → ππ. In both cases, the required improvements would have to come from
the theory side. At the high-energy frontier, promising probes include WH and WZ

production. Future measurements at the HL-LHC are expected to be able to rule out at
least part of the parameter space that is relevant to solutions of the CAA. Similarly, the
HL-LHC will provide improved constraints on CST through measurements of h→ γγ

and diboson production. Incorporating these observables into the global analysis would
require more operators to participate in the CLEW framework. We leave them for
future investigations.

• Our analysis can be extended in several directions. First, the SMEFT models discussed
in section 8 depend on activating or deactivating operators in different categories. A
more detailed analysis would allow each individual operator to be turned on or off by
itself. The price to pay is a huge increase in the total number of models. Another
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way to generalize our analysis is by including observables that currently have weaker
sensitivity but could improve in the future, such as nonleptonic kaon decays, as well
as Higgs and heavy-gauge boson production at high-energy colliders, as discussed in
section 9. Finally, our analysis can be extended to include low-energy neutral current
probes, such as measurements of parity violation in atoms or low-energy electron-proton
scattering.

Throughout this paper, we have consciously avoided any reference to UV completions in
an effort to stay as close to the EFT philosophy as possible. However, the CAA, regardless of
whether we include the CDF mW measurement or not, prefers nonzero values of CHud and
CST . Interestingly, these effective operators are generated in models that feature vector-like
quarks (VLQ). For example, TeV-scale VLQ in the same representation as left-handed SM
quarks, (3, 2, 1

6), can address both the CAA (by generating CHud at tree level) and mW (by
generating CST at one-loop level) [35]. For more details on VLQ and CAA, see refs. [38, 116].

In summary, we have performed a detailed analysis of the Cabibbo Angle Anomaly
and the W-boson mass anomaly in the framework of the Standard Model Effective Field
Theory. We have presented best-fit values for Wilson coefficients that lead to the most
optimal solutions of these anomalies. Our results provide clear targets for model building.
We hope that the analysis method presented in this work will prove useful for scrutinizing
other (future) anomalies and their most likely beyond-the-Standard-Model explanations.
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A The Standard Model Effective Field Theory

We begin this appendix by recalling the main notation we adopt for the fermionic fields, the
Higgs doublet and the covariant derivative. We denote by lT = (νL, eL) and qT = (uL, dL)
the left-handed lepton and quark SU(2) doublets, while u = uR, d = dR, and e = eR are
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the right-handed up-type, down-type, and charged-lepton fields. We use p, r, s, and t for
generation indices and work in a basis in which the electron and down-quark Yukawa matrices
are diagonal. This implies that the fields dL,R, eL,R correspond to the mass eigenstates, while
for the up-type quarks we have uL = V †umass

L , where V is the CKM matrix.
The Higgs doublet in the unitary gauge is given by

H = U(x)
(

0
h(x)+v√

2

)
. (A.1)

Here h is the Higgs field, U(x) encodes the Goldstone modes, and v is the Higgs vacuum
expectation value, which, in the absence of BSM effects, takes the value v ≃ 246GeV. We
use the following convention for the covariant derivative,

Dµ = ∂µ + i g1Y Bµ + i g2W
a
µ t

a + ig3G
A
µT

A , (A.2)

where Bµ, W a
µ , and GA

µ (g1, g2, and g3) are the gauge fields of U(1), SU(2), and SU(3)c

(couplings). Furthermore, Y is the hypercharge, while ta and TA represent the generators
of SU(2) and SU(3)c in the representation of the field where Dµ is acting on.

To obtain a prediction for mW , we will use measurements of the Fermi constant (from
muon decay), GF , the Z mass, mZ , and the fine-structure constant, αem as input parameters.
Within SMEFT, the usual expressions for these observables obtain corrections from dimension-
six operators, which will propagate to the predictions for other observables. In particular,
we have [58]6 [

GF

]
SMEFT

=
[
GF

]
SM

+ 1√
2

(
C

(3)
Hl
11

+ C
(3)
Hl
22
− Cll

)
,

[
m2

Z

]
SMEFT

=
[
m2

Z

]
SM

+ 1
8v

4(g2
1 + g2

2)CHD + 1
2v

4g1g2CHW B ,

[αem]SMEFT = [αem]SM −
v2g3

1g
3
2

2π(g2
1 + g2

2)2CHW B , (A.3)

where, at tree level,
[
GF

]
SM

= 1√
2v2 ,

[
m2

Z

]
SM = g2

1+g2
2

4 v2, and [αem]SM = 1
4π

g2
1g2

2
g2
1+g2

2
. The

experimental values for the quantities in eq. (A.3) expressions are [3]

GF = 1.1663787(6) · 10−5 GeV−2 , mZ = 91.1876(21)GeV , 1
αem

= 137.035999180(10) .
(A.4)

A.1 Translation to EWPO

The traditional EWPO observables mainly constrain the flavor-diagonal couplings of the Z
boson. In the mass basis, these can be written as

LZ = gZ

∑
f=u,d,e,ν

f̄γµ

[
g

(f)
L PL + g

(f)
R PR

]
fZµ , (A.5)

6In principle, the SMEFT involves additional operators, QH,H□,HW,HB,HG, that affect the gauge couplings,
g1,2,3 as well as the Higgs kinetic term and its vev. However, these effects can be captured by redefinitions of
the gauge couplings and vev, and do not lead to measurable effects in the observables we consider.
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where gZ = −2 21/4√GFmZ . The couplings g(f)
L,R =

[
g

(f)
L,R

]
SM

+ δg
(f)
L,R are matrices in the

flavor space. The SM contributions are diagonal in flavor,
[
g

(f)
L

]
SM

=
[
T3 − s2

wQ
]
1 and[

g
(f)
R

]
SM

= −s2
wQ1, with T3 and Q denoting the third component of weak isospin and

the electromagnetic charge of f , respectively.7 The shifts due to dimension-six operators
are given by [64]

δg
(ℓ)
L =

[
g

(ℓ)
L

]
SM

δgZ −
v2

2
(
C

(1)
Hl + C

(3)
Hl

)
− δs2

w 1 ,

δg
(ν)
L =

[
g

(ν)
L

]
SM

δgZ −
v2

2
(
C

(1)
Hl − C

(3)
Hl

)
,

δg
(u)
L =

[
g

(u)
L

]
SM

δgZ −
v2

2 V
(
C

(1)
Hq − C

(3)
Hq

)
V † + 2

3δs
2
w 1 ,

δg
(d)
L =

[
g

(d)
L

]
SM

δgZ −
v2

2
(
C

(1)
Hq + C

(3)
Hq

)
− 1

3δs
2
w 1 ,

δg
(ℓ)
R =

[
g

(ℓ)
R

]
SM

δgZ −
v2

2 CHe − δs2
w 1 ,

δg
(u)
R =

[
g

(u)
R

]
SM

δgZ −
v2

2 CHu + 2
3δs

2
w 1 ,

δg
(d)
R =

[
g

(d)
R

]
SM

δgZ −
v2

2 CHd −
1
3δs

2
w 1 , (A.6)

where s2
w = sin2 θw is expressed in terms of GF , mZ and αem as

s2
w = 1

2

[
1−

√
1− 4παem√

2GFm2
Z

]
, (A.7)

and

δgZ = −v
2

2

[1
2CHD + C

(3)
Hl
11

+ C
(3)
Hl
22
− 1

2C ll
2112
− 1

2C ll
1221

]
,

δs2
w = v2 cwsw

s2
w − c2

w

[
CHW B + cwsw

(1
2CHD + C

(3)
Hl
11

+ C
(3)
Hl
22
− 1

2C ll
2112
− 1

2C ll
1221

)]
, (A.8)

with cw = cos θw. In addition, several electroweak precision observables are sensitive to the
(left-handed) couplings of the W boson, which can be written as

LW = −gW√
2

[
ūγµ

(
gW q

L PL + gW q
R PR

)
d+ ν̄γµ

(
gW ℓ

L PL

)
e
]
W+

µ + h.c. (A.9)

Here gW =
√

4παem

sw
and

gW q
L = V

[(
1 + δs2

w

2s2
w

+ v2

2
cw

sw
CHW B

)
1 + v2C

(3)
Hq

]
,

gW q
R = v2

2 CHud ,

gW ℓ
L =

(
1 + δs2

w

2s2
w

+ v2

2
cw

sw
CHW B

)
1 + v2C

(3)
Hl . (A.10)

7Our normalization is such that e.g. T3 = 1/2 and Q = 2/3 for f = u.
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Finally, the expression for mW in SMEFT is given by

δm2
W

m2
W

= v2 swcw

s2
w − c2

w

[
2CHW B + cw

2sw
CHD + sw

cw

(
2C(3)

Hl − Ĉll

)]
. (A.11)

A.2 Translation to low-energy basis

For the decays of kaon and pion, and β decays, the often used low-energy effective Lagrangian
is given by [40, 51, 76, 117]

Lβ = −GF√
2
VuD

[
ℓ̄γµ(1− γ5)νℓ

((
1 + ϵℓD

L − ϵ
µ
L

)
ūγµ(1− γ5)D + ϵℓD

R ūγµ(1 + γ5)D
)

+ ℓ̄(1− γ5)νℓ

(
ϵℓD
S ūD + ϵℓD

P ūγ5D
)
+ ϵℓD

T ℓ̄σµν(1− γ5)νℓ ūσ
µν(1− γ5)D

]
+ h.c. ,

(A.12)

where D = {d, s}. The tree-level expressions for the ϵ couplings in terms of SMEFT
coefficients are given by

VuD ϵℓD
L = v2

[
V C

(3)
Hq

]
1D
− v2

[
V C

(3)
lq

]
ℓℓ1D

+ v2VuD

[
C

(3)
Hl

]
ℓℓ
,

= v2

2
[
V C

(d)
Hq − C

(u)
HqV

]
uD
− v2

2
[
V C

(d)
lq − C

(u)
lq V

]
ℓℓuD

+ v2VuD

[
C

(3)
Hl

]
ℓℓ

VuD ϵℓD
R = v2

2 [CHud]1D ,

VuD ϵℓD
S = −v

2

2
[
V C†

ledq + C
(1) †
lequ

]
ℓℓ1D

= −v
2

2
[
V C†

ledq + C̄
(1) †
lequV

]
ℓℓ1D

,

VuD ϵℓD
P = +v

2

2
[
V C†

ledq − C
(1) †
lequ

]
ℓℓ1D

= +v
2

2
[
V C†

ledq − C̄
(1) †
lequV

]
ℓℓ1D

,

VuD ϵℓD
T = −v

2

2
[
C

(3) †
lequ

]
ℓℓ1D

= −v
2

2
[
C̄

(3) †
lequV

]
ℓℓ1D

. (A.13a)

Finally, ϵµL arises from the SMEFT correction to GF as extracted from muon decay, see
eq. (A.3), and is given by

ϵµL = v2
[
C

(3)
Hl
11

+ C
(3)
Hl
22
− C ll

2112

]
. (A.14)

B Experimental and theoretical input to observables

B.1 Electroweak precision observables

The observables used are listed in table 12. The table includes ‘traditional’ EWPOs measured
at LEP and SLC in the first column, while the second column involves several observables
measured at hadron colliders. These additional constraints are needed when going beyond
flavor-universal SMEFT scenarios. Observables that may be less familiar are defined by

Ruc =
Γ(Z→ ūu)+Γ(Z→ c̄c)∑

q Γ(Z→ q̄q) , RW c =
Γ(W → cs)

Γ(W →ud)+Γ(W → cs) , R2
σ = σt

σSM
t

, (B.1)

– 52 –



J
H
E
P
0
3
(
2
0
2
4
)
0
3
3

Obs. Expt. Value SM Prediction Obs. Expt. Value SM Prediction

ΓZ (GeV) 2.4955(23) [58, 118] 2.49414(56) [65] mW (GeV) 80.4335(94) [43] 80.3545(42) [65]
σ0
had(nb) 41.480(33) [58, 118] 41.4929(53) [65] ΓW (GeV) 2.085(42) [3] 2.08782(52) [65]

R0
e 20.804(50) [58, 118] 20.7464(63) [65] RW c 0.49(4) [3] 0.50

R0
µ 20.784(34) [58, 118] Rσ 0.998(41) [119] 1

R0
τ 20.764(45) [58, 118] Br(W → eν) 0.1071(16) [3] 0.108386(24) [65]

A0,e
FB 0.0145(25) [58, 118] 0.016191(70) [65] Br(W → µν) 0.1063(15) [3] 0.108386(24) [65]

A0,µ
FB 0.0169(13) [58, 118] Br(W → τν) 0.1138(21) [3] 0.108386(24) [65]

A0,τ
FB 0.0188(17) [58, 118] Γ(W→µν)

Γ(W→eν) 0.982(24) [3] 1
R0

b 0.21629(66) [58] 0.215880(19) [65] Γ(W→µν)
Γ(W→eν) 1.020(19) [3]

R0
c 0.1721(30) [58] 0.172198(20) [65] Γ(W→µν)

Γ(W→eν) 1.003(10) [3]
A0,b

FB 0.0996(16) [58] 0.10300(23) [65] Γ(W→τν)
Γ(W→eν) 0.961(61) [3]

A0,c
FB 0.0707(35) [58] 0.07358(18) [65] Γ(W→τν)

Γ(W→µν) 0.992(13) [3]
Ac 0.67(3) [58] 0.66775(14) [65] A4(0− 0.8) 0.0195(15) [120] 0.0144(7) [67]
Ab 0.923(20) [58] 0.934727(25) [65] A4(0.8− 1.6) 0.0448(16) [120] 0.0471(17) [67]
Ae 0.1516(21) [58] 0.14692(32) [65] A4(1.6− 2.5) 0.0923(26) [120] 0.0928(21) [67]
Aµ 0.142(15) [58] A4(2.5− 3.6) 0.1445(46) [120] 0.1464(21) [67]
Aτ 0.136(15) [58] g

(u)
V 0.201(112) [121] 0.192 [122]

Aτ pol
e 0.1498(49) [58] g

(d)
V -0.351(251) [121] -0.347 [122]

Aτ pol
τ 0.1439(43) [58] g

(u)
A 0.50(11) [121] 0.501 [122]

As 0.895(91) [123] 0.935637(26) [65] g
(d)
A -0.497(165) [121] -0.502 [122]

Ruc 0.166(9) [3] 0.172220(20) [65]

Table 12. Input parameters and EWPOs used in the analysis. Each shaded block indicates a set
of correlated observables. Entries without an explicit SM prediction share their SM value with the
observable above.

where σt is the single-top production cross section in the t channel. Furthermore, g(q)
V,A =

g
(q)
L ± g(q)

R and A4(a − b) correspond to the forward-backward asymmetry in pp → ℓ̄ℓ in
the rapidity range a ≤ Y ≤ b [67]. For each observable, we include the leading tree-level
SMEFT corrections up to O(1/Λ2). We follow ref. [64] for the traditional EWPOs, while we
use the results of [67] for the measurements of A4. SMEFT corrections for the remaining
observables depend on the modified couplings of W and Z and can be straightforwardly
derived from their definitions.

B.2 Low-energy charged-current observables

B.2.1 Neutron and nuclear β decays

We include measurements of 0+ → 0+ transitions, neutron decay, as well as decay correlation
measurements, following ref. [51]. For measurements of neutron decays, the observables
include the lifetime, as well as several correlation coefficients, Ãn, B̃n, an, ãn, and λAB . The
included Ft values from superallowed decays are listed in table 13, while the correlation
measurements used in the nuclei are collected in table 14. For definitions of the observables,
see ref. [51]. In addition to these observables, the fit includes data from measurements of
mirror nuclei, as described in [51]. However, the impact of these observables is small in
the scenario we consider, while they are more important in models involving right-handed
neutrinos. The explicit values of the experimental input summarized above can be found in
ref. [51], in particular in their tables 1 (for the mirror transitions), 8 (for 0+ → 0+), as well
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10C 14O 22Mg 26mAl 26Si 34Cl 34Ar 38mK 38Ca 42Sc 46V 50Mn 54Co 62Ga 74Rb

Table 13. The parent nuclei participating in superallowed decays for which we use their measured
Ft values in the fits, following refs. [9, 51].

Parent Ji Jf Type Observable Ref.
6He 0 1 GT/β− ã [124]
32Ar 0 0 F/β+ ã [125]
38mK 0 0 F/β+ ã [126]
60Co 5 4 GT/β− Ã [127]
67Cu 3/2 5/2 GT/β− Ã [128]
114In 1 0 GT/β− Ã [129]
14O/10C F-GT/β+ PF /PGT [130]
26Al/30P F-GT/β+ PF /PGT [131]

Table 14. Data from correlation measurements in pure Fermi and pure Gamow-Teller decays used in
the fits. Table adapted from [51].

as 9 and 10 (for the neutron decay and correlation measurements). Finally, we include the
measurement of the ratio of the axial and vector form factors in Λ → peνe [3].

As mentioned in section 2.2.1 the theoretical expressions do not just involve the SM
and SMEFT parameters, but also depend on several hadronic and nuclear matrix elements.
The relevant hadronic input for the SM consists of the vector and axial nucleon charges, gV

and gA, and radiative corrections, ∆V,A
R , while the contributions due to BSM interactions

require the scalar and tensor charges, gS , gT . Pseudoscalar interactions are suppressed by
O(meΛχ/m

2
π), and we neglect their contributions to β decays. We summarize these hadronic

parameters in the first column of table 15.
In addition, the fit includes several ratios of Gamow-Teller (GT) and Fermi (F) matrix

elements, ρ = gA
gV

MGT
MF

, which appear in the mirror transitions mentioned above. Finally,
ref. [51] included the parameters η1 and η2,3 to capture theoretical uncertainties due to
radiative corrections δ′R, and contributions dependent on nuclear structure, δNS , respectively.
We treat η1,2,3 as Gaussian with a mean of µ(η1,2,3) = 0 and σ(η1,2,3) = 1, while we do not
include any theoretical input of ρi which is determined by the fit.

B.2.2 Kaon and pion decays

The experimental data used for the decays of pion and kaon are collected in table 16. Apart
from the two-body decay rates (the first column), we include determinations of V ℓ

usf+(0)
from the K → πeν and K → πµν rates and measurements of the differential distributions
(second column). The latter include a determination of the tensor interaction, ϵsµ

T , as well
as a determination of logC, which is sensitive to scalar interactions. As V ℓ

usf+(0) has been
determined assuming the SM form of the decay distribution, we follow [40] to obtain the
correlation between these rates and the tensor interaction. Using the input from ref. [57],
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Baryon decays K and π decays
gA 1.246(28) [12] f+(0) 0.9698(17) [12]
gS 1.02(10) [12] f

K±
f

π±
1.1932(21) [12]

gT 0.989(34) [12] fK± 155.7(3)MeV [12]
∆V

R 0.02467(22) [4] RCπ 0.0332(3) [14]
∆A

R−∆V
R

2 0.00013(13) [98] cπ
1 −2.4(5) [132]

g1/f1

∣∣∣
Λ→p

0.72(7) [40, 133] ∆CT −0.0035(80) [134]
BT (0)
f+(0) 0.68(3) [135]

Table 15. The hadronic input that enters β decays. We approximate gV = 1, which holds with high
precision. Whenever appropriate, the value on a renormalization scale µ = 2GeV is given.

Pl2 Kl3

Observable value Ref. Observable value Ref.
Rπ 1.2344(30) · 10−4 [136] |Ṽ e

usfK
+ (0)| 0.21626(40) [57]

RK 2.488(9) · 10−5 [3] |Ṽ µ
usfK

+ (0)| 0.21667(52) [57]
Γ(Kµ2) 5.134(10) · 10−7s−1 [3] logC 0.1985(70) [137]
Br(πµ2) 0.9998770(4) [3] 2ϵsµ

T
BT (0)
f+(0) 0.0007(71) [138]

τπ+ 2.6033(5) · 10−8s [3]

Table 16. The experimental input used for kaon and π decays. Note that the determinations of
|Ṽ ℓ

usf
K
+ (0)| involve a correlation that is not shown in the table. The ratio Rµ = Γ(Kµ2)/Γ(πµ2), with

Γ(πµ2) = Br(πµ2)/τπ+ , is derived from the table.

shown in table 16, we then obtain the following correlation matrix


|V e

usf+(0)|
|V µ

usf+(0)|
−2ϵsµ

T
BT (0)
f+(0)

 =

0.21634(40)0.21652(52)
0.0007(71)

 , Corr =

 1 0.57 0
0.57 1 0.44
0 0.44 1

 . (B.2)

We follow [40] for the theoretical expressions of the observables and summarize the
relevant hadronic input in the second column of table 15. The two-body decays depend
on the decay constants fπ,K , the radiative corrections δP ℓ

em, and Sew = 1.0232(3), which
captures the SM short-distance corrections. The radiative corrections can be expressed in
terms of known functions and a low-energy constant, cπ

1 , shown in table 15, see eq. (10)
of ref. [40] and [132, 139] for additional details. Instead, the three-body decays depend on
the form factor f+(0), as well as the parameters ∆CT and BT . The latter two parameters
enter into the expression for the shape of the differential distributions that are sensitive
to scalar and tensor interactions. Finally, pion β decay depends on radiative corrections,
captured by the factor RCπ.
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Process Experiment Lumi. xobs x Ref.

pp→ τ+τ− ATLAS 139 fb−1 mtot
T (τ1

h , τ
2
h , /ET ) mττ [140]

pp→ µ+µ− CMS 140 fb−1 mµµ mµµ [141]

pp→ e+e− CMS 137 fb−1 mee mee [141]

pp→ τ±ν ATLAS 139 fb−1 mT (τh, /ET ) pT (τ) [142]

pp→ µ±ν ATLAS 139 fb−1 mT (µ, /ET ) pT (µ) [143]

pp→ e±ν ATLAS 139 fb−1 mT (e, /ET ) pT (e) [143]

pp→ τ±µ∓ CMS 138 fb−1 mcol
τhµ mτµ [144]

pp→ τ±e∓ CMS 138 fb−1 mcol
τhe mτe [144]

pp→ µ±e∓ CMS 138 fb−1 mµe mµe [144]

Table 17. Experimental searches by the ATLAS and CMS collaborations that are available in
HighPT [80, 81].

B.3 Collider probes

C Flavor constraints

In this appendix, we further motivate the flavor structure of the SMEFT operators adopted
in section 3.2 by considering limits from leptonic and semileptonic flavor-changing neutral-
current decays of B, D, and K mesons. This appendix does not aim to be exhaustive, but
to provide a justification of neglecting off-diagonal components.

FCNC processes are more easily analyzed in LEFT, for which we adopt the operator
basis defined in ref. [50]. Using the notation of section 3.2, the tree-level matching coefficients
onto neutral current LEFT vector operators with charged leptons ℓ ∈ {e, µ, τ} are given by[
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, (C.1)

with the Z couplings in the SMEFT given in eqs. (A.5) and (A.6). In eq. (C.1) we listed the
contributions from the four-fermion operators C(u)

lq and C
(d)
lq , which also induce low-energy
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charged-current processes. For completeness, we also included the remaining semileptonic
operators Ceu, Ced, Clu, Cld, and Cqe, which do not contribute to the CC decays. In the
Standard Model, off-diagonal couplings arise at one loop and, because of the GIM mechanism,
vanish for degenerate quark masses.

The neutral-current LEFT operators involving neutrinos are[
Lνu

VLL

]
νℓνℓij
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. (C.2)

For scalar and tensor operators, neglecting the quark and lepton SM Yukawa couplings, we get[
Leu

SRR

]
ℓℓji

= −
[
C̄

(1)
lequ

]
ℓℓji
,
[
Led

SRL

]
ℓℓji

=
[
Cledq

]
ℓℓji
,
[
Leu

TRR

]
ℓℓji

= −
[
C̄

(3)
lequ

]
ℓℓji
,

(C.3)

with Led
SRR = Leu

SRL = Led
TRR = 0. We neglect contributions from dimension-6 corrections to

the Yukawa couplings, which do not play a role in our analysis. Using the matching equations
in eqs. (C.1), (C.2), and (C.3) we can derive constraints on the off-diagonal components of
the SMEFT coefficients from FCNC decays of the kaon, B, and D meson.

C.1 Kaon decays

The coefficients
[
C

(d)
Hq

]
12, 21

,
[
C

(d)
lq

]
ℓℓ12, 21

, and [Cledq]ℓℓ12, 21 contribute to the decays KL →
ℓ+ℓ− and K → πℓ+ℓ− at tree level. To check the constraints on these couplings, we used
packages flavio [145] and wilson [146], which include branching ratios KL → e+e− and
KL → µ+µ−. The bounds can be improved by using the refined analysis of ref. [147]. Assuming
only one SMEFT operator at a time, we find very strong limits on the four-fermion operators∣∣∣∣∣C(d)

lq
1112

∣∣∣∣∣ < 2.4 · 10−3 TeV−2 ,

∣∣∣∣∣C(d)
lq

2212

∣∣∣∣∣ < 2.2 · 10−4 TeV−2 ,∣∣∣∣C ledq
1112

∣∣∣∣ < 8.2 · 10−7 TeV−2 ,

∣∣∣∣C ledq
2212

∣∣∣∣ < 1.6 · 10−6 TeV−2 , (C.4)

at 99.7% confidence level. Similar constraints apply to the coefficients with 1 ↔ 2 on the
quark flavor indices. As discussed in section 3.2, while [C(d)

lq ]ℓℓ12 and [Cledq]ℓℓ12 could in
principle affect nuclear, kaon, and pion charged current decays, the flavor constraints are so
strong that it is safe to neglect their contributions. The bounds in eq. (C.4) can be weakened
by turning on several coefficients at the same time. However, performing a global analysis
would also require the inclusion of other observables, such as KS → ℓ+ℓ− or K → πℓ+ℓ−,
which would provide additional constraining power.

Vertex corrections C(d)
Hq and CHd contribute to semileptonic processes with charged

leptons or neutrinos in the final state. Including the branching ratios K+ → π+ν̄ν and
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KL → π0ν̄ν, we find∣∣∣∣∣C(d)
Hq
12

∣∣∣∣∣ < 1.0 · 10−4 TeV−2,

∣∣∣∣CHd
12

∣∣∣∣ < 1.2 · 10−4 TeV−2, (C.5)

which once again justifies neglecting s − d off-diagonal components.
Finally, as shown in eqs. (3.10) and (C.2), C(u)

lq induces couplings of d-quarks to neutrinos.
For example, at tree level,

[
Lνd

VLL

]
νℓνℓ12

= C
(u)
lq

ℓℓ12
+ λ

(
C

(u)
lq

ℓℓ11
− C(u)

lq
ℓℓ22

)
+ . . . , (C.6)

with K → πνν enforcing ∣∣∣∣[Lνd
VLL

]
νℓνℓ12

∣∣∣∣ < 9.7 · 10−5 TeV−2. (C.7)

This constraint on the diagonal couplings can be avoided by setting the 11 and 22 components
of C(u)

lq to be equal.

C.2 B decays

Nuclear β decays as well as the charged-current decays of pions and kaons are minimally
affected by couplings to b quarks. In the notation of eqs. (3.5) and (3.6), we get

ϵdℓ
L = v2

2
Vub

Vud

(
C

(d)
Hq
31
− C(d)

lq
ℓℓ31

)
, ϵsℓ

L = v2

2
Vub

Vus

(
C

(d)
Hq
32
− C(d)

lq
ℓℓ32

)
. (C.8)

The Vub suppression is such that, for coefficients of O(1TeV−2), ϵdℓ
L and ϵsℓ

L , are about 1 · 10−4

and 5 · 10−4, respectively, already too small to explain the Cabibbo anomaly. The strong
constraints from B → µµ, B → Kµµ, and B → πµµ ensure that the contributions of the bs
and bd components of C(d)

Hq and C
(d)
lq are irrelevant to the CLEW observables.

C.3 D and top decays

In the case of D decays, the experimental limits on the purely leptonic branching ratios are [3]

BR(D0 → e+e−) < 7.9 · 10−8 , BR(D0 → µ+µ−) < 6.2 · 10−9 , (C.9)

while the 90% CL limits of the semileptonic branching ratios are

BR(D+ → π+e+e−) < 1.1 · 10−6 , BR(D+ → π+µ+µ−) < 6.7 · 10−8 , (C.10)

BR(Ds → K+e+e−) < 3.7 · 10−6 , BR(Ds → K+µ+µ−) < 1.4 · 10−7 . (C.11)

The short-distance contribution to the branching ratio D → ℓ+ℓ− is given by

BR(D0→ ℓ+ℓ−)= τD0

32π

√
1− 4m2
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m2
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mD0f2

Dm
2
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C
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, (C.12)
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where fD is the D meson decay constant, for which we take the FLAG average fD =
212(1)MeV [148]. B, C and D are combinations of matching coefficients given by

B = (Leu
VLL − Leu

VLR + Leu
VRR − Lue

VLR)ℓℓ12 , (C.13)

C = (Leu
SRR)ℓℓ12 − (Leu

SRL)ℓℓ12 + (Leu∗
SRL)ℓℓ21 − (Leu∗

SRR)ℓℓ21 , (C.14)

D = (Leu
SRR)ℓℓ12 − (Leu

SRL)ℓℓ12 − (Leu∗
SRL)ℓℓ21 + (Leu∗

SRR)ℓℓ21 . (C.15)

The expression for semileptonic decays D → Pℓ+ℓ− is more complicated and depends on vector,
scalar, and tensor form factors. See, for example, ref. [149] for a general parameterization.

Considering the bounds on the leptonic branching ratios, assuming the SMEFT contribu-
tion to saturate the experimental bound, and turning on one operator at a time we obtain∣∣∣∣∣C(u)

lq
1112

∣∣∣∣∣ < 41.5TeV−2 ,

∣∣∣∣∣C̄(1)
lequ
1112

∣∣∣∣∣ < 0.01TeV−2 ,∣∣∣∣∣C(u)
lq

2212

∣∣∣∣∣ < 0.06TeV−2 ,

∣∣∣∣∣C̄(1)
lequ
2212

∣∣∣∣∣ < 0.006TeV−2 ,∣∣∣∣∣C(u)
Hq
12

∣∣∣∣∣ < 0.06TeV−2 ,

∣∣∣∣CHu
12

∣∣∣∣ < 0.06TeV−2 . (C.16)

The limit on the electron coupling C(u)
lq is particularly weak because of the chiral suppression

in D0 → e+e−. Adding D → πe+e− would constrain [C(u)
lq ]1112 at a level similar to the

other vector couplings in eq. (C.16). Comparing the bounds in eq. (C.16) with the results
of section 7, we see that the constraints on u-c FCNC are not strong enough to exclude
contributions from u-c operators to the neutron and nuclear β decays, pion, and kaon CC
decays at a level comparable with current uncertainties. Therefore, one could imagine
performing a joint analysis of u-c FCNC processes, c-d and c-s CC transitions, neutron β

decays, and pion and kaon decays. Here, for simplicity, we choose to focus only on processes
without charm and to set u-c FCNC coefficients to zero.

As shown in eq. (3.9), top flavor-changing couplings can enter low-energy charged-current
observables at O(λ). FCNC top decays in SMEFT were studied in refs. [150, 151]. Focusing
on the Z couplings induced by C(u)

Hq and CHu, the branching ratio at LO in QCD becomes

Br(t→ Zqi) =
2
c2

w

f

(
m2

Z

m2
t

)[
f

(
m2

W

m2
t

)]−1 ([
δg

(u)
R

]2
i3
+
[
δg

(u)
L

]2
i3

)
,

f(x) = 1
x
(1− x)2 (1 + 2x) . (C.17)

The most recent limits on the branching ratios from the ATLAS collaboration are [152]

Br(t→ Zu) < 13 · 10−5 , Br(t→ Zc) < 6.2 · 10−5 , (C.18)

implying
v2

2
[
C

(u)
Hq

]
13
< 8.4 · 10−3,

v2

2
[
C

(u)
Hq

]
23
< 5.8 · 10−3 . (C.19)

When multiplied by Vts/Vus, the contribution to ϵsℓ
L is of order 10−3 and negligible.
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