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In this paper, we have constructed a bottom-up holographic model for the color superconductivity (CSC)
of the Yang-Mills theory with including the higher derivative corrections which allow us to study the CSC
phase with the color number Nc ≥ 2. First, we consider the CSC phase transition in the context of
Einstein-Gauss-Bonnet (EGB) gravity. We analyze the Cooper pair condensate in the deconfinement
and confinement phases which are dual to the planar GB-RN-AdS black hole and GB-AdS soliton,
respectively, where the backreaction of the matter part is taken into account. By examining the
breakdown of the Breitenlohner-Freedman bound in the background of the planar GB-RN-AdS black
hole, we find that the positive GB coupling parameter α > 0 leads to a lower upper bound of the
color number in comparison to Einstein gravity where the CSC phase for Nc ≥ 2 is not realized. But,
with the α < 0 case it is possible to observe the Cooper pair condensate for Nc ≥ 2 with the
reasonable magnitude of α. This is confirmed and the corresponding phase diagram is found by
solving numerically the equations of motion for the gravitational system. In addition, we show that
the CSC phase disappears in the confinement phase for the magnitude of α below a certain value
which means that beyond that value it might lead to the breakdown region of the EGB gravity in
investigating the CSC phase. However, the CSC phase transition occurring with Nc ≥ 2 requires the
magnitude of the GB coupling parameter to be rather large. As a result, the GB term would no longer
be considered as the correction and it also violates the boundary causality bound. We resolve this
problem by including additionally the higher derivative correction for the Maxwell electrodynamics
and the nonminimal coupled Maxwell field.
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I. INTRODUCTION

It is expected in quantum chromodynamics (QCD) that
at sufficiently high chemical potential (density) and low
temperature quarks condense into Cooper pairs in analogy
to the condensation of electrons in the conventional
metallic superconductors [1]. Unlike the condensation of
the electron pairs where the Coulomb interaction between
them is repulsive and has to be overcome by an attraction
caused by the coupling between electrons with phonons,
the strong interaction between two quarks is attractive (in
the color-antisymmetric channel) and thus the Bardeen-
Cooper-Schrieffer (BCS) mechanism applied to the quark
pairs is more direct than its original setting. The quark pairs
carry the net color charge or in other words they are gauge

noninvariant operators.1 Therefore, the condensation of the
quark pairs breaks spontaneously the SUð3ÞC gauge
symmetry of QCD and gives rise the masses for the gluon
via Higgs mechanism. This phenomena is thus referred to
the color superconductivity (CSC). It is interesting to study
the CSC phase from both theoretical and phenomenological
aspects. The quark pairs have color and flavor degrees of
freedom besides the spin one and hence there are different
condensation patterns of which the color-flavor locked
phase [4] is well-known. Also, the CSC phase might occur
in the cores of neutron stars with the densities possibly
reaching up ten times nuclear-matter saturation density.
At very large temperature or chemical potential, QCD

becomes weakly coupled due to the asymptotic freedom
and hence an exactly analytic study of the quark matter is
possible. However, in the nonperturbative region the
investigations are mainly based the phenomenological*nam.caohoang@phenikaa-uni.edu.vn
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1It was indicated that the gauge noninvariant operators con-
structed by the quark pairs are suppressed in the limit of large
color number [2,3], which is considered as one of the large
obstacles for the relevant investigations.
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models at which many important features are missed. Many
nonperturbative investigations can be performed by using
the numerical simulation, however it can be inaccessible at
finite chemical potential due to the sign problem of the
Euclidean action.
Another approach for investigating the properties of the

strongly coupled theories at finite temperature and chemi-
cal potential is via the AdS=CFT correspondence [5–7]
which relates the weakly coupled gravitational theory in
d-dimensional AdS spacetime and the strongly coupled
conformal theory of d − 1 dimensions living at the
boundary of AdS spacetime, referred to the holographic
approach. The application of the holographic approach to
QCD has been investigated with the top-down approach at
which the holographic QCD models arise directly from
the ten-dimensional superstring theory [8–15]. From
the bottom-up approach motivated by the phenomeno-
logical reasons, the holographic QCD models were
introduced with ignoring the backreaction on the space-
time geometry background [16–22] and with considering
the backreaction [23–27].
Motivated by the application of the holographic

approach in condensed matter [28,29], the holographic
model for the CSC phase transition has been constructed in
the bottom-up approach [30–32]. In Ref. [30], the bulk
system consists of Einstein gravity coupled to aUð1Þ gauge
field and a real scalar field in six dimensions with the
boundary geometry R3;1 × S1. The scalar field tends to
condense in the near-horizon region at a very low temper-
ature and the CSC phase transition is found due to the fact
that the near-horizon geometry of planar Reissner-
Nordstrom (RN) AdS black hole is AdS2 × R4 [29,33]
corresponding to the new instability bound. However, the
real scalar field does not correspond to a diquark operator.
Therefore, Ref. [31] considered the complex scalar field
(rather than the real one) whose Uð1Þ charge is regarded as
the baryon number of the diquark operator. In that work, the
backreaction of the matter fields is ignored and the CSC
phase is found to appear above a critical chemical potential.
In particular, a detail and profound investigation about the
CSC phase transition in the Yang-Mills (YM) theory was
performed in Ref. [32] where the authors investigated the
CSC phase transition for both the deconfinement and the
confinement phases with including the backreaction of
the matter part. The authors indicated that there is the CSC
phase transition in the deconfinement phase but not in the
confinement phase for the color number Nc ¼ 1. But, for
Nc ≥ 2 this phase transition does not appear in both the
decconfinement and the confinement phases, which is thus
unrealistic as the YM theory.
The aim of the present paper is to extend the work in

Ref. [32] to get the CSC phase transition with the color
number Nc ≥ 2. In order to do that, first we instead
construct a gravitational dual model in Einstein-Gauss-
Bonnet (EGB) gravity which is an extension of Einstein

gravity with including the higher curvature corrections
written as the Gauss-Bonnet (GB) term. We analyze the
CSC phase transition in both the deconfinement and the
confinement phases which are dual to the planar GB-RN-
AdS black hole and GB-AdS soliton, respectively, and
indicate the role of the GB term on the occurrence of the
CSC phase for Nc ≥ 2. We indicate that the CSC phase
transition with Nc ≥ 2 requires the magnitude of the GB
coupling parameter to be rather large, which is thus beyond
the region of the classical gravity and violates the boundary
causality bound. In order to resolve this problem, we
consider additionally the higher derivative corrections
which come from the matter fields and the nonminimal
coupled Maxwell field. We find that there actually exists
the small values for the parameters associated with the
higher derivative corrections where they work to realize the
CSC phase transition with Nc ≥ 2.
The organization of the paper is as follows. In Sec. II, we

introduce the gravitational dual model in the context of the
EGB gravity to investigate the CSC phase transition where
the backreaction of the matter part is taken into account. In
Sec. III, we study the CSC phase transition for Nc ≥ 2 in
the decconfinement and confinement phases and look at the
role of the GB term on this phase transition. In Sec. IV, we
study the effects of the higher derivative corrections coming
from the matter fields and the nonminimal coupled
Maxwell field on the CSC phase transition for Nc ≥ 2.
Finally, we conclude our main results in Sec. V.

II. MODEL SETUP

In this section, we introduce the gravitational dual model
in the framework of the six-dimensional EGB gravity for
the CSC phase transition, given by the following action

Sbulk ¼
1

2κ26

Z
d6x

ffiffiffiffiffiffi
−g

p ½R − 2Λþ α̃LGB þ Lmat�; ð1Þ

where Λ is the cosmological constant defined in terms of
the asymptotic AdS radius l as Λ ¼ − 10

l2 , LGB is the GB
term given by

LGB ¼ R2 − 4RμνRμν þ RμνρλRμνρλ; ð2Þ

α̃ is the GB coupling parameter,2 and Lmat is the matter
Lagrangian. In the bottom-up construction, the matter
Lagrangian for the holographic model which consists
of a Uð1Þ gauge field Aμ and a complex scalar field ψ
is given as

Lmat ¼ −
1

4
FμνFμν − jð∇μ − iqAμÞψ j2 −m2jψ j2: ð3Þ

2The GB term can be naturally obtained from the low-energy
limit of heterotic string theory [34–38] where the GB coupling
parameter α̃ is regarded as the inverse string tension.
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In this Lagrangian, the Uð1Þ gauge field is regarded as the
dual description of the current of the baryon number whose
time component describes the baryon charge density and
the chemical potential of the quarks. Whereas, the complex
scalar field ψ is dual to the diquark operator in the boundary
field theory and q is its Uð1Þ charge which is regarded as
the baryon number of the diquark operator. Note that, the
baryon number of the diquark operator is related the color
number Nc as q ¼ 2

Nc
. In the following, we set 1=2κ26 ¼ 1

and l ¼ 1.
Before proceeding, let us pause here to discuss whether

the terms with the further powers of the curvature tensors
such as R3 or R4 would play the important role in the
present holographic model. In general, the action for
gravity in six dimensions which includes the higher
derivative corrections is written as follows

Sgra ¼
1

2κ26

Z
d6x

ffiffiffiffiffiffi
−g

p �
Rþ 20

l2
þ l2ðα̃1R2 þ α̃2RμνRμν

þ α̃3RμνρλRμνρλÞ þ � � �
�
; ð4Þ

where the ellipse refers to the terms with the further powers
of the curvature tensors, the couplings associated with the
curvature-squared terms have been parametrized with the
asymptotic AdS radius l, and α̃i ∼ l2

P=l
2 are the dimension-

less couplings with lP to be the Planck length in six
dimensions. Note that, the dimensionless couplings corre-
sponding to the six- and further derivative terms are
proportional to l4

P=l
4 and the further powers of l2

P=l
2,

respectively. For the region of the classical gravity,
the asymptotic AdS radius l is much larger than the
Planck length lP, i.e., l2

P=l
2 ≪ 1. Since we have α̃i ∼

l2
P=l

2 ≪ 1 for the four-derivative (curvature-squared)
terms. Compared to the four-derivative terms, the further
derivative terms are more strongly suppressed by the
further powers of l2

P=l
2. For instance, the dimensionless

couplings λi and fi which correspond to the six- and eight-
derivative terms are proportional to l4

P=l
4 and l6

P=l
6,

respectively. This suggests fi ≪ λi ≪ α̃i. Therefore, in
the region of the classical gravity, the contributions coming
from the terms with the further powers of the curvature
tensors such as R3 or R4 are small compared to the
curvature-squared terms and hence they can be left.
Otherwise, once the curvature-squared terms become
important, i.e., α̃i ∼ 1, the further powers of the curvature
tensors such as R3 or R4 would no longer be ignored and
thus it is beyond the region of the classical gravity.
It was pointed out in [39,40], there are the constraints

imposed by the causality of the boundary field theory as,
−51=196 ≤ α ≤ 39=256, where α≡ 6α̃. As indicated later
by Hofman [41], the bounds obtained from the causality
constraints of the boundary field theory should not be a
feature of the thermal CFTs but the causality violation

reflects a fact that the interaction can occur in the
asymptotic region close to the boundary. Also, for the
better understanding of the effects of the GB term on
the CSC phase transition, in this section we permit the
following range of the GB coupling parameter,
α ∈ ð−∞; 1=4�, where the upper bound is imposed to
avoid a naked singularity in the pure GB-AdS solution.
Varying the action (1) with respect to the metric, vector,

and scalar fields, we obtain the equations of motion as

Gμνþ α̃Hμν−
10

l2
gμν¼Tμν;

∇μFμν− iq½ψ�ð∇ν− iqAνÞψ −ψð∇νþ iqAνÞψ�� ¼ 0;

ð∇μ− iqAμÞð∇μ− iqAμÞψ −m2ψ ¼ 0; ð5Þ

where

Hμν ¼ 2ðRRμν−2RμσRσ
ν−2RμσνρRσρþRμ

ρσλRνρσλÞ

−
1

2
gμνLGB;

Tμν ¼
1

2
FμλFν

λþ1

2
½ð∇ν− iqAνÞψð∇μþ iqAμÞψ� þμ↔ ν�

þ1

2
gμνLmat: ð6Þ

In order to solve these equations of motion, we first need to
take the ansatz for the metric, vector, and scalar fields. We
are interested in two solutions of the first equation of
Eq. (5) which are dual to the deconfinement and confine-
ment phases in the boundary field theory. More specifically,
the ansatz for the metric field is given by Eqs. (8) and (18)
corresponding to the deconfinement and confinement
phases, respectively. The ansatz for the vector and scalar
fields read

Aμdxμ ¼ ϕðrÞdt; ψ ¼ ψðrÞ: ð7Þ

For each of the deconfinement and confinement phases, we
study the CSC phase transition by solving Eq. (5) with the
suitable boundary conditions in order to find the configu-
ration with or without nontrivial scalar which the value of
the scalar field is nonzero.
The CSC phase appears due to the condensation of the

scalar field corresponding to the spontaneously broken
Uð1Þ symmetry. In the canonical ensemble where the
charge is kept fixed, the condensation of the scalar field
is triggered by the chemical potential associated with the
quark number density. Near the critical chemical potential,
the value of the scalar field approaches zero and since the
backreaction of the scalar field on the spacetime metric is
negligible. On the other hand, the backreaction of the
matter on the spacetime metric in this situation only comes
from the vector field.
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The spacetime geometry dual to the deconfinement
phase is the planar black hole solution whose line element
is given by the following ansatz

ds2 ¼ r2ð−fðrÞdt2 þ hijdxidxj þ dy2Þ þ dr2

r2fðrÞ ; ð8Þ

where hijdxidxj ¼ dx21 þ dx22 þ dx23 is the line element of
the 3-dimensional planar hypersurface, and the direction y
is compacted with the circle radius Ry. The event horizon
radius rþ satisfies fðrþÞ ¼ 0. The temperature of the
boundary field theory is identified as the Hawking temper-

ature as, T ¼ r2þf
0ðrþÞ
4π . In this configuration of the spacetime

geometry, we find the equations for fðrÞ, ϕðrÞ, and ψðrÞ
from Eq. (5) as

α½2f0ðrÞrþ 5fðrÞ�fðrÞ − rf0ðrÞ − 5fðrÞ þ 5

l2
¼ 1

8
ϕ0ðrÞ2;

ð9Þ

ϕ00ðrÞ þ 4

r
ϕ0ðrÞ − 2q2ψ2ðrÞ

r2fðrÞ ϕðrÞ ¼ 0; ð10Þ

ψ 00ðrÞþ
�
f0ðrÞ
fðrÞ þ

6

r

�
ψ 0ðrÞþ 1

r2fðrÞ
�
q2ϕ2ðrÞ
r2fðrÞ −m2

�
ψðrÞ¼0:

ð11Þ

Near the AdS boundary (r → ∞), the spacetime geometry
becomes the planar GB-RN-AdS black hole with fðrÞ
given as

fðrÞ¼ 1

2α

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4α

�
1−

r5þ
r5

�
þ3αμ2

2r2þ

�
rþ
r

�
5
�
1−

r3þ
r3

�s �
:

ð12Þ

Whereas, the asymptotic behavior of the matter fields are
given by

ϕðrÞ ¼ μ −
d̄
r3
;

ψðrÞ ¼ JC
rΔ−

þ C
rΔþ

; ð13Þ

where μ, d̄, JC, and C are regarded as the chemical
potential, charge density, source, and the condensate value
(VEV) of the diquark operator dual to ψ , respectively, and
the conformal dimensions Δ� read

Δ� ¼ 1

2

�
5�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ4m2l2eff

q �
; l2eff ¼

2α

1−
ffiffiffiffiffiffiffiffiffiffiffiffi
1−4α

p ; ð14Þ

which suggests the Breitenlohner-Freedman (BF) bound
[42,43] as

m2l2eff ≥ −
25

4
: ð15Þ

Because the scalar field ψ is dual to the quark pair, the
conformal dimension Δþ of C should be Δþ ¼ 2 × d−2

2

which is equal to four for the case of d ¼ 6. This suggests
m2l2eff ¼ −4 and thus Δ− ¼ 1. Near the event horizon, the
solution must have the following expansions

fðrÞ¼ f0þf1ðr− rþÞþf2ðr− rþÞ2þf3ðr− rþÞ3þ��� ;
ϕðrÞ¼ϕ0þϕ1ðr− rþÞþϕ2ðr− rþÞ2þϕ3ðr− rþÞ3þ��� ;
ψðrÞ¼ψ0þψ1ðr− rþÞþψ2ðr− rþÞ2þψ3ðr− rþÞ3þ�� � ;

ð16Þ

where fi, ϕi, and ψ i (with i ¼ 0; 1; 2;…) are constants.
Because the function fðrÞ vanishes at the event horizon, we
find f0 ¼ 0. Furthermore, we need to impose the regularity
condition for the matter fields at the event horizon as

ϕðrþÞ ¼ 0; ψðrþÞ ¼ r2þ
f0ðrþÞψ 0ðrþÞ

m2
: ð17Þ

This regularity condition suggests ϕ0¼ 0 and ψ0 ¼ r2þ
f1ψ1

m2 .
The spacetime geometry dual to the confinement phase is

the GB-AdS soliton solution [44] which is obtained via
analytically continuing the planar GB-AdS black hole
solution [45] as

ds2 ¼ r2ð−dt2 þ hijdxidxj þ fðrÞdy2Þ þ dr2

r2fðrÞ ; ð18Þ

where

fðrÞ¼ 1

2α

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4α

�
1−

r50
r5

�s �
; r0¼

2

5Ry
; ð19Þ

with r ¼ r0 to be a conical singularity of the GB-AdS
soliton solution which is removed by imposing a suitable
period condition for the coordinate y. In this configuration
of the spacetime geometry, the equations of motion for ϕðrÞ
and ψðrÞ are obtained as

ϕ00ðrÞ þ
�
f0ðrÞ
fðrÞ þ

4

r

�
ϕ0ðrÞ − 2q2ψ2ðrÞ

r2fðrÞ ϕðrÞ ¼ 0; ð20Þ

ψ 00ðrÞþ
�
f0ðrÞ
fðrÞ þ

6

r

�
ψ 0ðrÞþ 1

r2fðrÞ
�
q2ϕ2ðrÞ

r2
−m2

�
ψðrÞ¼0:

ð21Þ

The asymptotic behavior of the matter fields near the AdS
boundary is the same as Eq. (13). Whereas, the solution
near the tip r ¼ r0 has the following expansions
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ϕðrÞ¼ϕ0þϕ1 logðr− r0Þþϕ2ðr− r0Þþϕ3ðr− r0Þ2þ�� � ;
ψðrÞ¼ψ0þψ1 logðr−r0Þþψ2ðr− r0Þþψ3ðr− r0Þ2þ��� :

ð22Þ

We impose the Neumann-like boundary condition on the
matter fields, i.e., ϕ1 ¼ 0 and ψ1 ¼ 0, to ensure that their
value is finite at the tip r ¼ r0. The boundary condition at
the tip r ¼ r0 for the matter fields is

ϕ0ðr0Þ ¼
2q2ψ2ðr0Þ
r20f

0ðr0Þ
ϕðr0Þ;

ψ 0ðr0Þ ¼ −
1

r20f
0ðr0Þ

�
q2ϕ2ðr0Þ

r20
−m2

�
ψðr0Þ: ð23Þ

By using the expression of fðrÞ and the expansions of ϕðrÞ
and ψðrÞ, given in Eqs. (19) and (22), respectively, the
above boundary condition becomes

ϕ2 ¼
2q2ψ2

0

5r0
ϕ0;

ψ2 ¼ −
1

5r0

�
q2ϕ2

0

r20
−m2

�
ψ0; ð24Þ

which suggests that Eqs. (20) and (21) allow the solution
with ϕðr0Þ ≠ 0.

III. HOLOGRAPHIC CSC IN EGB GRAVITY

As we discussed above, in the limit that the chemical
potential approaches the critical value μc, the backreaction
of the scalar field is negligible. Since the bulk background
configuration is determined by the following action

S0bulk ¼
Z

d6x
ffiffiffiffiffiffi
−g

p �
R − 2Λþ α̃LGB −

1

4
FμνFμν

�
: ð25Þ

The spacetime metric solution dual to the confinement
phase is given by the GB-AdS soliton mentioned in the
previous section with the constant potential of the gauge
field as

ϕðrÞ ¼ μ: ð26Þ

Whereas, the spacetime metric solution dual to the decon-
finement phase is given by the planar GB-RN-AdS black
hole with the line element described by Eqs. (8) and (12),
and the corresponding potential of the gauge field is

ϕðrÞ ¼ μ

�
1 −

r3þ
r3

�
: ð27Þ

The Hawking temperature of the planar GB-RN-AdS black
hole is given by

T ¼ 1

4π

�
5rþ −

9μ2

8rþ

�
: ð28Þ

The non-negative condition of the temperature suggests the
suitable region for μ=rþ as

0 ≤
μ

rþ
≤

ffiffiffiffiffi
40

p

3
: ð29Þ

Let us study the phase structure of the bulk background
configuration by examining the free energy (in the canoni-
cal ensemble) of the planar GB-RN-AdS black hole and
GB-AdS soliton. Using the result in Ref. [46], we can find
the total on-shell Euclidean action for the EGB gravity
coupled to the Uð1Þ gauge field in the present work as

SE ¼
�
ðr2fÞ0ðr4 − 4αr4fÞ

				∞
rþ

− l4eff

�
1 −

4α

l2eff

�
r4f2ðr2fÞ0

				∞

− r4ϕϕ0
				∞
rþ

�
4π

5r0

V3

T
; ð30Þ

where V3 ¼
R
dx1dx2dx3. Then, we obtain the free

energy of the planar GB-RN-AdS black hole and GB-AdS
soliton as

ΩBH ¼ −r5þ

�
1þ 3μ2

8r2þ

�
4π

5r0
V3; ð31Þ

ΩSol ¼ −r50
4π

5r0
V3: ð32Þ

Here, we see that the free energies of the planar GB-RN-
AdS black hole and GB-AdS soliton in Einstein gravity and
the EGB gravity are the same in the planar case although
the solutions in these two kinds of gravity are different. By
comparing their free energy, one finds which configuration
is thermodynamically favored. The corresponding phase
diagram is depicted in Fig. 1. The critical curve (red one)
which separates the configuration of the GB-AdS soliton
and that of the planar GB-RN-AdS black hole is determined
by the equation ΩBH ¼ ΩSol.
In the following, we study how the phase structure of the

bulk background configuration, mentioned above, changes
when the scalar field condensate appears.

A. Deconfinement phase

Let us first study the necessary condition which desta-
bilizes the scalar field and makes the condensation occur-
ring. From the equation of motion for the scalar field, one
can find the effective squared massm2

eff of the scalar field as

m2
eff ¼ m2 −

q2ϕ2ðrÞ
r2fðrÞ ; ð33Þ
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with fðrÞ and ϕðrÞ given by Eqs. (12) and (27), respec-
tively. The necessary condition which m2

eff breaks the BF
bound is given as

m2
eff < −

25

4l2eff
; ð34Þ

which leads to

q2ϕ2ðrÞ
r2fðrÞ >

9

4l2eff
: ð35Þ

The left-hand side of (35) can be rewritten as

q2ϕ2ðrÞ
r2fðrÞ ¼ q2

2αz2ð1 − z3Þ2μ̂2

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4αð1 − z5Þ þ 3αμ̂2

2
z5ð1 − z3Þ

q
≡ q2F ðz; μ̂; αÞ; ð36Þ

where z≡ rþ=r and μ̂≡ μ=rþ. The behavior of the
function F ðz; μ̂; αÞ in terms of z, μ̂, and α is shown in
Figs. 2 and 3. We can see that F ðz; μ̂; αÞ increases with
either the growth of μ̂ or the decreasing of α at an arbitrary
value of z. In particular, one finds that F ðz; μ̂; αÞ would get
the maximal value at μ̂ ¼

ffiffiffiffi
40

p
3
. In the region of α ≳ −0.56,

the maximal value of F ðz; ffiffiffiffiffi
40

p
=3; αÞ is about two and thus

there is an upper bound as F ðz; μ̂; αÞ < 2. In the remaining
region of α, F ðz; ffiffiffiffiffi

40
p

=3; αÞ gets the maximal value at a

FIG. 2. The behavior of F ðz; μ̂; αÞ as a function of z with various values of μ̂ and α. The red, blue, green, purple, and orange curves

correspond to μ̂ ¼
ffiffiffiffi
40

p
3
, 0.8 ×

ffiffiffiffi
40

p
3
, 0.6 ×

ffiffiffiffi
40

p
3
, 0.4 ×

ffiffiffiffi
40

p
3
, 0.2 ×

ffiffiffiffi
40

p
3
, respectively.

FIG. 1. The phase diagram for the confinement and deconfine-
ment phases.
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point zmax which depends on α and is found by solving the
following equation

∂
∂zF ðz;

ffiffiffiffiffi
40

p
=3; αÞ ¼ 0; ð37Þ

which leads to

3 − 12αþ 4z3½ð12 − 2z2 − 17z5 þ 10z8Þα − 3�
þ ð4z3 − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 12ð3 − 8z5 þ 5z8Þα

q
¼ 0: ð38Þ

The corresponding maximal value F ðzmaxðαÞ;
ffiffiffiffiffi
40

p
=3; αÞ

as a function of α is numerically given in the left panel of
Fig. 4. As a result, we obtain the following equality

FIG. 3. The behavior of F ðz; μ̂; αÞ as a function of z with various values of μ̂ and α. The red, blue, green, purple, and orange curves
correspond to α ¼ 0.2, −0.4, −1.5, −3.0, −5.0, respectively.

FIG. 4. Left panel: the maximal value F ðzmaxðαÞ;
ffiffiffiffiffi
40

p
=3; αÞ as a function of α. Right panel: the upper bound for Nc as a function of α.

The horizontal dashed black lines correspond to the case of Einstein gravity.
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0 <
q2ϕ2ðrÞ
r2fðrÞ <

4

N2
c
F ðzmaxðαÞ;

ffiffiffiffiffi
40

p
=3; αÞ; ð39Þ

where we have used the relation q ¼ 2
Nc
. This result along

with (35) leads to

Nc <
4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αF ðzmaxðαÞ;

ffiffiffiffiffi
40

p
=3; αÞ

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

p
s

≡ Nub
c ðαÞ: ð40Þ

More explicitly, we show the behavior of the upper bound
for Nc as a function of the GB coupling parameter α in the
right panel of Fig. 4. We observe that Nub

c decreases with
the growth of α. In the case of α ¼ 0 corresponding to
Einstein gravity, we obtain the upper bound for the color

number Nc as Nc <
4
ffiffi
2

p
3

≃ 1.89 [32]. In addition, Nub
c in the

EGB gravity with α > 0 is lower than that in Einstein
gravity. This suggests that the scalar field condensate
cannot be found in the EGB gravity with α > 0 for
Nc ≥ 2. However, in the EGB gravity with α < 0 the
upper bound Nub

c is enhanced compared to Einstein gravity
and increases as the magnitude of the GB coupling
parameter α grows. As a result, the presence of the GB
term can lead the scalar field condensate withNc ≥ 2which
is realistic to realize the CSC phase in the YM theory.
Above the critical chemical potential μc, the CSC phase

occurs due to the condensation of the scalar field which
corresponds to the nontrivial solution of ψ as JC ¼ 0 [to
guarantee the spontaneous breaking of the Uð1Þ symmetry
in the system] and C ≠ 0. We can obtain the critical
chemical potential μc and thus the critical curve in the
μ − T plane by solving numerically Eqs. (9)–(11) using the
shooting method. In this method, the boundary values of ϕ
and ψ can be derived by setting their appropriate value near
the event horizon. Of course, the critical chemical potential
μc and the critical curve depend on both the GB coupling
parameter α and the color number Nc.
As analyzed above, the EGB gravity with α < 0 can lead

to the scalar field condensate with Nc ≥ 2. Thus, we solve
numerically Eqs. (9)–(11) with the negative GB coupling
parameter to find the critical chemical potential for Nc ≥ 2
and thus the corresponding phase diagram. We show the
numerical values for the scaled critical chemical potential
μc=rþ and the slope of the critical line Tc ¼ TcðμcÞ for
various values of the GB coupling parameter α for Nc ¼ 2
and Nc ¼ 3 in Tables I and II, respectively. It is found that
as the magnitude of the GB coupling parameter α increases,
the critical chemical potential μc decreases for the event
horizon rþ kept fixed. This means that the condensation of
the scalar field is easier to form with increasing the
magnitude of α. In addition, we observe that the larger
magnitude of α leads to the larger slope of the critical line
Tc ¼ TcðμcÞ. This suggests that the region of the CSC
phase is larger, as seen in Fig. 5 forNc ¼ 2 andNc ¼ 3. On

the other hand, increasing the magnitude of α makes the
CSC phase more stable.
In Fig. 5, we show the phase diagram when takes account

of the backreaction of the scalar field for Nc ¼ 2 (top
panels) and Nc ¼ 3 (bottom panels) with various values of
the GB coupling parameter α. The phase diagram is
dramatically different from that in the case of the absence
of the scalar field, given in Fig. 1, with the presence of the
critical line (the blue lines) in the deconfinement region
below which it represents the CSC phase which is dual to
the planar GB-RN-AdS black hole with scalar hair. (As we
see later, the CSC state does not exist in the confinement
phase with the values of α considered in Fig. 5.) The free
energy of this configuration is given by

Ωsh
BH ¼

�
−r5þ

�
1þ 3μ2

8r2þ

�
−
Z

∞

rþ

q2r2ϕ2ψ2

fðrÞ dr

�
4π

5r0
V3:

ð41Þ

The second term in this expression is due to the con-
densation of the scalar field which is always negative and
thus the free energy of the CSC state is always lower than
that of the normal deconfinement state. In this way, above
the critical chemical potential the CSC state contributes
dominantly to the thermodynamics and since it is thermo-
dynamically favored. We conclude that the CSC phase in
4D YM theories with Nc ≥ 2 can exist in the gravitational
dual model within the framework of the EGB gravity with
α < 0, which can not be found within the framework of
Einstein gravity.
Let us make some comments on the following points.

First, we need to understand why the presence of the GB

TABLE I. The numerical values for μc=rþ and Tc=μc with
various values of α at Nc ¼ 2.

α μc=rþ Tc=μc

−2.0 2.06670 0.00750
−2.4 2.00273 0.01938
−2.8 1.93572 0.03225
−3.2 1.87150 0.04506
−3.8 1.78346 0.06343
−4.2 1.73046 0.07501

TABLE II. The numerical values for μc=rþ and Tc=μc with
various values of α at Nc ¼ 3.

α μc=rþ Tc=μc

−6.5 2.08324 0.00449
−7.0 2.04613 0.01128
−7.5 2.00801 0.01838
−8.0 1.97044 0.02552
−8.5 1.93404 0.03259
−9.0 1.89902 0.03951
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term with the negative GB coupling parameter α can work
to realize the CSC phase transition for Nc ≥ 2, which is not
found in Einstein gravity. It should be noted that as the
color number increases, the charge q ¼ 2=Nc of the dual
scalar field decreases. This means that, with respect to the
holographic model for Nc ≥ 2 in Einstein gravity, the
electrostatic repulsion would not be strongly sufficient to
overcome the gravitational attraction in order to form the
scalar hair. But, including the GB term with the negative
GB coupling parameter αmakes the spacetime curvature or
the gravitational attraction weaker compared to Einstein
gravity. This can be seen from the behavior of the effective
asymptotic AdS radius leff which is a decreasing function of
α. Hence, with α being negative and its magnitude being
large enough, the electrostatic repulsion is easier to

overcome the gravitational attraction, which results in
the condensation of the scalar field around the event
horizon of the planar black hole or the formation of
Cooper pairs of quarks at the boundary field theory. As
a result, the presence of the GB term with α < 0 can lead to
the occurrence of the CSC phase for Nc ≥ 2. Second, is it
possible to understand from the viewpoint of QCD? In the
viewpoint of QCD, the CSC phase is realized as quarks
condense into the Cooper pairs at sufficiently high chemi-
cal potential and low temperature. In this sense, one can
understand that the presence of the GB term with α being
negative and its magnitude being large enough would lead
to the existence of a sufficiently high chemical potential
(and low temperature) region, where the CSC phase (dual
to the black hole with the scalar hair) lives, which is not

FIG. 5. The phase diagram in the case of that the scalar field is taken into account for various values of Nc and α. Top-left panel:
Nc ¼ 2 and α ¼ −3.2. Top-right panel: Nc ¼ 2 and α ¼ −2.4. Bottom-left panel: Nc ¼ 3 and α ¼ −9.0. Bottom-right panel: Nc ¼ 3
and α ¼ −8.0. The regions below the blue lines refer to the CSC phase.
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found in Einstein gravity. Third, we observe that the
occurrence of the CSC phase for Nc ≥ 2 requires the
magnitude of the GB coupling parameter α to be quite
large where the GB term would no longer be considered as
the correction or in other words in this situation the GB
term becomes important. Hence, the terms with the further
powers of the curvature tensors such as R3 or R4 cannot be
ignored but must be taken into account. In addition, the
large magnitude of α violates the causality bound. These
problems shall be resolved in the next section.

B. Confinement phase

In order to find the condensation of the scalar field in the
confinement phase, we need to solve Eqs. (20) and (21) in
the background of the GB-AdS soliton. First, let us
determine the necessary condition which corresponds to
the breakdown of the BF bound as

q2ϕ2ðrÞ
r

>
9

4l2eff
; ð42Þ

with ϕðrÞ given in Eq. (26), which leads to

qμ
r0

>
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

p

2α

s
: ð43Þ

In the case of Einstein gravity, we derive qμ > 1.5 for
r0 ¼ 1. The behavior of qμ=r0 as a function of the GB
coupling parameter α is shown in Fig. 6.
The sufficient condition for the condensation of the

scalar field in the confinement phase can be obtained by
solving numerically Eqs. (20) and (21) in the GB-AdS
soliton background. The corresponding numerical values of
the rescaled critical chemical potential qμc are given in
Table III. With α ¼ −3.2 and α ¼ −2.4, the values of the
critical chemical potential μc are 2.08212 and 2.18620,
respectively, for Nc ¼ 2. Because the confinement phase
exists at the chemical potential which is below 1.73, the

CSC phase does not exist in the confinement phase with
these values of α, as seen in the top panels of Fig. 5. This
happens similarly to the case of Nc ¼ 3 with α ¼ −9.0 and
α ¼ −8.0. In addition, from Table III we find that the scaled
critical chemical potential qμc decreases with increasing
the magnitude of the GB coupling parameter α. This
implies that for the sufficiently large magnitude of α, the
critical chemical potential μc would be lower than 1.73 and
since the CSC phase can appear even in the confinement
phase. This may indicate the breakdown region of the GB
term in investigating the CSC phase transition.

IV. EGB HOLOGRAPHIC CSC WITH THE
ADDITIONAL CORRECTIONS FROM MATTER

In the previous section, we have indicated that the higher
curvature corrections written as the GB term can lead to the
CSC phase for Nc ≥ 2 with the appropriate value of the
GB coupling parameter α. However, in order to obtain
the CSC phase for Nc ≥ 2, the GB coupling parameter α
should be negative and its magnitude is rather large, which
is beyond the region of the classical gravity and violates the
causality bound. In this section, we will resolve this
problem by considering additionally the higher derivative
corrections from the matter and the nonminimal coupled
Maxwell field.
The action of the system under the consideration is

given by

Sbulk ¼
1

2κ26

Z
d6x

ffiffiffiffiffiffi
−g

p ½R−2Λþ α̃LGBþLmatþβLnonmin�;

ð44Þ

where the matter Lagrangian Lmat and the Lagrangian
Lnonmin describing the nonminimal coupled Maxwell
field are

Lmat ¼−
1

4
FμνFμνþbðFμνFμνÞ2þOðb2Þ

− jð∇μ− iqAμÞψ j2−m2jψ j2;
Lnonmin¼RðFμνFμνÞ2−4RμνFμρFν

ρþRμνρλFμνFρλ; ð45Þ

FIG. 6. The dependence of qμ=r0 in terms of the GB coupling
parameter α.

TABLE III. The numerical values for qμc with various values of
α in the confinement phase.

α qμc α qμc

0 3.05195 −6.5 1.82547
−2.0 2.24992 −7.0 1.79786
−2.4 2.18620 −7.5 1.77611
−2.8 2.13102 −8.0 1.75182
−3.2 2.08212 −8.5 1.73558
−3.8 2.01559 −9.0 1.71074
−4.2 1.98261 −9.5 1.69185
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and b and β are the parameters characterizing the higher
derivative correction for the Maxwell electrodynamics and
the nonminimal coupled Maxwell field, respectively. Let us
clarify the additionally higher derivative corrections in the
action (44). First, we have considered the higher derivative
correction for the Maxwell electrodynamics at the first
order described by the term bðFμνFμνÞ2. Choosing this term
is motivated by at least three reasons in order:
(1) Besides the GB term, the next-to-leading order

corrections to the bosonic sector in the effective
action of the heterotic string theory lead to the term
in the form ðFμνFμνÞ2 [47–50].

(2) This term has been obtained as the one-loop cor-
rection of quantum electrodynamics (QED) [51].

(3) This term can be obtained as the next-to-leading
order correction in the expansion of the Born-Infeld-
type electrodynamics which are well-known as
Born-Infeld, logarithmic and exponential electrody-
namics [52].

Second, Lnonmin which describes the nonminimal coupled
Maxwell field is constructed from the Riemann tensor and
the Maxwell field strength tensor [53]. The motivation for
considering the nonminimal coupling in this form is the
equations of motion for the metric field and the Maxwell
potential remain the second order in the derivatives.
Furthermore, we have not considered the higher derivative
corrections corresponding to the scalar field. This is
because we investigate the system near the critical chemical
potential where the value of the scalar field is near zero and
hence including the corresponding corrections does not
lead to the significant effects.
From the viewpoint of string theory, we can expect that

the stringy corrections to leading order to Einstein gravity

coupled to the Uð1Þ gauge field would include all possible
four-derivative terms [54,55]. The four-derivative terms are
constructed from the metric curvatures, the field strength
tensor of the Uð1Þ gauge field and its derivatives.
Interestingly, by making a field redefinition of the follow-
ing general form

gμν → gμν þ a1Rμν þ a2FμρFν
ρ þ ða3Rþ a4FρσFρσÞgμν;

Aμ → Aμ þ λ∇νFμν; ð46Þ

where ai and λ are constants, one can reorganize all four-
derivative terms to make the calculations more simple.
Under the field redefinition (46), the coupling parameters
associated with the four-derivative terms are changed,
where their change is to depend on ai and λ and is
explicitly given in Ref. [54]. As a result, with appropriate
constants ai and λ, we can assemble the curvature-squared
terms into the GB term and the terms of coupling between
the metric curvatures and the field strength tensor of the
Uð1Þ gauge field into Lnonmin. In addition, for the radial
electric field configuration of the Uð1Þ gauge field where
only the components of F01 and F10 are nonzero, the term
FμνFνρFρσFσμ contributes to the equation of motion to be
equal to half the contribution of the term ðFμνFμνÞ2. This
means that the role of FμνFνρFρσFσμ and ðFμνFμνÞ2 in this
situation is the same and since their effects on the CSC
phase transition can be characterized in terms of a unique
parameter b.
The equations of motion corresponding to the action (44)

are found as

Gμν þ α̃Hμν −
10

l2
gμν ¼ Tμν;

∇μ½ð1 − 8bFρσFρσÞFμν − βδρλμνρ0λ0σγR
ρ0λ0

ρλFσγ� ¼ iq½ψ�ð∇ν − iqAνÞψ − ψð∇ν þ iqAνÞψ��;
ð∇μ − iqAμÞð∇μ − iqAμÞψ −m2ψ ¼ 0; ð47Þ

where

Tμν ¼
1

2
ð1 − 8bFρσFρσÞFμλFν

λ −
β

2

�
δρλσγρ0λ0σ0μR

ρ0λ0
ρλFσγFσ0

ν þ
1

2
δρλσγρ0μλ0σ0R

ρ0
νρλFλ0σ0Fσγ þ gρμδ

ρλσγ
νρ0λ0σ0∇ρ0∇λðFλ0σ0FσγÞ

�

þ 1

2
½ð∇ν − iqAνÞψð∇μ þ iqAμÞψ� þ μ ↔ ν� þ 1

2
gμνðLmat þ βLnonminÞ; ð48Þ

and δμνρλμ0ν0ρ0λ0 is the generalized Kronecker delta function
which is totally antisymmetric in the upper indices as well
as the lower indices.
First, we shall show that only considering additionally the

higher derivative correction for the Maxwell electrodynam-
ics can provide a suitable holographic model of the CSC

phase transitionwhere theGBandbðFμνFμνÞ2 terms actually
play the role of the corrections which means the parameters
α and b to be small. Thus, let us turn off the nonminimal
coupled term, i.e., β ¼ 0, in the following analyses.
In the deconfinement phase, the equations for fðrÞ and

ϕðrÞ are found as
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α½2f0ðrÞrþ 5fðrÞ�fðrÞ − rf0ðrÞ − 5fðrÞ þ 5

−
1

8
ϕ0ðrÞ2½1þ 24bϕ0ðrÞ2� ¼ 0; ð49Þ

ϕ00ðrÞ þ 4

r
½1 − 32bϕ0ðrÞ2�ϕ0ðrÞ

−
2q2ψ2ðrÞ
r2fðrÞ ϕðrÞ½1 − 48bϕ0ðrÞ2� ¼ 0: ð50Þ

Note that, the equation for ψðrÞ does not get modified when
including the higher derivative correction for the Maxwell
electrodynamics and it is given by Eq. (11). Near the
critical chemical potential μc where the backreaction of the
scalar field is negligible and at the first order coming from
the higher derivative correction for the Maxwell electro-
dynamics, we find

fðrÞ¼ 1

2α



1−

�
1−4α

�
1−

r5þ
r5

�
þ3αμ2

2r2þ

�
rþ
r

�
5
�
1−

r3þ
r3

�

þ324b
11

αμ4

r4þ

�
rþ
r

�
5
�
3−4

r3þ
r3

þ r11þ
r11

��
1=2

�
; ð51Þ

ϕðrÞ ¼ μ

�
1 −

r3þ
r3

�
−
432b
11

μ3rþ
r3

�
1 −

r8þ
r8

�
: ð52Þ

In addition, we find the Hawking temperature and the free
energy of the planar RN-AdS black hole of the higher
derivative corrections as

T ¼ 1

4π

�
5rþ −

9μ2

8rþ
−
81bμ4

11r3þ

�
;

ΩBH ¼ −r5þ

�
1þ 3μ2

8r2þ
þ 1215bμ4

11r4þ

�
4π

5r0
V3: ð53Þ

By solving numerically Eqs. (49), (50), and (11), we find
the scaled critical chemical potential μc=rþ and the slope
Tc=μc of the critical line Tc ¼ TcðμcÞ. Their numerical
results are shown in Tables IV (Nc ¼ 2Þ and V (Nc ¼ 3) for
various values of the parameters b and α. From these tables,
we observe that the CSC phase transition with Nc ≥ 2 can
be achieved with including the higher derivative corrections
for both Einstein gravity and Maxwell electrodynamics

TABLE IV. The numerical values for μc=rþ and Tc=μc with
various values of b and α at Nc ¼ 2.

α ¼ −0.05 α ¼ −0.005

b × 104 μc=rþ Tc=μc b × 104 μc=rþ Tc=μc

−2.6 2.29828 0.00531 −2.6 2.29633 0.00544
−2.7 2.32662 0.00792 −2.7 2.32456 0.00800
−2.8 2.36011 0.01185 −2.8 2.35814 0.01188
−2.9 2.40059 0.01795 −2.9 2.39912 0.01791
−3.0 2.45149 0.02788 −3.0 2.45145 0.02787
−3.1 2.52066 0.04580 −3.1 2.52491 0.04651

α ¼ 0.001 α ¼ 0.01

b × 104 μc=rþ Tc=μc b × 104 μc=rþ Tc=μc

−2.6 2.29600 0.00546 −2.6 2.29548 0.00549
−2.7 2.32420 0.00802 −2.7 2.32362 0.00804
−2.8 2.35777 0.01188 −2.8 2.35715 0.01189
−2.9 2.39878 0.01790 −2.9 2.39818 0.01789
−3.0 2.45124 0.02786 −3.0 2.45082 0.02782
−3.1 2.52519 0.04656 −3.1 2.52545 0.04660

TABLE V. The numerical values for μc=rþ and Tc=μc with
various values of b and α at Nc ¼ 3.

α ¼ −0.01 α ¼ −0.001

b × 104 μc=rþ Tc=μc b × 104 μc=rþ Tc=μc

−2.70 2.41668 0.00585 −2.70 2.41536 0.00585
−2.73 2.44244 0.00780 −2.73 2.44081 0.00778
−2.76 2.47361 0.01062 −2.76 2.47152 0.01054
−2.79 2.51377 0.01500 −2.79 2.51088 0.01481
−2.82 2.57424 0.02326 −2.82 2.56926 0.02269
−2.85 2.68366 0.04525 −2.85 2.68291 0.04508

α ¼ 0.0001 α ¼ 0.001

b × 104 μc=rþ Tc=μc b × 104 μc=rþ Tc=μc

−2.70 2.41520 0.00585 −2.70 2.41506 0.00585
−2.73 2.44061 0.00778 −2.73 2.44044 0.00778
−2.76 2.47126 0.01053 −2.76 2.47104 0.01052
−2.79 2.51052 0.01478 −2.79 2.51023 0.01476
−2.82 2.56865 0.02262 −2.82 2.56815 0.02257
−2.85 2.68283 0.04506 −2.85 2.68275 0.04504

FIG. 7. The scaled ADMmassm of the black hole as a function
in terms of the event horizon radius rþ for various values of the
parameter b with μ ¼ 1. For m kept fixed, the event horizon
radius increases with decreasing the parameter b, which suggests
the weaker gravitational attraction (around the event horizon) for
the lower b.
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where the GB coupling parameter α is either positive or
negative and satisfies the causality bound. Furthermore, we
find that the GB coupling parameter α is small or in other
words α belongs the perturbative region. This is clearly
consistent to the fact that the GB term is considered as the
correction and hence the further powers of the curvature
tensors such as R3 or R4 are small compared to the GB term
and hence they can be ignored. In particular, the sign of the
parameter b characterizing the higher derivative correction
at the first order for the Maxwell electrodynamics should be
negative in order to make the condensation of the scalar
field appearing around the event horizon rþ. This can be
explained as follows: as we discussed above, the charge
q ¼ 2=Nc of the dual scalar field decreases as increasing

the color number and thus the electrostatic repulsion would
not be strongly sufficient to overcome the gravitational
attraction for the scalar field to be condensed; the presence
of the GB term can make the gravitational attraction weaker
if α is negative and its magnitude is large enough; however,
by including the higher derivative correction at the first
order for the Maxwell electrodynamics with the negative
value of b, the event horizon of the black hole becomes
larger as seen in Fig. 7 and consequently it leads the
sufficiently weak gravitational attraction around the event
horizon such that the scalar hair can be formed even the
small magnitude of the GB coupling parameter α.
In particular, we see from Tables IV and V that the CSC

phase transition occurs for the case of the positive GB

FIG. 8. The phase diagram for various values of b. The values Nc ¼ 2 and α ¼ −0.005 are used for the top panels, whereas Nc ¼ 3
and α ¼ −0.001 are used for the bottom panels.
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coupling parameter α > 0 (which is still true when the
nonminimal coupled Maxwell field is turned on as seen
later), which is not realized in the framework of the pure
EGB gravity. This case is suitable to string theory, because
the GB term arises naturally from the low-energy effective
action of heterotic string theory at the order α0 [34–38]
where the GB coupling parameter is regarded as the inverse
string tension and thus is larger than zero. Furthermore, the
CSC phase transition with α > 0 satisfies the constraint
imposed by the weak gravity conjecture on the GB
coupling parameter. It was indicated in Ref. [47] that the
weak gravity conjecture excludes the entire region α < 0
for the pure EGB gravity.
In Fig. 8, we show the phase diagram of the YM theory

with the presence of the CSC phase whose holographic
model is EGB gravity coupled minimally to the vector and
scalar fields with including the higher derivative correction
for the Maxwell electrodynamics. We find that the region
corresponding to the CSC phase is larger and thus the
CSC phase is more stable as increasing the magnitude of
the parameter b. This can be seen from Tables IV and V
where the slope Tc=μc of the critical line Tc ¼ TcðμcÞ
increases with the growth of the magnitude of the parameter
b. Also, there is no the CSC state in the confinement
phase for the parameters considered in Fig. 8 because by
solving numerically the equations for ϕðrÞ and ψðrÞ in the
confinement phase, we obtain the values of the critical
chemical potential as 3.06014 (with α ¼ −0.005 and
b ≈ −3.0 × 10−4) and 4.57641 (with α ¼ −0.001 and
b ≈ −2.8 × 10−4) for Nc ¼ 2 and Nc ¼ 3, respectively,
which are out of the confinement phase. Here, the equations
for ϕðrÞ in the confinement background is given by

ϕ00ðrÞ þ


4

r
½1 − 32bfðrÞ2ϕ0ðrÞ2� þ f0ðrÞ

fðrÞ
�
ϕ0ðrÞ

−
2q2ψ2ðrÞ
r2fðrÞ ϕðrÞ½1 − 48bfðrÞ2ϕ0ðrÞ2� ¼ 0; ð54Þ

where the expression for fðrÞ is given in Eq. (19), whereas,
the equation for ψðrÞ in the same background is given
in Eq. (21).
Now we study the effect of the nonminimal coupled

Maxwell field on the CSC phase transition by turning on
the Lagrangian Lnonmin, i.e., β ≠ 0. In this case, the planar
black hole dual to the deconfinement phase is described by
the following ansatz

ds2 ¼ r2ð−fðrÞe−χðrÞdt2 þ hijdxidxj þ dy2Þ þ dr2

r2fðrÞ :

ð55Þ

The corresponding Hawking temperature is given by

T ¼ r2þf0ðrþÞ
4π

e−χðrþÞ=2: ð56Þ

By substituting the ansatz (55) for the metric, and (7) for
the vector and scalar fields into Eq. (47), we obtain the
equations for fðrÞ, χðrÞ, ϕðrÞ, and ψðrÞ as

α½2f0ðrÞrþ 5fðrÞ�fðrÞ − rf0ðrÞ − 5fðrÞ þ 5 −
eχðrÞ

8
ϕ0ðrÞ2

× ½1þ 24beχðrÞϕ0ðrÞ2 þ 48βfðrÞ� ¼ 0; ð57Þ

½1 − 2αfðrÞ�χ0ðrÞ − 12β

r
eχðrÞϕ0ðrÞ2 ¼ 0; ð58Þ

½1 − 48βfðrÞ�ϕ00ðrÞ þ
�
4 − 192βfðrÞ

r
þ 1 − 48βfðrÞ

2
χ0ðrÞ

− 48βf0ðrÞ
�
ϕ0ðrÞ − 128

r
beχðrÞϕ0ðrÞ3

−
2q2ψ2ðrÞ
r2fðrÞ ϕðrÞ½1 − 48beχðrÞϕ0ðrÞ2� ¼ 0; ð59Þ

ψ 00ðrÞ þ
�
f0ðrÞ
fðrÞ þ

6

r
−
χ0ðrÞ
2

�
ψ 0ðrÞ

þ 1

r2fðrÞ
�
q2eχðrÞϕ2ðrÞ

r2fðrÞ −m2

�
ψðrÞ ¼ 0: ð60Þ

The function χðrÞ is finite at the event horizon rþ and it
approaches zero near the AdS boundary (r → ∞). Note
that, for the parameter β associated with the nonminimal
coupled Maxwell field to be small, we solve analytically
Eq. (58) up to the first order in β as

e−χðrÞ ¼ −12β
Z

ϕ0ðrÞ2dr
r½1 − 2αfðrÞ� þ C; ð61Þ

where the constant C is fixed such that e−χðrÞ approaches
one in the limit r → ∞, the functions fðrÞ and ϕðrÞ are
given in Eqs. (51) and (52), respectively.
In order to find the critical temperature for the CSC

phase transition when the nonminimal coupled Maxwell
field is included, we solve numerically Eqs. (57)–(60). The
corresponding numerical results are given in Table VI for
various values of the parameter β. This table implies that
there is actually the range of the parameter β for the
nonminimal coupled Maxwell field whose presence as the
small correction still leads to the CSC phase transition. In
addition, we find that the slope Tc=μc of the critical line
Tc ¼ TcðμcÞ increases as the parameter β decreases. This
means that compared to the CSC phase explored in the
framework of EGB gravity coupled minimally to the vector
and scalar fields with including the higher derivative
correction for the Maxwell electrodynamics, the presence
of the nonminimal coupled Maxwell field with the negative
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β leads to the larger region of the CSC phase and thus it
makes the CSC phase more stable. This suggests that
including the nonminimal coupled Maxwell field with the
negative β would make the gravitational attraction around
the event horizon weaker and hence the electrostatic
repulsion is easier to overcome the gravitational attraction
in order to form the scalar hair.

V. CONCLUSION

The quark matter at sufficiently high chemical potential
and low temperature is expected to exhibit a color super-
conductivity (CSC) phase which might be present in the
cores of neutron stars. In Ref. [32], a bottom-up holo-
graphic model was introduced in the framework of Einstein
gravity to describe the CSC phase in the Yang-Mills (YM)
theory. Based on the analysis where the backreaction of
the matter part is considered and thus improves the results
of the probe approximation, the authors have concluded
that the CSC phase appears in the deconfinement phase but
not the confinement one for the color number Nc ¼ 1.
However, for Nc ≥ 2 which belongs in the region of the
reasonable values of the YM theory, the CSC phase does
not appear in both the confinement and deconfinement
phases.
Motivated by the above restriction, we have constructed

a more realistic holographic model of the CSC phase in the
YM theory, which allows to study the CSC phase for the
color number Nc ≥ 2. We consider a gravitational system
with the matter content consisting of aUð1Þ gauge field and
a charged scalar field in the framework of Einstein-Gauss-
Bonnet (EGB) gravity. Here, the gauge field and scalar field

are dual to the current of the baryon number and the diquark
operator in the boundary field theory, respectively. We have
indicated that the Gauss-Bonnet (GB) term plays a role in
the breakdown of the Breitenlohner-Freedman (BF) bound
and thus the scalar field condensate, corresponding to the
occurrence of the CSC phase.
Near the critical chemical potential, the scalar field

condensate approaches zero and hence its backreaction
on the spacetime geometry is negligible. As a result, the
bulk background configuration is given by the EGB gravity
coupled to the Uð1Þ gauge field in the asymptotic AdS
spacetime. The deconfinement and confinement phases are
dual to the planar GB-RN-AdS black hole and GB-AdS
soliton, respectively. We have calculated their free energy
in the canonical ensemble and obtain the corresponding
phase diagram.
When taking the scalar field into account, we study the

scalar field condensate and its modification on the phase
structure of the bulk background configuration in both the
deconfinement and the confinement phases. We determine
the necessary condition for destabilizing the scalar field and
making it condensing by examining the breakdown of the
BF bound. In the deconfinement phase, we found that the
CSC phase for Nc ≥ 2 cannot be realized in the EGB
gravity with the GB coupling parameter α > 0. However,
with α < 0, the CSC phase is possibly observed forNc ≥ 2.
We solve numerically the equations of motion for the
gravitational system in the deconfinement phase and then
determine the numerical dependence of the critical chemi-
cal potential μc and the critical line Tc ¼ TcðμcÞ in terms of
the GB coupling parameter. We observe that as increasing
the magnitude of the GB coupling parameter the critical
chemical potential μc decreases but the slope of the critical
line grows corresponding to that the region of the CSC
phase is larger. This implies that the scalar field condensate
gets easier to form and the CSC phase is more stable in the
EGB gravity with the larger magnitude of the GB coupling
parameter. Furthermore, by examining the breakdown of
the BF bound and solving numerically the equations of
motion for the gravitational system in the confinement
phase, we show that there is no the CSC phase for the
magnitude of α below a certain value which beyond that
value it might suggest a breakdown region of the EGB
gravity in investigating the CSC phase.
Unfortunately, the occurrence of the CSC phase tran-

sition with Nc ≥ 2 within the framework of the EGB
gravity requires the magnitude of the GB coupling param-
eter which is rather large and hence the GB term would no
longer be considered as the correction as well as it violates
the boundary causality bound. In order to resolve this
problem, we include additionally the higher derivative
correction for the Maxwell electrodynamics and the non-
minimal coupled Maxwell field. We show the existence of
the values for the parameters characterizing the higher
derivative corrections under consideration where they are

TABLE VI. The numerical values for μc=rþ and Tc=μc with
various values of β.

Nc ¼ 2, α ¼ −0.005,
b ¼ −3.0 × 10−4

Nc ¼ 2, α ¼ 0.001,
b ¼ −3.1 × 10−4

β × 103 μc=rþ Tc=μc β × 103 μc=rþ Tc=μc

−1.0 2.41960 0.03104 −1.0 2.53725 0.06416
−0.5 2.43447 0.02925 −0.5 2.52409 0.05291
−0.1 2.44791 0.02812 −0.1 2.52429 0.04761
0.1 2.45505 0.02764 0.1 2.52634 0.04558
0.5 2.47003 0.02680 0.5 2.53310 0.04231
1.0 2.48988 0.02596 1.0 2.54517 0.03924

Nc ¼ 3, α ¼ −0.001,
b ¼ −2.82 × 10−4

Nc ¼ 3, α ¼ 0.001,
b ¼ −2.82 × 10−4

β × 103 μc=rþ Tc=μc β × 103 μc=rþ Tc=μc

−1.0 2.59322 0.03756 −1.0 2.59304 0.03754
−0.5 2.56251 0.02639 −0.5 2.56081 0.02616
−0.1 2.56685 0.02350 −0.1 2.56566 0.02312
0.1 2.57202 0.02219 0.1 2.57097 0.02208
0.5 2.58557 0.02057 0.5 2.58472 0.02048
1.0 2.60638 0.01911 1.0 2.60568 0.01905
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the small corrections and work to realize the CSC phase
transition with Nc ≥ 2. In comparison with Einstein grav-
ity, the presence of the nonminimal coupled Maxwell field
and the higher derivative correction for the Maxwell
electrodynamics with the negative characteristic parameters
yields the weaker gravitational attraction around the event
horizon in analogy to the EGB gravity of the negative GB
coupling parameter but with the stronger effect. Thus, the
electrostatic repulsion is easier to overcome the gravita-
tional attraction resulting in the condensation of the scalar

field even the small magnitude of the GB coupling
parameter.
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