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Inspired by the recent observation of exotic resonances Xð4140Þ, Xð4274Þ, Xð4350Þ, Xð4500Þ, and
Xð4700Þ reported by several experiment collaborations, we investigated the four-quark system csc̄ s̄ with
quantum numbers JPC ¼ 1þþ and 0þþ in the framework of the chiral quark model. Two configurations,
diquark-antidiquark and meson-meson, with all possible color structures are considered. The results show
that no molecular state can be formed, but the resonance may exist if the color structure of the meson-
meson configuration is 8 ⊗ 8. In the present calculation, the Xð4274Þ can be assigned as the csc̄ s̄
tetraquark states with JPC ¼ 1þþ, but the energy of Xð4140Þ is too low to be regarded as the tetraquark
state. Xð4350Þ can be a good candidate of the compact tetraquark state with JPC ¼ 0þþ. When the radial
excitation is taken into account, the Xð4700Þ can be explained as the 2S radial excited tetraquark state with
JPC ¼ 0þþ. As for Xð4500Þ, there is no matching state in our calculation.

DOI: 10.1103/PhysRevD.99.094032

I. INTRODUCTION

Recently, several exotic resonances were observed in the
invariant mass distribution of J=ψϕ. In 2009, the CDF
Collaboration found the Xð4140Þwith massM ¼ 4143.0�
2.9� 1.2 MeV and width Γ ¼ 11.7þ8.4

−6.7 � 3.7 MeV in
Bþ → J=ψϕKþ decay [1]. In 2010, a narrow resonance
Xð4350Þ with mass M ¼ 4350.6þ4.6

−5.1 � 0.7 MeV and
width Γ ¼ 13þ18

−9 � 4 MeV was reported by the Belle
Collaboration in the γγ → J=ψϕ process, and the possible
spin parity is JPC ¼ 0þþ or 2þþ [2]. A few years later, the
exotic resonance Xð4140Þ was observed by some other
collaborations including LHCb, D0, CMS, and BABAR
[3–6]. In 2011, another resonance Xð4274Þwith massM ¼
4274.4� 1.9 MeV and width Γ ¼ 32.3� 7.6 MeV was
observed by the CDF Collaboration in Bþ → J=ψϕKþ
decay with 3.1σ significance [7]. In 2016, the LHCb
Collaboration performed the first full amplitude analysis
of the Bþ → J=ψϕKþ process, and the existence of the
Xð4140Þ and Xð4274Þ was confirmed. Their quantum
numbers are fixed to be JPC ¼ 1þþ [8]. At the same time,
the collaboration observed two other resonances, Xð4500Þ
and Xð4700Þ, with JPC ¼ 0þþ. Their masses and decay
widths have been determined as [9]

MXð4500Þ ¼ ð4506� 11þ12
−15Þ MeV; ð1Þ

ΓXð4500Þ ¼ð92� 21þ21
−20Þ MeV; ð2Þ

MXð4700Þ ¼ð4704� 10þ14
−24Þ MeV; ð3Þ

ΓXð4500Þ ¼ð120� 31þ42
−33Þ MeV: ð4Þ

With the discovery of these exotic resonances, many
theoretical works, such as approaches based on quark
models [10–14], QCD sum rules [15], etc., have been
performed. In the framework of the relativized quark
model, the Xð4140Þ can be regarded as the csc̄ s̄ tetraquark
ground state, and the Xð4700Þ can be explained as the 2S
excited tetraquark state [10]. Based on the simple color-
magnetic interaction model, possible ground csc̄ s̄ tetra-
quark states in the diquark-antidiquark configuration have
been investigated, and the interpretation of Xð4500Þ and
Xð4700Þ needs orbital (radial or angular) excitation [11].
Deng et al. investigated the hidden charmed states in the
framework of the color flux-tube model, and they found
that the energy of the first radial excited state ðcsÞðc̄ s̄Þwith
25D0 is in full accord with that of the state Xð4700Þ [12].
In a simple quark model with chromomagnetic interaction,
Stancu suggested that the Xð4140Þ could possibly be the
strange partner of Xð3872Þ in a tetraquark interpretation
[13]. Lebed and Polosa argued that Xð4140Þ was a JPC ¼
1þþ cc̄ss̄ state in the diquark-antidiquark model because it
has been not been seen in two-photon fusion [16]. Ortega
et al. claimed that the Xð4140Þ resonance appeared as a
cusp in the J=ψϕ channel due to the near coincidence of the
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s and J=ψϕmass thresholds when the nonrelativistic
constituent quark model was employed [14]. According to
the QCD sum rules, Chen et al. pointed out that the
Xð4500Þ and Xð4700Þ may be interpreted as the D-wave
csc̄ s̄ tetraquark states with opposite color structures [15].
Recently, an approach, which tried to unify the description
of “XYZ” particles, based on the Born-Oppenheimer
approximation, was applied to the tetraquark system with
double heavy flavors [17,18], Xð4140Þ, Xð4274Þ, and
Xð4350Þ, all taken as cc̄ss̄ tetraquarks [17]. It should be
emphasized that most of these explanations do not agree
with each other, and many of these investigations neglected
the spin-orbital interaction when the orbital excitations
were taken into account.
To see whether these exotic resonances can be described

by csc̄ s̄ tetraquark systems with JPC ¼ 0þþ; 1þþ, we do a
high-precision four-body calculation based on the frame-
work of the chiral quark model, which describes the hadron
spectra and hadron-hadron interaction well [19,20]. The
high-precision few-body method, the Gaussian expansion
method (GEM) [21], is employed for this purpose. Two
configurations, ðqq̄Þðqq̄Þ (meson-meson) and ðqqÞðq̄ q̄Þ
(diquark-antidiquark), are considered. All the color con-
structions for each configuration are taken into account.
For the meson-meson configuration, the color structures are
1 ⊗ 1 and 8 ⊗ 8, and for the diquark-antidiquark configu-
ration, the color structures are 3̄ ⊗ 3 and 6 ⊗ 6̄. To explain
the two higher exotic resonances Xð4500Þ and Xð4700Þ,
the orbital excitation with the inclusion of spin-orbital
interaction is invoked. To expose the structures of the
states, the distances between two quarks (antiquarks) for
given states are calculated.
This paper is organized as follows. In Sec. II, the chiral

quark model and wave functions of csc̄ s̄ tetraquark
systems are introduced. The numerical results and a
discussion are presented in Sec. III. Finally, we give a
brief summary of our investigation and the future work to
be done in Sec. IV.

II. CHIRAL QUARK MODEL AND WAVE
FUNCTIONS

The chiral quark model has achieved great success when
describing hadron spectra and hadron-hadron interactions
[20]. The specific introduction of the chiral quark model can
be found in Ref. [19]. The Hamiltonian of csc̄ s̄ tetraquark
systems,which is shownbelow, includes themass, the kinetic
energy, and different kinds of interactions. These interactions
include the confinement VC, one-gluon-exchange VG,
and Goldstone bosons exchanges Vχðχ ¼ π; κ; ηÞ; only η
exchange plays a role between s and s̄. Scalar meson
exchange Vσ is not included in these interactions because
it is expected to exist between uðūÞ and dðd̄Þ only. Because
of the existence of orbital excitation, the spin-orbit coupling
terms are also taken into consideration,

H¼
X4

i¼1

�
miþ

p2
i

2mi

�
−Tcmþ

X4

i¼1<j

�
VC
ijþVG

ijþ
X

χ¼π;κ;η

Vχ
ij

�
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QQ̄ ; ð5Þ
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4
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c
j ½
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−
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Vη
ij¼

g2ch
4π

m2
η

12mimj

Λ2
η

Λ2
η−m2

η
mησi ·σj

�
YðmηrijÞ−
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η
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YðΛηrijÞ

�

× ½cosθPðλ8i ·λ8jÞ−sinθPðλ0i ·λ0jÞ�; ð10Þ

whereTcm is the kinetic energyof the center-of-massmotion;
YðxÞ is the standard Yukawa functions; the σ and λ represent
Pauli and Gell-Mann matrices, respectively; and the strong
coupling constant of one-gluon exchange is αs, the running
property of which is given as

αsðμijÞ ¼
α0

ln ½ðμ2ij þ μ20Þ=Λ2
0�
; ð11Þ

where μij represents the reduced mass of two interacting
particles.
For the diquark-antidiquark configuration, the subclus-

ters qq and q̄ q̄ can be treated as compound bosons Q̄ andQ
with no internal orbital excitation. If the relative orbital
angular excitations between the two clusters is L, the four-
body spin-orbit interactions can be simply expressed as
[22,23]

VC;LS
QQ̄ ¼ −acλcQ · λcQ̄

1

4MQMQ̄
L · S ð12Þ

VG;LS
QQ̄ ¼ −

αs
4
λcQ · λcQ̄

1

8MQMQ̄

3

X3
L · S; ð13Þ

where the MQðMQ̄Þ is the total mass of subcluster, X is the
distance between the two clusters, and S is the total spin of
the tetraquark state. This simplification can be generalized
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to color-octet meson subclusters in the meson-meson
configuration.
In this paper, the model parameters of the chiral quark

model are directly taken from our previous work [24],
which is shown in Table I. These parameters are obtained
by fitting the meson spectrum. Some of the calculated
meson spectra have been given in Table II.
Next, we will introduce the wave functions for the csc̄ s̄

tetraquark. A quark (antiquark) has 4 degrees of freedom,
including orbit, flavor, spin, and color. For each degree of
freedom, first we construct the wave function for each
subcluster and then couple the wave functions of two
subclusters to get the wave functions for the final tetraquark
systems.
For the spatial part, the total spatial wave functions of

tetraquark systems can be obtained by coupling three
relative orbital motion wave functions,

ψLML
¼ ½½ψ l1ðr12Þψ l2ðr34Þ�l12ψLr

ðRÞ�
LML

; ð14Þ

where ψ l1ðr12Þ and ψ l1ðr34Þ are the relative orbital motions
between two particles in each subcluster with angular
momentum l1 and l2, respectively, and ψLr

ðRÞ is the
relative orbital wave function between two subclusters
with angular momentum Lr. In the present calculation,
we do not consider the orbital excitation in each subcluster,
so we set l1 ¼ l2 ¼ 0 and Lr ¼ L, which is the total orbital
angular momentum of tetraquark systems. In GEM, three
relative orbital motion wave functions are all expanded by
Gaussian functions [21],

ψ lmðrÞ ¼
Xnmax

n¼1

cnlϕG
nlmðrÞ ð15Þ

ϕG
nlmðrÞ ¼ Nnlrle−νnr

2

Ylmðr̂Þ ð16Þ

Nnl ¼
�
2lþ2ð2νnÞlþ3=2

ffiffiffi
π

p ð2lþ 1Þ!!
�1

2

; ð17Þ

where Nnl are normalization constants, and the expansion
coefficients cnl are obtained by solving the Schrödinger
equation. The Gaussian size parameters are set according to
the geometric progression

νn ¼
1

r2n
; rn ¼ rminan−1; a¼

�
rmax

rmin

� 1
nmax−1

; ð18Þ

where the nmax is the number of Gaussian functions and a is
the ratio coefficient. After parameter optimization through
continuous calculation, we find the calculation results
begin to converge, when nmax ¼ 7.
For the spin part, since the spin of each quark (antiquark)

is 1=2, the spin of each subcluster can only be 0 or 1.
After coupling the spins of the two subclusters, the total
spin of tetraquark may be 0, 1, and 2. The total spin S of
the tetraquark system is obtained from the coupling
S1 ⊗ S2 → S, where S1 and S2 represent the spins of
two subclusters. We use χiði ¼ 1 ∼ 6Þ to denote the total
spin wave functions of tetraquark systems. All of the six
possible spin channels are given as

χ1∶ 0 ⊗ 0 → 0 χ2∶ 1 ⊗ 1 → 0

χ3∶ 0 ⊗ 1 → 1 χ4∶ 1 ⊗ 0 → 1 χ5∶ 1 ⊗ 1 → 1

χ6∶ 1 ⊗ 1 → 2: ð19Þ

For the flavor part, the isospins of all quarks (antiquarks)
are all zero, so there is no need to consider the coupling of
the isospin. We use φjðj ¼ 1 ∼ 3Þ to represent the total
flavor wave functions of tetraquark systems, and they can
be written as

φ1 ¼ ðcc̄Þðss̄Þ;
φ2 ¼ ðcs̄Þðsc̄Þ;
φ3 ¼ ðcsÞðc̄ s̄Þ; ð20Þ

where φ1 and φ2 are for the meson-meson configuration
and φ3 is for the diquark-antidiquark configuration.
For the color part, there are four different color wave

functions of tetraquark systems, which are denoted by
ωkðk ¼ 1 ∼ 4Þ. ω1 and ω2 stand for the color singlet-singlet
1 ⊗ 1 and octet-octet 8 ⊗ 8 in the meson-meson configu-
ration, respectively. The remaining two color wave func-
tions ω3 and ω4 stand for the color antitriplet-triplet 3̄ ⊗ 3

TABLE II. Meson spectra (in mega-electron-volts).

Mesons E PDG [25] Mesons E PDG [25]

π 140.1 139.6 Ds 1953.4 1968.3
ρ 774.4 775.3 D⋆

s 2080.2 2112.2
ω 708.2 782.7 ϕ 1015.8 1019.5
K 496.4 493.7 η0 824.0 957.8
K⋆ 918.4 891.8 ηc 2986.3 2983.9
D 1875.4 1869.7 J=ψ 3096.4 3096.9
D⋆ 1986.3 2010.3

TABLE I. Parameters of the chiral quark model.

Parameters Values Parameters Values

mu (MeV) 313 Λπ ¼ Λσ (fm−1) 4.2
md (MeV) 313 Λη ¼ Λκ (fm−1) 5.2
ms (MeV) 536 g2ch=ð4πÞ 0.54
mc (MeV) 1728 θpð°Þ −15
mb (MeV) 5112 ac (MeV) 101
mπ (fm−1) 0.70 Δ (MeV) −78.3
mσ (fm−1) 3.42 α0 3.67
mη (fm−1) 2.77 Λ0 (fm−1) 0.033
mκ (fm−1) 2.51 μ0 (MeV) 36.976
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and sextet-antisextet 6 ⊗ 6̄ in the diquark-antidiquark
configuration, respectively. The specific construction proc-
ess and forms of these color wave functions can be found
in Ref. [24].
Finally, the total wave functions for the tetraquark

systems can be given as

Ψijk
LJMJ

¼ A½ψLχi�JMJ
φjωk;

ði ¼ 1 ∼ 6; j ¼ 1 ∼ 3; k ¼ 1 ∼ 4Þ; ð21Þ

where J is the total angular momentum and MJ is the third
component of the total angular momentum. Because of the
two quarks (antiquarks) in csc̄ s̄, tetraquark systems are all
nonidentical particles, the antisymmetrization operator
A ¼ 1.
The eigenenergies of the tetraquark systems can be

obtained by solving the Schrödinger equation

HΨijk
LJMJ

¼ Eijk
LJMJ

Ψijk
LJMJ

; ð22Þ

where the Hamiltonian H and wave functions Ψijk
LJMJ

have
been given in Eqs. (5) and (21), respectively.

III. NUMERICAL RESULTS AND DISCUSSIONS

The JPC of these exotic resonances observed recently in
Bþ → J=ψϕKþ decay are fixed to 1þþ and 0þþ. In our
current calculation, only the states with these two sets of
quantum numbers are considered. Because the parities of
these exotic resonances is positive, the total orbital angular
momentum L must be even, so must Lr, according to
Eq. (14). Meanwhile, these exotic resonances all have the
definite positive C parity, and we need to combine the spin
and flavor wave functions to construct the eigenstates of
the charge conjugate operator. We use ½ðqq̄ÞS1ðqq̄ÞS2 �S and
½ðqqÞS1ðq̄ q̄ÞS2 �S to represent the combination of spin and
flavor wave functions. According to Ref. [26], all of these
eigenstates with positive C parity are given as

χ5φ1 ¼ ½ðcc̄Þ1ðss̄Þ1�1; ð23Þ

χpφ2 ¼
1ffiffiffi
2

p ð½ðcs̄Þ0ðsc̄Þ1�1 þ ½ðcs̄Þ1ðsc̄Þ0�1Þ; ð24Þ

χpφ3 ¼
1ffiffiffi
2

p ð½ðcsÞ0ðc̄ s̄Þ1�1 þ ½ðcsÞ1ðc̄ s̄Þ0�1Þ; ð25Þ

χ1φ1 ¼ ½ðcc̄Þ0ðss̄Þ0�0; χ2φ1 ¼ ½ðcc̄Þ1ðss̄Þ1�0; ð26Þ

χ1φ2 ¼ ½ðcs̄Þ0ðsc̄Þ0�0; χ2φ2 ¼ ½ðcs̄Þ1ðsc̄Þ1�0; ð27Þ

χ1φ3 ¼ ½ðcsÞ0ðc̄ s̄Þ0�0; χ2φ3 ¼ ½ðcsÞ1ðc̄ s̄Þ1�0; ð28Þ

χ6φ1 ¼ ½ðcc̄Þ1ðss̄Þ1�2 ð29Þ

χ6φ2 ¼ ½ðcs̄Þ1ðsc̄Þ1�2 ð30Þ

χ6φ3 ¼ ½ðcsÞ1ðc̄ s̄Þ1�2; ð31Þ

where the χp in Eqs. (24) and (25) is 1ffiffi
2

p ðχ3 þ χ4Þ.
Generally, we only consider the S-wave states for the

low-lying state, i.e., Lr ¼ 0 for states with JPC ¼ 1þþ.
However, for the high-lying states, Xð4500Þ and Xð4700Þ,
we will take into account theD-wave states, i.e., Lr ¼ 2 for
some states with JPC ¼ 0þþ.
First, we calculated the energies of the S-wave csc̄ s̄

states with JPC ¼ 1þþ and 0þþ. The results are given in
Tables III and IV, respectively. In the tables, E1S (E2S)
denotes the energy of the first (second) S-wave state with
single channel calculation, and Ec1ðEc2Þ represents the
energy through coupling of two different color structures.
Etheo
th ðEexp

th Þ represents the theoretical (experimental) two-
body threshold. Because the theoretical calculation cannot
reproduce the experimental data exactly for the meson
spectrum, we make a correction, E0 ¼ E − Etheo

th þ Eexp
th , for

the meson-meson configuration to minimize the theoretical
uncertainty. E0

c1ðE0
c2Þ represents the corrected energy of

Ec1ðEc2Þ. For the diquark-antidiquark configuration, the
correction is not applied because of no asymptotic physical
state in this case.
From Tables III and IV, we can see that the energies of

the color singlet-singlet ð1 ⊗ 1Þ structure are all a bit
higher than the corresponding theoretical thresholds. The
adiabatic energy of the system in this case is shown in
Fig. 1 (the adiabatic energy is obtained by setting the
number of Gaussians for the relative motion between two
subclusters to 1). When we gradually increase the distance
between the two subclusters, the energy slowly tends to the
theoretical threshold. This phenomenon suggests that the
two mesons tend to stay away and no bound states can be
formed when the color structure is 1 ⊗ 1. The reason for
this phenomenon is that the Goldstone bosons exchange
between the two subclusters is too weak to bind the two
mesons together. When the color structure is octet-octet
ð8 ⊗ 8Þ, the energies are generally higher than the corre-
sponding color singlet-singlet ð1 ⊗ 1Þ structure. According
to Fig. 1(b), the two colorful subclusters cannot fall apart or

TABLE III. Energy of S-wave csc̄ s̄ tetraquark states with
JPC ¼ 1þþ (in mega-electron-volts).

Channel E1S Ec1 E0
c1 Etheo

th Eexp
th

ψSχ5φ1ω1 4112.7 4112.7 4116.9 4112.2 4116.4 (J=ψϕ)
ψSχ5φ1ω2 4305.2 4305.2 4309.4
ψSχpφ2ω1 4033.8 4033.7 4080.7 4033.5 4080.5 (DsD�

s)
ψSχpφ2ω2 4370.6 4370.8 4417.8
ψSχpφ3ω3 4343.4 4332.7 � � �
ψSχpφ3ω4 4361.5 4374.3 � � �

YIFAN YANG and JIALUN PING PHYS. REV. D 99, 094032 (2019)

094032-4



get too close. That is because the existence of confinement
VC prevents the far separation of the two colorful clusters.
This phenomenon suggests that the resonances with com-
pact tetraquark structure may exist in our present calcu-
lation when the color configuration of the meson-meson
configuration is octet-octet ð8 ⊗ 8Þ. Because of the small
overlap between the two color structures, 1 ⊗ 1 and 8 ⊗ 8,
the coupling between two color structures is small, which
makes the resonance possible. When the configuration is
diquark-antidiquark, the two color structures antitriplet-
triplet ð3̄ ⊗ 3Þ and sextet-antisextet ð6 ⊗ 6̄Þ have similar
energies, and the coupling between them is rather strong.
According to Figs. 1(c) and 1(d), whether 3̄ ⊗ 3 or 6 ⊗ 6̄,
the two subclusters are both colorful, and they cannot stay
too far away from each other, and short-range repulsion
prevents the two subclusters from getting too close. So, the
resonances with compact tetraquark structure may also
exist in the diquark-antidiquark configuration.
For the states with JPC ¼ 1þþ (Table III), the energies of

the 1S ground state are all between 4300 and 4420 MeV
except the state with color structure 1 ⊗ 1. The corrected
energy E0

c1 of the hidden color (8 ⊗ 8) channel is around
4309.4 MeV, and the lowest energy of the diquark-anti-
diquark configuration is about 4332 MeV. Both energies
are not far from the mass of Xð4274Þ. The mix of two
configurations may reduce the energy a little, and the
lowest energy of the state with JPC ¼ 1þþ is expected to
approach the experimental value of the Xð4274Þ. So, the
Xð4274Þ can be a candidate of the compact tetraquark state
in our present calculation. As for Xð4140Þ, the energy is too
low, and there is no matching state for it in our calculations,
which is different from the results of Refs. [10,13,16,17].
For the states with JPC ¼ 0þþ (Table IV), the energies of
1S ground state are all between 4277 and 4492 MeVexcept
the state with color structure 1 ⊗ 1. It is worth mentioning
that the energy of the Xð4350Þ, which was reported by
Belle Collaboration in the γγ → J=ψϕ process, is close to
the energy of hidden color (8 ⊗ 8) state of ðcs̄Þ ðsc̄Þ,
4368.4 MeV. If the JPC of Xð4350Þ can be determined

to be 0þþ, we think it can be a candidate for the compact
tetraquark state, which agrees with the results of the Born-
Oppenheimer approach, in which a mass of 4370 MeV was
obtained [17]. As for the 2S radial excitation, the energy of
a hidden color (8 ⊗ 8) state of ðcs̄Þ ðsc̄Þ is 4719.4 MeV,
which is very close to the mass of the Xð4700Þ found by the
LHCb Collaboration. In addition to the hidden-color state
with color structure 8 ⊗ 8, the 2S states with the diquark-
antidiquark configuration have energies around 4650 MeV,
which are not much different from the Xð4700Þ, too. So, the
Xð4700Þ can be explained to be a 2S radial excited state
with a compact tetraquark structure in our calculation,
which agrees with the results of diquark model and color
flux-tubemodel [11,12]. The other exotic resonance recently
found in the experiment by the LHCb Collaboration is
Xð4500Þ, but there is no matching state for it in our
calculations. Whether Xð4500Þ can be explained by the
tetraquark structure requires further study.
For theD-wave states with JPC ¼ 0þþ (see Table V), the

energies of the meson-meson configuration with color
structure 1 ⊗ 1 are still very close to the corresponding
theoretical threshold. That is because the too-far distance
between the two clusters makes the effect of the D-wave
excitation negligible. When the color structure is 8 ⊗ 8
or the configuration is diquark-antidiquark, the energies of
D-wave excitation are all too high to be explained as the
Xð4700Þ and Xð4500Þ. So it is not appropriate to use
angular excitation to explain these exotic resonances in our
present calculation.
To analyze the spacial structure of the csc̄ s̄ tetraquark,

we calculated the distances between two qðq̄Þ for ðcs̄Þðsc̄Þ
and ðcsÞðc̄ s̄Þ ground states with JPC ¼ 0þþ (see Tables VI
and VII). According to Table VI, when the color structure is
1 ⊗ 1, the distance between the two qðq̄Þ, which are in two
different subclusters, is big. This phenomenon shows that
two subclusters tend to stay away from each other. When
the color structure is 8 ⊗ 8, the distances between any two
qðq̄Þ are all very close, and now the structure is a compact
tetraquark structure. After coupling the two color structures

TABLE IV. Energy of S-wave csc̄ s̄ tetraquark states with JPC ¼ 0þþ (in mega-electron-volts).

Channel E1S Ec1 E0
c1 Etheo

th Eexp
th E2S Ec2 E0

c2

ψSχ1φ1ω1 3810.7 3810.6 3942.0 3810.3 3941.7 (ηcη0)
ψSχ1φ1ω2 4359.1 4360.2 4491.6 4712.7 4844.1
ψSχ2φ1ω1 4114.0 4114.0 4118.2 4112.2 4116.4 (J=ψϕ)
ψSχ2φ1ω2 4273.4 4273.4 4277.6 4601.2 4605.4
ψSχ1φ2ω1 3908.0 3908.0 3837.8 3906.8 3936.6 (DsDs)
ψSχ1φ2ω2 4376.1 4376.3 4406.1 4910.6 4940.4
ψSχ2φ2ω1 4161.6 4161.6 4225.6 4160.4 4224.4 (D�

sD�
s)

ψSχ2φ2ω2 4304.8 4304.4 4368.4 4655.4 4719.4
ψSχ1φ3ω3 4323.7 4319.1 � � � 4643.5 4641.7 � � �
ψSχ1φ3ω4 4384.9 4390.0 � � � 4976.5 4980.4 � � �
ψSχ2φ3ω3 4370.0 4376.1 � � � 4924.3 4926.8 � � �
ψSχ2φ3ω4 4304.2 4292.1 � � � 4607.4 4601.4 � � �
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for the meson-meson configuration, the change is small
because of the weak coupling between these two color
structures. For the diquark-antiquark configuration in
Table VII, the distance between any two qðq̄Þ is small,

and now the structure is also very compact. After coupling
the two color structures for the diquark-antiquark configu-
ration, the change is obvious. Strong coupling between
these two color structures is the cause of this phenomenon.

FIG. 1. Energy of csc̄ s̄ tetraquark states with different color structures as a function of the distance between two subclusters.
(a) 1 ⊗ 1, (b) 8 ⊗ 8, (c) 3̄ ⊗ 3, and (d) 6 ⊗ 6̄.

TABLE VI. Distance between qðq̄Þ and qðq̄Þ for ðcs̄Þðsc̄Þ
ground states with JPC ¼ 0þþ.

Channel cs̄ sc̄ cs s̄ c̄ cc̄ s̄s

ψSχ1φ2ω1 0.50 0.50 5.86 5.86 5.84 5.87
ψSχ1φ2ω2 0.70 0.70 0.67 0.67 0.44 0.84
Coupling 0.50 0.50 5.86 5.86 5.84 5.87

0.71 0.71 0.68 0.68 0.43 0.85
ψSχ2φ1ω1 0.60 0.60 5.86 5.86 5.85 5.88
ψSχ2φ1ω2 0.67 0.67 0.64 0.64 0.42 0.80
Coupling 0.60 0.60 5.86 5.86 5.85 5.88

0.69 0.69 0.68 0.68 0.46 0.85

TABLE V. Energy of D-wave csc̄ s̄ tetraquark states with
JPC ¼ 0þþ.(in mega-electron-volts).

Channel E1D Ec1 E0
c1 Etheo

th Eexp
th

½ψDχ6�0φ1ω1 4116.6 4116.4 4120.6 4112.2 4116.4
(J=ψϕ)

½ψDχ6�0φ1ω2 5173.8 5174.0 5178.2
½ψDχ6�0φ2ω1 4163.5 4163.2 4227.2 4160.4 4224.4

(D�
sD�

s)
½ψDχ6�0φ2ω2 5141.0 5141.0 5205.0
½ψDχ6�0φ3ω3 4853.8 4847.6 � � �
½ψDχ6�0φ3ω4 5173.8 5177.6 � � �
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In addition, the relative kinetic energy between two light
qðq̄Þ is greater than that of two heavy qðq̄Þ. That is why the
distance between two light qðq̄Þ is bigger than that of two
heavy qðq̄Þ in our calculations.

IV. CONCLUSIONS

In this work, we investigated the csc̄ s̄ tetraquark states
in the framework of chiral quark model and tried to
explain those exotic resonances recently observed in the
invariant mass distribution of J=ψϕ. Two configurations,
ðqq̄Þðqq̄Þ and ðqqÞðq̄ q̄Þ, with all possible spin and color

structures were taken into consideration. We found that
the ðqq̄Þðqq̄Þ configuration cannot form the bound states
when the color structure is 1 ⊗ 1 because the Goldstone
bosons exchange is too weak to bound the two mesons.
If the color structure of ðqq̄Þðqq̄Þ is 8 ⊗ 8 or the
configuration is ðqqÞðq̄ q̄Þ, the resonances can be formed.
In our calculation, the Xð4274Þ and Xð4350Þ in experi-
ment can be regarded as the ground state of csc̄ s̄ compact
tetraquark states. The Xð4700Þ can be explained to be the
2S radial excitation, but the Xð4500Þ has no match in
the present calculation. Because of the too-low energy of
Xð4140Þ, it is impossible to use the tetraquark state to
explain this exotic resonances in our work. The current
work does not consider the coupling between the con-
figurations ðqq̄Þðqq̄Þ and ðqqÞðq̄ q̄Þ, and the coupling of
the S wave and D wave is also ignored. These legacy
situations will be considered in future work.
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