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Abstract

Generalizations of the AGT correspondence between 4D N =2 SU(2) supersymmetric gauge theory
on C2 with §-deformation and 2D Liouville conformal field theory include a correspondence between 4D
N =2 SU(N) supersymmetric gauge theories, N =2, 3, ..., on CZ/Z,,, n=2,3,.. .,,\\vith Q2-deformation
and 2D conformal field theories with W]Ganr @ (n-th parafermion Wy ) symmetry and sl(n)y symmetry. In
this work, we trivialize the factor with Wﬁanm symmetry in the 4D SU(N) instanton partition functions

on C2 /Zy (by using specific choices of parameters and imposing specific conditions on the N-tuples of
Young diagrams that label the states), and extract the 2D sl(n)y WZW conformal blocks, n =2,3,...,
N=1,2,....
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1. Introduction
1.1. Algebras on the equivariant cohomology of instanton moduli spaces

In [1], Alday, Gaiotto and Tachikawa conjectured a profound correspondence between
SU(2) instanton partition functions in A = 2 supersymmetric gauge theories on C2, with Q-
deformation [2], and Virasoro conformal blocks on the sphere and on the torus (see [3] for a
proof!).

Their conjecture was further generalized to correspondences between SU (N) instanton par-
tition functions on C2 and Wy conformal blocks [7,8], SU (2) instanton partition functions on
C? /Z» and N = 1 super-Virasoro conformal blocks [9—14], SU (2) instanton partition functions
on C?2 /7Z4 and conformal blocks of S3 parafermion algebra [15,16], efc.

In [17], by considering N M5-branes compactified on C2/Z,, with Q-deformation, Nishioka
and Tachikawa, following a proposal in [9], suggested that A" = 2 SU (N) supersymmetric gauge
theories on C?/Z,, are in correspondence with 2D CFTs with n-th parafermion Wy symmetry,
which we refer to as Wy, and affine s[(n) y symmetry.

In [18], it was proposed that the AGT correspondence for U (N) supersymmetric gauge theory
on C?/Z,, can be understood in terms of a 2D CFT based on the algebra

SIN), ®SIN)
SIN) g pn

which acts on the equivariant cohomology of the moduli space of U (N) instantons on C2/Z,,
n=2,3,.... Here, the first factor H = u(1) is the affine Heisenberg algebra, the second factor
is the affine sl(n) level-N algebra, and the third (coset) factor is the Wy algebra, whose

AN, n; p) =H@sln)y @ (L.1)

parameter p, which controls the central charge,” is related to the Q-deformation parameters
€1, €2 by

€1 n

—=—1—-—. (1.2)

€ 4
The coset factor gives a Virasoro algebra when (N, n) = (2, 1), a Wy algebra when (N, n) =
(N, 1), an N =1 super-Wy algebra when (N,n) = (N, N), and an S3 parafermion algebra
when (N, n) = (2,4).

1.2. Burge conditions

Let p > N be a positive integer. For n = 1, the ;[(n)N factor in the algebra A(N, n; p) is
trivialised, while the coset (third) factor describes the Wy (p, p 4+ 1)-minimal model. In [19,20]
for (N,n) = (2,1) and further in [21] for (N, 1), N = 3,4, ..., it was shown that to obtain
minimal model conformal blocks from the SU (/) instanton partition functions on C? with Q-
deformation (1.2), we need to remove the non-physical poles, corresponding to VV/y minimal
model null states, from the instanton partition functions. These non-physical poles emerge when
the Coulomb and mass parameters of the gauge theory take special values labeled by integers

! In the context of geometric representation theory, the AGT correspondence for pure SU(N) supersymmetric gauge
theory on C2? was proved in [4,5] (see [6] for a generalization to all simply-laced gauge groups).
2 In general p € C.
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rivsi, I=1,...,N=1with N —1 <> ¥ 'ry < p—1,N—1< 3" 's; < p. The conditions
that exclude the non-physical poles were shown to be (N-)Burge conditions (see [22,23] for
N =2 and [24-26] for general N)

Yii>Yii,i4rp—1—s1+1 fori>1, 0<I <N, (1.3)

for N-tuples of Young diagrams (Y7, ..., Yn) which define the instanton partition functions,
where Yo =Yy, and ro = p — Z}V:]l ri,so=p+1— 27;1] s7. For n > 2, the coset factor in
the algebra A(N, n; p) is considered to describe a W]Ganr “ (p, p + n)-minimal model. In this
paper, we show that the same (N-)Burge conditions above also remove the non-physical poles
from the SU (V) instanton partition functions on C2?/Z, with Q-deformation (1.2).

1.3. Trivialization of the coset factor

For p = N, the coset factor in the algebra A(N, n; p) is trivialized (the partition function
reduces to 1),

AN, n; N) =H @ sl(n), (1.4)

and the SU(N) instanton partition functions on C?/Z, provide the ;[(n) N WZW conformal
blocks. Since all parameters are now integral (or at least non-generic), the affine factor will
include non-physical poles due to null states. To remove these, we need to impose the appropriate
Burge conditions (1.3) on the gauge theory side. In the present work, we show that the integrable
;[(n) N WZW conformal blocks can be extracted from the instanton partition functions by an
appropriate choice of the parameters and imposing the appropriate Burge conditions.

1.4. Plan of the paper

In Section 2 we briefly recall the generating functions of coloured Young diagrams and the
instanton partition functions in A’ =2 U (N) supersymmetric gauge theories on C?/Z, with Q-
deformation. The relevant AGT-corresponding 2D CFTs are reviewed in Section 3. In Section 4
we derive the Burge conditions (Proposition 4.3) from the requirement that the SU () instanton
partition functions on C2/Z,, with Q-deformation (1.2), labeled by a positive integer p, do not
have non-physical poles of the type described in Section 1.2. In subsequent sections, we only
consider the Burge conditions that correspond taking p = N, which we need to trivialize the
coset factor. In Section 5, by imposing the Burge conditions, we introduce what we refer to as
Burge-reduced generating functions of the coloured Young diagrams. In Proposition 5.1 we show,
using the crystal graph theory developed by the Kyoto group [27], that these coincide with the
integrable sl(n) y WZW characters. In Section 6, we introduce what we refer to as Burge-reduced
instanton partition functions, by imposing the appropriate Burge conditions, and find that specific
integrable sl(n) y WZW conformal blocks are obtained from them (Conjectures 6.5, 6.6 and 6.7).
Our proposal, for computing WZW conformal blocks from models based on the A(N, n; N)
algebra, is tested in Section 7 for (N, n) = (2, 2), (2, 3) and (3, 2). Finally, in Section 8 we make
some remarks. In Appendix A, we summarize the notation of Lie algebras that is used in this
paper, in Appendix B, we review some AGT correspondences to confirm our conventions, and in
Appendix C, we recall a class of integrable sl(n) y WZW 4-point conformal blocks computed in
[28], which we compare in Section 7 with our results.
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2. U(N) instanton counting on C2/Z,

We review how the moduli space of U (N) instantons on C?/Z,, with Q-deformation is charac-
terized by coloured Young diagrams, and define the generating functions of the coloured Young
diagrams and the instanton partition functions.

2.1. Characterisation of the instanton moduli space by coloured Young diagrams

Consider the U (N) instantons on C?/Z,, where Z, acts on (z1, z2) € C? by

Zn: \z1,22) — [e%”m,e_%”m], o=0,1,....,n—1, 2.1)
and introduce the 2-deformation parameters (€1, €2) [2,29], by
U?:  lz,z2) — lez1,e%22) . 2.2)

Using localization, the U(N) instantons on C2/Z, are described by the fixed points, on the
instanton moduli space, of the U (1)2 x U (l)N torus generated by e€!, e2 and e/, where ay,

I=1,...,N, are the Coulomb parameters in the U (N) gauge theory. The Coulomb parameters
have charges o7 € {0, 1, ...,n — 1} under the Z, action

Zn: aj — enay. (2.3)
Let Y be a coloured Young diagram, with a Z,, charge o € {0, 1, ..., n — 1}, in other words, Y?

is composed of boxes such that the box at position (i, j) € Y7 is assigned the colour 0 —i + j
(mod n). The fixed points of U(N) k-instanton moduli space on C?/Z,, are labeled by N-tuples

of coloured Young diagrams Y’ = (Yl“l, el Y;\T,N) with
N
k=|yo|:=>" |/ 2.4)
I=1

total number of boxes [30,31], where Y;” are charged by (2.3), and |Y1”’ | denotes the number
of boxes in Y f’ . Let Ny and k, be the number of Young diagrams with charge o and the total
number of boxes with colour o, respectively. Then,

n—1 n—1
Y Ne=N., > ke=k. (2.5)
o=0 o=0

In what follows, we use N to denote the sequence [N, ..., Ny Fig. 1 shows an example of

a coloured Young diagram.

Remark 2.1. In this paper, without less of generality, we assume

012022 ...20N, (2.6)
by arranging the ordering of the Coulomb parameters. Then, given non-negative integers N =
[No, ..., Ny_1], the charges o1, ..., oy are uniquely fixed by the above prescription. This im-
plies that ¢ = (o1, ...,0n,0,0,...) is a partition having at most N non-zero parts and o1 < n.

3 TItis often convenient to regard NV as a vector on the basis of fundamental weights of ;((n). That each Ny > 0 with
ZZ;}) Ny = N then implies that N € P:,—N' Moreover, if we set A = par(/V) using (A.8), then (01,072, ...) = AT, the
partition conjugate to A, by Lemma A.1.



O. Foda et al. / Nuclear Physics B 956 (2020) 115038 5

N=1 n=5 > )
3 314 2]3]
g= .
k=15 P30 Av@=3
k=3 k=3 k=3 112]3
ks=4 k,=2 011] Ly@=2

Fig. 1. An example of a coloured Young diagram Y = Y? with charge o = 3, k = 15, in the case of (N, n) = (1, 5). For
0= (2, 1), the arm length and the leg length defined in (2.19) are Ay (0J) =3 and Ly ([J) = 2, respectively.

Using the above notation of coloured Young diagrams, the U (N) instantons on C2/Z,, are
further characterized by the first Chern class of the gauge bundle

n—1
cl= Zto c1(T5), 2.7
=0

where

¢o = Ny + 8kg_1 — 28ke + Skl (2.8)
n—1
=N, —ZAUini, o=0,1,....n—1, 8ky:=ky — ko,
i=0

with k, = kg and k_{ = k,,_1. Here, c¢{(7,) is the first Chern class of /Ehe vector bundle 7, on the
ALE space with holonomy e27io/n and A is the Cartan matrix of sl(n). Note that ¢; (7o) = 0,
and the instanton moduli space is labelled by the n — 1 integers ¢ = (cy, ..., ¢,—1). The inverse
of the Cartan matrix A of the finite dimensional sl(n) (see Appendix A.l) allows the relations
(2.8) to be inverted, giving

n—1

Sky = Z(K’l)

(Ni—e), (A7)  =minfo,i} - % 2.9)
i=1

oi i

forl <o <n.
2.2. Generating functions of coloured Young diagrams

Let Pgy.51 be the set of N-tuples of coloured Young diagrams Y labelled by the charges
o =(o1,...,0n) and 6k = (6ky, ..., 8k,—1). We introduce a generating function of the coloured
Young diagrams, that counts the number of torus fixed points of the U () instanton moduli space
on C? /7y, as

1 (4
Xear@= Y. qil¥l. (2.10)
YUE'PG;,;k

Example 2.2 (n = 1). For n = 1, §k = (J, the generating function (2.10) is

Xo.p(9) = xp (" = . 2.11)

where
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o]

(@; Q) = ]_[(1 —aq"). (2.12)

n=0

Example 2.3 (N = 1, see [32,33]). For N = 1, the generating function (2.10) with a charge
oce{0,1,...,n—1}and 6k = (6ky, ..., 6k,_1) is

— 8k
SIS (8K~ ki 0ki—8 8k )

Xo):sk(q) = (2.13)
@ (@: 9%
For example, for (N, n) = (1, 2), the generating functions are
le@e+) lee-1)
X (@) = Xay0(@ = (2.14)

(4 Doo (0 Doo

Example 2.4 (N =2,n =2, see [14]). For (N, n) = (2, 2), the generating functions (2.10) are

FE(+1) 5
X0.0:0@ + Xa.1:a0+0 @ = — xNs (@),
(4 Doo (2.15)
g2 '
X0,19:0 (@ = X100 (@) = XR(D)%,
©,1);(0) (1,0):(0) @ D
where
1
<_q7; q) (—a; 9)
xns(q) = ——==, Xr(q) = ——=, (2.16)
(95 Do (4 Do

are, respectively, the NS sector and Ramond sector characters in A/ = 1 super-Virasoro algebra.
2.3. Instanton partition functions

To define instanton partition function, we introduce a fundamental building block, which
is associated with U(N) x U(N) gauge symmetry, with coloured Young diagrams Y? =

(Y7L YY) and WO = (WL W) by

N *
Zbit (a, Y% a, Wa,) = 1_[ 1_[ E (—al +ad, YIUI O, W75 (D))
1J=10ey?
* ’
X 1_[ [61 +e—E (aI —a), Wj’(D), YIU’(D))] ,
Dewj}
2.17)

where
E(P,YQ), W) =P —e; Ly(©) + € [Ay(D) + 1] . (2.18)

Here the arm length Ay (O) and the leg length Ly (O) of a Young diagram Y are defined by

4 By shifting a’J — a’J — [, it is possible to introduce the mass parameter p of bifundamental hypermultiplet.
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Ay@ =Y, —j, Ly@=Y]—i forallO=(,j)eN? (2.19)

where Y; (resp. Y jT) is the length of the i-row in Y (resp. the j-row in the transposed Young

diagram Y7 of Y, i.e. the j-column in Y). The product ]_[Eey in (2.17) means to take the Z,
invariant factors in the product, modulo 2mi, under the shift of parameters following (2.1) and
(2.3),

2mi 2mi 2mi , , , 2mi
€ > €+—, €& —> e&———, a > a+oy—, a;y —> a;+o;—.
n n n n

(2.20)
Thus, the factors in the first and second products of (2.17) are constrained, respectively, by
—or+0y—L (@) —Ayr (@) —1=0 (modn),
w,’ 1

, ! (2.21)
oj—0;—Lyos(@—A (@O —1=0 (modn).
J Y, Wjj

Definition 2.5. Using the building block (2.17), the U (N) instanton partition function on C?/Z,
with N fundamental and N anti-fundamental hypermultiplets, which is defined by an equivariant
integration over the moduli space of instantons [2] (see also [29,34,35]), is [16] (see also [31,14]),

Zif (m, #:a, Y”) Zyit (a, Yo, —m/, ﬂb,)

b.b N Liye
Zysk(a,m,m'; q) = 7@ ¥% qn\ |, (2.22)
Y“E’Po;sk vec )
where m = (m1,...,my) and m’ = (m/, ..., my) are the mass parameters, associated with

U(N)? flavor symmetry, of N fundamental and N anti-fundamental hypermultiplets, respec-
tively. The denominator, which is the contribution from the U (N) vector multiplet with Coulomb
parameters @ = (ai, ...,an), is

Zyec (a, Y") = Zpit (a, Y% a, Y") ) (2.23)
The instanton partition function (2.22) depends on not only the Chern classes ¢ = (¢1, ..., ¢;—1),
but also the Z,, boundary charges b = (by,...,by) and b’ = (b}, ..., b}v), which take values in
{0,1,...,n — 1}, assigned to the empty Young diagrams. Similar to (2.6), we assume

by >by>...>by, by >by>...> by, (2.24)

by arranging the ordering of the mass parameters.
3. 2D CFT for U(N) instantons on C2/Z,

We recall various versions of the AGT correspondence, focusing on the algebra acting on the
equivariant cohomology of the moduli space of U(N) instantons on C*/Z,, and on explicit
parameter relations.

3.1. Algebra on the moduli space of instantons and 2D CFT

In [9,18], it has been proposed that the algebra

SIN), @ SUN) p_y

A(N,n; p)=H ®sl(n)y & —=
N SNy

, p'=p+n, (3.1
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naturally acts on the equivariant cohomology of the moduli space of U (N) instantons on C?/Z,
with Q-deformation, where H = u(1) is the Heisenberg algebra.” The parameter p is identified
with the 2-deformation parameters €1, €3 by the relation

!
a__r_ ;" (3.2)

€2 p p
This proposal implies that there exists a combined system of 2D CFTs, one with H & ;[(n) N
symmetry and the other with Wﬁa; “ symmetry, corresponding to 4D N =2 U(N) supersym-
metric gauge theory on C?/Z, with Q-deformation [17]. The central charges of these CFTs
are

~ N@n* -1
c(?—[@s[(n);v)zl—i—%,
2 2 2
para _n(N —1) NN“-1) (1 t+e) 33
C(WN”Z>_ n+ N + n €16 3-3)
Gyn(N?—1) aN(N?*—1)
- n+N p(p+n

In (3.1), the first and second factors are realized by the a(n) N WZW model with an additional
u(1) symmetry, and the third (coset) factor is realized by a W' (p, p + n)-minimal model,®
where p is taken to be a positive integer with p > N.

3.2. Instanton partition functions as 4-point conformal blocks

We now provide the relations between the parameters of the instanton partition function (2.22)
for N > 2 and those of the conformal blocks of the 4-point function on P! of primary fields Yu,
with momenta ., r = 1,2, 3,4 (see Remark 3.2),

para

(Wi, (00) Yy (1) Y (9) Y, (0))W.N‘" G4

in the Wp " CFT described by the coset factor in (3.1). Using the notation of the finite dimen-
sional Lle algebra sI(N) in Appendix A.1 for M = N, we propose that the mass parameters m
and m’ in (2.22) are related to the external momenta g, of the four primary fields by

S

I=1
/
mI

We consider this as a generalisation of the n =1 case 1n [1,7,8,39 4()] to positive integer n. By
writing p, = w2 AN_1, M3 = U3 Ay, and o, = Z[ 1 p,”A[ for r = 1, 4, the relations (3.5)
are equivalent to

2py = [61+62] ,0+Z [ml m1+1] A, 2p= An-1,

(3.5)

2py = [€1+€2] 0 — Z [m/l_m/].;_l] A, 2p3=

5 The first works on this subject, in the absence of an 2-deformation, are by Nakajima [36,37].
6 While the Wl{lmnr 4 (p, p + n)-minimal models are in general not well-understood except in special cases, see [38]
and references therein, in this work, we only need to assume that they exist.
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N
2p1, = [61 +62] + [ml —m1+1] s 2ua= Zml,

N
g = [61 +62] - [m}—m’1+1] . 2u3=)Y mj,
I=1

N+1
= [1——] [61+€2
(3.6)
2
ty —ZJM1,1+Z[N—J]M1,J+M2
/ N+1]
m; =— [el—i—ez
2
ty ZJMM—ZUV J) pag+ s

Note that the momenta p, and p3 of two of the primary fields are taken to be proportional
to A; or Ay_1, i.e. W-null, which ensures the matching of the number of free parameters
{mp,mi}=1,.. .~ and {w1,7, n2, w3, ma,1}r=1,...N—1 [78%9] The Coulomb parameters a in

(2.22) are related to the internal momenta u¥ = Z I— 1 My VA by

N

=la+ealp+) are;, er=e —e,

I=1 (3.7)

N
1
— ——E —_<2 ”—[ + ]_,e>.
ar NHaz " eirte| e

Remark 3.1 (U (1) factor). The U (N) instanton partition function (2.22) contains a U (1) factor
coming from the Heisenberg algebra H in the algebra A(N, n; p). To obtain it, we need to impose
the traceless condition

N
> ar=o. (3.8)
=1

Then, following [1,7,8,11,16], we find an overall U (1) factor for general N and #n in the instanton
partition function (2.22),

, [Z?/:lm[] [61+€2—% Z?le/l]
Zy (m.m';q) = (1 —q) . (3.9)

In Appendix B, we confirm the above parameter relations and the U (1) factor by checking
some AGT correspondences.

By analogy with known minimal model CFTs, we propose that, in the Wy
minimal models, the momenta should take the degenerate values

—Nz_l[[rl—llq—i-[SI—l]ez]X[, (3.10)
1=1

para

(pvp +I’l)-
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where r = [rg,r1,...,rn—1] and § = [sg, S1,...,Sy—1] are sequences of positive integers for
which

N—1 N-1
Zrlzp’ Zslzp/zp—}—n, (311)
I1=0 I1=0

It will be useful to note that if r and s are regarded as vectors on the basis of fundamental weights
of sl (N) thenr € P++ and s € PJrJr

Remark 3.2 (Free field realization). We check our normalization conventions by focusing on
the well-understood n = 1 CFT with Wy symmetry. In this case, one can introduce the energy-
momentum tensor by

N

1 - €] t+e€
T@=3 2 #010°: +0(p.0%9@). 0="=. gd=-ae. (3.12)
I=1 §
where : - - - : is the normal ordered product,
N N
d) =) ¢r(er. Y ¢1(x)=0, & =e;—e, (3.13)
1=1 =
are N free chiral bosons with
3 ( er, 6‘J> 1
¢1(@)py(w) = ———+:0¢1(2)ps(w):, (e1,85) =817 — —, (3.14)

N

and g; is introduced as a mass parameter just for a convention. Then, the Virasoro central charge

2
c=(N—1)—N<N2—1>Q2=(N—1)+N(N2—l)%, (3.15)

which is the one in (3.3) for n = 1, is obtained. One can also introduce the primary field with
momenta p by

Yu(2) = 25 90) r=> ik (3.16)

which has the conformal dimension

u—2<— =07 > 2 —(wn-[a+e]7). (3.17)
&8s &s €1 €2

under the action of the energy-momentum tensor (3.12). For example, when N = 2 with the -
background :—; = —”7, (Virasoro (p, p’)-minimal model case), the conformal dimension of the
primary field with degenerate momentum 2u”* = —(r — 1)e; — (s — 1)ey is

r,s _ S /I _ 2_ I _ 2
A = 1 c1+ea—p") _(rp'=sp) —(p p). 3.18)

€1 € 4dpp

Similarly, for general n the central charge and the conformal dimension of the primary field
Y (2) are found to be c(W ") in (3.3) and Ay /n in (3.17), respectively.
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4. Burge conditions from SU (N) instanton partition functions on C2/Z,,

We deduce the Burge conditions in Proposition 4.3 by looking at the non-physical poles of the
SU (N) instanton partition function (2.22), with Z?]:l a; =0, on C%/Z, with the rational -
deformation (3.2).

For the rational -background (3.2), i.e. pe; + p’€2 =0, p > N, we see that the instanton
partition function (2.22) with ZIIVZI aj =0 has poles at the values

N-1
aj :a;ss = Z(X/,C/) [rjel +SJ€2]
J=1
N—1 1 N—1
=— [rjel+sje2]—i——Zl[rjel—i—sjez] 4.1)
J=I N =

of the Coulomb parameters (3.7) corresponding to the degenerate momenta (3.10). These poles
correspond to the propagation of null-states and need to be removed. Taking a shift of the central
U (1) factor in the U (N) gauge symmetry, from (2.1) and (2.3), into account, the Z, charges o;
assigned to the aj are related to r and s by

oj—ojy1=—r;+s;y (modn), I=1,...,N—1. 4.2)

We refer to (4.2) as the Z,, charge conditions.

Definition 4.1 (Burge Conditions). For sequences r = [rg,r1,...,rny—1] and s = [so, 51, ...,
sn—1] of positive integers, the N-tuple ¥ = (Y1, ..., Yn) of Young diagrams is said to satisfy
the Burge conditions if

Yii>Yrtigrj—1—si+1 fori>1, 0<I <N, 4.3)

where we set Yy = Y. Then define C"™* to be the set of N-tuples ¥ = (Y1, ..., Yy) of Young
diagrams that satisfy (4.3).”

The following result is easily obtained by exchanging the roles of the rows and columns in
4.3):

Lemmad4.2([19]). LetY = (Y1, ..., Yn) and, by conjugating the Young diagrams therein, define
Yl =l,....Y]). Then

YeC™' <« vYlecCr. 4.4)

As with the Young diagrams in Section 2.1, we colour those in the N-tuples in C"*. Given
a Young diagram Y, and 0 <o < N, let Y? denote a Young diagram in which the box (i, j)
of Y? is coloured (0 — i 4+ j) modulo n. The value of o is known as the charge of Y. By
Remark 2.1, ¢ = (01, 02, ...) is a partition that has at most N non-zero parts with o1 < n. For

7 The Burge conditions specify sets of tuples of partitions that are equivalent to certain cylindric (plane) partitions
defined in [24] (what we define as C™* here is equivalent to the set of cylindric partitions denoted C;V_ pr—p in [41,
Section 3.4]).
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Y =(Y,...,YN) €C", we define Y7 = (¥]', ..., Y3"). Set Cg™* to be the set of all such N-
tuples. We will often drop the superscripts on Y or Y if these can be determined from the
context.

Proposition 4.3. If Y° e Cy'* then the instanton partition function (2.22) at a; = a;’s, in the
background p €1 + p’ €2 = 0 where p’ = p + n, does not have poles.

Proof. We follow the proof of [21] for n = 1 (see also [19,20] for N =2, n =1). At a; =
a;’s with (3.2), the instanton partition function (2.22) has poles if and only if the denominator
vanishes, i.e. there exists (] € Y; such that

E}S@+n=0, n=0orn, @5)

where n = p’ — p and
E}S Q) = 5 E(a;’s —d" Y0, Y,(m))

N—1 4.6)
= Z(XK,e]—tU) [VKp/—SKp] +p/LyJ(D)+p [AY,(D)+1] .
K=1

Because E;f (O) # 0 for O € Y7, to find O € Y7 which satisfies (4.5) we only need to consider
the case (i) I > J and case (ii)) [ < J.

Case (i) I > J
In this case, the zero-condition (4.5) is E;fu(lj) +n=0forO0€ Y/ ¢, where l <I <N —1

and 1 <¢ <N —1.By Z%;% (KK, e — e1+g> = Z%;% 1;:1 8K.1+J—1, this zero-condition is
written as

¢
Z [V1+J—1P/—S1+J—1P] +p Ly, @+p [AY,H(DH-I] +n=0, O€Yryq.

J=1
4.7
Letd =gcd(p, p'), p=d pq and p’ =d p),, then the zero-condition (4.7) is equivalent to
l
Ly, @ ==Y _ri1s-1 =¥ Pd— -
=l (4.8)

¢
Ay, O = ZSH-J—I + ¥ pg—1+8m, D€V,
J=1
where y is an indeterminate integer. For 0 = (i, j) € Yj4¢, using Ly, (0) = YIT/. — i, the zero-
conditions (4.8) imply that an obvious condition for any Young diagrams,

Y1T+e,j+AyM(D) z i, (4.9)
yields
¢
1T+€,j+Z§=1 Sty Py Yy D ries—i Y pat b (“4-10)

J=1
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For the above zero-conditions, (] € Y71, needs to be restricted by the Z, condition like (2.21)

o —oj4¢—Ly,(@ — Ay, ,(@) —1=0 (mod n). “4.11)
By the Z, charge conditions (4.2) and the zero-conditions (4.8), the Z, condition (4.11) yields

n
OEV(Pd—P:i)E—EV(mOdn) = y=dy, (4.12)

where the indeterminate integer y; should be y; > 0 by Ay, ,(0) > 0 and (3.11). As aresult, the
zero-condition (4.10) yields

T

l
T

J=1
Therefore, if conditions

)4

Doriii—vap+1=8m va=0 (414
J=1

vyl >yl —
Li = T 1 4+ 5y st r14va P =148

are satisfied, there does not exist (] € Y71, such that E;:i@ ;@) + n =0. These non-zero condi-
tions follow from the ones for y; =0 and n = 0:
¢

T T
Y; ;= Y1+€.,j+2'§:1sz+171—1 — ;VI+J—1 + 1. (4.15)

All these non-zero conditions (4.15) for 1 < £ < N — I are obtained from the ones for £ =1, i.e.
we arrive at the strongest non-zero conditions among them as
Y =Y -+l I=1,... N—1, (4.16)
which are the / =1, ..., N — 1 cases of (4.3) with r and s interchanged.
Case (ii) I < J
In this case, the zero-condition (4.5) is E;’f% @+n=0forgeY;,where ]l <I <N —

land 1 <€ < N — I. We repeat the proof of case (i). As (4.7) and (4.8), the zero-condition
Ef3 O +n=0is

¢
-> [”1+171P/_SI+171P] +pP Ly, ©O+p [AY,(D)-H] +n=0, OeYy,

J=1
(4.17)
which is equivalent to
¢
Ly, @ =Y rivs-1—vap—dm
! :el (4.18)
Ay, @ == sryj1+vap — 148, DOevy,
J=I

where we have used (4.12) obtained from the Z, condition. From Ay, (00) > 0 and (3.11), the
indeterminate integer y; should be y; > 1. As in (4.10), these conditions yield a zero-condition
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4

y’r >y, = rs- Son- 4.19
LS stasi4ya p'—148y — 1+E ; I+J—1+ Vi P+ onn ( )
Therefore, if conditions
¢

T T _ _
Vees ZY st o eetan, T ;nw—l Yap+1—38pm, ya>1 (4.20)

are satisfied, there does not exist (J € ¥; such that E;f +£(D) + 1n = 0. Among the non-zero

conditions (4.20), the strongest ones are y; = 1 and n =0:

Y4
T T
Vi Z¥ s g T ; Frss—1—p+ 1. 4.21)

In particular, for £ = N — I, one obtains
Yﬁ»j Z YlT,j+‘vo—1 —ro+ 1, (4.22)

which is the I = 0 case of (4.3) with ry and s¢ exchanged. Together with (4.16) from case (i) we
thus obtain all cases of (4.3) with r and s exchanged. It is straightforward to see that together the
conditions (4.16) and (4.22) are stronger than the non-zero conditions (4.21). Use of Lemma 4.2
then completes the proof. O

5. Burge-reduced generating functions of coloured Young diagrams and ;I(n) N WZW
characters

In this and in subsequent sections, we concentrate on the case of p = N in the algebra
A(N, n; p). This choice of parameters trivializes the coset factor,® and we obtain A(N,n; N) =
H D :s\l(n) N- In this case, on imposing the Burge conditions (4.3) on the generating functions of
coloured Young diagrams’ and instanton partition functions, the ?[(n) N WZW characters and
conformal blocks emerge. In this section we discuss these generating functions, while the instan-
ton partition functions are discussed in Section 6. We make use of notation and results pertaining
to the representation theory of sl(n) that are described in Appendix A: for the current purposes
the symbols M and m in the appendix are replaced by n and N, respectively.

In the case of the algebra A(1, n; p) = H®sl(n); for U(1) (N = 1) instantons on (CZ/Z,,, the
highest-weight representations have no null-states, and thus there is no restriction on the tuples
of partitions Y. However, for N > 1, eliminating the null states requires the Burge conditions
(4.3) to be imposed.

Throughout this section, & = (o7, 02, .. .) is a partition for which 1 < n and oy 41 = 0. Thus,
in particular, ¢ has at most N non-zero parts. In addition, because we are restricting to the

p = N case, the condition (3.11) dictates that ro =71 = ... =ry—1 = 1. Thus, we define 1 =
[1,1,...,1] (N components), and use r = 1 throughout this section. The generating functions
that we define below then depend on a sequence s = [so, 51, . - ., SN—1] Of positive integers which

8 When p = N, the central charge C(Wf]il:la) =0in (3.3).
9 Without the Burge conditions, the generating functions correspond to the partition functions of A" = 4 topologically
twisted U (N) supersymmetric gauge theories [36,42]. A description of the generating functions/WZW characters in

terms of ‘orbifold partitions’, and a realization in terms of intersecting D4 and D6-branes can be found in [43,44].
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satisfies (3.11) with p’ =n + N, and which satisfies the Z,, charge conditions (4.2). With ry =
ry =...=ry—1 = 1, these requirements are readily accomplished by setting

s;f=o07—or41+1 (5.1
for 1 <1 < N. Note then that (3.11) gives”)

so=ony —o1+n+1. (5.2)

Using the above r =1 and s, we now define sets of N-tuples of coloured Young diagrams
7 = (Yf L Y;\’,N ) that respect the Burge conditions (4.3), which now take the simplified
form
Y=Y/ —si+1 fori=1,0<I<N, (5.3)
where we set Y0 = Y](\’,N . So define C{ to be the set of all N-tuples of coloured Young diagrams
Y that respect (5.3). In order to impose the Chern relations (2.8), for each Y € C3, define k, (Y)
to be the number of boxes in Y that are coloured o for each o € {0, 1,...,n — 1}, and then set
Sk (Y) = ko (Y) — ko(Y).
Now, to generali’ge Xs.¢(q) in (2.10) and be able to relate the Chern classes (2.8) to the repre-
sentation theory of sl(n), we define two generating functions X} (q, t) and X3 .¢(9). For fugacities

t=(t,...,t,_1), define the U(N) t-refined Burge-reduced generating function

Xs@ o= qr" ]‘[tcm (54)

YeCy

where the ¢; (Y) are given by the Chern classes (cf. (2.8))
¢;(Y)=N; + 8ki—1(Y) — 28k; (Y) + 6ki11(Y) (5.5)

for each i € Z,,, with 8ko(Y) = 8k, (Y) = 0. In addition, for a vector £ = ({1, ..., €,_1) € Z" 1,
define C;., C C; to be the set of all Y € C; for which 8k;(Y) = ¢; for each i € I Then define
the Burge reduced generating function

X5 @= > qnl"l. (5.6)

YeC;; ¢
Because the values of ¢;(Y) are constant on each set C;.,, the generating function (5.4) can be

written as

n—1

Ni+8i_1=20;+¢;
X5@. =Y X5 (@] (5.7)
LeZn-1 i=1

with £o = £, = 0. We also introduce the generating function X3 (q) defined as the specialisation
ti=bb=---=t,_1=10f XJ(q,1):

1
<Y
Xs@=Y q M= 3" X5 ,@. (5.8)
YeCy Lez-!
10 1n fact, this solution is unique except in the case where o1 = 07 = - -+ = oy . In that particular case, any other solution

leads to the given solution by cyclic permutation of the indices 7 € {0, 1,..., N — 1}.
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We now give expressions for X$ (q, t) in terms of (graded) WZW characters x A[(”)N (q, t) that
e}\rise from level-N irreducible highest weight modules L(A) of s (n). The characters of these
sl(n)-modules are described in Appendix A.7. Let A € P,j’N. As also described in Appendix A.7,
the Virasoro algebra Vir also acts on L(A). The central charge ¢ and conformal dimension % 5 of
this Vir-module are given by

N@n?—1 A A+2
CZM’ hA:ﬂ’ (5.9)
N+n 2(N +n)
respectively.
For indeterminates t = ({1, ..., t,—1), we define the (graded) character of L(A) to be:
—~ n—1
@b =Tz g™ [TH7, (5.10)

i=1
where Lg is a Virasoro generator and H; are Chevalley elements in the Cartan subalgebra of

s?[(n). Making use of the crystal graph description of characters of ;[(n) (see Appendix A.6) then
leads to the following:

Proposition 5.1. For a partition ¢ = (01, 02, ...) for which o1 <n and on+1 = 0, define s =
[50, 51, -..,5n_11 by (5.1) and (5.2), and set A = ZINZI Ag,;. Then

s qUA T Sy
Xs(q, 0= mx,\ (9,9, (5.11)
where t = (%1, e i,,_l) is related to t = (1, ...,t,—1) by
=g 2y (5.12)
for1<i<n, and
=
u)A=EZi(n—i)Ni, (5.13)

i=1
when A =[Ny, N1, ..., N,_1].

Proof. Comparison of the conditions (A.18) with (4.3) shows that there is a bijection M? —
C*1, with the map Y > X from the former to the latter being obtained by ignoring the colours.
Combining this with the bijection described by (4.4) then yields a bijection M — Cb de-
scribed by ¥ +— X — XT. Moreover, because of the differing ways in which the colours are
ordered in M? and C}’S , colouring X7 to give an element of C}’s , results in Y. Thus, in
the expression (5 4), C = C1 ¥ can be replaced by M?. Noting that |Y| = Z:’:_ol ki(Y) =
nko(Y) + Y02, ! 8k;(Y), and using (5.5), then gives

Ni+8k;i 1 (Y)—=28k; (Y)+8k; 11 (Y
X5 0=y qkoml—[q Hak | (V) —=26K; (¥)+5ki 11 (¥)
YeMe

- 8ki (Y)
Z ko(Y)l_[t ( i— lz+1> 7

YeMe

(5.14)
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where we set tg = t,, = 1. Substituting for each {; using (5.12) then shows that

~ 8k; (Y)
ti_it;
XS(q.8) = q¥h Z qko(Y)l_[ (l 1’“) (5.15)

YeM° 1
which yields (5.11) using (A.31). O

This result enables Xfr; +(q) to be expressed in terms of the ;[(n) string functions Ezé\(q) in
(A.24):

Corollary 5.2. For a partition 0 = (01, 02, ...) for which o1 < n and oy = 0, define s =
[s0,S1,-..,sn—11 by (5.1) and (5.2), and set A = ZZN=1 Ag,. Then for each £ = (L1, ..., €,_1) €
Zn—l,

el

X () = Jméﬁ(q), (5.16)

where we set || =} ;.7 ;.

Proof. This results from reexpressing the left and right sides of (5.11) using (5.7) and (A.27)
respectively, using (5.12), and then using the fact that the matrix A is invertible. O

Combining (5.11) with (A.17) enables a product expression to be given for X3 (¢):

Corollary 5.3. For a partition 0 = (01,02, ...) for which 01 <n and ony41 =0, let s =
[s0,81,...,sn—1] be defined by (5.1) and (5.2). Then

B}

1 1 1
s - - | |
Xy (@)= 4N 4N 1_[ j 1+ 1=t AN ’
(CI niq I<i<j<n+N (q | ) I<i<j<n+N (Cl | ”)

i¢Q,jeQ X e, j¢Q o0

(5.17)
whereSZ:{N+j—ajT|j=1,...,n}.

Proof. From Appendix A.5, we have Qp ={N + j —A;|j=1,...,n}, where A = par(A) for
A= ZlNzl Ay;. Lemma A.1 shows that A = o7 and thus Q, = Q.
From (5.8), by (5.16), (A.23), and (A.16), we obtain

Y gap = —
LeZn—!1

sl
Pr 2 (q).

_El(n)
(q, )oo A (q’x) {x,'—>q*i/n,1§i§n}

Xol =1 q)

(@ Doo
Use of (A.17) then gives (5.17). O

In the cases in which N = 1, the Burge conditions (4.3) are vacuous (assuming that r| and s
are both positive). Then X* l(q) coincides with X4.¢(q) defined by (2.10). In this N = 1 case, we
also set Xq(q, t) = X3 (q, t) and X5 (q) = X3 (q). Because Proposition 5.1 and Corollaries 5.2
and 5.3 remain valid in this case, when combined with expressions from Appendix A.7, they lead
to the following:
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Corollary 5.4. Let 0 < k < n. Then

n—1
_ n=lp2_pp._ 41y Siktei—1—2€i+E;
X(k)(q,t)z( - q)n Z q = ”"‘*"“l_[ti T (5.18)
95 Do 2e7n—1 i=1
1 n—1,,2 1
X.e(@) = qf€k+Z,-:1 (€ —titioit3 ) (5.19)
© (@ D%
1
Xy (q) = 20

where £ = (L1,42,...,€,_1) and o= £, =0.

Proof. Set A = Aj. Firstly, combining (5.16) with (A.32) gives (5.19). Substituting (5.19)
into (5.7) then gives (5.18). For (5.20) we use Corollary 5.3 with o = (k). Then Q =
{1,2,...,n}\{k + 1}, whereupon (5.17) yields (5.20). O

Note that (5.19) accords with (2.13).
Let N =[No, Ni,...,N,_1] be such that each N; > 0 with Z;:o] N; = N. If we regard
N as an sl(n) weight, then N = Z;:ol N;A; € PnJ’rN. Let 0 = (01, 02, ...) be the partition with

on+1 =0suchthat N = Z?’zl Ao;. Theno = AT, the partition conjugate to A = par(N) defined
by (A.8). Now define s = [so, 51, ..., sy—1] by (5.1) and (5.2), and define the SU (N) t-refined
Burge-reduced generating function of coloured Young diagrams, by subtracting the Heisenberg
factor H whose character is x74(q) = (q; q)go1 in (2.11),

XN, 8 = (@ Doo x X350, . (5.21)
Proposition 5.1 immediately shows that:

Corollary 5.5. If N € P, then

XR9(q, 6 = q"N = x 31OV g, b, (5.22)

where 1 is related to t by (5.12), and hy and wy are given by (5.9) and (5.13).

This corollary implies that the Chern classes (2.8) on the gauge side are identified with the
eigenvalues of Cartan elements H; of sl(n) on the CFT side.

Example 5.6. In the case of N = 1, (5.22) is particularly simple, because then 7y = wy. For
instance, for (N,n) = (1, 2),

o~ D An s o ~
X110/, 9 = (0 Doo Y Xops(—0) (@) £ = Y ol = x5 @b,

(4 Do

LeZ JEZ
o~ 2 An o ~
X010, = @ Doo P X~y @ =——— 3 g/ 1 = 37V (0. D,
leZ (@3 Doc

je€Z+}
(5.23)

where t = q’% t.
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In Section 7, we will give gxplicit examples of Corollary 5.5 for (N,n) = (2,2), (2,3) and
(3,2) by comparing with the sl(n)y WZW characters computed using the Weyl-Kac character
formula (A.35).

Note that in the principally specialised case t=(1,..., 1),

XN (@ (1, 1) = (@ oo X X5 (@) (5.24)
is immediately evaluated using the right side of (5.17) with Q = {j + Z{_l Ni|lj=1,...,n},
and gives the fs\l(n) principally specialised character Pr Xi,[(") (gq) in Appendix A.5.

6. Burge-reduced instanton partition functions and ;[(n) ~N WZW conformal blocks

We discuss how the integrable f/:\[(n) N WZW conformal blocks are extracted from the SU(N)
instanton partition functions on C*/ 7, with ZIIVZI a;=0.

6.1. U(1) instanton partition function

In the U (1) case, as was mentioned in Section 5, for generic p (generic Q2-background) one
obtains the algebra A(1,n; p) =H & ;[(n)l acting on the equivariant cohomology of the moduli
space of U (1) instantons on C 2/Z,. Let us consider the instanton partition function (2.22) for
N =1 with vanishing Coulomb parameter a = 0 and labelled by N, = [Ny, ..., Np—1], N; =
8ie» and 8k; = 0. Following Corollary 5.5, the corresponding module in sT[(n)l is the highest-
weight module with A = A,. We define

Z3 mom's q) = 2050 0.m.m'; ), (6.1)

and make the following conjecture.

Conjecture 6.1. The U (1) instanton partition function (6.1) on C2/Z, with b’ = b and No =
[1,0,...,0]is

m [61+62—m’]
Z i =(—q a1 —q 2, 6.2)
where hy = hy, = b(';b) is the conformal dimension of the highest-weight state |Np) in the

;[(n)l WZW model. The first factor is the U (1) factor Zy (m, m'; q) in (3.9) for N =1, and the

second factor is the 2-point function of ;[(n)l WZW primary fields with highest-weights Aj and
An—p

6.2. SU(N) Burge-reduced instanton partition functions

For N > 2, in the same way that we defined the Burge-reduced generating function (5.6) of
coloured Young diagrams, we now introduce a reduced version of the instanton partition function
(2.22) by imposing the specialized ones (5.3) for the Burge conditions (4.3) with r =1 € P; ‘;,

++
and s € PN’NM,

Zyit (m #°: a, Y”) Zyit (a, Yo, —m, ﬂb,)
Zyec (@, Y%)

258 (a,m,m'; ) = g 7l (63)

YoeCy
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where Z?’:l a; =01is imposed. The Coulomb parameters @ = (ay, ..., ay), and the mass pa-

rameters m = (my,...,my), m' = (m’, ..., m',), are related to the internal momenta pu’, and
1 N

the external momenta ,_; 5 3 4, of a 4-point conformal block in a W™ CFT, by the relations

(3.7) and (3.6), respectively. The gauge theory in the rational €2- background 3.2)for p=N,

€1 n
g_ - 6.4
- N (6.4)

is expected to describe a minimal model CFT whose momenta take values in the degenerate
momenta (3.10) forr; =1,

N—-1
— Z [S[ — 1] GZKI,

N-1
84 4 =Y Are)[s-1-%]e 6.5)
J=1
=—Z [ 1—1——]62+ Z [ J—l——]éz,
J=I
parametrized by s = [so, s1,...,snv-1] € PN’NM, and

N-1
2”,1:—2 [51’1—1]€2X], 2[1,2=—[52,N71_1]EZXN7D

N—
2IL4=—Z [S4,1 —1] e2A;, 2p3=— [83,1 - 1] ZYNE
=1

(.9 S1.82 . [ N+1)n
my m] 3 N €
L[
+— ][s —q
N 1,7
N (6.6)
Z IN-J]) [811—1] [S2N1—1]]
N+1
e (1 0)
I-
ﬁ E: [Mf—ﬂ
N—
Z —J) [S4J-1]-[S3,1—1]|€2
parametrized by s1 = [51,0,51,1,...,51,8v-1] € PN Nepns $4=1[540,541,...,5an-1] € PN}H,
and
_ _ ++
s2=1[s20,82,1, ..., 2n-1]1=[520. 1, ..., LLson—1]1 € Py s ©67)
53 =1[53,0,83,1,..., 53 n-11=[53,0,83,1, 1,..., 1] € P,C,LJ,’VM, '
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following sy oc Ay—1 and 3 o Aj.

Remark 6.2 (Fixing s1,s4). By (5.1), the (Coulomb) parameters in s are determined as s; =
o7 — o741 + 1, from the ordered charges o1 > ... > oy. Similarly, we fix the (mass) parameters
in s1 and s4. Taking a shift by the central U (1) factor in the U (N) flavor symmetry, from (3.6),
into account, one obtains the Z, boundary charge conditions

s1,; —1=b; —bry1 (modn), S4’1—lEb/]—b/I+l (modn), I=1,...,N—1.
(6.8)

We can then determine the independent parameters in s and s4 as
s1,1=br —br41+1, S4,]=b/1—b/1+1+1, I=1,...,N—1. (6.9)
The remaining independent parameters s y—; and s3 1 in (6.7) are determined in Remark 6.4.
By subtracting the U (1) factor (3.9), as in the case of the t-refined Burge-reduced gener-
ating function (5.21), we define a Burge-reduced instanton partition function labelled by N =

[No,....Np—1]€ P, N,Z_(E],...,Z,,,l)eZ”‘l,andZn boundary charges b = (by, ..., by)
and b’ = (b, ..., b}).

Definition 6.3. The SU (N) Burge-reduced instanton partition function is defined by

gjb\;z (q) — ZH (msl,s27 m/S3,S4; q)_ X ZS b (a ms1 ) mIS3 S4’ q) (610)
Here the Coulomb parameters a® = (af, .. aN) are given by (6.5) with s; =07 — o741 + 1 in
(5.1), and the mass parameters m*!2 = (msl 2 m\tY) and m/ SRS = (m P L gt

are given by (6.6) with s1 1, 54,7 in (6.9) and Sz,N—l s S3’] determined in Remark 6.4.

By Corollary 5.5, the set N, determined from the Z,, charges o, indica/t\es level-N dominant
integral highest-weight in sl(n)y WZW model. We propose that, in the sl(n)y WZW 4-point
conformal blocks, the integrable representations of two of the four external primary fields are
also determined from the Z,, boundary charges b = (by,...,by) and b’ = V', ..., b)) by

B=Y Ay =I[Bo,Bi,....,B,1],  B'=)_ Ay =[B;Bj,....B,_,l. (6.11)

We now represent the Burge-reduced instanton partition function (6.10), graphically, as
B, B.

/\b b/
(@ = (6.12)
N L b p b

B N B’

We also represent (6.12) schematically by B — B, — (N) — B, — B’. The representations B and

/. of the remaining two of the four external primary fields need to be taken so that they respect
the fusion rules, which apply from right to left in (6.12), of the 5[(n) ~N WZW model when N,
B and B’ are fixed (see e.g. Chapter 16 of [45]). Then, the choice of the integers £ on the left
hand side of (6.12), which indicate the states of internal channel following Corollary 5.5, is also
restricted by the fusion rules of B’ and B...
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Remark 6.4 (Fixing the remaining parameters s>, N1, 53,1). In Remark 6.2, the parameters in s
and s4 were fixed using the Z, boundary charge conditions. We now fix the remaining parameters
$2,N—1,53,1 in (6.7) using the fusion rules. Let b, = (b1, ..., be y) and b, = (bé’l, e, bé,N)
be boundary charges associated with B, and B, respectively.'! We propose that they satisfy
the same type of boundary charge conditions with (6.8) as 52,y — 1 = b, j4+1 — bc, 1 (mod n) and
s3.0— 1= bi-, I bé’ 741 (mod n) for the parameters in (6.7). As a result, these boundary charges
are

bCE(bL"bL"""bL" bL‘+s2,N*1 - 1) (mOd n)!

6.13

b.=0b.+s31—1,b.,b.,...,b.) (modn), €13
where b, bé €{0,1,...,n— 1}, and 52 y—1, 53,1 should be determined by the fusion rules. For
definiteness, we restrict so y—1, 53,1 € {1,...,n}, and if N =2 we take b +s2.1 <n, b, +s31 <

n so that the boundary charges are b, = (b¢, b + 52,1 — 1) and b = (b, + 531 — 1, b.).
6.3. Conjectures

We propose the following conjectures on the relation between the SU (N) Burge-reduced in-
stanton partition functions (6.10) on C? /7Zy and the ?[(n) N WZW conformal blocks. To describe
our conjectures, we represent A = [dp, d1,...,dy—1] € Pnf n @s a Young diagram by a partition
A =par(A) using (A.8).

Conjecture 6.5 (0 — 0 — (3) — D —0). The s:\[(n)N WZW 2-point conformal block of the type

(W) B

agrees with the following Burge-reduced instanton partition function

Bc = 0 B‘( = @
20,0 B
Z[N’O"m()];o(q) = = (1- CI) 2hy _ 1
(6.14)
Heres =s1=sy=8s3=s8s4=[n+1,1,..., 1] are fixed by (5.1), (6.9) and (6.13), and hy =0 is
the conformal dimension for the representation ¥ =[N, O, ..., 0].

Conjecture 6.6 (4 — [N —1,0,...,0,1]— (@) — O —0). The ;[(n)N WZW 2-point conformal
block of the type

B0 D@y

agrees with the following Burge-reduced instanton partition function

T We will not assume the ordering of the boundary charges b, and b..
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m:@}n-l B, =[]

.0 —2hy
IN—1.1.0..01:00) = = (1-q 0.

B= N=0 B'=(

(6.15)

Here s =s3=[n,2,1,...,1], si=sa=[n+1,1,...,1] and s y—1 = n are fixed by (5.1),

S)\}‘)) clmcli 5)6.13),0 ]and ho = %ﬁm is the conformal dimension for the representation O =

Conjecture 6.7 (O—O0— (W or [N —2,1,0,...,0,1)) —O0— [N —1,0,...,0,1]). The sl(n)y
WZW 4-point conformal blocks of the type

([Fitco) (D (@) T ™™

which are (C.5) in Appendix C, agree with, up to certain overall factors, the following Burge-
reduced instanton partition functions,"”

B(::D BI(:D

N

ZNENe 0@ = b=(00) | e= B=(n-10..0) (6.16)

2h— L 1 N-1._N_.
(l—q) O n+N2F1 (_H—N’IH-—N’I’H‘—N’CI 5

for £=0,
= 1 _n+l _
%qn (1_q)2h|] ,1+N2F1(2Cr—]$,l—niN;l+HLN;q>,
for £=(—1,...,—1),

and

2(1,0,...,0),(1—1,0,...,0)
ZiN=21000pe (@

12 (6.16) and (6.17) correspond to, respectively, the 4-point WZW conformal blocks f-‘l.(g)] ,z(q) and ./7-\'1.(22,1 (q) in (C.5).



24 O. Foda et al. / Nuclear Physics B 956 (2020) 115038

n+N’n—i—N’n+N’q
_1 —
Lgl=n (1 — g0 n+NzFl(,’f+—,1V,l—n+—N;1+n+LN;q), for £=(1,...,1).

Here, by (5.1), (6.9) and (6.13), for (6.16) s =[n + 1,1,...,1], sy =s3 =[n,2,1,...,1],
s4 =1[2,n,1,...,1] and sy y—1 = 2 are fixed, and for (6.17) s =[2,n — 1,2,1,...,1],
s1=s3=1[n,2,1,...,1], sa=1[2,n,1,...,1] and so y—1 =2 are fixed, where when N =2,
[2,n—1,2,1,...,1] means [3,n — 1]. The integers £ = 8k are taken so that the corresponding
modules on the CFT side, following Corollary 5.5, are in the fundamental chamber under the
action of affine Weyl group of ;[(n), and the second ones in (6.16) and (6.17) respect the fusion
rules by

<1—q>2hD‘r%zFl( ! ) for £=0,

Sk=(—1,...,.—1)
—

N=I[N,0,...,0]=0 c=[N-2,1,0,...,0,1],

Sk=(1,...,1) (6.18)
=[N-2,1,0,...,0,1] — ¢c=[N,0,...,0]=0

where ¢ = [co,¢€1,...,C—1] are defined by the Chern classes (2.8). When n = 2, [N —
2,1,0,...,0,1] means [N — 2,2l =1 and then 6 = (1, 1,0, ..., 0).

7. Examples of SU (N) Burge-reduced instanton counting on C2/Z,
We illustrate the statement of Corollary 5.5 and check Conjectures 6.5, 6.6 and 6.7 for (N, n) =
(2,2),(2,3) and (3, 2). In particular we demonstrate how one can extract their sl(n)y WZW
conformal blocks from the Burge-reduced instanton partition functions.

7.1. (N,n) = (2,2) and s1(2)» WZW model

For (N, n) = (2, 2), there are three highest-weight representations

¥=1[2,0], O=I[1,1], m™=I[0,2], (7.1)
with conformal dimensions
ki (k1 +2) 3 1
h =——: hy=0, h=—, hT—1=-. 7.2
ko k1] 16 p=0 o= ¢ =5 (7.2)

7.1.1. Burge-reduced generating functions of coloured Young diagrams
The t-refined Burge-reduced generating functions (5.21) for (N, n) = (2, 2) are obtained as

X500 = (@ oo D XG0k o @ = XG0 @ foa. b + X3 @ fia. b,

LeZ
Xi6h1 @0 = (@ oo D XT Lo @ T = X[030 @) 1@ D + X35 @) foa. b,
LeZ
X540 =@ Do D X0 L@ = X[ @ g .
LeZ

(7.3)

13 The computations in this section heavily rely on Mathematica. We have also checked Conjectures 6.5, 6.6 and 6.7 for
(N,n)=(2,4) up to O(q°).
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where = q_élT t,

X0l @) =1+ q+3¢% +5¢° + 109" + 160° + 28¢° + 43q” + 70¢° + 105¢°

+161g"0+ -,
X290 = a2 +243 + 497 + 797 + 13q7 +21q7 +3597 +55q% +86q7
F 13097 + -, 74
X{I@ =1+ 2q+ 497 + 84 + 14" + 24¢° +404° + 6497 + 100 + - -,
xpal@=x30@. xSl =xEw.
and
fo@b= Y @V o=01, gab= Y ot (7.5)

je4Z+20 je2Z+1

The Burge-reduced generating functions (7.3) agree with the 5:\[(2)2 WZW characters computed
by (A.35),

sI2 sl 2 L s12 2
X5%0@ 0 =xp62@ 0. XS0 =9 @D X540 =q% 570 @. .

(7.6)
and Corollary 5.5 is confirmed. Up to an overall factor, the functions (7.4) are the ;[(2) string

funCtionS Of le\/el'z m 46 and gi\/en by (Cf: COI'OHaI‘y 52),
(q 2: q 2 )
X

(—q%; q)oo ¥[2.01
@ 0%

Xl + x5 @) = e Xea@ - xig3@) =

(0% 9%)
@ 9%
[2,0]

Note that they are related to the NS sector and Ramond sector characters in (2.16) by X [2.0] (q) +

Xfi) @ = (1.7)

[0’2] (q) = xns(q) and X lyll(q) = xr(q). Using the Jacobi triple product identity

3 a2 = oy y)oo( ,y) (¥ ¥)oo - (7.8)

LeZ
one can easily obtain (5.24) for the principal characters of ;[(2),

[2 1 1
X550 D = X555, 1) =Pryy ) (@) = (—qZ; qZ)OO (— 4 Do »

red 51(2) L 1) (79
X[l,l](q’ 1) :PrX[l’l] (q9)= <_q2 y qz)oo (_q2§ q)oo .
7.1.2. Burge-reduced instanton partition functions
For N =2 with general n, the Burge- reduced instanton partition functions (6.10) are deter-
mined by the parameters in s = [sp, s1] € P. 2n+2 and s, = [s,0,5-1] € P{;ﬁrz, r=1,2,3,4,
fixed by the relations (5.1), (6.9):

si=o01—o2+1, si1=bi—br+1, sa1 zb/l —b/z—i- 1, (7.10)
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and (6.13) from the ordered charges o1 > o2, b1 > by and b/1 > b/z. The Coulomb parameters are
then determined from the parameter s := 51 by (6.5):
1 n
a=—3[s-1-3]e a 2[s—l—— e, (7.11)

and the mass parameters m = (m, my) and m’ = (m1 , m’z) are determined from the parameters
in s1, s2 and §3, §4, respectively, by (6.6).

Lelt4us consider the case of (N,n) = (2,2) with the rational 2-background €1/e; = —2 in
(6.4).

Example 7.1 (4 — @ — (J) — @ — (). Consider the Burge-reduced instanton partition function
2[(3 ’8]).’((?)’0) (q) and take £ = 0 in the fundamental chamber, which respects the fusion rules, as in
Conjecture 6.5. Here s =51 = 59 = s3 = 54 = [3, 1] are fixed. Then, the Burge-reduced instanton
partition function is obtained as
0,0),(0,0 —
Zo0eP@=0-a =1, hy=0, (7.12)

and Conjecture 6.5 is confirmed.

Example 7.2 (§ — O — (O) — O — ¥). Consider the Burge-reduced instanton partition function
éﬁ[? ,’10 ]),’((B)’O)(q) and take £ = 0 in the fundamental chamber as in Conjecture 6.6. Here s = s7 =
s3 =1[2,2] and 51 = 54 = [3, 1] are fixed. Then we see that the Burge-reduced instanton partition

function is

39 33¢% 209¢° 5643q*  39501¢°
21(0,0),(0,0) —2h q q q q q
Z =(1- O=14 2
o @=0=a) T35 T 128 T 1024 T 32768 T 262144 ’
(7.13)

where h7=3/16, and Conjecture 6.6 is confirmed.

Example 7.3 (00— 0O - W) — 0O — 0O and O — O — (10) — O — O). For Conjecture 6.7,
consider, first, the Burge-reduced instanton partition function Z[(zl 8]) ((Zl) O)(q), where s = [3, 1]
and §1 = 57 = §3 = §4 = [2, 2] are fixed. Then we find that the Burge-reduced instanton partition

functions for £ = 0, —1 in the fundamental chamber are

1,0),(1,0 _3 111
Zhoro; @ = (1= 42F‘< ,CI>

442
q 11g*> 35¢° 949q* 3333¢°  47909¢°
=142 e
T3V 6 T 256 T 8192 T 32768 T 24288

1 |33 (7.14)
=(1,0),(1,0) q 2h

Z[Z,O];(—l) (q)=7( — g7 42Fl <4 2’ 2s¢l>

g3 23q3 37q7 2013q7 3537q2

2 4 128 256 16384 32768 ’

where i = 3/16, and the second one respects the fusion rules by (6.18). Consider, next, the

Burge-reduced instanton partition function ffé”g]);’((el)’o)(q), where s =[3,1] and s; =5, =83 =

ST

14 Examples 7.1, 7.2 and 7.3 are confirmed up to 0(q6).
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s4 = [2, 2] are fixed. Then we obtain the Burge-reduced instanton partition functions for £ =0, 1
in the fundamental chamber as

2(1,0),(1,0) DY 111 2(1,0),(1,0)
Z[O,zl;(()) (@=0-g T3 F <_ i q)= Z[z’()];() (),

(7.15)

1

2(1,0),(1,0) q2 -3 133 2(1,0),(1,0)
2[0’2];(1) ()= 3 (1 =g 073 2F <Z, 175" q ZZ[Z’O];_I (@),

where the second one respects the fusion rules by (6.18). The above results (7.14) and (7.15)
support Conjecture 6.7. By

1 1

111 1+yT—=q)? q? 133 1-yT—q)?2

2F1 - 7 ‘q = - A~ ) —2F1 _7_._‘q = - A ’
44 2 2 4 2

5 ) 4 ) 2 )
(7.16)
they are also consistent with the results in [14] by Belavin and Mukhametzhanov.'>
7.2. (N,n) = (2,3) and s(3)» WZW model
For (N, n) = (2, 3), there are six highest-weight representations
#=1[2,0,0], O=I1,1,0], CO=][0,2,0], H: [1,0, 1],
FP=0,1,1, FH=10,0,2], (7.17)
with conformal dimensions
k} + k3 + kiky + 3ky + 3k,
hikg ey ka1 = 15 :
(7.18)

4 2 3

15 More precisely, in [14], the generic Q2-background, without the Burge conditions, was discussed. Then the first one
of (7.14) and the second one of (7.15), with ¢ = 0, were obtained as prefactors combined with the A" = 1 super-Virasoro
Ramond conformal blocks H+(q), F+(q), ﬁi(q) and Fi(q). ‘What we found is that, when we impose the specific Burge
conditions, the conformal blocks are trivialized as H4(q), F+(q) — 1 and ﬁi (), fi (q) — 0, and only the prefactors
are obtained.
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7.2.1. Burge-reduced generating functions of coloured Young diagrams
The t-refined Burge-reduced generating functions (5.21) for (N, n) = (2, 3) are obtained as

Sred . 2( —Ly (—1+2L
ngy(),o](q’ (t1, &) = (q; Cl)oo Z X(() ()) (=, _52)(11) e tz ! g
(e1,62)€Z?
2,0,0 27 2,0,0 T
X[2 0 0}01) foo(a, fl,tz) + X{o 1 1} goo(q, t1, t2),

wred . 2+2€ —4 £1+2¢
XES,Q,()](q» (t1, ) = (q’ Cl)oo Z X(l 1) (—£, —52)( ) e t2 ! ’
(£1,02)€Z?

[858}@ f1o(a, tl,t2)+X[101](q)810(q . b,

201—¢ £142¢
()02](C| (t1,22)) = (4 Do Z X(22)( ¢, gz)(q)t " 21‘2 R
(01,02)€Z?

= X\y0ak@ for (g, tl,tz)+ D@ gor(a. b1, ),

X5 0@ (o) =@ e Y. XTOL o @ TR (7.19)
(£1,£2)eZ?
= x[}'0) 2@, B, f2)+X[002](q) for(a. b, B,
Xioh 1@ () =@ oo Y X 1)o@t TR
(01,02)eZ?
= X011 @ goo@. 1. 82) + X300 @) foo(a. 1. B,
XEon@ (0, 0) =@ Doe Y XG0 oy _eny@H 2112
(01,02)eZ?
=X[}8”(q)g1o(q,t1,t2)+X[020](q)f1o(q,t1 t),
where 1 =q_% t, b= q_% t,
%88}(q)-1+2q+8q +204° +52q +116q° +256q° + 52247 + -
X200 = g +4q% + 1293 +3297 + 7795 + 17297 +365¢ %
L7407 4+ -
XIo 1@ = 1+ 4q + 13¢% + 36q° + 89q* + 204q° + 441¢° +908¢" + - -+ 720,

[0,1,1] 2 5 8 u 14 17 20
Xp50/01 (@ =243 + 793 +22q3 + 5693 + 13697 +300q73 + 63643
+1280q7 +- -
[0,2,0] [0,0,2] [2,0,0]

[0,2,0] [0,0,2] [200]
X020](¢1) X()()z](q) Xz()o](q)’ [101](Q)— [110](q)— [011](0[)

x11.1.0] x11.0.1] [0,1,1] [1,1,0] [1,0.1] [0,1,1]
X0y @ = X101 (@ = X117 (@), [002](q)— [020](q) [200](q)

and foo, fi0, fo1, &o0o, &10, go1 are
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Foron(@: 11, ) = Z q% [3+73+4 2] Vg,
Grjpel2Z)’
J1—j2€6 Z+2(01—02)
T LR+ i) 4 i

8010, (0, 1, B) = > q iy
Grjpel2Z+1)
J1—)2€6 Z+2(01—02)

R RN PV STy
+ 3 q [+ ).

Ui.je{2Z}x{2Z+1)}
J1—j2€6 Z+142(01—07)

(7.21)

The Burge-reduced generating functions (7.19) agree with the ;[(3)2 WZW characters computed
by (A.35),

I3 27 < 3
X0, () = 1502 @, (b)), RIS 01(a (b, 1) = xfo(zif(q R}
I3 27 s sl 3)
X1 01@@. (t1,02) = zggm (b)), X5 0@ () = a7 x5 R (. b)),
[ 3 A ~
Xfodl 1](q (t1, ) = CI is XEE)(l )12](q7 (t1, t2)),

sI(3 t 2

(7.22)

and Corollary 5.5 is confirmed. Up to an overall factor, the functions (7.20) are the ?[(3) string
functions of level-2 in [46] and given by (c¢f: Corollary 5.2),

(a2 q%)oo (a: q%)oo (a%; q%)oo (a; q%)oo

2,0,0 1
X[Q()()}(q) —qs X (q) = o q)4
» Yoo

1 (0% q) (a%9'%) o (0% a") (0" ")

(@ DL

’

[2,0,0]
X 11]( )—

(7.23)
X011y = 50D (0%97) (0900 (1% 010)
1’ - ’
. (@ D%
1 1 15 5 5 5
1 4 [0.1.1] 0.1, \ l(qz’qz)oo(qz;qz)oo<q2;q2>oo<q2;q2)oo
q X[o,1,1](‘1)—X[z,om(q)—q(’ o C{)4 .
s Moo
y taking t; = t, = 1, the principal characters o 5[(3) are obtained as in (5.24):
By taki 1, the principal ch fsl(3) btained (5.24)
X155 01, (1. 1) = X564 o,(a. (1, 1) = X[ 2,(@. (1, 1)) = Pr x5 b (@)
_ (95 Doo
- 1 5 ’
(at:0)  (asa)  (as0)
(7.24)

X154 (@, (1L, 1) = X4 @@, (1, D) = X5 (. (1, 1) =Pr g T @)
_ (95 Doo

RCEYNCEDNCRDN
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7.2.2. Burge-reduced instanton partition functions

For (N, n) = (2,3), the rational Q2-background (6.4) yields €1/e; = —5/2. The parameters
in s = [so,s1] € P2+5+ and s, = [s,0,5-1] € P2“:5+, r =1,2,3,4, which determine the Burge-
reduced instanton partition functions, are fixed as in (7.10).16

Example 74 (0 — @ — (¥) — @ — @). Consider the Burge-reduced instanton partition function
2[(3’8’)(’)](?(’2 )’ Zz)(q) and take (£1,£2) = (0,0) in the fundamental chamber as in Conjecture 6.5.
Here s =51 = 52 = s3 = 54 = [4, 1] are fixed. Then we see that the Burge-reduced instanton

partition function is
0,0),(0,0 _
ZO0O0 (@)= (1= =1, hy=0, (7.25)

and Conjecture 6.5 is confirmed.

Example 7.5 (§ — H — (O) — O — @). Consider the Burge-reduced instanton partition function

2\[(? ? )6]@(’2) 22)(q) and take (£1, ¢2) = (0,0) in the fundamental chamber as in Conjecture 6.6.

Here s =53 =[3, 2], 51 =s4 =[4, 1] and s, = [2, 3] are fixed. Then the Burge-reduced instanton
partition function is
8q  92¢°> 3496¢° 46322q*

~(0,0),(0,0) —2h
[1,1,01:0,0) (@ = (1 —a) T 151 225 T 10125 T 151875

31498964°
11390625 ’
where i =4/15, and Conjecture 6.6 is confirmed.

(7.26)

Example 7.6 (0 — 0 — %) — 0 — H and 0 — 0 — () — 0 — H). For Conjecture 6.7,
consider, first, the Burge-reduced instanton partition function 2[(21 ’g )6](263 1> &) (q), where s =[4, 1],
s1 =582 =153 =1[3,2] and s4 = [2, 3] are fixed. Then we find that the Burge-reduced instanton

partition functions for (¢, £2) = (0, 0) and (—1, —1) in the fundamental chamber are
2(1,0),(2,0) _ Py 112
Z50.000.0@ =0 =g 0752 F (—5, 554

34> 67¢°  49309q*  254267¢°

q
6 315 " 810 T 722025 4337550
| (7.27)

1,0),(2,0 q3 _4 1 47
2[(2,0,)0](;(—)1,—1)(0[) =7 (1—?075,F (—, —iziq

g% 4q5 | 79¢5  4619¢5  16237q%

=2 "9 Te30 T asios T 206550
where i =4/15, and the second one respects the fusion rules by (6.18). Consider, next, the
Burge-reduced instanton partition function :?\[((;10 )1’](;2(’2)’ ez)(q), where s =51 =5, = 53 = [3, 2]
and s4 = [2, 3] are fixed. Then we see that the Burge-reduced instanton partition functions for
(£1,4£2) = (0,0) and (1, 1) in the fundamental chamber are

16 Examples 7.4, 7.5 and 7.6 are confirmed up to O(qs).
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0.2.0) (\ _ 4 123
Z[ 1(00)(01)—(1—0[) U 52F1< 55 Ssq

2q 13¢°> 8792¢° 218507q¢* 54190157q5+
15 150 131625 = 3948750 = 1135265625 '

=1+
(7.28)

2
20 q3 4 248
Z[ )1((1)1)(01)—?(1—@2}’D S,F) <5 5750

_qi 793 1867q7 | 32582q7 | 18575621q°

3 45 17550 394875 | 272463750
where the second one respects the fusion rules by (6.18). The above results (7.27) and (7.28)
support Conjecture 6.7.

2
3

7.3. (N,n) = (3,2) and 51(2)3 WZW model

For (N, n) = (3, 2), there are four highest-weight representations

=[3,0], O=[2,1], m=I[L2], OO=I[0,3], (7.29)
with conformal dimensions
ki (k1 +2) 3 2 3
h =——: hyp=0, h=—, hT—=-=, h =—. 7.30

7.3.1. Burge-reduced generating functions of coloured Young diagrams
The t-refined Burge-reduced generating functions (5.21) for (N, n) = (3, 2) are obtained as

X500 =@ Do D X500k o @B = X301 @) foa. D + X[} 3 (@) go(a. D).

LeZ

X650 =@ Do D X511 Lo @B =x03@ 1@ b+ x5l @ g1 b,
LeZ

X540 =@ Do D X500k o @B =X @ g1 b+ X[53]@) f1(a. D,
LeZ

X9@.0 =@ oo P X0 L@ 2= X1 @) g0(a. b + X5 @) foca. D,
LeZ

(7.31)
wherei:q_}Tt
XE8@) = 14 q+3¢2 +60° + 124" +21q° +39q° + 64q" + 1084° + -
XBO](GI)—C]2 +2q2 -|-5C|2 +9q2 +18q2 +31q2 +55q2 +90q2 +149q2 +.
X{Iﬁ](q)—l+2q+5q +106° + 204" + 36¢° + 6400 + 10847 + 180" + -
XU 2(q)=q? +3q7 + 697 + 137 +24q% + 4497 +76q7 + 129¢7
+21097 +---
X3 =B, X2l = x50,
X3 = H A@. X5 = B;ékq),
(7.32)
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and

A 1 2. o 12 1A
fowb=" ) an/ V. g@bh= ) qu/TEU. o=0.1 ;35
JEO6Z+30 JjE6Z+(2—0)

The Burge-reduced generating functions (7.31) agree with the ;[(2) 3 WZW characters computed
by (A.35),

X0 = 51(2)3 @b, Xjghy@.0= 5[(2)2("' b, (7.34)
Xish (@, 0 =qm x 5[(2)3 @h X @0 =qm 3 P @b,

and Corollary 5.5 is confirmed. Up to an overall factor, the functions (7.32) are the ;[(2) string
functions of level-3 in [46] and given by (cf. Corollary 5.2),

a%:03) (@:a3) (a%:q
(as08)  (0F) _(a¥s0%)

[3,0] X301
X (q)—q (q) = .
[3,0] [1,2] @ q)go
X% = g (0o (0%07) (@7:07).
t (q' D3 3%
X[12](q) (0%07) (@%97) , (a":a")
(UI»UI)oo
5 4 5 5.3
Lo12] n2, . _ 1 (q3 qz)oo<q3’q3)oo(q3,q3>oo
q6X[1,2](q) X[; 0](q)—q6 > .
(g5 q)oo
By taking t = 1, the principal characters of s/.\[(Z) are obtained as in (5.24):
1 1
—q2;q2
red (q’ l) _ Xred (q’ 1) —PI"XB[(Z)(C[) — <§ §)OO§ ,
(wa?) , (a%:a7)
* o (7.36)

(—q%;q%)
o0
(q%;q%)oo (qz;q%)oo'

Note that, these principal characters are related to the principal characters of ;[(3) in (7.24) by

> > 2
X (@, 1) = X% (q, 1) = Pro P (@) =

PO @) Pragon @) P @) Pty @) (737)
’ 00 U)o ’ ’ 00 ’ 00
(9% ¢%) (4% ¢%) (9% %) (4% a°)

7.3.2. Burge-reduced instanton partition functions

For N =3 with general n, the Burge-reduced instanton partition functions (6.10) are de-
termined from the parameters in § = [so, 51, 521, 1 = [51.0, 51,1, 51,21, §2 = [52,0, 1, $2.2], §3 =
[53,0, 53,1, 1] and 54 = [54,0, 54,1, 54,2] in P{;ﬁd that are fixed by the relations (5.1), (6.9):

s;=or—ory1+1, s p=br—bip+1, s4p=b;—bp+1, =12 (738)

and (6.13) from the ordered charges o1 > 02 > 03, by > by > b3, b} > b, > b;. The Coulomb
parameters are then determined from s by (6.5):
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> [1-5) [s-1-2)

[3 21] [sl—l—— e, (7.39)

:g[zzl;zl [s1—1—§]62,

and the mass parameters m = (my,...,my) and m’ = (m/l, m/N) are determined from the
parameters in s1, s and §3, s4, respectively, by (6.6).

We now consider the case of (N, n) = (3, 2) with the rational Q2-background €;/e; = —5/3
in (6.4).17

Example 7.7 (4§ — @ — (¥) — @ — @). Consider the Burge-reduced instanton partition function
2[(;) ’8]’,0()[’)(0’0’0)(q) and take £ = 0 in the fundamental chamber, which respects the fusion rules,
as in Conjecture 6.5. Here s = §1 = s = 53 = s4 = [3, 1, 1] are fixed. Then we see that the

Burge-reduced instanton partition function is

EONOOM @ =~y P =1, hy=0, (7.40)

and Conjecture 6.5 is confirmed.

Example 7.8 (0 — 0 — (O) — O — @). Consider the Burge-reduced instanton partition function

2’\[(3 ,;)],.o()é)(o,o,()) (q) and take £ = O in the fundamental chamber as in Conjecture 6.6, where s =

s3=1[2,2,1],s1 =s4=1[3,1,1] and s, = [2, 1, 2] are fixed. Then the Burge-reduced instanton
partition function is obtained as

0,0,0),(0,0,0 —2h
2\[(211];()0)( )(q) =(1- CI) U

39 39¢>  299¢°  9867q%  424281¢°
=14+=+ + e
10 © 200 © 2000 80000 ' 4000000

(7.41)

where h = 3/20, and Conjecture 6.6 is confirmed.

Example 7.9 (0 —0O— (¥) —O—Oand O — O — () — O — O). For Conjecture 6.7, consider,
first, the Burge-reduced instanton partition function Z (31 8 0()((1 /0, O)(q) where s = (3,1, 1], s1 =
§3 =84 =1[2,2,1] and 5o = [2, 1, 2] are fixed. Then, we find that the Burge-reduced instanton

partition functions for £ = 0, —1 in the fundamental chamber are

11
17 Examples 7.7, 7.8 and 7.9 are confirmed up to O(q 2 ).
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%(1,0,0),(1,0,0) , \ __ D3 1 23
213010 (=0-q0 52F1< 55050

49 13q N 87q3_+ 8669q* +_344797q5_+
- 6 1040 124800 5740800 ’
) Y as (7.42)
2(1,0,0),(1,0,0) _CI_ _ \2h—2
Z[3,0];(71) (@ = 3 11— )"0 st1 (5 5 S,UI)

3 +_61q% +_289qz +_222529q% +_25723q1—z"+
6 ' 520 ' 3120 | 2870400 ' 382720 ’

_®
_3+

where 7 = 3/20, and the second one respects the fusion rules by (6.18). Consider, next, the
Burge-reduced instanton partition function Z[(ll g 0()()(1 -0, O)(q), where s =5, =[2,1,2] and s| =
s3 =584 = [2, 2, 1] are fixed. Then we find that the Burge-reduced instanton partition functions

for £ =0, 1 in the fundamental chamber are

S 112
2\[(11,’31’;0(2)’)(1’0’0)(0') =(1- q)ZhD 52F ( 1T q)

140 +_183q2 353q3  796073q*  17182143¢°
7571400 T 3500 1 9520000 ' 238000000 ’
1
1,0,0),(1,0,0 q2 _3 147
2[(1,2];81)( )(q)=?( — g0 S F) (5 5750 (7.43)
g +_29q% 393q3  51949q7 17252932
T2 U140 T 2800 ' 476000 19040000

74432711q 7
952000000 ’

+

where the second one respects the fusion rules by (6.18). The above results (7.42) and (7.43)
support Conjecture 6.7.

8. Summary of results and remarks
8.1. Summary of results

The point of this paper is to compute conformal blocks in integral-level WZW models. Start-
ing from the SU (N) instanton partition functions on C? /Z,,, with rational 2-deformation, based
on the algebra A(N, n; p) in (1.1), we proposed (in Conjectures 6.5, 6.6 and 6.7) a way to
compute integral-level, integrable ;[(n) ~N WZW conformal blocks, with rational central charges,
where one has to deal with the issue of null states. By considering a rational 2-background
% = —1 — 4 in (6.4) and imposing appropriate Burge conditions in (5.3) to eliminate the null
states, we trivialized the coset factor in the algebra A(N, n; N) as in (1.4), and were left with
an integral-level WZW model. Further, we showed, in Corollary 5.5, that the Chern classes (2.8)
of the gauge bundle, which labels the instanton partition functions on the gauge side, can be in-
terpreted as the eigenvalues of Chevalley elements in the Cartan subalgebra of ;[(n) on the CFT
side.
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8.2. The work of Alday and Tachikawa

In [47], Alday and Tachikawa, using results from [48-51], as well as AGT, found that SU (2)
instanton partition functions on (z1, z2) € C2 with generic §2-deformation, and in the presence
of a full surface operator at zp = 0, agree with sl(2) conformal blocks that are modified by
a K-operator insertion, at generic-level k = —2 — % A generalization to the relation between
SU (N) instanton partition functions in the presence of a full surface operator and modified ;[(N )
conformal blocks at generic-level

k=—N-2,
€1
was proposed in [52].

In analogy with the moduli space of U (N) instantons on C?/Z, without surface operators
described in Section 2, to describe the moduli space of U (N) instantons on C? in the presence
of a full surface operator, one can use the moduli space of U(N) instantons on C x (C/Zy)
[50,53,54]. Unlike the sl(n)y conformal blocks discussed in our work, these conformal blocks
are at generic-level, and modified by the [C-operator insertion.

8.3. The work of Belavin and Mukhametzhanov

In [14], Belavin and Mukhametzhanov obtained integrable WZW conformal blocks for
(N, n) =(2,2), (see footnote 15). They found that, stag\ting from the SU (2) instanton partition
functions on C?/Z, with generic Q-deformation, the s[(2), WZW conformal blocks in Exam-
ples 7.1, 7.2 and 7.3 are obtained as prefactors of A/ = 1 super-Virasoro conformal blocks with
generic central charge. In our work, with suitable rational choices of the parameters and by im-
posing Burge conditions, we trivialized the super-Virasoro conformal blocks (and their higher
(N, n) analogues), and computed conformal blocks for rational central charges, for more values
of (N,n). We conjecture that our approach works, for rational central charges, for all (N, n),
N,neZ-.
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Appendix A. Lie algebras, affine Lie algebras and notation
Here we describe the notation we use from the structure and representation theories of finite di-

mensional and affine Lie algebras, as it pertains to s\(M) and sl(M). For a more comprehensive
treatment, see [55].
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A.l. The finite dimensional Lie algebra s\(M)

Define the ind_ex setZy = {1, 2, M- 1}. The Lie algebra sI[(M) has _Chevalley generators
{H;,E;, F;|i € Ty} with {H; |i € T)} a basis for its Cartan subalgebra f. The Cartan matrix
A of sl(M) is the (M — 1) x (M — 1) matrix having entries A;; = 25;; — 8; j+1 — &; j—1 for
i,j € Ip. The dual E* of b has basis {ajlje Ty} where the simple root a;j is defined by
aj(H) = Zij fori, j e Zuy. Fori € Ty, the fundamental weight A€ E* is uniquely defined by
Ai(Hj) =38;j for j € Iy. It follows that A; = ZjeTM (Z_l)ij o, where Z_l, the inverse of A,
has entries

(Z‘l) — min{i, j} — 2L (A1)
ij M

fori,jeZy. Note that (A1, Ny, ..., Ap_1}isalso abasis for h". The Weyl vector 7 is defined
by p = ZiETM A

It is convenient to embed H* inCM, by choosing an orthonormal basis {ej, e, ..., ey} for
CM and setting o; = e; — e; 1 fori € 7y The standard inner product (-, -) on CM then leads
to

— S —1
(o)) =R, (e, B) =8, (A,»,A,»):(A )U (A2)

for i, j € Zys. Note that E* is the (M — 1)-dimensional subspace of C¥ that is perpendicular
to e; + e + --- + ey. For convenience, we set ey = %(el + ey + --- + ey). It is then easily
confirmed that

i M
A =Zek —iep and p= Z(M—2k+ 1)eg. (A.3)
k=1 k=1

A.2. The affine Lie algebra ;[(M)

Define the index set Zy; = {0, 1, ..., M — 1}. The affine Lie algebra ET[(M) has Chevalley gen-
erators {D, H;, E;, Fi |i € Ly} with {D, H; |i € Iy} a basis for its Cartan subalgebra b (which
is (M + 1)-dimensional). The element C =) ; ez, Hi is central in s[(M). The Cartan matrix A

of;[(M) is the M x M matrix having entries A;; = 28,.(/1.”) — 8,(1;/13_1 — 81(1‘//111

51.(]1.”) =1ifi=j (mod M) and 81.(1.”) = 0 otherwise. The dual h* of h has basis {Ao, o« | j € Zy},
where the simple root ¢ is defined by «j (H;) = A;j fori, j € Zp; and o j (D) = § jo, and the fun-
damental weight A is defined by Ag(H;) = ;9 fori € Zp; and Ao(D) =0. For j € Ty we also
define A; € b* by setting A j(H;) = §;; for i € Iy, and A ;(D) = 0. The Weyl vector p is de-
fined by p =} ;.7,, Ai- The null root § is defined by § =3 ;.7 e, and is such that §(H;) =0
fori € Tp; and §(D) = 1. Note that {Ag, A1, ..., Ay —1, 8} is also a basis for h*.

Because sl(M) appears canonically as a subalgebra of ;[(M ), we may identify the «; in the
two cases for i € Zy. In addition, A; = A; + Ag for i € Zy;. Then o =p+ MAo. We again use
the set of orthonormal vectors eq, ez, ..., €y, supplementing it with Ay and § to give a basis for
h* U Cep. In terms of these,

fori, j € Zps, where

ap=ey —e|+94 and o =€ —ejy] (A4)

for i € Z;. The inner product (-, -) on h* U Cey is defined by setting
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(8, Ag) =1, (8,8) = (Ao, Ag) = (8, €;) = (Ao, €;) =0, (A.5)

in addition to (ei,ej)z&-j, fori, j € Zuy. Then
<O(l',0(j)=Aij, <Ot,',Aj>=3,'j, (5,Aj)=1, (A,’,Aj):ﬂlin{i,j}—i (A6)
M

for i, j € Tps. It follows that for each 8 € h*, we have 8(D) = (B, Ag) and B(H;) = (B, «;) for
iely, as is easily checked.

The s[(M) weight lattice Py, the level-m weight lattice Py ,,, the dominant weight lattice
PA‘,';, the level-m dominant weight lattice P+ , the regular dominant weight lattice PZI,[H’, and

the level-m regular dominant weight lattice P&fn, are defined by'®

Py =P ZA;, Pym={A € Pyl (8,A)=m},
i€y
Py=@D Z0Ai. Py, =Pii0 Pyum. (A7)
iEIM
Pt = @ Z-oA;, Pyt =Pyt 0 Py
iEIM
We will often use [dy, di, ..., dy—_1] to denote the element Zi Iy d; A; from any of these sets.
Note that if [dy, dy, ..., dy—1] € Py then ZieIM di=m
A.3. Affine weights and partitions
For A = [do,di, ...,dy_1] € P;7, it is convenient to define a partition A = (A1, A2, ...) by
setting
M—1 . .
dj ifl< M,
pi= | 2im i P10 < (A8)

0 ifi>M.

We will denote the partition so obtained by par(A). Note that if A € PJr and A = par(A) then
A1 <m and Ay = 0. On the other hand, given a partition A with Al < m and Ay = 0, there
is a unique A € P+ v.m Such that A = par(A). We then write A = par‘l(k). Note that par~! is
well-defined only if m is specified.

Lemma A.1. Consider a partition ¢ = (o1, 02, ...) for which oy < M and o,,+1 = 0, and define
A€ Pﬂ,m by A=3Y"7" | Ag,. If » = par(A) then . = o', the partition conjugate to a.

Proof. This follows after noting that in frequency notation o is expressed (M — 1)4m-1 .|
242 14y, g

A.4. Representations and characters of ;[(M )

For A € P,[; , let L(A) denote the highest weight ET[(M )-module whose highest weight vector
va is such that H(va) = A(H)vp for all H € h. Then, with A = [dp,dy,...,dy—1], we have

18 Usually, the set C§ is adjoined to these sets. The theory then proceeds with little change.
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A(H;)=dj € Zsog fori € Iyy and A(D) =0.If A € PA‘; ,n then the module L(A) is said to be
of level m. The formal character of L(A) is defined to be

chL(A)= ) (dimVp)e’, (A.9)

Beb*
where Vg is the subspace of L(A) for which, for each v € Vg, we have H(v) = B(H)v for all
H €. Instead of using the formal exponentials e, it is convenient to set e ™% = q and e ™% = x;

for 1 <i < M, and define

- sI(M)
,x)=chL(A . A.10
Xa (q,x)=chL(A) (= —qei—x, | L<i<M) ( )
For A € P/I;, the Weyl-Kac character formula ([55, eqn. (10.4.5)]) yields
_ SI(M)
_ sl (q,x)
220G, x) = et A (A1)
N() (qa x)
with N:[(M) (q, x) given by
N{?(M)(q’ x) = Z det (xif(Mer)kifAjJerrAifiq (Ajfj)ki+%(M+m)ki2> ’
I<i,j<M
kiyoky€Z
k1+--+kpy=0
(A.12)

where A = par(A). Using the ;[(M ) Macdonald identity [55, eqn. (10.4.4)], the denominator of
(A.11) may be alternatively expressed:

N (q,3) = (g )2 [1 <x—q> (%q;q> ' A1)

x
l<i<j<m 7/

(For a more detailed derivation of (A.12) and (A.13), see [41, Appendix B.2]).
In the case in which A is of level one, so that A = Ay, for k € Zyy, the character ch L (A) has
the explicit expression [55, eqn. (12.13.6)]

Ak _ _
€
chL(Ay) = — E e77+%<Ak»Ak)5*%(77+AkJ7+Ak>8 ) (A.14)

» Yoo M—1
We@izl Z a;

Then, use of the inner products in Appendix A.2, and noting that (77 + Ay, n+ Kk> =(n+ Ag,
n+Ax)=mn) +2n, Ar) + (Mg, Ag), leads to

SI(M) el M-l (g2 M xi\"
-5 _ G M (2 i

XA, (q,x) =  M—1 2 : q kT s & ~titi-) | | <_x ) ,
i=1 L

(: d)oo LeZM-1

(A.15)

where £ = (£1,...,£€y—1) with £y = 0.

It will be useful to note that )Zj[(M)(q, x) is invariant on multiplying each of the x; by the
same non-zero constant. This is obvious in (A.15), and consideration of the determinant in (A.12)
shows that it holds also for both the numerator and denominator of (A.11).
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A.5. Principally specialised characters of s\(M)

Although the denominator NOE[(M) (q,x) of (A.11) can be written in product form, this is
not the case with the numerator A" (q, x). However, after substituting e~ — q'/* for

each simple root a;, N : [(M)(q, x) can be written in product form. The same is then true for

X :[(M)(q, x) [55, Proposition 10.9]. This specialisation is effected by substituting x; — q~//M
into (A.12). So define the principally specialised character
SM), A - sI(M)
Prxy, " @=e"x, (@x) (g M 1 <i<i) (A.16)

The result can be conveniently expressed by, for A € P;,,'ym, setting A = par(A) and defining the
set QUA)={m+j—A;|j=1,...,M}. Then

ol (GH:D) 1
Pr oy D (o 0 _
@ | R R 1_[ L 1m
q ' M;q M I<i<j<M+m qMm i q "M
i¢Q(A), jEQA) *

1
— . A.l
) H L (A7)
I<i<j<M+m \9 Moq M
P€Q(A), JEQU(A)

o]

(See [41] for more details: the substitution ¢ — q'/M

there gives the normalisation used here.)
A.6. Characters of ET[(M ) via crystal graphs

Here we describe the crystal graph enumeration of characters of ;[(M ) that was developed by
the Kyoto group [56,27,57]. The formulation that we use is similar to that in [58, Section 2].

For A =[do.dy.....dy-1] € P} . leta = (01,07,...) be the partition for which 0,1 =0
and A =) 1", Aoi.lg Let M? be the set of m-tuples of coloured Young diagrams Y =
(Y1, Ya, ..., Y,) whose row lengths Y, ; are constrained by

Yei>Yoilivor—op, for i. 2l I=t<m (A.18)
Yii>VYiitoy—oy+m fori>1,

and where the box (i, j) of ¥; is coloured (o¢ +i — j) mod M.?" The elements of M are called
cylindrical multipartitions in [58]. For Y € M and i € Z), define k; (Y) to be the number of
boxes in Y that are coloured i, and then set 5k; (Y) = k; (Y) — ko(Y).

The crystal graph theory shows that the character ch L(A) of the irreducible ;[(M ) represen-
tation with highest weight A can be expressed as a sum over a subset M of M, the elements
of MY being known as highest-lift multipartitions. We will not define MY here (the definition
can be found in [58, Proposition 2.11]), because we will just use and state its pivotal property.
Using, as before, e %= gande™% = x; fori € Zu, this expression is [27, Theorem 1.2]:

19 By Lemma A.1, if > = par(A) then o = AT,
20 Note that this colouring convention differs from that defined in Section 2.1. It also differs from that used in [58], but
is appropriate to the conventions used here and in [41].
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~ ki (Y)
_ sl ]
i axy=et o gl | | (x 1)
i+

YeMg

oA (Y .\ Ski(Y)
Z qO()l_[(xH-l) 7

YeM?

(A.19)

the second equality following on using k; (Y) = k; (Y) + ko(Y) for i € Zj, and noting that, in
particular, ko(Y) = 0.
The property of MY that is needed is that there is a natural bijection’!
M - M? x Par, (A.20)

where Par is the set of all partitions, such that if ¥ + (Y*, 1) then 8k; (Y) = 8k; (Y™) fori € Ty,
and ko(Y) = ko(Y™) + |k|. Because the generating function for Par is

Al —
S (A21)
re€Par (q q)oo

the expression (A.19) yields

8ki (Y)
—5I(M) _ ko(Y)
@x) =e" @D Y g% ]_[ (xm) : (A22)

YeMe° i=1

Now for a vector £ = (£1,€2,...,Ly—1) € ZM~!, define M7t C M7 to be the set of all ¥ €
M?C for which §k; (Y) = ¢; for each i € T ). Also set £g = £ = 0 for convenience. We can then
write (A.22) in the form

_5[(M)(q x)—e (95 Poo Z Z ko(Y) l—[ <x +1>

LeZM-1 Ye/\/l” ¢

(A.23)
=et > at@ ]_[xff“z"*‘,
LeZM-1 i=l
where the ;[(M ) (normalised) string function Ezé‘ (q) is given by
ap@ =@ Y, q°b. (A.24)

YeMet

Tabulations of the coefficients of the string functions a é\ (¢) in the cases 2 < M <9 for weights
A e Pﬁm of various small levels m can be found in [59].22

A.7. WZW characters

For any affine Lie algebra g, the Sugawara construction demonstrates a homomorphism from
the Virasoro algebra Vir to U.(g), a completion of the universal enveloping algebra of g, for any

21 Obtained using an abacus with M rungs — see [41].
22 This string function &é\ (q) is usually denoted as a}‘,\(q) where y = A — ZKT] L;a; (see Appendix A.7, especially
(A.30)).



O. Foda et al. / Nuclear Physics B 956 (2020) 115038 41

level m > 0 (see [55, §12.8] for details). Consequently, for A € P+ , the 5[(M) module L(A)
also serves as a Vir-module. The central charge ¢ and conformal dlmensmn h o of this Vir-module
are given in (5.9).

Through the homomorphism Vir — U, (s (M)), the Virasoro generator Lq acts on L(A) by
Lo+ hpld — D, where 1d is the identity operator [55, Corollary 12.8]. Consequently, the defi-
nition (5.10) yields

R M-1
XIS\[(M)m(q’t) thA TrL(A) q_D tH’ . (A.25)

i
i=1

Now note that (A.23) can be written as a sum of terms exp(8) with 8 of the form

M M
B=A—ks—> ejltj—L; )=A—ki—) Lja; (A.26)
j=1 j=1
for some k € Z. Then, because (D) = —k and B(H;) =d; + €;i—1 —2¢; + £;41, (A.25) yields:
M—1

sl m i - ~dili1—24;+4;
an Mm@ =q 3 ap [T (A27)
LeZM-1 i=1
Alternatively, this may be expressed as
~ M-1
(M), 2 ~y(0);
a0 @ =q" > aby @ [T (A28)
LeZM-1 i=1

after defining y (€) = [y0, Y1, ..., Ym—11 € Py, m by setting
M—1
vi=di+ 01 =20+ ligi=di— Y AL (A.29)
j=1
for each i € 7);, and defining

abe (@) =ap (). (A.30)
By using (A.24), we can also express (A.27) as

"[ ” A '\d Ski—1(Y)—28k; (Y)+68k; Y
K@ D =a" @@ Y glo® 1_[ PR @RI ®, (A30)
YeMe

where we set §ko(Y) = 6k (Y) =0.
In the level one case where A = Ay, comparing (A.15) with (A.23) shows that

W= gy, (A32)
oo

where £y = 0. Then (A.27) gives

(M - M—1p2_ ”31 01 =20 +¢;
s( Mg = — - Z q et iin (G -titie 1>]—[ tlim=2bittivg (A 33)
(CI q o0 eGZM 1

where £g =€, =0.
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A.8. Converting between the x and t variables

In Appendix A.4, in expressing the character of L(A), the formal exponentials e were ex-
changed for e 0= gande™® = x; for 1 <i < M.However, in Appendix A.7, the same character
was expressed using q along with ty, ..., tyy—1. Here, we convert between these variables, and

give a form of the Weyl-Kac formula that expresses xf\KM)’” (g, t) in the t variables.

In terms of Dynkin components, (A.26) takes the form g = —k§ + ZieZM di+44i—1—2¢; +
£iy1)A;. Therefore (see (A.27)), Xf\[(M)’” (q, i) is obtained from thL(A) by exchanging e 0=
q,eA°=1 and eMi =A,- forl <i<M.

Because o; =e; —e;11 and o; = —A;_1 +2A; — Aj41, the x and t variables are related by
xi o G tor t
i _H ,1\21+1 — X = lA 1 _ M X (A34)
Xi+1 t i ty—1

for 1 <i < M, where we set t) = ty = 1. In view of the last paragraph of Appendix A .4, we then

obtain q_hA Xf\[(M)’” (q, i) by substituting x; — %i_l/ii into (A.11). For A = [dy, di, ..., dy—1] €
P;,;’m this gives, after also making use of (A.12) and (A.13),

Xi[(M)'"(q B =g/ Na(q, t)
CHEIE [icicjen (i1t /tit15q) o (abitj—1/ti1ty5q)
M—1
< [T (A35)
i=1
where, with A = par(A),
N s (M+m)ki+2j—j—ni+i ()Lj,j)kiJrl(Mer)kl?)
NA(CI»f) = Z 151'(,1?th ((tl/tl—l) q 2 .
k1 ..... kME
ky+-+ky =0

(A.36)
Appendix B. Some AGT correspondences

Following [1,7,8,11], we summarize some explicit AGT correspondences to identify our conven-
tions in Section 3.2 and to confirm the U (1) factor Zy (m, m'; q) in (3.9).

B.1. (N,n)= (2, 1) and Virasoro conformal blocks

For (N,n) = (2, 1), the SU(2) instanton partition function (2.23) with a; = —a; = a is com-
puted as
my) (a —my) (a+m| — € —€) (a+m) — € —€)
2ae1ex(—2a+ €1+ €)
(@a+myp)(a+my)(a—m)+e +e)la—m)+e +e)
B 2ae162(2a+ €1+ €)

a—
Zygla,m.m';q)=1+q [(

+ 0 [qZ] .
(B.1)
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n[1] (see [60,61] for non-conformal/Whittaker limits) it was found that, by subtracting the U (1)
factor (3.9) for (N, n) = (2, 1), the normalized instanton partition function

0.0 / _ [Z%:lmll [61+€2*%Z%:1m’1] 00
Zyyla.m,m:q):=(1—q) e Zyyla,m,m’; q) (B.2)

givesthe c=1+6 (G'T?) Virasoro conformal blocks of 4-point function (3.4) on P! by the
parameter identifications (3.6) and (3.7):

v_61+€2+a M1—€1+€2 myp —my M_m1+m2
2 ' 2 2 o2
B.
€1+e m)—m) m' 4 m), (B.3)
pa = - . 3=
2 2 2

Here, note that, in the n = 1 cases, the WZW factor ;[(n) ~ in the algebra (3.1) is absent. For
example, the Virasoro conformal block at level 1,

[AM” —Au +AM2] [AM” + Ay — Ay -
AM:Mlﬂ—l—ez MJ’ (B.4)

2 A ' €16
agrees with the coefficient of ¢ in (B.2).

B.2. (N,n)= (3, 1) and W5 conformal blocks

For (N,n) = (3, 1), the SU(3) instanton partition function (2.23) with a3 = —a; — ay is
computed as
Zgzg(a,m,m’:q)

(ap —mq) (@) —my)(a] —m3)(—a] —m’l +e€1 t+€)(—ay 7m/2+e] +€) (—ay —m'3 +e1t+e€)
€1€(ay —ap) 2ay +ap) (—2ay —ay + €] +€p)(—ay +ay +¢€) +€3)

=1+q

(a2 my)(ap —mp) (ay —m3) (—ay — m1+51+e2)( ap — m2+e]+€2)( apy — )713+é|+€2)
€1 ep(ap —ay)(ay +2ap)(—ay —2ay + €] +€3)(a) —apy +€ +€)

7((1]+a2+m])(a]+a2+m2)(a]+a2+m3)(a1+112 ml+e]+62)(a|+a2 m2+51+62)(a]+a27m,3+e|+62)
€1 €2 (2a) +ap) (a) +2a3) 2ay +ay +€1 +€p)(a) +2ap +€] +¢€)
+0 [qZ].
(B.5)

By subtracting the U (1) factor (3.9) for (N, n) = (3, 1), one finds that the normalized instan-
ton partition function

B [ZLI '"1] [61*'52_% Zi;:l ”’/I]
Zog(a,m,m'; q) = (1—q)

Zyp@,m,m'; q) (B.6)

gives the W3 conformal blocks of 4-point function (3.4) on P!, with ¢ =2 4 24 (61“22) by the
parameter identifications (3.6) and (3.7) [7,8] (see [62—64] for non-conformal/Whittaker limits):

, €1te  a—a v €1te  ar+22a
ny = » Mo = )
2 2 2 2
_el—i—ez mip —my _€1+62 mo — m3 _m1+m2+m3
M1 = > > K12 = 2 > Mz—iz ,
€1+e mp—m) €1 +e mh—m) m' + m, +m’,
Ha1 = - , M4 = - ;o M=
2 2 2 2 2

(B.7)



44 O. Foda et al. / Nuclear Physics B 956 (2020) 115038

For example, the VW3 conformal block at level 1,

[AIL” — Ay, + AO,Mz] [Au" — Ay, + Am,O]

2 A
Wy wouy | 3(Apw — Ap)wouy 3 (Ao — Apy) Wy
+ - —w, + + -
2 2 2 Mo, 2 A ®5)
VR L7 3(Apr = Apy) Wiz 0 3 (Aus0 = Apy) wpr
2 K4 2 2Au0 2 Apo
—1
A derer Ay 3(e1 +€)? 9w,2Lv
X v — — ,
“laaer+156€ +e)? dee+15(e +6)? 2Ap
agrees with the coefficient of q in (B.6), where
2 (203 + 20 2+ 203 = 31+ &) (1 + 112
Ap=Apypy == 3¢l e )
1 2
Wy =Wy pup = ——— [— Cpi+p2) — (& +62)]
€1 €2 3 (B9)

x [%(M1+2M2)—(61+62)] [%(m—m)]

1

6 3
x[ ] .
dejer+ 15 (€1 + )2

B.3. (N,n)=(2,2) and N = 1 super-Virasoro conformal blocks

For (N,n) = (2,2), the SU(2) instanton partition functions (2.23) with aj = —ay = a are
computed as e.g.,

0.0).00.0) .
2.0y (@ m,mq)

(a—my)(a—my)(a+m)—e —e)la+m),—e —e)
4aer(e1 —€y)(—2a+¢€1+e€)
(a—my)(a—mp)(a+m| —e —e)(a+m)—e —e€)
daei(eg—€1)(—2a+e€1+€)
+ (a+my)(a+ma)(a—m|+e +e)(a—m)+e +e)
dae) (e —€) Qa+ €1 +¢€)
(a+m1)(a+m2)(a—m'1+61+62)(a—Wl’2+61+62)] )
- +0 [q ]
daey(egr —e2)Qa+e€1+€)

(0,0),(0,0) oo l[ 1 1 ] [ z]
Z . ) ) 3 =q2 - 0 2 )
A.D:M (@,m,mq)=q 2a(—2a+€1+¢€) 2aRa-+e +e) + q
(B.10)

for the vanishing first Chern class ¢; =0 in (2.7).
We consider the subtraction of the U (1) factor (3.9) for (N, n) = (2, 2) from the instanton
partition functions
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[Z%:l m,] [e]+62—% Z%:lmlll
Zhe ! - 7 by ,
Zy pla,m,m’;q) = (1—q) o) Zg (@, m,m'; q). (B.11)

In [11,14] (see also [12]), it was shown that the normalized instanton partition functions

(B.11) give the A = 1 super-Virasoro conformal blocks of 4-point function (3.4) on P!, with
2

c= % +3 (6:—2), by the parameter identifications (B.3) (see [9,10,13] for non-conformal/Whit-

taker limits). For example, the instanton partition functions (B.10) correspond to the conformal

blocks of four NS primary fields, and actually the conformal block at level 1,

[Au" — A+ AMz] [Au” + A — Ay,

_pnla+e—u)

, A , B.12
2A 0 " 2€1 € ( )
a . . . 5(0,0),(0,0) /.
grees with the coefficient of q in Z (0.0):(0) (a,m, m’; q), and the conformal blocks
1 1
at level — : ,
2 2 A
(14280 =28, +24,,]) [14280 +28,-24,,]
at level 3 : B.13
a0 [14+24.0] (B.13)

6 [Auz_Am] [Aus_AM

[c= 10-2c) A +6a2] [14+240]

+

. . 1 3. (0,0),(0,0) /.
agree with the coefficients of q2 and q2 in 2¢; €> Z(1 D) (a,m,m’; q) [11].

Appendix C. Integrable ;[(n) ~ WZW 4-point conformal blocks for fundamental
representations

The integrable ;[(n) ~ WZW conformal blocks of 4-point function on P! of primary fields
with (anti-)fundamental representations [, [J, T, and [, schematically denoted by

— — 6]
([Fico) () ) T (C.1)
were obtained in [28] (see also [45]), as solutions to the Knizhnik-Zamolodchikov equation, as
1 1 N
FO oy = =200 (] — o2 g — ’ ; z).
@)=z ( 2) 2 n+N n+ N n—l—NZ

1 1 1 N
j-_'(o) —— 1_2hD 1— hg—ZhD Fil1= 1+ : 1+ : ,
, (@) v (1-2) 2 Fy p—— TN oy vEL:

1 n+1 ©
1) ho—2h he—2h n-—ton "
F =Z2hO (1 — e =20, F ; : 2 )
@)=z (=2 : ‘(n+N ntN TaEN Z)
n—1 n+1 n
F() = —pe—2h0 (1 = phe=2h, , ; 2 )
2 (@)=-nz (-2 2N GIN e N N T

where h = % is the conformal dimension of the four primary fields, and hg = n+" N 18

the conformal dimension of the adjoint field with weight 6 =[N — 1, 1,0, ..., 0, 1]. These four
solutions correspond to two choices of the representations of states in the internal channel which
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follow from the fusion of O] and O, and ]-"1(0) (2), ]-'2(0) (z) (resp. ]-"1(1)(2), ]-"2(1)(1)) corresponds
to the identity (resp. adjoint) field conformal block of “s-channel”. Under a hypergeometric
transformation

Z

z = qi=—, (C.3)
z—1
the Gauss hypergeometric function transforms as
2P By =0 - 2Fi(a,y = Bivia), €4
and the ;[(n) N WZW 4-point conformal blocks (C.2) are expressed, in the g-module, as
~ n 1 N—-1 N
]_"(0) — Zth(O) = (1 — ZhD—HLIb F - i : : i
@)=z 1 (@=( q) 21 Wi N nEN n+NC|
ﬁz(o) (q) = ZZhD‘Fz(O) (Z)
q Yy — nEL N -1 1 N
=——(1—- O"niN H F , 1— ; 1 ; s
y -0 2 1<n+N N T aen e
2hy
~ 7"
Al@==-A"@ (©3)

(_CI)hg i — NEL n—1 1 n
=— (1-— O"n+N » F ’1_ ’1 ; s
PR N AN Taead

2h
-~ 77"
FV (@) = sz(l)(z)

n 1 n—l n
— (= (1 — O Ly — . -a).
o™ d -0 T F N e N g N
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