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Late time properties of moving relativistic particles are studied. Within the proper relativistic treatment 
of the problem we find decay curves of such particles and we show that late time deviations of the 
survival probability of these particles from the exponential form of the decay law, that is the transition 
times region between exponential and non-exponential form of the survival amplitude, occur much 
earlier than it follows from the classical standard approach boiled down to replace time t by t/γL

(where γL is the relativistic Lorentz factor) in the formula for the survival probability. The consequence 
is that fluctuations of the corresponding decay curves can appear much earlier and much more unstable 
particles have a chance to survive up to these times or later. It is also shown that fluctuations of the 
instantaneous energy of the moving unstable particles have a similar form as the fluctuations in the 
particle rest frame but they are seen by the observer in his rest system much earlier than one could 
expect replacing t by t/γL in the corresponding expressions for this energy and that the amplitude of 
these fluctuations can be even larger than it follows from the standard approach. All these effects seem
to be important when interpreting some accelerator experiments with high energy unstable particles 
and the like (possible connections of these effects with GSI anomaly are analyzed) and some results of 
astrophysical observations.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The problem of properties of unstable particles (states), their 
time evolution and properties of the decay law has still not been 
definitely solved within quantum mechanics as well as within the 
quantum field theory. There were published plenty of papers in 
which various aspects of this problem were analyzed and dis-
cussed. Particular attention was focused on early and late time 
properties of quantum decay processes. It was shown that at these 
time regions classical exponential decay law is unable to describe 
correctly a behavior of unstable quantum systems. Early time devi-
ations of the survival probability from the exponential form lead to 
the so-called Quantum Zeno and Anti-Zeno Effects [1–3]. A conclu-
sion that late time deviations from the classical decay law have to 
take place in the case of quantum decays follows from basic prin-
ciples of the quantum theory: From the postulate that spectrum of 
the total self-adjoint Hamiltonian H of the system containing un-
stable states has to be bounded from below [4,5] it follows that 
at suitable late times the quantum decay process must run more 
slowly than any classical decay process described by an exponen-
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tially decreasing function, that is that the survival probability tends 
to zero as time t goes to infinity more slowly than any expo-
nentially decreasing function of time [4]. There were many un-
successful attempts to detect experimentally these predicted late 
time deviations (see, e.g., [6,7]). Nevertheless theoretical studies 
of this problem were still continued (see, e.g. [8–14]). Conclusions 
following from these studies were applied successfully by Rothe 
and his group in the experiment described in [15], where the ex-
perimental evidence of deviations from the exponential decay law 
at long times was reported. This result gave rise to another prob-
lem: Whether (and how) deviations from the exponential decay 
law at long times affect the energy of the unstable state at this 
time region. Analyzing the transition times region between expo-
nential and non-exponential form of the survival amplitude it has 
been shown in [16] that the instantaneous energy of the unstable 
particle can take very large values, much larger than the energy of 
this state for times from the exponential time region. It has been 
shown that this purely quantum mechanical effect may force rela-
tivistic unstable particles to emit electromagnetic-, X- or γ -rays at 
some time intervals from the transition time regions. It has been 
hypothesized in [16] that this effect may be responsible for some 
astrophysical effects such as cosmic radio, X- or γ -rays bursts, etc.
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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The problem is that from the point of view of a frame of ref-
erence in which the time evolution of the unstable system takes 
place the Rothe experiment as well as the properties of unsta-
ble states discussed usually in the literature and mentioned above 
refer to the rest coordinate system of the unstable system consid-
ered. Astrophysical sources of unstable particles emit them with 
relativistic or ultra-relativistic velocities in relation to an external 
observer. The question is what effects can be observed by an ex-
ternal observer when the unstable particle, say φ, which survived 
up to the transition times region or longer is moving with a rela-
tivistic velocity in relation to this observer. The related question is 
how the time dilation formula being the classical physics formula 
works in the case of quantum decay processes, and especially how 
it works at late times when the main contribution to the survival 
probability comes from the non-exponential corrections, which are 
purely quantum in nature and are absent in decay laws considered 
in classical physics. Such and similar problems seems to be ex-
tremely important because quantum decay process of moving rela-
tivistic particles are the place where quantum theory meets special 
relativity, which is the classical theory. Many authors tried to show 
that time dilation formula works under some approximations sim-
plifying general analysis of properties of survival amplitudes under 
Lorentz transformations: Unfortunately these simplifications seem 
to be valid only for relative small times (see e.g., [17]). More gen-
eral analysis based on the correct use of the dependence of the 
energy of the moving relativistic unstable particle on its rest mass 
and its momentum leads to conclusions that the classical decay 
law taking into account time dilation may differ from the correct 
quantum decay law calculated for moving relativistic particles at 
late times (see [18–20]) and that this difference growths at very 
late times as t increases [20]. Taking into account experiments re-
alized in the Earth laboratories these and similar problems may 
seem to be of a very little importance and purely academic. Never-
theless it seems that the proper interpretation of all results of the 
accelerator experiments with unstable objects of extremely large 
energies is impossible without knowledge of properties of survival 
probabilities at all times, including transition and very late times, 
and when the transition times begin. On the other hand the correct 
interpretation of observational results and possible effects caused 
by unstable particles emitted by astrophysical sources is rather im-
possible without detailed knowledge of the late time behavior of 
these moving particles. It is because astrophysical sources produce 
such huge number of particles that many of them are able to sur-
vive up to transition times or even much longer (see [16] and 
references therein).

The letter is organized as follows: A general late time properties 
of moving, relativistic unstable particles are analyzed in Section 2. 
Results of numerical calculations for a given model are presented 
in the graphical form in Section 3. Section 4 contains a discussion 
and final remarks.

2. Late time properties of moving unstable particles

Let us analyze the problem of determining the decay law, i.e., 
the non-decay probability (or the survival probability) P(t) of the 
moving unstable particle with non-zero momentum p = |�p| �= 0. 
From the standard, text book considerations one finds that if the 
decay law of the unstable particle in rest (p = 0) has the expo-
nential form P0(t) = exp[−Γ0t] then the decay law of the moving 
particle with momentum p �= 0 is Pp(t) = exp[−Γ0

m0√
p2+m2

0

t] ≡
exp[−Γ0

t
γL

], where m0 is the rest mass of the particle and γL is 
the relativistic Lorentz factor, γL ≡ 1√

1−β2
, β = v/c, v is the ve-

locity of the particle. It is almost common belief that this equality 
is valid for any t . Similar belief concerns a more general relation 
between probability amplitudes

∣∣ap(t)
∣∣2 = ∣∣a0(t/γL)

∣∣2
, (1)

where a0(t) is the probability amplitude of finding the system at 
the time t in the initial state |φ〉 prepared at time t0 = 0 and it 
refers to the particle rest coordinate system, a0(t) = 〈φ|φ(t)〉 and 
|φ(t)〉 = exp[−it H]|φ〉, H is the self-adjoint Hamiltonian of the to-
tal system under considerations, and ap(t) = 〈p; φ|φ(t); p〉, where 
|φ(t); p〉 = exp[−it H]|φ; p〉 and |φ; p〉 is the state vector of the 
moving unstable particle φ and having a momentum p �= 0 and 
it is obtained by expanding |φ〉 in the basis of common eigenvec-
tors of H and of the momentum operator P (for details see [20]). 
The corresponding survival probabilities are defined as follows: 
P0(t) = |a0(t)|2, Pp(t) = |ap(t)|2. Eq. (1) represents the so-called
Einstein time dilation. Some, approximate model calculations show 
that time dilation in the form expressed by Eq. (1) does not hold 
exactly in the case of moving unstable particles. Although in [17]
it was found within the quantum field theory considerations that 
ap(t) = a0(t/γL) but this relation was obtained there as the ap-
proximate one and valid only for not a very large number of 
lifetimes. Similar reservations in relation to the property (1) can 
be found in [18–20]. For the more detailed analysis of the prob-
lem we need the exact form of the amplitudes a0(t) and ap(t) for 
all t (and thus corresponding survival probabilities), if not in the 
general case, then at least for a reasonable realistic model of the 
moving unstable particle.

From basic principles of quantum theory it is known that the 
amplitude a0(t), and thus the decay law P0(t) of the unstable 
state |φ〉, are completely determined by the density of the energy 
distribution ω(E) for the system in this state [4,21], or, equiva-
lently by the density of the mass distribution ω(m) [18,20]. There 
is (in h̄ = c = 1 units)

H|m;0〉 = m|m;0〉, m ∈ σc(H), (2)

(where |m; 0〉 = |m; p = 0〉) in the rest coordinate system, and

P|m;0〉 = 0, and P|m; p〉 = �p|m; p〉 (for �p �= 0). (3)

Thus

|φ〉 =
∞∫

μ0

c(m)|m;0〉dm, (4)

and

a0(t)
def= 〈φ|e−it H |φ〉 =

∞∫
μ0

∣∣c(m)
∣∣2

e−imt dm, (5)

where μ0 is the lower bound of the spectrum σc(H) of H . The 
density of the mass distribution is defined as follows ω(m) def=
|c(m)|2 > 0. A reasonable simplified representation of the density 
of the mass distribution is to choose the Breit–Wigner form for 
ω(m), which under rather general condition approximates suffi-
ciently well real systems [5,19,22],

ω(m) = ωBW(m)
def= N

2π
Θ(m − μ0)

Γ0

(m − m0)2 + (
Γ0
2 )2

, (6)

where N is a normalization constant and Θ(m) is the unit step 
function. Inserting this ω(m) into (5) one finds that for very late 
times the amplitude a0(t) has the following form (see, e.g. [23])
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a0(t)|t→∞ 
 Ne−ih0t − i
N

2π
e−itμ0

Γ0

|h0 − μ0|2
1

t
+ . . . (7)

= aexp
0 (t) + alt

0(t), (8)

where h0 ≡ m0 − i
2 Γ0 and aexp

0 (t) = N exp[−ih0t], alt
0 = a0(t) −

aexp
0 (t). The transition time region denotes time t when the con-

tributions of aexp
0 (t) and alt

0(t) into the survival probability P0(t)
begin to be of the comparable order. To this time region belongs 
time t ∼ T , where T is a solution of the following equation∣∣aexp

0 (t)
∣∣2 = ∣∣alt

0(t)
∣∣2

, (9)

which in the considered case reads,

e−Γ0t = 1

4π2

(Γ0)
2

|h0 − μ0|4
1

t2
, (10)

or, equivalently,

Γ0t = ln

[
(2π)2 |h0 − μ0|4

Γ 4
0

]
+ 2 ln[Γ0t]. (11)

The very approximate asymptotic solution, T0, of this equation for 
m0
Γ0

� 1 (in general for m0
Γ0

→ ∞) has the form

T0

τ0
� 2 ln(4π) + 4 ln

(
m0 − μ0

Γ0

)
+ . . . , (12)

where τ0 ≡ 1/Γ0 is a mean lifetime of the unstable particle con-
sidered in its rest frame. Results (7) and (11), (12) follow from (5)
and (6) and refer to the rest coordinate system. Now we should 
compare them with analogous results obtained for the moving un-
stable particle.

So, let us find the probability amplitude, ap(t), of the moving 
unstable particle relative to rest coordinate system of the observer 
O and having constant momentum �p (here p = |�p|) measured 
by O. If Λ denotes the Lorentz transformation from the refer-
ence frame, where the momentum of unstable particle considered 
is zero, �p = 0, into the frame where the momentum of this parti-
cle is non-zero, �p �= 0 or, equivalently, where its velocity �v equals 
�v = �v p ≡ �p

mγL
�= 0 (the momentum �p is given), then

|m; p〉 = U (Λ)|m;0〉 (13)

(where U (Λ) is a unitary representation of the transformation Λ
and acts in the Hilbert space of states |φ〉 = |φ; p = 0〉, |φ; p〉), and

|φ; p〉 = U (Λ)|φ〉 =
∞∫

μ0

c(m)U (Λ)|m;0〉dm

≡
∞∫

μ0

c(m)|m; p〉dm. (14)

Operators H, P form a 4-vector Pν = (P0, P) ≡ (H, P). Therefore 
U+(Λ)PνU (Λ) = Λνλ Pλ , where λ, ν = 0, 1, 2, 3 (see, e.g., [24], 
Ch. 4) and thus [24]

U+(Λ)P0U (Λ) = γL(P0 + �v p · P). (15)

From this last relation it follows that vectors |m; p〉 are also eigen-
vectors for the Hamiltonian H ≡ P0. Indeed using (2), (14) and (15)
one finds that

H|m; p〉 = mγL |m; p〉. (16)

Now keeping in mind that the momentum �p is given and constant, 
which means that in this case the product mγL can be expressed 
as follows mγL ≡ √

p2 + m2, one concludes that simply
H|m; p〉 =
√

p2 + m2|m; p〉. (17)

So we see finally that in the considered case of the moving un-
stable particle with a constant momentum �p �= 0 we obtain the 
following formula for the probability amplitude ap(t),

ap(t) ≡ 〈p;φ|e−it H |φ; p〉 =
∞∫

μ0

ω(m)e−i
√

p2+m2t dm, (18)

instead of the expression (5) for the probability amplitude a0(t)
with the same ω(m). (For more details, a discussion and explana-
tions see, e.g. [18–20].) This representation of the amplitude ap(t)
is valid for any p and for p → 0 it transforms into (5).

Inserting (6) into (18) and then assuming for simplicity that 
μ0 = 0 enables one to reproduce calculations performed by 
Shirkov in [20] and to obtain asymptotic form of ap(t), which 
within the use units h̄ �= 1 �= c reads as follows

ap(t) 
 Ne
− i

h̄ [(1−α)
√

(cp)2+(m0c2)2− i
2

(1+α)
γL

Γ0]t

− N

2
√

2π

Γ0

m0c2

cp

m0c2

1√
cp t

h̄

e− i
h̄ cptei π

4 + . . . (19)

def= aexp
p (t) + alt

p(t), (20)

where

α = 1

8

Γ 2
0

(cp)2 + (m0c2)2

(cp)2

(cp)2 + (m0c2)2

≡ 1

8

(
Γ0

m0c2

)2 γ 2
L − 1

γ 4
L

(21)

(for details see [20]: A substitution of h̄ = 1 = c into (19), (21)
yields formulae obtained there). Probability amplitudes aexp

p (t),

alt
p(t) denote the exponential and the late time non-exponential 

parts of the amplitude ap(t). The relation (19) is valid if m0c2t
h̄ � 1

and cpt
h̄ � 1 and therefore the limit p → 0 cannot be performed 

in (19). From (21) it follows that α reaches its maximal value for 
γL = √

2.
Using the equation |aexp

p (t)|2 = |alt
p(t)|2 one can find the time T p

defining the transition times region for moving unstable particles. 
The explicit form of this equation looks as follows

e
− 1+α

γL

Γ0t
h̄ = 1

8π

(
Γ0

m0c2

)2 cp

(m0c2)2

h̄

t
. (22)

A very approximate asymptotical solution, T p , of Eq. (22) has the 
following form

1 + α

γL

T p

τ0
� ln

[
8π

(
m0c2

Γ0

)4
Γ0

cp

γL

1 + α

]
+ . . .

≡ ln(8π) + 3 ln

(
m0c2

Γ0

)
− ln

[
(1 + α)β

] + . . . (23)

The limit p → 0 (or, equivalently, γL → 1 or β → 0) is not applica-
ble to the relation (23). It is because (23) is a solution of Eq. (22)
following from the relation (19) which holds under the condition 
that limitations formulated after formulae (20), (21) take place.

As it was mentioned earlier it is common belief that in order 
to obtain the survival probability, Pp(t) of the moving relativistic 
unstable particle it is sufficient to replace time t in the survival 
probability P0(t) = |a0(t)|2 of decaying particle in its rest coordi-
nate system by t′ = t/γL . Such a “recipe” leads to the conclusion 
that in the case of moving unstable particles the transition time 
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T ′ corresponding with the solution T0 of Eqs. (9), (10) can be 
found replacing t in Eq. (10) by t′ = t/γL . The solution, T ′/τ0, of 
such a problem has an analogous form as the solution, T0/τ0, (12)
with T ′ = T0/γL replacing T0 in (12). Such obtained formula for 
the transition time T ′ of a moving decaying particle differs signif-
icantly from the solution T p , (23), of Eq. (22), which was obtained 
using proper relativistic expression (18) for the probability am-
plitude ap(t): If to assume that μ0 = 0 in (10), (12) and if the 
Lorentz factor γL is suitable large, γL � 1, then within the consid-
ered model to a very good approximation,

T ′

τ0
− T p

γLτ0
≡ T0

γLτ0
− T p

γLτ0

� ln(2π) + ln

(
m0

Γ0

)
. (24)

This result means among others that fluctuations of the instan-
taneous energy, Eφ(t), of a moving unstable particle φ mentioned 
in Section 1 and discussed in [16] begins much earlier than it could 
be expected assuming that the relation (1) holds for relativistic un-
stable particles at all times. The instantaneous energy, E p

φ (t), of the 
moving particle with momentum p is defined analogously as the 
instantaneous energy in the particle rest system (see [23,25,26]): 
E p

φ (t) = �[hp(t)], where

hp(t) = i
∂ap(t)

ap(t)
, (25)

is the effective Hamiltonian governing the time evolution of the 
particle considered. In the general case assuming the form of the 
density ω(m) and starting from the relation (18) real and imagi-
nary parts of hp(t) can be found numerically. For the model con-
sidered the asymptotic late time form, hp

as(t), of hp(t) can be easily 
found using alt

p given by formulae (19), (20). There is

hp
as(t) 
 i

∂alt
p(t)

alt
p(t)

= p − i

2

1

t
+ . . . (t → ∞). (26)

This means that within the model considered

E p
as 
 p + . . . , and Γ p(t) = 1

t
+ . . . (t → ∞), (27)

where Γ p(t) = −2�[hp(t)] ≡ − 1
Pp(t)

∂Pp
∂t is the instantaneous de-

cay rate (or, using units h̄ �= 1 �= c, has
p (t) 
 cp − i

2
h̄
t + . . . and 

E p
as 
 cp + . . ., Γ p(t) = h̄/t + . . .).

3. Numerical results

Asymptotic late time forms alt
0 , alt

p of the probability ampli-
tudes a0(t), ap(t) and thus corresponding survival probabilities 
P0(t), Pp(t) and instantaneous energies E0

as(t) = �[h0
as(t)] (where 

h0(t) = i[∂a0(t)/∂t](a0(t))−1 and E0(t) = �[h0(t)]), and E p
as(t) are 

relatively easy to find analytically for times t � T0 and t � T p

even in the general case as it was shown in [25]. It is rather im-
possible to find a transparent and readable form of these quantities 
at time regions, when t ∼ T0 or t ∼ T p . For the model considered 
(6) it can be done numerically. The results presented in this section 
have been obtained assuming for simplicity that the minimal mass 
(energy) μ0 appearing in the formula (6), and thus also in (5) and 
(18), is equal to zero, μ0 = 0 (or Emin = μ0c2 = 0). Calculations 
have been performed for some chosen m0

Γ0
and p

Γ0
. Performing cal-

culations particular attention was paid to the form of the survival 
probability, i.e. of the decay curve, and of the instantaneous energy 
Eφ(t) for times t belonging to the most interesting time regions: 
Fig. 1. Axes: x = t/τ0 – time is measured in lifetimes τ0; y – survival probabilities 
(the logarithmic scale). In all panels: (a) the survival probability Pp(t), (b) the sur-
vival probability P0(t/γL), (c) the survival probability P0(t) and (d) is the enlarged 
part of (c) showing the form of the decay curve P0(t) for times t ∼ T0 belong-
ing to the transition times region. Panel A: γL 
 30.0167 which corresponds to 
m0/Γ0 = 10 and p/Γ0 = 300; panel B: γL 
 20.025 (m0/Γ0 = 25 and p/Γ0 = 500); 
panel C: γL = √

2 which corresponds to m0/Γ0 = 100 and p/Γ0 = 100.

For transition times t ∼ T0 and t ∼ T p and for times t � T0 and 
t � T p when the late time asymptotic parts of the probability am-
plitudes are dominant. Results are presented graphically in Figs. 1
and 2.

Results presented in these figures enable us to compare decay 
curves of a moving relativistic unstable particle obtained within a 
correct relativistic treatment of the evolving in time t and moving 
particle having certain momentum p seen by an observer O in his 
rest system with those followed from the standard classical rea-
soning that in order to obtain relativistic effects for such a particle 
it is sufficient to replace t by t′ = t/γL (see (1)). Note that these 
results are in perfect agreement with analytical estimations (19), 
(23) and (24) performed for the model considered.

A similar comparison can be done in the case of the instan-
taneous energy E p(t) of the moving unstable particle, which was 
discussed in [16] where it was shown that fluctuations of this en-
ergy are responsible for a possible emission of the electromagnetic 
radiation by moving charged unstable particles. Changes of these 
energies relative to the energy of the moving particle at the canon-



350 K. Urbanowski / Physics Letters B 737 (2014) 346–351
Fig. 2. Axes: x = t/τ0, and y – instantaneous energies: panel (a) κp(t); panel (b) 
κ0(t/γL) and panel (c) κ0(t). The horizontal dashed line denotes the values of κs
equal to 1. Here γL = 20.025 which corresponds to m0/Γ0 = 25 and p/Γ0 = 500.

ical decays time region (where the survival probability has the 
exponential form), E0(p) =

√
p2 + m2

0, are presented in Fig. 2 in 

the form of ratios: κp(t) def= E p(t)−E p
as

E0(p)−E p
as

(here E p
as = p – see (27)), and 

κ0(t) = E0(t)−E0
as

E0−E0
as

(here: E0 = E0(p)|p=0 ≡ m0, E0
as = Emin ≡ μ0 = 0

and E0(t) = �[h0(t)], h0(t) = hp(t)|p=0).

4. Discussion and final remarks

Reasonable and physically acceptable models of unstable parti-
cles defined by means of the density ω(m) usually have the fol-
lowing form: ω(m) = ωBW(m) × (m − μ0)

λ × f (m), where λ ≥ 0
and f (m) is a form-factor – it is a smooth function going to zero 
as m → ∞ and it has no threshold and no pole. It appears that a 
behavior of the amplitudes, a0(t), defined by such a density ω(m)

and by ωBW(m) as functions of time t is very similar (see [5,22]). 
So conclusions following from the results obtained in Sections 3
and 4 seem to be sufficiently general.

Results presented in Sections 3 and 4 show that the relation 
(1) can be considered as a sufficiently accurate only for no more 
than a few lifetimes τ0 and that the supposition that (1) holds 
for times t � τ0 is wrong. It is because the assumption that 
Pp(t) ?= P0(t/γL) is the classical physics relation. An extension of 
it to quantum decay processes does not lead to a significant error 
only for times t when classical and quantum decay laws have a 
similar classical form, that is the exponential form. When quantum 
Fig. 3. The case m0/Γ0 = 100 and p/Γ0 = 100 (which gives γL = √
2): The enlarged 

part of the decay curves (a) and (b) in panel C of Fig. 1. Axes: x = t/τ0, and y – 
survival probabilities: Solid line – the survival probability Pp(t); Dashed line – the 
survival probability P0(t/γL).

effects force the survival probability Pp(t) to behave nonclassically 
then the relation (1) is wrong and it may lead to the incorrect 
interpretation of decays of relativistic particles. Such a possible hy-
pothetical situation is presented in Fig. 3: The temporal behavior 
of the real decay process of a relativistic particle at time intervals 
containing times t significantly smaller than T p is described by the 
survival probability Pp(t) and it is shown by the solid line in this 
figure, whereas the dashed line represents P0(t/γL) and accord-
ing to (1) it is usually interpreted as the correct illustration of the 
decay process of such a particle.

In Fig. 1 are compared decay curves, that is survival probabil-
ities Pp(t), obtained within the correct relativistic treatment of 
evolving in time and moving unstable particles with a given mo-
mentum p relative to the rest system of the observer O as seen 
by this observer, with those obtained assuming the validity of the 
standard classical reasoning that in order to get decay curves of 
such particles it is sufficient to replace time t in P0(t) obtained 
using (5) by t′ = t/γL , that is it is enough to consider P0(t/γL)

instead of P0(t). Numerical results presented in this figure are en-
tirely consistent with the analytical results obtained in Section 2.

From (12), (23) and (24), or comparing decay curves (a) and 
(b) in Fig. 1, one can conclude that in the case of moving par-
ticles the transition time regions begin much more earlier than 
one could expect using the relation (1). For some combinations 
of m0/Γ0 and p/Γ0 the transition times regions can begin even 
earlier in the case of moving particles, p �= 0, than such a time 
region in the case of the particle observed in its rest system, 
p = 0 (see Fig. 1, panel C). A consequence of this fact is that 
Pp(T p) � P0(T0/γL) for times t ≥ T p . What is more, from results 
obtained in Sections 2 and 3 it is seen that correctly obtained 
survival probability Pp(t) tends to zero as t → ∞ much more 
slowly than P0(t/γL): Within the model considered Pp(t) ∼ 1/t
and P0(t/γL) ∼ 1/t2 for t → ∞ which confirms the conclusions 
presented in [20]. So if the initial number of unstable particles 
was N0, then the real number of moving unstable particles N (T p)

which had a chance to survive up to time t ∼ T p or later and 
which were registered by the observer O is much greater than the 
corresponding number N (T0/γL) obtained assuming the validity 
of (1): There is N (T p) = Pp(T p)N0 � N (T0/γL) = P0(T0/γL)N0. 
A similar conclusion holds for times t > T p . This effect may be im-
portant when interpreting results of some accelerator experiments 
with high energy unstable particles and also when interpreting 
some results of astrophysical observations. Astrophysical processes 
are the source of a huge number of elementary particles including 
unstable particles of very high energies. The numbers of created 
unstable particles during these processes are so large that many of 
them may survive up to transition times t ∼ T p or much later and 
they move with ultra-relativistic velocities. From the above discus-
sion it follows that numbers of unstable particles which survived 
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to these times is much, much greater than one could expect esti-
mating these numbers by means of the relation (1).

The above analysis shows also that the scale and the intensity 
of the effect described in [16] were underestimated there. In [16]
the instantaneous energy Eφ(t) of an unstable particle φ was an-
alyzed and it was shown there that fluctuations of this energy at 
the transition time region have to occur. These fluctuations cause 
changes in the particle velocity which in the case of charged par-
ticles (or particles with the non-zero magnetic moment) forces 
them to emit electromagnetic radiation. The base of estimations 
performed in [16] was the relation of the type (1). Results pre-
sented in Fig. 2 show that in the case of the moving relativistic 
particle the form of these fluctuations seen by the observer O is 
the same as the form of such fluctuations in the particle rest sys-
tem but they occur much earlier. What is more the amplitude of 
fluctuations of E p

φ (t) may be even larger than the corresponding 
amplitude of Eφ(t) calculated in the particle rest system. Also the 
analysis performed in this section and results presented in Fig. 1
show that in a real situation much more unstable particles have to 
survive up to the transition times than it can be expected using (1)
when performing the estimations. In general one can expect that 
within the model considered the relation between true number 
of the particles, N (t ∼ T p) = Pp(t ∼ T p)N0, which survived up to 
t ∼ T p , and the corresponding number N (t ∼ T0/γL) obtained as-
suming (1) looks as follows: N (t ∼ T p) � 103N (t ∼ T0) (compare 
curves (a) and (b) analyzed in these figures for times t belonging 
to the transition times region and values of the corresponding sur-
vival probabilities). This means that the scale of effect analyzed in 
[16] and its intensity should be much larger than it was estimated 
there.

The last remarks. There is a remarkable similarity of decay 
curves presented in Fig. 3 and results reported by the GSI team 
in [27] and presented there in Figs. 3 and 5 (for update results 
see [28]). The relativistic Lorentz factor in the GSI experiment was 
γL 
 1.43 which is very close to the Lorentz factor used in cal-
culations leading to the results presented in our Fig. 1, panel C, 
and Fig. 3. In Fig. 3 the solid fluctuating decay curve Pp(t) looks 
as the curve obtained experimentally by the mentioned GSI team, 
whereas the dashed curve being a part of exponentially decreasing 
probability P0(t/γL) at these times t looks as the expected and 
calculated theoretically curve by this team. So one cannot exclude 
that choosing an appropriate form of the density ω(m) rather dif-
ferent from the simple ωBW (m) (e.g. having the form discussed in 
[29]) and calculating the survival probability Pp(t) by means of 
the proper formula (18) it will be possible to reproduce theoreti-
cally the experimental decay curve obtained by the GSI team and 
thus to explain the GSI anomaly.
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