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We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that 
these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a 
non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept following that 
geodesic. That indicates a breakdown of the particle’s description, which is why we should not consider 
those trajectories for the definition of an initial singularity. When one only considers test particles that 
do not have this breakdown of their trajectory, it turns out that the only singular FLRW spacetimes are 
the ones that have a scale parameter that vanishes at some initial time.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Hubble’s law, the observed abundance of elements, the cosmic 
background radiation and the large scale structure formation in 
the universe are strong evidence that the universe expanded from 
an initial very high dense state to how we observe it now. How-
ever, what happened exactly during this hot density state is still 
an open problem. One of the questions that needs to be answered 
is whether there was a singularity at the beginning of spacetime. 
Such a singularity is in accordance with the very general theorems 
of Hawking and Penrose [1,2] defined as a non-spacelike geodesic 
that is incomplete in the past. One uses this definition because test 
particles move on these trajectories and thus have only traveled for 
a finite proper time.

The flatness, horizon and magnetic monopole problem can be 
solved with a period of exponential expansion in the very early 
universe [3,4]. To avoid a singularity before that period, it was 
suggested that one can have past-eternal inflation in which the 
universe starts from an almost static universe and flows towards a 
period of exponential expansion. This way the universe would not 
have a beginning. One of the characteristics of inflationary mod-
els is that the Hubble parameter H is positive. In [5] it was shown 
that when the average Hubble parameter along a geodesic Hav is 
positive, the geodesic is past-incomplete such that we would have 
a singularity. This is also applicable to models of eternal inflation 
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in which the average Hubble parameter along geodesics does not 
go to zero sufficiently fast (i.e. such that we do not have that Hav

is zero). In [6], a model of eternal inflation was given with all non-
spacelike geodesics complete, but in [7] these kind of models were 
shown to be quantum mechanically unstable. Hence, this would 
imply that also models of eternal inflation start from a singular-
ity.

In [8] it was pointed out that in De Sitter space the test par-
ticles that follow those past-incomplete trajectories and have a 
non-vanishing velocity, will have an energy that becomes arbitrar-
ily large when going back in the past. This can be generalized to 
general Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime 
and means that the energy of such a test particle can become 
super-Planckian at some initial time such that their description 
breaks down. This is the reason one should not consider those tra-
jectories when defining a singularity. When one only considers the 
trajectories of test particles that do not have a breakdown of the 
description of their trajectory, one finds that the only FLRW space-
times that start from a singularity are the ones with a scale factor 
that vanishes at some initial time. This implies that models of eter-
nal inflation or bouncing models are singularity free provided one 
requires sub-Planckian test particles at all times.

In this paper we first consider the past-(in)completeness of 
geodesics in spacetimes with an FLRW metric. We review the gen-
eral singularity theorems of [1,2] applied to these models and we 
review the more general (in the context of cosmology) argument 
of [5]. After that we consider how the energies of test particles 
change in time. We adopt units in which the velocity of light c = 1.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Past-(in)completeness of geodesics in FLRW spacetimes

Consider a universe with an FLRW metric which describes a 
spatially homogeneous, isotropic spacetime:

ds2 = −dt2 + a(t)2
[

dr2

1 − κr2
+ r2

(
dθ2 + sin2(θ)dϕ2

)]
, (1)

where κ is the curvature of spacelike three-surfaces and the scale 
factor a(t) is normalized such that a(t1) = 1 for some time t1. This 
metric is a good description of our universe, since from experi-
ments as WMAP and Planck, it follows that our universe is spa-
tially homogeneous and isotropic when averaged over large scales. 
Geodesics γ (τ ), where τ is an affine parameter, satisfy

dγ 0

dτ
=

√
| �V (t1)|2 − εa2

a
, (2)

where | �V |2 = gij γ̇
i γ̇ j and ε is the normalization of the geodesic: 

ε = 0 for null geodesics and ε = −1 for timelike geodesics. We 
thus have a past-incomplete geodesic when

∫
dτ =

t∫
t0

a√
| �V (t1)|2 − εa2

dt (3)

for an initial velocity | �V (t1)| is finite. Here t0 is −∞ if a(t) > 0
for all t , otherwise t0 ∈ R is taken such that a(t0) = 0. Notice 
that when a(t0) = 0 for some time t0, all non-spacelike geodesics 
are past-incomplete. When t0 = −∞ and the integral (3) is con-
verging, we cannot immediately conclude that geodesics are past-
incomplete. It is possible that we only consider a part of the actual 
spacetime. An example is given by κ = 0, and the Hubble param-
eter H = ȧ/a satisfying Ḣ/H2 = 0, in which case a(t) = eHt with 
H constant. If the whole manifold would be covered by these 
coordinates, it would result in past-incomplete geodesics. How-
ever, this model only describes one half, known as the Poincaré 
patch, of the larger De Sitter space; the whole space is described 
by choosing κ = 1, a(t) = cosh(Ht)/H which yields complete 
geodesics. See also [9] and [10]. When the integral (3) is diverg-
ing one can conclude that geodesics in that specific coordinate 
patch are past-complete. Of course, one can also assume that a 
certain model with t0 = −∞ covers the whole spacetime. Then 
the past-(in)completeness of a geodesic is determined by the inte-
gral (3).

From (3) we see that in spacetimes with a(t) > A ∈ R>0 all 
non-spacelike geodesics are past-complete. Hence for a space-
time to have a non-spacelike geodesic that is past-incomplete, a(t)
needs to become arbitrarily small.

There are a few theorems that prove that a spacetime contains 
a (past-)incomplete geodesic. Hawking and Penrose, [1,2], proved 
theorems that state that when

Rμνγ̇
μγ̇ ν ≥ 0 (4)

for all geodesics γ and the spacetime obeys a few other condi-
tions such as containing a trapped surface, there is a non-spacelike 
geodesic that is incomplete. Condition (4) for the metric (1) yields

( ..
a

a
+ 2

ȧ2

a2
+ 2

κ

a2

)
ε − 2

[ ..
a

a
− ȧ2

a2
− κ

a2

](
γ̇ 0

)2 ≥ 0. (5)
Fig. 1. Illustration of condition (8). For κ < 0 one needs (ρ, p) in the shaded area 
above the dashed line to apply the Hawking–Penrose singularity theorems. For κ ≥
0, we have less restrictions, the shaded area below the dashed line is also included, 
but it is impossible for an FLRW spacetime with non-negative spatial curvature to 
be in that area.

Using Eq. (2) one finds that condition (5) becomes

κ ≥ 0 : ..
a ≤ 0;

κ < 0 :
{ ..

a
a − ȧ2

a2 − κ
a2 ≤ 0;

..
a ≤ 0.

(6)

In particular for all κ we need that 
..
a ≤ 0 at all time, or that the 

spacetime is non-accelerating. Notice that when 
..
a ≤ 0, a will al-

ways be zero at some time t0 (this might be in the future), unless 
a is a positive constant (H = 0) in which case we do not have past-
incomplete geodesics. Hence, when we want to use these theorems 
to say something about an initial singularity in an FLRW spacetime, 
we need a metric that has a scale parameter a that becomes zero 
at some time in the past. Describing the matter content of the uni-
verse by a perfect fluid

Tμν = (ρ + p)UμUν + pgμν, (7)

where p is the pressure, ρ the energy density and Uμ = (1, 0, 0, 0), 
the condition (6) translates via the Friedmann equations to

κ ≥ 0 : ρ + 3p ≥ 0;

κ < 0 :
{
ρ + p ≥ 0;
ρ + 3p ≥ 0.

(8)

Although it seems that we have less restrictions when κ ≥ 0, it is 
impossible that ρ + p < 0 and ρ + 3p ≥ 0 for non-negative spatial 
curvature. In Fig. 1 one finds an illustration of condition (8).

Another theorem that proves that a geodesic is past-incomplete 
was published in [5] and is also applicable to spacetimes that 
have a(t) > 0 for all t . It says that when the average Hubble 
parameter H = ȧ/a along a non-spacelike geodesic, Hav, satisfies 
Hav > 0, the geodesic must be past-incomplete. For the metric (1), 
the argument is as follows. Consider a non-spacelike geodesic γ (τ )

between an initial point γ (τi) and a final point γ (τf). We can in-
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tegrate H along the geodesic, using Eq. (2):

τf∫
τi

Hdτ =
tf∫

ti

ȧ√
| �V (t1)|2 − εa2

dt

=
a(tf)∫

a(ti)

da√
| �V (t1)|2 − εa2

(9)

=

⎧⎪⎪⎨
⎪⎪⎩

1
| �V (t1)| [a(tf) − a(ti)] , ε = 0

log

(
a(tf)+

√
| �V (t1)|2+a(tf)

2

a(ti)+
√

| �V (t1)|2+a(ti)
2

)
ε = −1

≤

⎧⎪⎪⎨
⎪⎪⎩

a(tf)

| �V (t1)| , ε = 0

log

(
a(tf)+

√
| �V (t1)|2+a(tf)

2

| �V (t1)|

)
ε = −1.

Notice that for the second equality sign, one should break up the 
integration domain into parts where a = a(t) is injective, but that 
one will end up with the same result. Hence, this integral as func-
tion of the initial affine parameter τi is restricted by some fixed 
final τf . This means that when

Hav = 1

τf − τi

τf∫
τi

Hdτ > 0 (10)

τi has to be some finite value such that the geodesic is past-
incomplete. Notice that it is still possible to construct an FLRW 
spacetime that has H > 0 at all times and complete geodesics. 
For this we need that Hav must become zero when τi → −∞. 
Examples are for instance given by spacetimes with H > 0 and 
a → a0 > 0 for t → −∞ (in this case we will have that H → 0 as 
t → −∞).

3. Energy of test particles

As stated before, the definition of a singularity is based on the 
trajectories of massive test particles and massless particles. For 
cosmological spacetimes with an FLRW metric, we would like to 
study the energies of test particles over time. We will generalize 
the argument given in [8] for De Sitter space to a general FLRW 
spacetime.

Using Eq. (2) we find that for massive test particles

| �V |2 = gij γ̇
i γ̇ j = ε +

(
γ̇ 0

)2 = | �V (t1)|2
a2

. (11)

We already saw that in order for a spacetime to have a past-
incomplete non-spacelike geodesic, the scale parameter a needs 
to become arbitrarily small. With Eq. (11) this then implies that 
when the particle has a velocity | �V (t1)| at time t1, the velocity 
and hence the energy E2 = m2

(
1 + |�V (t1)|2

a2

)
of a test particle with 

mass m become arbitrarily large when moving back to the past.
The statement above for massive test particles carries over to 

photons. In this case the angular frequency as observed by a co-
moving observer is

ω = γ̇ 0 = ω(t1)

a
. (12)

Thus also the energy of photons E = h̄ω will become arbitrarily 
large when moving back to the past.

In [8] it was noted that one cannot have particles with arbi-
trarily high energies because if such a particle has a nonvanishing 
interaction cross section with any particle with a non-zero physi-
cal number density, then the particle will interact with an infinite 
number of them, breaking the Cosmological principle. However, 
the particle’s energy cannot become arbitrarily high because it will 
reach the Planck energy EP =

√
h̄
G ≈ 1.22 ·1019 GeV at some time t . 

With this energy, the particle’s Compton wavelength is approxi-
mately equal to its Schwarzschild radius such that it will form a 
black hole. Therefore, the description of the particle’s trajectory 
will break down. Scattering processes involving vacuum fluctua-
tions may cause the test particle’s energy to never reach the Planck 
energy. If these processes are significant the particle’s trajectory is 
not a geodesic anymore. Near the Planck energy scattering pro-
cesses are dominated by processes that involve the exchange of a 
graviton [11]. To estimate this effect we consider photon–photon 
scattering with the exchange of a graviton. We model the loss of 
energy of the photon when going back in time as

d

dt
E = (−H − σn) E, (13)

where n is the number density of virtual photons and σ is the 
cross section of the scattering process. The particle gains energy 
from the expansion of the universe because −H is positive (when 
going back in time) and it looses energy from the scattering with 
virtual photons. We estimate the density of virtual photons as one 
per Hubble volume:

n = 1

V H
= −3H3

4π
. (14)

The differential cross section for photon–photon scattering with 
the exchange of a graviton for unpolarized photons is [12]

dσ

d�
= κ4

8π2

k2

sin2(θ)

[
1 + cos16

(
1

2
θ

)
+ sin16

(
1

2
θ

)]
(15)

where κ = √
16πG , k is the momentum of the photon and θ is the 

scattering angle. Since we are primarily interested in large momen-
tum exchange, we neglect small angle scatterings when calculating 
the total cross section of this process:

σ =
∫

dσ

d�
d�

= κ4

π

k2

4

1−ξ∫
−1+ξ

1 + 1
256 (1 + x)8 + 1

256 (1 − x)8

1 − x2
dx

= κ4

π

k2

2

1∫
ξ

1 + 1
256 (2 − y)8 + 1

256 y8

y(2 − y)
dy

= κ4

π

k2

4

[
2 log

1

ξ
− 363

140
+ log(4) +O(ξ)

]
, (16)

where we have the relation sin(θ/2) = √
ξ/2. Taking only angles 

.26π < θ < .74π into account for the scattering, we have that 
2 log 1

ξ
− 363

140 + log(4) ≈ 1. With Eqs. (13), (14) and (16) we find 
that the energy of the test photon does not increase when

H ∼ σn = 48G2 E2 H3, (17)

where E = k is the photon energy. Using the Hubble parameter of 
cosmic inflation which typically is about −h̄H ≈ 1013 GeV, we find 
from (17) that the scattering process becomes significant when(

E
)2

∼ E2
P
2 2

≈ 1010. (18)

EP 48h̄ H
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Hence, processes involving gravitons will not cause the particle’s 
energy to stay smaller than the Planck energy and a black hole 
will form. This implies that the description of the particle’s tra-
jectory (as a geodesic) breaks down, either because of interaction 
processes or by the formation of a black hole. The latter definitely 
happens when the initial energy is near the Planck energy.

Up to now, the maximum energy of a single particle that has 
been measured is of the order of 1020 eV [13] which is eight orders 
of magnitude smaller than the Planck scale. These particles were 
all cosmic ray particles, so their probable origin is a supernova, 
an active galactic nucleus, a quasar or a gamma ray-burst. Even 
when using this energy as an upper bound for the energy of test 
particles, we have that the description of the trajectories of non-
comoving test particles breaks down at times that are certainly 
later than the Planck era, the period where we have to take quan-
tum gravitational effects into account. In [8] the arbitrarily high 
energies of test particles were used to argue that these particles 
should be forbidden in De Sitter space. This can be done by using 
a different time arrow in the two patches of De Sitter space that 
one has in the flat slicing. That way the two coordinate patches 
become non-communicating and describe eternally inflating space-
times. We will not look into these kind of constructions for general 
FLRW spacetimes but we want to use the arbitrarily high ener-
gies of test particles to give a consistent definition of a singularity. 
When the particle’s description breaks down before it reaches the 
beginning of its trajectory, it is not very useful to use that particle 
as an indication for an initial singularity. That is the reason why we 
suggest to define a singularity in spacetimes with an FLRW metric 
that has a parameter a that becomes arbitrarily small, as a time-
like geodesic with | �V (t1)| = 0 that is past-incomplete. For such 
trajectories, we have that dt = dτ which means that a spacetime 
has no initial singularity when a(t) > 0 for all t ∈ R. Hence, an 
FLRW spacetime starts from a singularity precisely when a(t0) = 0
at some initial finite time t0.

4. Conclusion

We pointed out that spacetimes with an FLRW metric such that 
a(t) > 0 for all t ∈ R have no initial singularity. This was done by 
first observing that in models that have a(t) > A ∈ R>0 all non-
spacelike geodesics are past-complete. When a becomes arbitrarily 
small, it is possible that the spacetime contains a past-incomplete 
geodesic. With the usual definition of a singularity, this means that 
the spacetime has an initial singularity. However, that definition is 
based on a test particle that has that geodesic as trajectory. We 
pointed out that when this particle has an initial velocity, its en-
ergy will become super-Planckian at some time in the past if it 
kept following that geodesic. This means that the particle stops 
being a test particle and it does not matter that its trajectory is 
past-incomplete. For a model in which the scale factor becomes 
arbitrarily small, we should define an initial singularity as a tra-
jectory of a comoving particle that is past-incomplete. This implies 
that the only FLRW spacetimes with an initial singularity are the 
ones such that a(t0) = 0 at some initial time t0. Hence, bouncing 
spacetimes and past-eternal inflationary models do not start from 
a singularity. One can use similar arguments to show that the only 
FLRW spacetimes that have a singularity in the future are the ones 
that have a scale factor such that a(t) vanishes at some time in the 
future. It would be interesting to examine if similar results hold for 
universes that are obtained by perturbating an FLRW spacetime.
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