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34775 Istanbul, Turkey
5Department of Physics Engineering, Istanbul Medeniyet University, 34700 Istanbul, Turkey

(Received 16 October 2023; accepted 19 December 2023; published 5 January 2024)

Decays of the fully beauty four-quark structures X4b and T4b to B meson pairs are investigated in the
framework of the QCD three-point sum rule method. We model the scalar exotic mesons X4b and T4b as
diquark-antidiquark systems composed of the axial-vector and pseudoscalar diquarks, respectively. The
masses m ¼ ð18540� 50Þ MeV and m̃ ¼ ð18858� 50Þ MeV of these compounds calculated in our
previous articles fix possible decay channels of these particles. In the present work, we consider their
decays to BqB̄q and B�

qB̄�
q (q ¼ u, d, s, c) mesons. In the case of X4b, the mass of which is below the 2ηb

threshold, these channels determine essential part of its full widthΓ4b. The tetraquarkT4b can decay to the pair
ηbηb; therefore, partial widths of processeswithBðB�Þmesons in the final state permit us to refine our estimate
for the full width of this particle. The predictions Γ4b ¼ ð9.6� 1.1Þ MeV and Γ̃Full

4b ¼ ð144� 29Þ MeV
obtained in this article can be used in future experimental investigations of four b-quark mesons.

DOI: 10.1103/PhysRevD.109.014006

I. INTRODUCTION

Interest in four-quark exotic mesons containing heavy c
and b quarks appeared in the first years of the parton model
and QCD [1–6]. Close attention to these hypothetical
particles was inspired by many reasons. First of all,
fundamental laws of QCD allow the existence of multi-
quark hadrons; therefore, such states became objects for
intensive theoretical studies. The second reason was a
possibility to find multiquark particles stable against strong
decays, hence with a long mean lifetime. Investigations
showed that tetraquarks, i.e., four-quark mesons built of a
heavy bb diquark and light antidiquark, may have desired
features. Such candidates to strong-interaction stable
particles were analyzed in various publications by means
of different models and methods (see Refs. [7–10], and
references therein).
Fully heavy tetraquarks were also considered in numer-

ous papers aimed to reveal their properties. Recent data of
the LHCb-ATLAS-CMS Collaborations provided new
experimental information [11–13], which is important

for physics of heavy exotic mesons. These experiments
discovered four X resonances in the invariant mass dis-
tributions of the di-J=ψ and J=ψψ 0 mesons. The X particles
have masses in the range 6.2–7.3 GeV and presumably are
fully charmed states, though alternative explanations were
suggested as well.
In our articles [14–17], we studied theX structures as fully

charmed scalar particles using both the diquark-antidiquark
and hadronic molecule models. We calculated their masses
and full width by employing the QCD two- and three-point
sum rule (SR) methods and compared obtained results with
the LHCb-ATLAS-CMS data. In accordance with our
predictions, the resonance Xð6600Þ is the tetraquark com-
posed of axial-vector diquarks [14], whereas Xð6200Þ may
be considered as a hadronicmolecule ηcηc [15]. The structure
Xð6900Þ can be interpreted as a superposition of a diquark-
antidiquark state built of pseudoscalar components and a
molecule χc0χc0 [15,16]. In Ref. [17], we explainedXð7300Þ
by employing the superposition of a molecule χc1χc1 and a
radially excited diquark-antidiquark.
It is interesting that even in the framework of the

four-quark picture there are competing explanations for X
states. Thus, the resonance Xð6200Þ was considered as the
ground-state tetraquark with JPC ¼ 0þþ or 1þ−. The first
radially excited state of this tetraquark was assigned to be
Xð6600Þ [18]. TheX resonanceswere interpreted as different
radially and orbitally excited diquark-antidiquark states also
in Refs. [19,20].
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In most articles devoted to analysis of fully charmed
tetraquarks, the authors investigated also their beauty
partners bbb̄ b̄ by computing the masses and other param-
eters of these particles. Such structures, produced in pp and
pp̄ collisions, may be discovered in the mass distributions
of the ηbηb, ηbϒ, and ϒϒ mesons: In fact, ϒϒ pairs were
detected and studied by the CMS Collaboration [21].
Predictions for parameters of bbb̄ b̄ with different quan-

tum numbers were made in Refs. [22–25] using various
methods and schemes. Results of these articles sometimes
contradict each another. For instance, in Ref. [22], it was
shown that the mass 18754 MeVof the scalar exotic meson
X4b is below the ηbηb andϒϒ thresholds; therefore, it cannot
be fixed in these mass distributions. A similar problem was
addressed in Ref. [23], where the mass of X4b was found
equal to ð18826� 25Þ MeV, which is less than ϒϒ but
higher than ηbηb thresholds. The masses of exotic bbb̄ b̄
mesons with different spin-parities were extracted from the
sum rule analyses in Ref. [25]. In accordancewith this paper,
the scalar tetraquarks have masses (18.45–18.59) GeV and
cannot be observed in two-bottomonia final states. Only the
scalar particle made of pseudoscalar diquarks can decay to
ηbηb andϒϒmesons, because itsmass ð19640� 140Þ MeV
considerably exceeds relevant limits.
The scalar diquark-antidiquark states X4b and T4b with

axial-vector and pseudoscalar diquarks were explored also
in our articles [14,16]. To this end, we used the QCD
two-point SR method [26,27], which is one of the effective
tools to investigate spectroscopic parameters and strong
couplings of conventional hadrons. But, it is also suitable
to study multiquark structures [28,29]. The masses m ¼
ð18540� 50Þ MeV and m̃ ¼ ð18858� 50Þ MeV of the
tetraquarks X4b and T4b found by this way allowed us to fix
their possible strong decay modes. Because m resides
below both ηbηb and ϒϒ thresholds, this particle cannot
decay to two bottomonia final states. The exotic meson T4b

falls apart to a pair ηbηb and has width equal to Γ̃4b ¼
ð94� 28Þ MeV [16].
But, fully beauty tetraquarks can also decay through

alternative mechanisms [23,24,30]. Thus, X4b and T4b can
transform to 2γ, ϒlþl−, or to four leptons lþ1 l

−
1 l

þ
2 l

−
2 due to

annihilation of valence b and b̄ quarks and related
processes. The bb̄ annihilations to gluons followed by
appearance of quark-antiquark pairs can generate processes
with ηb þH, BqB̄q, and B�

qB̄�
q (q ¼ u, d, s, c) final states. It

is clear that thresholds for these decays are considerably
smaller than masses of the tetraquarks X4b and T4b. They
are crucial for tetraquarks which are below the ηbηb
threshold and cannot dissociate to these bottomonia.
In the present work, we explore strong decays of the

tetraquarks X4b and T4b to BqB̄q and B�
qB̄�

q mesons. In
the case of T4b, they are necessary to refine Γ̃4b. But the
aforementioned processes form a considerable part of
the X4b tetraquark’s full width, because a decay X4b →
ηbηb is forbidden kinematically. Widths of decays under

consideration are determined by the strong couplings of
particles at the verticesXðTÞ4bBqB̄q andXðTÞ4bB�

qB̄�
q. In the

current article, we evaluate strong couplings of interest in the
context of the QCD three-point SR method.
This article is structured in the following manner: In

Sec. II, we explore the decay channels of the tetraquark X4b

and compute partial widths of the processes X4b → BqB̄q.
The decays of X4b to final states B�þB�−, B̄�0B�0, and
B̄�0
s B�0

s are studied in Sec. III. Here, we also evaluate the
full width X4b. The similar investigation for the diquark-
antidiquark state T4b is performed in Sec. IV, in which we
estimate contributions of the processes T4b → BqB̄q and
T4b → B�

qB̄�
q to the full width of T4b. In the last Sec. V, we

compare obtained predictions with available ones and make
our brief conclusions.

II. DECAYS X4b → BqB̄q

As we have noted above, X4b cannot decay to meson
pairs ηbηb andϒϒ; its full width is primarily determined by
the processes X4b → BqB̄q and X4b → B�

qB̄�
q. Here, we

evaluate the partial widths of the decays X4b → BþB−,
B̄0B0, B̄0

sB0
s , and Bþ

c B−
c , where Bðs;cÞ are pseudoscalar

mesons.
The partial widths of these processes depend on the

strong couplings gl, l ¼ 1–4, of the tetraquark X4b and final
state mesons at the corresponding three-particle vertices.
Therefore, the main problem to be considered in this
section is computation of gl. In the case of the channel
X4b → BþB−, this is a coupling g1 of particles at the vertex
X4bBþB−. We are going to analyze the decay X4b → BþB−

in a detailed manner and write down only essential
expressions and numerical results for other processes.
The strong coupling g1 can be extracted from the three-

point correlation function

Πðp; p0Þ ¼ i2
Z

d4xd4yeip
0ye−ipxh0jT fJBþðyÞ

× JB
−ð0ÞJ†ðxÞgj0i; ð1Þ

where JðxÞ is the interpolating current for the scalar
tetraquark X4b:

JðxÞ ¼ bTaðxÞCγμbbðxÞb̄aðxÞγμCb̄TbðxÞ; ð2Þ

with C being the charge conjugation matrix.
The currents JB

þðxÞ and JB
−ðxÞ for the B mesons are

given by the formulas

JB
þðxÞ ¼ b̄jðxÞiγ5ujðxÞ; JB

−ðxÞ ¼ ūiðxÞiγ5biðxÞ; ð3Þ

where i, j ¼ 1, 2, 3 are color indices.
In accordance with the sum rule approach, we have to

express the functionΠðp; p0Þ in terms of involved particles’
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parameters. By this way, we determine the physical side of
the sum rule. For these purposes, we write down the
Πðp; p0Þ in the following form:

ΠPhysðp; p0Þ ¼ h0jJBþjBþðp0Þi
p02 −m2

B

h0jJB− jB−ðqÞi
q2 −m2

B

× hBþðp0ÞB−ðqÞjX4bðpÞi
hX4bðpÞjJ†j0i

p2 −m2

þ � � � ; ð4Þ

where only the contribution of ground-level particles is
presented explicitly: Effects of higher resonances and
continuum states are shown as ellipses. It is evident that
four momenta of X4b and Bþ are p and p0, respectively.
Therefore, the momentum of B− is equal to q ¼ p − p0.
To simplify the correlation function ΠPhysðp; p0Þ, we

express the matrix elements which enter to Eq. (4), using
the masses and current couplings (decay constants) of
involved particles. For the scalar tetraquark X4b, the matrix
element h0jJjX4bi can be replaced by a product of its mass
m and current coupling f:

h0jJjX4bi ¼ fm: ð5Þ

The matrix element of the pseudoscalar B mesons is
determined by the formula

h0jJBjBi ¼ fBm2
B

mb
; ð6Þ

with mB and fB being their mass and decay constant,
respectively. Here, mb is the mass of the b quark.
The vertex hBþðp0ÞB−ðqÞjX4bðpÞi is modeled in the

following form:

hBþðp0ÞB−ðqÞjX4bðpÞi ¼ g1ðq2Þp · p0: ð7Þ

Here, g1ðq2Þ is the form factor which at the mass shell of
theB− meson, i.e., at q2 ¼ m2

B, fixes the strong coupling g1.
By taking into account these expressions, it is not

difficult to recast ΠPhysðp; p0Þ into the form

ΠPhysðp; p0Þ ¼ g1ðq2Þ
fmf2Bm

4
B

2m2
bðp2 −m2Þðp02 −m2

BÞ

×
ðm2 þm2

B − q2Þ
ðq2 −m2

BÞ
þ � � � ; ð8Þ

where the dots denote contributions of higher resonances
and continuum states. The correlator ΠPhysðp; p0Þ is simply
proportional to I. Therefore, the whole expression in the
right-hand side of Eq. (8) is the invariant amplitude
ΠPhysðp2; p02; q2Þ which can be applied to derive the form
factor g1ðq2Þ.

The second component which is required to get the sum
rule for g1ðq2Þ is the correlator Eq. (1) computed using the
quark propagators, which reads

ΠOPEðp; p0Þ ¼ 16

3

Z
d4xd4yeip

0ye−ipxhb̄bi

× Tr½Siju ðyÞγ5Sjab ð−xÞSaib ðx − yÞγ5�: ð9Þ
In Eq. (9), SuðbÞðxÞ are u and b quark propagators:

Sabu ðxÞ ¼ i
=x

2π2x4
δab −

mu

4π2x2
δab −

hūui
12

δab

þ ihūuimu=x
48

δab þ � � � ð10Þ

and

Sabb ðxÞ ¼ i
ð2πÞ4

Z
d4ke−ikx

�
δabð=kþmbÞ
k2 −m2

b

−
gsG

αβ
ab

4

σαβð=kþmbÞ þ ð=kþmbÞσαβ
ðk2 −m2

bÞ2

þOhαsG2=πiδab þ � � �
�
: ð11Þ

Here, we have used the notation

Gαβ
ab ≡Gαβ

A λAab=2; ð12Þ

where Gαβ
A is the gluon field-strength tensor and λA are

the Gell-Mann matrices. The index A runs in the range
1; 2;…; 8. The propagators SuðbÞðxÞ are known with con-
siderably higher accuracy, but in Eqs. (10) and (11) we keep
only a few terms: Arguments in favor of such choices will
be provided below.
The correlator ΠOPEðp; p0Þ contains three quark propa-

gators and vacuum condensate hb̄bi of b quarks. The
function ΠOPEðp; p0Þ differs from a standard one which in
the case, for instance, of the decay T4b → ηbηb depends on
four propagators SbðxÞ. The reason is that to calculate
ΠOPEðp; p0Þ one contracts heavy and light quark fields, and,
because a pair of BþB− mesons contains only b and b̄
quarks, the remaining b̄b fields in X4b constitute a heavy
quark condensate.
Using the relation between the heavy quark and gluon

condensates

mbhb̄bi ¼ −
1

12π

�
αsG2

π

�
; ð13Þ

we get

ΠOPEðp; p0Þ ¼ −
4

9mbπ

�
αsG2

π

�Z
d4xd4yeip

0ye−ipx

× Tr½Siju ðyÞγ5Sjab ð−xÞSaib ðx − yÞγ5�: ð14Þ
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In other words, the correlator ΠOPEðp; p0Þ is suppressed by
the dimension-four factor hαsG2=πi. In what follows, we
denote by ΠOPEðp2; p02; q2Þ the corresponding invariant
amplitude.
In calculation of ΠOPEðp; p0Þ, we set mu ¼ 0. The

perturbative terms in all propagators lead to a contribution
which is proportional to hαsG2=πi. A dimension-7 term in
ΠOPEðp; p0Þ arising from the component ∼hūui in SuðxÞ
and perturbative ones in SbðxÞ vanishes. A contribution
∼hαsG2=πi2 generated by components gsG

αβ
ab in b propa-

gators and the perturbative term in SuðxÞ can be safely
neglected. Higher-dimensional pieces in the quark propa-
gators omitted in Eqs. (10) and (11) give effects suppressed
by additional factors. As a result, ΠOPEðp; p0Þ calculated
with dimension-7 accuracy actually contains a dimension-4
term proportional to hαsG2=πi.
To derive the sum rule for the form factor g1ðq2Þ, we

equate the invariant amplitudes ΠPhysðp2; p02; q2Þ and
ΠOPEðp2; p02; q2Þ and get the sum rule equality. Con-
tributions of the higher resonances and continuum terms
can be suppressed by applying Borel transformations over
variables −p2 and −p02 to both sides of this expression and
removed using an assumption on the quark-hadron duality.
After these operations, we find

g1ðq2Þ ¼
2m2

b

fmf2Bm
4
B

q2 −m2
B

m2 þm2
B − q2

em
2=M2

1em
2
B=M

2
2

× ΠðM2; s0; q2Þ; ð15Þ

whereΠðM2; s0; q2Þ is the amplitudeΠOPEðp2; p02; q2Þ after
Borel transformations and continuum subtractions. It can be
expressed by means of the spectral density ρðs; s0; q2Þ:

ΠðM2; s0; q2Þ ¼
Z

s0

16m2
b

ds
Z

s0
0

m2
b

ds0ρðs; s0; q2Þ

× e−s=M
2
1e−s

0=M2
2 : ð16Þ

Here, ðM2
1; s0Þ and ðM2

2; s
0
0Þ are the Borel and continuum

subtraction parameters for the X4b and Bþ channels, respec-
tively. It is worth noting that ρðs; s0; q2Þ is computed as an
imaginary part of the correlation function ΠOPEðp; p0Þ.
As is seen, g1ðq2Þ contains the mass m and current

coupling f of the tetraquark X4b. These quantities were
found in Ref. [14]:

m ¼ ð18540� 50Þ MeV;

f ¼ ð6.1� 0.4Þ × 10−1 GeV4: ð17Þ
To this end, we used the two-point SR method and applied
for the Borel and continuum subtraction parameters the
following regions:

M2 ∈ ½17.5; 18.5� GeV2; s0 ∈ ½375; 380� GeV2: ð18Þ

The sum rule Eq. (15) depends also on the mass mB ¼
ð5279.25� 0.26Þ MeV and decay constant fB ¼ ð206�
7Þ MeV of the B� mesons borrowed from Refs. [31,32],
respectively. The values of the gluon condensate and b and
c quarks’ masses are well known:

�
αsG2

π

�
¼ ð0.012� 0.004Þ GeV4;

mb ¼ 4.18þ0.03
−0.02 GeV;

mc ¼ ð1.27� 0.02Þ GeV: ð19Þ

To perform numerical analysis, one has to fix the
working windows for the parameters ðM2

1; s0Þ and ðM2
2; s

0
0Þ.

For M2
1 and s0 connected with the tetraquark X4b, we

employ the regions Eq. (18). It is worth noting that the
working windows in Eq. (18) meet all constraints imposed
on them by SR method. Thus, the pole contribution PC
in the relevant mass calculations changes within limits
0.72 ≥ PC ≥ 0.66. In other words, for all s0 the pole
contribution exceeds 0.5. At M2

1 ¼ 17.5 GeV2, a dimen-
sion-4 term constitutes ≃ − 1.5% of the result, ensuring
convergence of the operator product expansion. Such
strong constraints naturally lead to rather narrow regions
forM2

1 and s0. Because g1ðq2Þ depends also on fm, another
choice for ðM2

1; s0Þmay generate additional, uncontrollable
ambiguities.
The parameters ðM2

2; s
0
0Þ for the Bþ channel are chosen

within limits:

M2
2 ∈ ½5.5; 6.5� GeV2; s00 ∈ ½33.5; 34.5� GeV2: ð20Þ

The s00 is limited by the mass mBþð2SÞ ¼ 5976 MeV of the
excited Bþð2SÞ meson [33] and satisfies s00 < m2

Bþð2SÞ. The
Borel parameter M2

2 also complies with constraints of SR
analysis. But these two sets ðM2

1; s0Þ and ðM2
2; s

0
0Þ should

lead to relatively stable regions where g1ðq2Þ can be
evaluated.
It is known that the sum rule method gives credible

results only in the Euclidean region q2 < 0. Therefore, we
introduce a new variable Q2 ¼ −q2 and denote the
obtained function by g1ðQ2Þ. We compute g1ðQ2Þ by
varying Q2 within the boundaries Q2 ¼ 1–10 GeV2 and
depict the obtained results in Fig. 1. Let us emphasize that
at each Q2 calculations performed here meet constraints
imposed on parameters M2 and s0 by the SR method. For
example, in Fig. 2, the coupling g1ð2 GeV2Þ is plotted as a
function of the parameters M2

1 and M2
2 at the middle of the

regions s0 and s00, where it demonstrates a relative stability:
Indeed, upon changing M2

1 and M2
2 inside of explored

regions, variations of g1ð2 GeV2Þ do not exceed �12% of
the central value. At the point Q2 ¼ 2 GeV2, we get
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g1ð2 GeV2Þ ¼ ð2.30� 0.26Þ × 10−2 GeV−1: ð21Þ

To calculate the partial width of the process X4b→BþB−,
one needs thevalue of the form factor g1ðq2Þ at themass shell
of the B− meson q2 ¼ m2

B. To this end, it is necessary to
introduce a fit function F 1ðQ2Þ that at momenta Q2 > 0
leads to the same data as the SR computations but can be
extrapolated to a region of Q2 < 0 and employed to
fix F 1ð−m2

BÞ.
In present article, we use the functions F lðQ2Þ:

F lðQ2Þ ¼ F 0
l exp

�
c1l

Q2

m2
þ c2l

�
Q2

m2

�
2
	
; ð22Þ

with parameters F 0
l , c

1
l , and c2l . They should be fixed by

comparing SR predictions and F 1ðQ2Þ. Analysis carried
out in the case of the form factor g1ðq2Þ gives F 0

1 ¼
0.02 GeV−1, c11 ¼ 10.07, and c21 ¼ −68.03. This function
is depicted in Fig. 1, where one can be convinced in nice
agreement of F 1ðQ2Þ and QCD SR data.

For the coupling g1, we find

g1 ≡ F 1ð−m2
BÞ ¼ ð6.49� 1.41Þ × 10−3 GeV−1; ð23Þ

where ambiguities in Eq. (28) are generated mainly by the
choice of the parameters M2 and s0. Let us note that we
calculate the correlation function ΠOPEðp; p0Þ and g1 (and
other strong couplings) at leading order of QCD. In general,
the next-to-leading-order (NLO) perturbative contributions
improve accuracy of theoretical analysis and are necessary
to fix a scale μ in heavy quark masses and vacuum
condensates. Depending on the problem under consider-
ation, NLO terms may affect the final results. Indeed, NLO
corrections to parameters of light four-quark mesons are
significant [34]. At the same time, similar contributions to
masses of doubly heavy tetraquarks calculated in Ref. [35]
by means of the inverse Laplace SR approach were found to
be numerically small. The smallness of NLO corrections in
mass computations may be explained by an analytic form
of the relevant SR given as a ratio of two-point correlation
functions. This is not the case for vertex functions, where
NLO effects may be large. But this problem requires
detailed studies, which are beyond the scope of our paper.
The width of the channel X4b → BþB− is given by the

formula

Γ½X4b → BþB−� ¼ g21
m2

Bλ

8π

�
1þ λ2

m2
B

�
; ð24Þ

where λ ¼ λðm;mB;mBÞ and

λðx;y;zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4þ y4þ z4 −2ðx2y2þ x2z2þ y2z2Þ

p
2x

: ð25Þ

We find

Γ1½X4b → BþB−� ¼ ð1.10� 0.34Þ MeV: ð26Þ

The parameters of the decay X4b → B̄0B0 almost
coincide with ones for the process X4b → BþB−, though
there is a small gap between the masses mB0

¼ ð5279.63�
0.20Þ MeV and mB of the mesons B0 and B�. As a result,
one obtains g2ðq2Þ ≈ g1ðq2Þ and Γ2½X4b → B̄0B0�≈
Γ1½X4b → BþB−�.
The analysis of the process X4b → B̄0

sB0
s requires some

modifications. First of all, the interpolating currents of the
mesons B̄0

s and B0
s are, respectively,

JB̄sðxÞ ¼ s̄jðxÞiγ5bjðxÞ; JBsðxÞ ¼ b̄iðxÞiγ5siðxÞ: ð27Þ

The matrix element of B̄0
s and B0

s mesons is

h0jJBs jB0
si ¼

fBs
m2

Bs

mb þms
; ð28Þ

FIG. 1. QCD predictions and F ðQ2Þ functions for the form
factors g1ðQ2Þ (solid line) and g5ðQ2Þ (dashed line). The
couplings g1 and g5 are extracted at the points Q2 ¼ −m2

B and
Q2 ¼ −m2

B� labeled on the plot by the red diamond and star,
respectively.

FIG. 2. The strong coupling g ¼ g1ð2 GeV2Þ as a function of the
parameters M2

1 and M2
2 at s0 ¼ 377.5 GeV2 and s00 ¼ 34 GeV2.
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with ms ¼ 93.4þ8.6
−3.4 MeV being the s quark’s mass. In

Eq. (28), mBs
¼ ð5366.91� 0.11ÞMeV and fBs

¼ ð234�
5ÞMeV are the mass and decay constant, respectively, of
these mesons. Therefore, Eqs. (15) and (16) change accord-
ingly, where one should replace m2

b → ðmb þmsÞ2.
In computations of g3ðq2Þ, we use the following Borel

and continuum subtraction parameters: for the X4b channel
the parameters ðM2

1; s0Þ from Eq. (18) and

M2
2 ∈ ½5.5; 6.5� GeV2; s00 ∈ ½34; 35� GeV2; ð29Þ

for the B̄0
s channel. The fit function F 3ðQ2Þ necessary for

further computations is determined by the parameters
F 0

3 ¼ 0.02 GeV−1, c13 ¼ 9.67, and c23 ¼ −63.84. Then,
for the coupling g3 and width of the decay X4b → B̄0

sB0
s,

we find

g3 ≡ F 3ð−m2
Bs
Þ ¼ ð5.61� 1.21Þ × 10−3 GeV−1;

Γ3½X4b → B̄0
sB0

s � ¼ ð0.81� 0.25Þ MeV: ð30Þ
The investigations of the fourth decay X4b → Bþ

c B−
c can

be carried out in the standard way. In this case, we consider
the correlation function, in which the interpolating currents
for the mesons Bþ

c and B−
c have the forms, respectively,

JB
þ
c ðxÞ ¼ b̄jðxÞiγ5cjðxÞ; JB

−
c ðxÞ ¼ c̄iðxÞiγ5biðxÞ: ð31Þ

The matrix element of these mesons is

h0jJBc jBci ¼
fBc

m2
Bc

mb þmc
; ð32Þ

with mBc
¼ ð6274.47� 0.27Þ MeV and fBc

¼ ð476 �
27Þ MeV being the mass and decay constant, respectively,
of B�

c [31,36]. The form factor g4ðq2Þ is extracted from the
SRs using the following parameters:

M2
2 ∈ ½6.5; 7.5� GeV2; s00 ∈ ½45; 47� GeV2: ð33Þ

The fit function F 4ðQ2Þ is given by the parameters F 0
4 ¼

0.009 GeV−1, c14 ¼ 4.58, and c24 ¼ −8.89. Then, for the

coupling g4 and width of the decay X4b → Bþ
c B−

c ,
we get

g4 ≡ F 4ð−m2
Bc
Þ ¼ ð4.67� 0.89Þ × 10−3 GeV−1;

Γ4½X4b → Bþ
c B−

c � ¼ ð0.51� 0.14Þ MeV: ð34Þ
Predictions obtained for parameters of these decays are
collected in Table I.

III. CHANNELS X4b → B� +B�− , B̄�0B�0,
AND B̄�0

s B�0
s

The decays of the tetraquark X4b to vector mesons B�
qB̄�

q,
with some modifications, can be analyzed as the ones
studied in the previous section. Let us consider the process
X4b → B�þB�− and evaluate the form factor g5ðq2Þ corre-
sponding to the vertex X4bB�þB�−.
The correlation function required to derive SR for g5ðq2Þ is

Πμνðp; p0Þ ¼ i2
Z

d4xd4yeip
0ye−ipxh0jT fJB�þ

μ ðyÞ

× JB
�−

ν ð0ÞJ†ðxÞgj0i; ð35Þ
where

JB
�þ

μ ðxÞ ¼ b̄jðxÞγμujðxÞ; JB
�−

ν ðxÞ ¼ ūiðxÞγνbiðxÞ ð36Þ

are interpolating currents for the vectormesonsB�þ andB�−,
respectively.
The Πμνðp; p0Þ in terms of physical parameters of the

particles X4b, B�þ, and B�− has the decomposition

ΠPhys
μν ðp;qÞ ¼ g5ðq2Þfmf2B�m2

B�

ðp2 −m2Þðp02 −m2
B� Þðq2 −m2

B�Þ

×

�
m2 −m2

B� − q2

2
gμν −pμp0

ν

�
þ � � � : ð37Þ

Equation (37) is obtained using the matrix elements

h0jJB�þ
μ jB�þðp0Þi ¼ fB�mB�εμðp0Þ;

h0jJB�−
ν jB�−ðqÞi ¼ fB�mB�ε0νðqÞ; ð38Þ

TABLE I. Decay modes of the tetraquarks X4b and T4b, strong couplings gl and Gl, and partial widths Γl and Γ̃l. For all decays, the
Borel and continuum subtraction parameters in the X4b channel are M2

1 ∈ ½17.5; 18.5� GeV2 and s0 ∈ ½375; 380� GeV2, whereas in the
T4b channel M̃2

1 ∈ ½17.5; 18.5� GeV2 and s̃0 ∈ ½380; 385� GeV2 have been used.

l Modes M2
2 ðGeV2Þ s00 ðGeV2Þ gl ðGeV−1Þ Γl ðMeVÞ Gl ðGeV−1Þ Γ̃l ðMeVÞ

1 BþB− 5.5–6.5 33.5–34.5 ð6.49� 1.41Þ × 10−3 1.10� 0.34 ð1.02� 0.21Þ × 10−2 2.92� 0.89
2 B̄0B0 5.5–6.5 33.5–34.5 ð6.49� 1.41Þ × 10−3 1.10� 0.34 ð1.02� 0.21Þ × 10−2 2.92� 0.89
3 B̄0

sB0
s 5.5–6.5 34–35 ð5.61� 1.21Þ × 10−3 0.81� 0.25 ð0.85� 0.17Þ × 10−2 1.99� 0.59

4 Bþ
c B−

c 6.5–7.5 45–47 ð4.67� 0.89Þ × 10−3 0.51� 0.14 ð4.87� 0.95Þ × 10−3 0.59� 0.16
5 B�þB�− 5.5–6.5 34–35 ð1.36� 0.26Þ × 10−2 2.26� 0.62 ð1.75� 0.35Þ × 10−2 4.05� 1.15
6 B̄�0B�0 5.5–6.5 34–35 ð1.36� 0.26Þ × 10−2 2.26� 0.62 ð1.75� 0.35Þ × 10−2 4.05� 1.15
7 B̄�0

s B�0
s 6–7 35–36 ð1.14� 0.22Þ × 10−2 1.58� 0.43 ð1.59� 0.32Þ × 10−2 3.32� 0.95
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where mB� ¼ ð5324.71� 0.21Þ MeV and fB� ¼
ð210� 6Þ MeV are the mass and decay constants, respec-
tively, of the B�� mesons [31,37]. Here, εμðp0Þ and ε0νðqÞ
are the polarization vectors of B�þ and B�−, respectively.
The vertex X4bB�þB�− is modeled by the expression

hB�þðp0ÞB�−ðqÞjX4bðpÞi
¼ g5ðq2Þ½ðq · p0Þε�ðp0Þ · ε0�ðqÞ − p0 · ε0�ðqÞq · ε�ðp0Þ�:

ð39Þ

The QCD side of SRs is determined by the formula

ΠOPE
μν ðp; p0Þ ¼ −

4

9mbπ

�
αsG2

π

�Z
d4xd4yeip

0ye−ipx

× Tr½Siju ðyÞγνSjab ð−xÞSaib ðx − yÞγμ�: ð40Þ

In the SR computations, we make use of invariant
amplitudes Π̂Physðp2; p02; q2Þ and Π̂OPEðp2; p02; q2Þ which
correspond to terms gμν in the physical and QCD sides,
respectively. After Borel transformations and continuum
subtractions, the SR for the form factor g5ðq2Þ reads

g5ðq2Þ ¼
2

fmf2B�m2
B�

q2 −m2
B�

m2 −m2
B� − q2

em
2=M2

1

× em
2
B�=M

2
2Π̂ðM2; s0; q2Þ; ð41Þ

with Π̂ðM2; s0; q2Þ being the amplitude Π̂OPEðp2; p02; q2Þ
after relevant manipulations.
The partial width of the decay X4b → B�þB�− can be

evaluated by means of the expression

Γ5½X4b → B�þB�−� ¼ g25
m2

B� λ̂

8π

�
m2

B�

m2
þ 2λ̂2

3m2
B�

�
; ð42Þ

where λ̂ ¼ λðm;mB� ; mB� Þ.
The coupling g5 is determined in accordance with a

scheme explained above. In Fig. 1, we provide the SR data
and extrapolating function F 5ðQ2Þ employed to find g5. To
extract the SR data, we have used the working regions
Eq. (29). The coupling g5 has been evaluated at the mass
shell of B�− meson. This coupling and partial width of the
decay X4b → B�þB�− are equal, respectively, to

g5 ≡ F 5ð−m2
B� Þ ¼ ð1.36� 0.26Þ × 10−3 GeV−1;

Γ5½X4b → B�þB�−� ¼ ð2.26� 0.62Þ MeV: ð43Þ

Predictions obtained for parameters of other modes are
presented in Table I. Here, one can find couplings g6 and g7,
as well as partial widths of the decays X4b → B̄�0B�0 and
B̄�0
s B�0

s . The strong coupling g6 of particles at the vertex
X4bB̄�0B�0 and width of the channel X4b → B̄�0B�0
do not differ numerically from those for the process

X4b → B�þB�−. To calculate parameters of the mode
X4b → B̄�0

s B�0
s , we have used the following input infor-

mation: the mass of the B�0
s meson mB�

s
¼ ð5415.8�

1.5Þ MeV and its decay constant fB�
s
¼ ð221� 7Þ MeV.

In this case the regions for M2
2 and s00 are chosen as

M2
2 ∈ ½6; 7� GeV2; s00 ∈ ½35; 36� GeV2: ð44Þ

For the width of the decay X4b → B̄�0
s B�0

s , we obtain

Γ7½X4b → B̄�0
s B�0

s � ¼ ð1.58� 0.43Þ MeV: ð45Þ

Information about partial widths of the decays obtained
in last two sections allows us to estimate the full width of
the tetraquark X4b:

Γ4b ¼ ð9.62� 1.13Þ MeV: ð46Þ

IV. PROCESSES T4b → BqB̄q AND T4b → B�
qB̄�

q

The scalar tetraquark T4b was studied in Ref. [16], in
which we calculated the mass m̃ and full width Γ̃4b of this
particle. It was modeled as a diquark-antidiquark com-
pound built of pseudoscalar constituents. The interpolating
current for such a state has the form

J̃ðxÞ ¼ bTaðxÞCbbðxÞb̄aðxÞCb̄TbðxÞ: ð47Þ

The spectroscopic parameters of T4b

m̃ ¼ ð18858� 50Þ MeV;

f̃ ¼ ð9.54� 0.71Þ × 10−2 GeV4 ð48Þ

were extracted from the two-point SRs by employing the
following parameters M̃2 and s̃0:

M̃2 ∈ ½17.5; 18.5� GeV2;

s̃0 ∈ ½380; 385� GeV2: ð49Þ

In accordance with these results, the tetraquark T4b can
decay through the channelT4b → ηbηb. The full width ofT4b
was estimated using this decay mode and found equal to

Γ̃4b ¼ ð94� 28Þ MeV: ð50Þ

The processesT4b → BqB̄q are additional decay channels for
the tetraquark T4b: By taking into account these modes, we
are going to refine our previous prediction for Γ̃4b.
The treatment of these processes does not differ from our

analysis presented above. There are only some differences
generated by the interpolating current of the tetraquark T4b
and its parameters. For instance, in the case of the channel
T4b → BþB−, the phenomenological side of the required
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sum rule after substitutions m; f → m̃; f̃ and g1ðq2Þ →
G1ðq2Þ is given by Eq. (8). The mass and current coupling
of T4b emerge in this expression through the matrix element

h0jJ̃jT4bi ¼ f̃ m̃; ð51Þ

whereas G1ðq2Þ arises from the vertex

hBþðp0ÞB−ðqÞjT4bðpÞi ¼ G1ðq2Þp · p0: ð52Þ

The form factor G1ðq2Þ describes strong interaction of
particles at the vertex T4bBþB− and is a quantity which
should be estimated at q2 ¼ m2

B.
The correlation function Π̃OPEðp; p0Þ in terms of quark

propagators reads

Π̃OPEðp; p0Þ ¼ −
1

9mbπ

�
αsG2

π

�Z
d4xd4yeip

0ye−ipx

× Tr½Siju ðyÞSjab ð−xÞSaib ðx − yÞ�: ð53Þ

Then, the sum rule for G1ðq2Þ has the form

G1ðq2Þ ¼
2m2

b

f̃ m̃ f2Bm
4
B

q2 −m2
B

m̃2 þm2
B − q2

em̃
2=M2

1em
2
B=M

2
2

× Π̃ðM2; s0; q2Þ; ð54Þ

with Π̃ðM2; s0; q2Þ being the Borel transformed and sub-
tracted invariant amplitude Π̃OPEðp2; p02; q2Þ.
The remaining manipulations are similar to ones

explained above. In numerical computations of G1ðq2Þ
as the parameters ðM2

1; s0Þ for the T4b tetraquark’s channel,
we employ regions Eq. (49), whereas ðM2

2; s
0
0Þ in the Bþ

channel are the same as in Eq. (20). Results of computa-
tions are plotted in Fig. 3.
The extrapolating functions F̃ lðQ2Þ employed for analy-

sis of the T4b tetraquark’s decays have the same functional
dependence on the momentumQ2 ¼ −q2 with replacement
m2 → m̃2 in F lðQ2Þ. Its parameters, in the case of the
vertex T4bBþB−, are

F̃ 0
1 ¼ 0.04 GeV−1; c̃11 ¼ 10.47; c̃21 ¼ −72.81: ð55Þ

Then, one can easily evaluate the coupling G1 and partial
width of the decay T4b → BþB−:

G1 ≡ F̃ 1ð−m2
BÞ ¼ ð1.02� 0.21Þ × 10−2 GeV−1 ð56Þ

and

Γ̃1½T4b → BþB−� ¼ ð2.92� 0.89Þ MeV: ð57Þ
The remaining processes T4b → B̄0B0, B̄0

sB0
s , and Bþ

c B−
c

are explored by a similar manner. The parameters of the
second decay T4b → B̄0B0 are approximately the same as
the ones for the first channel. In the case of T4b → B̄0

sB0
s

and T4b → Bþ
c B−

c , we obtain

G3 ≡ F̃ 3ð−m2
Bs
Þ ¼ ð0.85� 0.17Þ × 10−2 GeV−1;

Γ̃3½T4b → B̄0
sB0

s � ¼ ð1.99� 0.59Þ MeV ð58Þ

and

G4 ≡ G̃4ð−m2
Bþ
c
Þ ¼ ð4.87� 0.95Þ × 10−3 GeV−1;

Γ̃4½T4b → Bþ
c B−

c � ¼ ð0.59� 0.16Þ MeV; ð59Þ

respectively.
Parameters of the decays T4b → B�

qB̄�
q are collected in

Table I. In Fig. 3, we plot also the function G5 ≡ G̃5ðQ2Þ
and corresponding SR predictions for the form factor
G5ðQÞ.
The sum of partial widths of the decays considered in the

present section,

Γ̃BB
4b ¼ ð19.84� 2.35Þ MeV; ð60Þ

as well as parameters of the process T4b → ηbηb, allows us
to evaluate new prediction for the full width of T4b:

Γ̃Full
4b ¼ ð114� 29Þ MeV: ð61Þ

The main contribution to Γ̃Full
4b comes from the channel

T4b → ηbηb with the branching ratio

BðT4b → ηbηbÞ ¼ Γ̃4b=Γ̃Full
4b ≈ 0.82: ð62Þ

The remaining modes constitute ≈0.18 part of the full
width and can be considered as sizable corrections to Γ̃Full

4b .

FIG. 3. The sum rule results and extrapolating functions for the
form factors G1ðQ2Þ (solid line) and G5ðQ2Þ (dashed line). The
strong couplings G1 and G5 are found at the points Q2 ¼ −m2

B
and Q2 ¼ −m2

B� and denoted by the red diamond and star,
respectively.
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V. SUMMARY

In the present article, we have explored decays of fully
beauty scalar tetraquarks X4b and T4b to BqB̄q and B�

qB̄�
q

mesons in the context of the QCD three-point sum rule
method. These decays are very important for exotic mesons
with masses below 2ηb threshold, because they form an
essential part of their full widths.
We have modeled X4b and T4b as diquark-antidiquark

states built of diquarks with different spins. Thus, ingre-
dients of the tetraquark X4b are axial-vector diquarks,
whereas T4b is composed of pseudoscalar ones. The masses
and current couplings of X4b and T4b were computed in the
context of SR method in our articles [14,16].
The mass m of X4b is less than the 2ηb limit; therefore,

the full width of this tetraquark Γ4b ¼ ð9.62� 1.13Þ MeV
has been estimated in the current article using namely these
processes. The tetraquark T4b with the mass m̃ above 2ηb
threshold dissociates to ηbηb mesons which form an
important part of its full width. Nevertheless, contributions
of the channels T4b → BqB̄q and B�

qB̄�
q to the full width of

T4b are sizable.

Decays of the tetraquark bbb̄ b̄ with the spin-parities
JPC ¼ 0þþ and mass below 2ηb were explored using
different models in Refs. [23,30] as well. In these articles,
the full width of such a state was estimated as 1.2 and
8.5 MeV, respectively. The channel ϒμþμ− was analyzed
in Ref. [24], where the width was found in the range
10−3–10 MeV.
As is seen, our prediction for Γ4b is consistent with result

in Ref. [30]. But, there are other decays of X4b which may
contribute to Γ4b and modify it considerably. In the context
of the method used in Ref. [30], the process ηb þH seems
important to estimate Γ4b. This decay is definitely beyond
reach of the sum rule method and has not been considered
here. In other words, additional efforts are necessary to
make model-independent predictions for widths of fully
beauty tetraquarks lying below the 2ηb threshold.
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