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It is conventionally assumed that the negative mass squared term in
the linear sigma model version of the pion Lagrangian is M2 ∼ Λ2

QCD in
powers of Nc. We consider the case where M2 ∼ Λ2

QCD/Nc so that to
leading order in Nc, this symmetry breaking term vanishes. We present
some arguments why this might be plausible. One might think that such a
radical assumption would contradict lattice Monte Carlo data on QCD as a
function of Nc. We show that the linear sigma model gives a fair description
of the data of DeGrand and Liu both for Nc = 3 and for variable Nc.
The values of quark masses considered by DeGrand and Liu, and by Bali
et al. turn out to be too large to resolve the case we consider from that
of the conventional large-Nc limit. We argue that for quark masses mq �
ΛQCD/N

3/2
c , both the baryon mass and nucleon size scale as

√
Nc. For

mq � ΛQCD/N
3/2
c , the conventional large-Nc counting holds. The physical

values of quark masses for QCD (Nc = 3) correspond to the small quark-
mass limit. We find pion nucleon coupling strengths are reduced to the
order O(1) rather than O(Nc). Under the assumption that in the large-Nc

limit, the sigma meson mass is larger than that of the omega, and that
the omega–nucleon coupling constant is larger than that of the sigma, we
argue that the nucleon–nucleon large-range potential is weakly attractive
and admits an interaction energy of the order of ΛQCD/N

5/2
c ∼ 10 MeV.

With these assumptions on coupling and masses, there is no strong long-
range attractive channel for nucleon–nucleon interactions, so that nuclear
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matter at densities much smaller than that where nucleons strongly interact
is a weakly interacting configuration of nucleons with strongly interacting
localized cores. This situation is unlike the case in the conventional large-Nc

limit, where nuclear matter is bound with binding energies of the order of
the nucleon mass and forms a Skyrme crystal.

DOI:10.5506/APhysPolB.49.1513

1. Introduction

It is standard lore that the large-Nc limit predicts a vacuum expectation
value for the sigma field, fπ, which scales as

√
Nc, and that baryons have

a mass of the order of Nc [1]. A model for baryons is provided by the
Skyrme model; within the Skyrme model, the meson–nucleon interactions
are strong, of the order of Nc [2]. This includes pion–nucleon interactions,
and for massless pions leads to very strong long-range forces [1].

The long-range force associated with pion exchange leads to the conclu-
sion that the binding energy of nuclear matter is of the order of the nucleon
mass, and that a nucleon liquid would be unstable, forming a Skyrme crystal
of tightly bound nucleons [3]. In nature, nuclear matter is weakly bound,
with binding energy of the order of 15 MeV. In spite of the great successes
of large-Nc phenomenology for mesons, it appears that the large-Nc limit
dramatically fails to describe the most basic feature of nuclear matter, that
it is weakly bound [4].

The large strength of meson forces is impossible to evade in the stan-
dard Skyrme model of nucleons. The Skyrme model describes a two-baryon
solution, and as a function of position, the energy scales as Nc. This has led
some to modify the Skyrme model, by ignoring the kinetic energy term in the
non-linear sigma model [5]. It is then argued that the Wess–Zumino–Witten
term [6, 7] generates a baryon–baryon interaction, and this combined with
the mass term for the pions generates stable skyrmions. Remarkably, such
skyrmions saturate the BPS bound that means to leading order in large Nc,
they are non-interacting. The essential feature of such consideration is that
the ordinary sigma model kinetic energy term vanishes corresponding to
vanishing vacuum expectation values for the sigma field.

While the BPS Skyrme model has the attractive feature that the inter-
action energy of nucleons is generically weak [8, 9], it has the unattractive
feature that the baryon number density squared is stabilized by the mass
term associated with explicit breaking of chiral symmetry. As we shall see,
this results in the baryon density being of the order of Ncmπ, and the mass-
less pion limit of the theory corresponds to a baryon of infinite extent. We
can see this from elementary scaling arguments. The baryon self interaction
associated with omega meson exchange is of the order of
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∫
d3x

Nc

M2
ω

ρB(x)
2 ∼ Nc

M2
BR

3
, (1)

where R is the nucleon radius. The stabilizing mass generating by the “sigma
term” is of the order of

∼ NcmqΛ
3
QCDR

3 . (2)

Extremization gives
Rnuc ∼ m−1/6q Λ

−5/6
QCD (3)

and the nucleon mass of the order of

Mnuc ∼ Ncm
1/2
q Λ

1/2
QCD ∼ Ncmπ . (4)

The baryon number density is of the order of

1/R3 ∼ m1/2
q Λ5/2 ∼ mπΛ

2
QCD . (5)

The vanishing of the nucleon mass in the chiral limit is an unfortunate
consequence of this theory. Nevertheless, the idea that the vacuum expecta-
tion value of the sigma field is small, and as well the corresponding kinetic
term in the non-linear sigma model, might have merit and we will consider
this assumption in this paper. We will see that if we assume the kinetic term
is suppressed by one order of Nc, we find a different dependence on quark
mass for the nucleon mass and radius, and that for the values for which
there is lattice data from DeGrand and Liu [10], the resulting nucleon mass
is consistent with the data.

A vanishing vacuum expectation value for the scalar field in leading order
in Nc corresponds to a vanishing mass for the sigma particle in this order.
A vanishing mass for the scalar sigma field does happen in the large-Nc

limit of QCD in two dimensions [11]. It is also not so implausible in four
dimensions. In leading order in Nc, the four-dimensional theory is a non-
interacting theory. With a negative mass squared for the sigma field, this
large-Nc theory would be unstable, since to leading order in Nc, interaction
terms which would stabilize the theory vanish. A positive mass squared
term would not allow for chiral symmetry breaking. Assuming a negative
mass squared term generated in non-leading order in Nc would allow for a
stable theory in the strict large-Nc limit. The potential would be flat in this
limit, allowing for symmetry breaking as required by the Coleman–Witten
theorem [12]. The value of the condensate would be determined by the next
to leading order corrections to the sigma model.

It is difficult to provide an explicit mechanism for how the symmetry
breaking negative mass squared term might vanish. It is interesting that
the low-energy sector that results for massless quarks is scale invariant at
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the mean field level for the effective pion-sigma action. Scale invariance is
associated with critical phenomena. Perhaps such scale invariance might be
argued by renormalization group methods in the large-Nc limit. As we will
see, this scale invariance argument is also useful for arguing the form of the
effective action that generate the nucleon mass. In any case, we will take
throughout this paper an unproven assumption that this masslessness exists
and shall explore the consequences of this assumption.

One can ask whether this 1/Nc behavior of the squared mass of the sigma
field is preserved by higher order radiative corrections. This is equivalent
to ask if the 1/Nc behavior is natural. Indeed, when one computes the
radiative correction to the sigma mass, the lowest order correction arises
from a tadpole diagram. The four-meson interaction in the diagram is of the
order of 1/Nc and the overall quadratic divergence is cutoff at the QCD scale
so this gives a contribution to the mass squared of the order of Λ2

QCD/Nc,
and indeed the behavior of the scalar mass term is natural. Higher order
corrections indeed maintain this behavior.

Another implication of these results is that fπ ∼ O(1) in powers of Nc.
On the other hand, standard counting in powers of Nc using quark count-
ing gives fπ ∼

√
Nc. In the considerations below, we will limit ourselves

to momentum scales which are less than ΛQCD/
√
Nc. If, for example, we

compute the matrix elements of the vector current squared, it is given by
a vacuum polarization diagram involving a quark loop, and this appears to
be of the order of Nc corresponding to a current with a typical value of the
order of

√
Nc. However, if we look at low momentum scales, of the order of

q ∼ ΛQCD/
√
Nc, the contribution to the quark loop involving gluons must

be summed. The leading order contribution in powers of Nc are one vector
meson states such as the ρ meson, and this state decouples at zero momen-
tum transfer as q2/M2

ρ , suppressing the contribution by the order of 1/Nc.
Now, if a vector meson coupling to this channel shrinks to zero mass in the
large-Nc limit, then the ordinary counting can be maintained.

We shall later argue that the sigma meson mass becomes small in the
large-Nc limit. If this is the case, the ordinary Nc counting should work
for vector current matrix elements. The axial vector channel is however
different. In the axial isoscalar vector channel, there is a U(1) anomaly, and
we will argue this will result in a pseudo-scalar particle with mass of the
order of ΛQCD.

Let us consider the two axial vector current correlation function. This
correlation function involves a quark–antiquark pair, the interactions of
which can lead to a pole corresponding to an axial vector meson. We assume
that, as is the case for the scalar axial vector mesons, also have masses of
the order of ΛQCD. In this case, axial vector meson contributions will be
suppressed at small q2. This leaves two meson intermediate and the pion
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states which are suppressed by powers of Nc. Note that the contribution
from the scalar sigma and pion to the axial vector isotriplet current can be
written in terms of the low momentum degrees of freedom as

Jµa5 ∼ σ
{→
∂ µ −

←
∂ µ

}
πa . (6)

For the cases where fπ = 〈σ〉 ∼ O(1) in powers of Nc, this current has
matrix elements of the order of 1, consistent with the reasoning above. A
necessary condition for this to be maintained, therefore, is that the isovector
axial vector mesons have a mass of the order of ΛQCD.

We can easily see why the η′ mass is of order one in our scenario. It
follows simply by the assumption that the energy density dependence of the
θ angle of QCD is of order one because

m2
η′ ∼

1

f2π

d2E

dθ2
∼ Λ2

QCD , (7)

where we have assumed the U(1) current is of the form of

Jµ5 ∼ σ
{→
∂ µ −

←
∂ µ

}
η′ . (8)

Since the U(1) axial symmetry is explicitly broken, there is no spontaneous
symmetry breaking so the parity doublet of the pion, the scalar isovector
mesons presumable have masses of the order of ΛQCD.

Strictly speaking, Eq. (7) for the η′ mass is derived when mη′ is much
less than the QCD scale. There are corrections of order one in powers of
Nc for this relation when the mass is of the order of the QCD scale. In the
conventional argument due to Witten, one assumes the matrix element of the
axial vector current that connects the vacuum to the η′ state is suppressed
relative to the topological charge changing matrix elements. The η′ mass is
small so that it compensates for the small values of the axial current matrix
elements. If, however, the topological charge change is not suppressed in
large Nc, the axial vector anomaly requires that the matrix element for
producing the η′ may be large, and a priori a small η′ mass is not necessary.
The small η′ mass in the conventional argument arises because the smallness
of the mass compensates for the smallness of the matrix element.

It is useful to be a little more explicit and show how Witten’s argument
modifies when applied to this case [7]. Witten considers the contribution
to the topological susceptibility from gluonic contribution and meson states
composed of quarks. When added together, they should yield zero, since the
topological susceptibility vanishes in a theory with massless quarks. This
leads to a sum rule, as the sum is over meson states

∑

n

| 〈0|Qtop|n〉 |2

m2
n

=
d2E

d2θ
, (9)
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where d2E/d2θ is the topological susceptibility in a pure gluon theory. We
then use the anomaly

Qtop = 2Nf

∫
d4x∂µJ

µ
5 (10)

relating the topological charge to twice the number of light quark flavors
times the change in the U(1) axial vector charge.

Let us concentrate on the contribution of the η′ state to the sum over
mesonic states. If this matrix element is of the right magnitude, then it can
cancel the non-zero contribution of the gluons to the topological suscepti-
bility. Low-energy current algebra theorems give

〈0|∂µJµ5 |η
′〉 = m2

ηfη . (11)

We can see this in the low-energy Lagrangian considered above, where in
this effective theory

Jµ5 = φ∂µη′ (12)

and φ is the expectation value of the scalar sigma field so that fπ = fη to
leading order in Nc.

In the ordinary large-Nc argument of Witten, fπ ∼
√
Nc and m2

η ∼ 1/Nc

so that the matrix element is of the order of 1/
√
Nc. The factor of m2

η in the
denominator of Eq. (9) cancels the factor 1/Nc originating from the matrix
element squared, and makes the overall η′ contribution of order 1.

Now consider the vacuum expectation value of order one, fπ ∼ N0
c ; in

order to satisfy the sum rule (9) and have the desired cancellation, we have
to have the η′ mass of order 1, mη′ ∼ N0

c . Additionally, since the divergence
of the axial current is already of order in this case, a plethora of massive
states, not just single η′ contribute.

We also comment that sometime it is argued that the η′ mass is of
the order of 1/Nc based on the perturbative counting of interactions with
the gluon field. The difficulty with this argument is that in order to have
topological charge changing effects, the gluon field has to be strong, that is
non-perturbative, of the order of

√
Nc rendering inconsistency in this argu-

ment.
There is no reasonable theory of nuclear matter if the scale σ becomes

massless and there is no other small mass isosinglet vector, since this gener-
ates an attractive force on baryons of the order of Nc and will cause nuclear
matter to collapse. One needs also that the ω meson becomes massless also,
with mω ≤ mσ and that in this limit, ω nucleon coupling is larger than that
of the σ meson. This guarantees that in the isosinglet channel at distances
less than R ≤

√
Nc/ΛQCD, the overall isosinglet force is repulsive. In vari-

ous theories such as those with a hidden local gauge symmetry, the omega
meson mass is of the order of fπ/

√
Nc. We will need to have this possibility
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here as well. Presumably, there is a similar behavior for the ρ meson. So the
theory we propose would have a Goldstone pion, a small mass sigma and
omega, mω ≤ mσ ∼ 1/

√
Nc. We will make such assumptions in this paper,

and explore the consequences.
The reason why ρ-meson mass goes to zero in the large-Nc limit if fπ ∼

O(N ′c) is due to the KSRF relation of current algebra [13]. It states that

m2
ρ = 2g2ρππf

2
π . (13)

Using g2ρππ ∼ 1/Nc, we get m2
ρ ∼ 1/Nc. In theories with a Hidden Local

Gauge symmetry, this mass relation is a consequence of gauge bosons of
the effective field theory eliminating the unphysical Goldstone mode, and
the non-zero expectation value of the σ field. In such theories, if there is
a SU(2) flavor symmetry, the ω meson acquires a mass with parametrically
similar dependence upon Nc. In the large-Nc limit, if we assume fπ is of
order 1, these vector meson masses vanish.

Hidden Local gauge symmetries provide an explicit realization of the
KRSF relation for masses and maintain global symmetries. It is amusing
that the limit we consider has a massless sector of scalar, pseudo-scalar and
vector bosons that breaks the scale invariance by the appearance of one
scale, the vacuum expectations value of the σ field.

In the next section, we write out the explicit action for the pion–nucleon
sigma model. We then use this action to compute fπ, the sigma meson mass
and the pion mass. We compute these quantities as a function of the quark
mass, the number of colors Nc, the four meson coupling strength λ and the
negative mass squared which drive the symmetry breaking. We show that
our results are in good accord with those of DeGrand and Liu for Nc = 3 and
determine the values of the underlying parameters of our sigma model [10].
The values for quark masses in the computation of Bali et al. [14] are quite
large, and they work in the quenched approximation, and we do not compare
with their data. We find that there are two possible cases: In the first one,
the quark mass is generically mq � ΛQCD/N

3/2
c . In this limit, symmetry

breaking is driven by the explicit symmetry breaking of the quark mass.
The large-Nc counting is conventional for physical quantities. The data of
DeGrand and Liu is in this range [10]. The other case is mq � ΛQCD/N

3/2
c .

In this range, physical quantities have unanticipated dependences on Nc and
there is no Monte Carlo data for Nc dependence for this case. For QCD,
(Nc = 3), the physical value of quark masses is in this region.

In the fourth section, we compare the sigma model action prediction to
the computations of DeGrand and Liu for variable Nc [10]. We find fair
agreement with their results, although the quark masses considered are suf-
ficiently large so that deviations from the naive large-Nc scaling predictions
are small.
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In the fifth section, we consider baryons. We argue that the baryon mass
for the small quark mass limit scales as MB ∼

√
NcΛQCD, and that the

radius R ∼
√
Nc/ΛQCD. These scaling relations imply that the baryon mass

is of the order of
√
Ncfπ, and this dependence is consistent with the data of

DeGrand and Liu for large quark masses [10]. The data available are not in
the small quark mass limit where the unexpected behavior as a function of
Nc is found. Nevertheless, the agreement with our Nc dependence is only
fair for the range of parameters considered by DeGrand and Liu.

In the last section, we consider general properties of the nucleon–nucleon
force. We find the pion to be couple not with a coupling of the order of

√
Nc

to the nucleon but of order 1. The pion force generates a long-range tail for
nucleon–nucleon interaction.

To achieve a theory of the nucleon that has a reasonable small interaction
strength for nuclear matter, we needed to make drastic assumptions about
the behavior of QCD in the large-Nc limit. In the future, we intend to inves-
tigate various Lagrangian for scalar and vector mesons to see under what set
of assumptions, if any, such a description is internally consistent. It is also
true that the behavior we predict makes testable predictions for Monte Carlo
simulations of the large-Nc limit of QCD. Unfortunately, the restriction to
very small mass quarks makes explicit computation very difficult.

2. The low-energy linear pion sigma model as a function of Nc

We begin with the effective action

S =
1

2

[
(∂φ)2 + (∂π)2

]
− 1

2

m2

Nc

(
φ2 + π2

)
+

λ

4Nc

(
φ2 + π2

)2 −
√
Ncmqµ

2φ .

(14)
Here, φ is the sigma field and π is the pion field. The quark mass is mq =
(mu +md)/2 ∼ 3.5 MeV. The parameters m,λ, µ will be determined from
the sigma meson mass, the pion decay constant fπ which is the vacuum
expectation value of φ and by the pion mass.

We are here assuming that the negative mass squared term in our ac-
tion is of the order of 1/Nc. The conventional large-Nc limit is obtained
if m2 ∼ Nc. The

√
Nc in front of the last term (the sigma term) is of the

correct order for the large-Nc limit.
The vacuum expectation values of the sigma field is determined by the

roots of
φ3 − φm2/λ−N3/2

c mqµ
2/λ = 0 . (15)

We denote this root by φ0.
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One can solve for the values of the parameters m2, µ2 and λ in terms of
the masses of the sigma meson, the pion and the expectation value of the
scalar field φ0. The vacuum values for Nc = 3 are taken to be

mπ = 140 MeV , φ0 ∼ fπ ∼ 130 MeV , Mσ ∼ 950–1050 MeV . (16)

The solutions are

λ = Nc
m2
σ −m2

π

2φ20
, (17)

µ2 =
m2
πφ0

mq

√
Nc

, (18)

m2 = Nc
m2
σ − 3m2

π

2
. (19)

Note that if we were to take m2 ∼ Nc for the conventional large-Nc limit,
we would have φo ∼

√
Nc, and the values of λ, µ2 and m2 would be Nc-inde-

pendent. Our philosophy will be to take these values from the case ofNc = 3,
fix them, and then determine the variation of mπ, mσ and φ0 = fπ predicted
by the variation of Nc.

Notice that there are two regimes for solution to this equation. We will
get these values more precisely later, but for now if we assume that µ ∼ m ∼
ΛQCD and λ ∼ 1, these regimes are the small and large quark mass limits
which are separated by mq ∼ Λ/N3/2

c . When we put in properly determined
numbers, we will see that the small quark mass regime is characteristic of the
physical values for the real world of pions, sigma mesons and fπ. However,
we will see that for almost all of the range covered in the work of DeGrand,
the large quark mass region dominates. Notice that this also implies that as
Nc →∞, there is a non-uniformity of the small quark mass limit. The small
mass limit is what is required for good phenomenology, so we must always
take Nc large but finite and consider masses in the range of mq � Λ/N

3/2
c

for the correct physical limit.
Let us explore solutions in these different limits. In the small mass

limit (Region I), the VEV is determined by ignoring the sigma term (term
proportional to the quark mass)

φ0 = m/
√
λ . (20)

Because of the extra 1/Nc in the mass term, the VEV for case one is
Nc-independent.

In the large quark mass limit (Region II),

φ0 =
√
Nc

(
mqµ

2/λ
)1/3

. (21)
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In this latter case, the scalar field has the canonical dependence on Nc as
expected in the ordinary large-Nc limit. We will see that this will guarantee
the expected large-Nc behavior for physical quantities in this limit.

We can now compute the sigma mass

m2
σ = −m

2

Nc
+

3λ

Nc
φ20 . (22)

For Region I,

m2
σ =

2m2

Nc
. (23)

In this small-mass region, the sigma mass shrinks to zero as Nc → ∞. Of
course, for any fixed quark mass, we are only in the region up till some
large N and then we move into the effective large mass region. In Region II,

m2
σ = 3

(
mqµ

2
√
λ
)2/3

. (24)

The pion mass can also be computed in these two limits:
Region I

m2
π =

√
Ncλmq

µ2

m2
(25)

and Region II

m2
π =

(
mqµ

2
√
λ
)2/3

. (26)

Let us now determine parameters for the world we live in1, see Eqs. (16)

m = 1112.3 MeV , µ = 648.3 MeV , λ = 76.7 . (27)

The obtained value of the coupling constant is somewhat large even if we
take into account that the expansion parameter that controls perturbative
computations is λ/(4π2Nc) ≈ 0.7. This either means that the model at hand
is too simplistic or that the lattice artifacts dominate in the observables.
Here, our strategy is to be pragmatic and to take the fitted values at their
face value.

The edge of the region where the large limit dominates is when the
quartic term in the potential dominates over the quadratic. This is when

λφ2 ∼ m2 (28)

or when

mq ∼ m
m2

µ2
1√
λ

1

N
3/2
c

= 72 MeV . (29)

1 For certainty, we use Mσ = 1000 MeV.
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3. Mesons at Nc = 3: Comparison to LQCD results

Using the model described in Section 2, we attempt to fit the depen-
dence of the mesonic properties on the quark mass obtained from the lattice
data [10] for Nc = 3. We would like to point out that the model has a few
parameters and fixing the parameters at the physical quark mass leaves us
with only one parameter to vary — the sigma mass. This over-constrains
the model and we fail to achieve a good fit of the lattice data. We thus
allow small variation of the physical parameter mπ. This variation can be
attributed to either systematics of the lattice calculations or, which is more
plausible, to relevant physics our model fails to capture. We get a good
description of the lattice if we increase mπ to 180 MeV.

In Fig. 1, we show the dependence of the pion decay constant and the
pion mass on the quark mass in the model; the results are compared to the
lattice QCD calculations from Ref. [10]. The model results are obtained by
solving the stationarity conditions, Eq. (15); the pion mass is then computed.
The stars in Fig. 1 denote the physical values of the observables.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
mqr1

0.15

0.20

0.25

0.30

0.35

0.40

0.45

r 1
φ
0/

√

N
c/
3

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
mqr1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
2 π
r2 1

Fig. 1. The pion decay constant (left panel) and the pion mass (right panel) as
a function of the quark mass for Nc = 3. The shaded region corresponds to the
variation of the sigma mass in the range from 950 to 1050 MeV. The symbols
show the lattice data from Ref. [10]. The stars show the physical values of the
observables.

Although the model misses the first LQCD data point for the pion decay
constant, the overall description of the lattice results is quite remarkable
given the simplicity of the model.

Additionally, we compare our results for the vector meson mass, assuming
mV ∝ fπ, see Fig. 2.

Using this fit, we can proceed by computing the observables for any
number of colors.
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0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
mqr1

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

m
V
r 1

Fig. 2. The vector meson mass as a function of the quark mass for Nc = 3. The
symbols show the lattice data from Ref. [10]. The stars show the physical values
of the observables.

4. Variable Nc

Recent calculations by DeGrand and Liu show the dependence of various
observables on Nc [10]. Here, we want to demonstrate that, in their range
of the quark masses (in the model, it is Region II described in Section 2),
our model follows the data and exhibits the conventional dependence on the
number of colors. In Fig. 3, we show the pion decay coupling constant as a
function of the mass for various Nc. For the model, we also show the limit
of Nc → ∞. As seen from the figure, for these values of the quark masses
the large-Nc limit describes lower values Nc quite well, which demonstrates
the conventional scaling of Region II, see Eq. (21).

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
mqr1

0.15

0.20

0.25

0.30

0.35

0.40

r 1
φ
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√

N
c/
3

Nc = 2

Nc = 3

Nc = 4

Nc = 5

Nc = 2

Nc = 3

Nc = 4

Nc = 5

Fig. 3. The pion decay constant as a function of the quark mass for Nc = 2, 3,

4, 5,∞. The model results are shown by the curves. The sigma mass in the model
is fixed to 1000 MeV. The lattice data (symbols) is from Ref. [10].
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The important question this exercise allows us to address is: Are the
lattice data in a range where we can rule out our 1/Nc hypothesis for the
negative mass-square term of action (14)? The answer is that no, we cannot
rule this hypothesis out based on the available data.

As we argued in the introduction, the relevant region for the physical
quark masses is Region I. Indeed, by applying the argument presented in
Eq. (29) to the physical quark mass and computing the critical N cr

c where
the transition from Region I to Region II takes place, we get N cr

c ≈ 22. We
also demonstrate this in Fig. 4, where the dependence of the pion decay
coupling constant on the number of colors for the physical quark mass is
plotted. The two asymptotic regimes, see Eq. (20) and Eq. (21), are also
shown. This comparison shows that at the physical pion mass, the relevant
approach to the limit Nc → ∞ should be considered in the case of a small
quark mass, Region I.

100 101

Nc

100

φ
0/
f π

Fig. 4. Illustration of the different regions in approaching the large-Nc limit: the
pion decay constant as a function of Nc. The dashed line shows the Region I, see
Eq. (20); the dotted line shows the Region II, see Eq. (21).

5. Baryons

Baryons in the large-Nc limit are conventionally assumed to be given by
non-perturbative solutions to the classical equation of motion of the non-
linear sigma model [2]. These skyrmions have a topological charge corre-
sponding to baryon number. Let us first consider general features of such
non-perturbative solutions.
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In the small quark mass region where the large-Nc behavior is uncon-
ventional, the potential is generically of the order of 1/Nc. Therefore, the
kinetic energy term is of the order of potential energy if R ∼

√
Nc/ΛQCD.

This implies the mass of the skyrmion is of the order of M ∼
√
NcΛQCD.

More generally, even in the large-Nc region, the kinetic energy will trade off
against the potential energy when R ∼

√
Nc/fπ, and M ∼

√
Ncfπ. The lat-

tice data seems to support it, see our representation of results by DeGrand
and Liu in Fig. 5. For the conventional Skyrme model treatment, this would
imply M ∼ NcΛQCD and R ∼ 1/ΛQCD.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
mqr1

5

6

7

8

9

10

11

12

mN/fπ

mV /fπ

Fig. 5. The ratios of the nucleon and vector meson mass to the pion coupling
constant as a function of the quark mass. This is a representation of the results by
DeGrand and Liu, see Ref. [10].

For large mq, we would indeed find the correct Nc counting for the mass
and radius of any solitonic solution, however, the dependence upon quark
mass is non-trivial. As the scale is set by fπ, for large quark mass, we have
the radius

R ∼
√
Nc/φ0 ∼

(
λ/mqµ

2
)−1/3

. (30)

In order to be in the large quark mass limit appropriate for this expres-
sion, we must have R �

√
Nc/ΛQCD. Correspondingly, the mass is M �√

NcΛQCD.
In general, the only scale in our theory of pions and sigma mesons is

fπ so if there is a non-perturbative skyrmionic solution for the theory, its
size will generically be of the order of

√
Nc/fπ and mass of the order of√

Ncfπ. We might have thought that a derivative expansion for an effective
Lagrangian for the skyrmion would be well-behaved because of the large
distances involved. This is not the case as the mass scale associated with
this derivative expansion is the σ mass, which is of this same size.
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A light mass sigma meson will cause problems for baryonic matter. The
sigma meson generates an attractive self-interaction. This will show up
in a skyrmion solution for two-particle interactions that will have a long-
distance attractive interaction that will generate a binding energy for the
two-skyrmion solution that is of the order of the skyrmion mass. The sigma
mass cuts this interaction off at large distances, so large binding is gener-
ated at the size scale of the skyrmion and is a hard core attraction. In order
to have a sensible theory, one needs a compensating repulsion. This might
be given by the omega meson. The coupling of the omega to the nucleon
would need to be larger than that of the sigma. This is phenomenologi-
cally the case. More importantly, the omega mass would have to shrink
to zero like the omega in the large-Nc limit, and mω ≤ mσ. In models
with a hidden local gauge symmetry, this is plausible, since the omega me-
son’s mass is proportional to fπ/

√
Nc. It is also not so implausible if the

large-Nc limit corresponds to critical behavior since both the sigma meson
and omega meson couple to isospin singlet density fluctuations. With this
added assumption, the omega and sigma mesons combine together to gen-
erate a short-distance repulsive core. If the typical separation of nucleon
is large compared to this core’s size, it should not affect much the energy
density of nuclear matter. The hard core interaction will generate effects of
the order of

√
NcR

3
nucleonρbaryon, so if the density of nuclear matter is suf-

ficiently low, the effects are small. This will be discussed more in the next
section when we discuss pion interactions. At this point, we note that the
typical distance scale for the pion interactions is of the order of 1/mπ, and
since Rnucleonmπ ∼

√
Ncmπ/ΛQCD � N

−1/4
c , so that the effects of the hard

core relative to the mass contributions to the energy are suppressed by at
least a factor of N−3/4c . In the case of QCD for Nc = 3, the bound that
mq ≤ ΛQCD/N

3/2
c is satisfied with about an order of magnitude to spare,

and for general Nc, there is always some sufficiently small quark mass where
this will give an acceptably small correction from the core.

An explicit form for the skyrmion solution is difficult to argue, since
one will have all order in derivatives, as is really the case for the standard
skyrmion solution, and because the ω meson will play an essential role in its
structure. Nevertheless, the dependence of the mass of the skyrmion upon
fπ can be compared to the lattice data, see Fig. 6. The figure demonstrates
quite a good agreement affirming our discussion based on the skyrmion ar-
gument.
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Fig. 6. The nucleon mass as a function of the quark mass for Nc = 3 (left) and its
Nc dependence (right). The model results are shown by the shaded region which
represents the variation of the sigma mass from 950 to 1050 MeV; and by the curves,
in this case, the sigma mass is taken to be 1000 MeV. The lattice data (symbols)
are from Ref. [10]. The star shows the physical value of the observables.

6. Strength of interaction

As described above, the short-distance repulsive core is associated with
omega and sigma exchange. What about the pion long range tail? The
conventional pion–nucleon interaction of the sigma model, g ψτ ·πγ5ψ, has an
interaction strength naively of the order of

√
Nc from the coupling. However,

for a non-relativistic nucleon, this is of order g/2Mnucleonψγ
µγ5ψ which is

of order 1 in powers of Nc. There is also a potentially dangerous term that
arises from the axial current interaction

g2

Λ2
QCD

{
ψLχγ · ∂χ†ψL + ψRχ

†γ · ∂χψR

}
. (31)

Here, g2 is of order 1 in powers of Nc, and if this interaction is generated
by the exchange of an axial vector meson, then the scale is ΛQCD. For
fπ ∼ O(∞) in powers of Nc again this generates an interaction of order 1.
Note that the basic pion nucleon interaction strength is reduced by a factor
of
√
Nc relative to the naive counting, where fπ ∼

√
Nc.

This counting means that the one pion exchange isospin-dependent in-
teraction is of the order of 1/Λ2

QCDR
3, which at the typical length scale of

the nucleon is of the order of 1/N3/2
c . For isopsin singlet interaction which

should be typical of nuclear matter, two pion exchanges are important, and
these are of strength of 1/Λ4

QCDR
5 ∼ 1/N

5/2
c . So the picture naturally arises

that the nucleon has a strongly repulsive core with a weak long-scale interac-
tion generated by pion exchange. There is no strong long-range force. This
is consistent with the phenomenology of nuclear matter.
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One can, of course, also include the effects of massive mesonsM ∼ ΛQCD,
but such mesons when convoluted over the large size scale of the nucleon
give small effects.

The issue of the binding of nuclear matter is a very subtle one and may
be special to the case of intermediate values of Nc and the details of the
pion, sigma and omega meson masses. Nevertheless, the basic outline of our
description seems reasonable.

Concluding this section, we want to mention that the effective theory
with the required properties was discussed in the literature before, see e.g.
[15]. First of all, the vector meson (rho and omega ) masses satisfy the KSRF
relation m2

V ∝ f2π . Second, at least for three colors, the parameters of the
model are consistent with the phenomenologically reasonable hierarchy of
the interaction ranges; one may expect that the associated hierarchy of the
coupling constants between matter fields scalar/vector mesons is preserved
at larger Nc.

7. Summary

In this article, we tried to resolve the issue of the interaction strength for
the nuclear matter. For this, we needed to make assumptions on the QCD
behaviour in the large-Nc limit; namely, in contrast to the conventional
scaling N0

c , we considered that the negative mass term of the associated
linear sigma meson Lagrangian is inversely proportional to Nc and thus
vanishes in the large-Nc limit. We showed that this radical assumption does
not contradict the existent lattice QCD data, which provides results for the
quark masses in the range where, in our approach, the conventional scaling
still holds mq � ΛQCD/N

3/2
c . With some modest assumptions for the values

of the scalar–nucleon and vector–nucleon coupling constants, we were able to
get a weakly attractive nucleon–nucleon potential admitting an interaction
energy of the order of the physical scale.
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