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Following Barrow’s idea of fractal black hole horizon, we re-derive black hole entropy of static spherically 
symmetric black holes. When a black hole absorbs matter its horizon area will increase. Given the 
spherically fractal structure, we conjecture that the minimal increase of the horizon area should be the 
area of the smallest bubble sphere. From this, we find the black hole entropy has a logarithmic form, 
which is similar to that of Boltzmann entropy if we consider A/Apl as the number of microscopic states. 
We further calculate temperatures and heat capacities of Schwarzschild, Reissner-Nordström (RN), and 
RN-AdS black holes. It is found that their temperatures are all monotonically increasing and the heat 
capacities are all positive, which means these black holes are thermodynamically stable. Besides, for 
RN-AdS black hole we find its heat capacity has Schottky anomaly-like behavior, which may reflect the 
existence of the discrete energy level and restricted microscopical degree of freedom.
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1. Introduction

Bekenstein and Hawking found that in the framework of gen-
eral relativity (GR) black hole entropy is proportional to the hori-
zon area of a black hole, to be precise, it is S = A/4. In other 
theories of gravity, the Bekenstein-Hawking entropy can be mod-
ified by contributions from higher-order curvature terms and can 
be simply derived using the Wald formula. Even in GR, when some 
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quantum effects are taken into account, the area law of black hole 
entropy can also be corrected.

The most commonly considered quantum effect is the general-
ized uncertainty principle (GUP). GUP predicts the existence of a 
minimal length scale of the order of the Planck length, which can 
also be deduced from string theory and other tentative theories of 
quantum gravity [1–6]. There are more than one expressions for 
GUP, of which the most simple form is

�x ≥ h̄

�p
+ α2

h̄
�p ≥ 2α ∼ lp, (1.1)

where lp is the Planck length and α is a positive constant. With the 
correction of the GUP, black hole thermodynamics can be signifi-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2022.137181
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2022.137181&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:mengsenma@gmail.com
https://doi.org/10.1016/j.physletb.2022.137181
http://creativecommons.org/licenses/by/4.0/


L.-H. Wang and M.-S. Ma Physics Letters B 831 (2022) 137181
cantly changed [7–20]. In general, black holes no longer evaporate 
completely, but leave behind a remnant at finite temperature. The 
black hole entropy will receive a logarithmic correction term pro-
portional to ln A besides the leading Bekenstein-Hawking entropy 
A/4.

The microscopic mechanisms behind gravitation and black hole 
entropy are yet to be fully understood. Recently, Barrow proposed 
a toy model for possible effects of quantum gravity by consider-
ing the fractal structure of horizon surface [21]. In this case, the 
area and volume of a black hole should be the sum of all the in-
tricate structures. With these fractal structures, the entropies of a 
black hole and our Universe can be very large. Barrow’s model has 
also been further extended to the study of dark energy [22,23] and 
black hole thermodynamics [24,25].

It is our concern in this letter that how the existence of a 
minimal length will affect the entropy of black holes with fractal 
structures. In this case, when a black hole absorbs a particle there 
will be a natural minimal increase in the horizon area, �Amin . 
Following the idea of [8], we can derive the black hole entropy. 
According to the first law of black hole thermodynamics, we can 
further derive the temperature and heat capacity. We find that for 
black holes with fractal horizon these thermodynamic quantities 
are much different from that of standard black holes.

The paper is arranged as follows. We first simply review Bar-
row’s fractal black hole and some of his results in section 1. In 
section 2 we re-derive black hole entropy based on this fractal 
structure. We then calculate the temperature and heat capacity of 
some black holes with fractal structure. At last, we summarize our 
results and discuss the possible future study.

2. Barrow black holes with fractal structure

In this part, we give a brief introduction about Barrow’s idea 
on the fractal structure of the black hole horizon. For details, one 
can refer to Barrow’s paper. Barrow considered Schwarzschild black 
hole and imagined there are many smaller spheres attaching on 
the black hole horizon and then more smaller spheres attached to 
these spheres and so on. This is a fractal structure.

Suppose that at each step there are N spheres and the radius 
is λ times smaller than that of the sphere in the previous step. Let 
r0 = rh , which is the Schwarzschild radius. If there is no cut off at 
some small finite scale, the actual surface area of the horizon and 
volume of the black hole are infinite series:

A∞ =
∞∑

n=0

Nn4π
(
λnrh

)2 = 4πr2
h

∞∑
n=0

(
Nλ2

)n
, (2.1)

V∞ =
∞∑

n=0

Nn 4π

3

(
λnrh

)3 = 4πr3
h

3

∞∑
n=0

(
Nλ3

)n
. (2.2)

Barrow discussed that when λ−2 < N < λ−3 the surface area 
will be infinite and the volume of the black hole is finite.

Besides, on the basis of the area law of black hole entropy Bar-
row further conjectured that the entropy can take the form of 
S ≈ A/Apl ≈ (Ah/Apl)

(2+�)/2, where A and Ah are the area of the 
fractal horizon and the standard horizon, Apl is the Planck area. 
0 < � < 1 with � = 0 corresponding to the standard horizon and 
� = 1 corresponding to the most intricate horizon.

3. The entropy of Barrow black holes

In quantum gravity there is the idea of quantized spacetime, 
which means the existence of the smallest finite length scale. Usu-
ally the Planck length lp is considered to be this scale. The GUP, 
which gives an apparent minimal length, is a realization of this 
2

idea. With this cut-off, Barrow black hole can have interesting 
thermodynamic properties.

Although lp puts the lower limit of length scale, the radius of 
the smallest sphere in the fractal structure need not exactly to be 
lp . In fact, according to the recurrence relation rn+1 = λrn it only 
needs, at some cut-off step n1, to satisfy

rn1 ≥ lp, λrn1 < lp. (3.1)

In this case, the surface area should be

A = 4πr2
h

n1∑
n=0

(
Nλ2

)n = Ah
1 − (Nλ2)n1+1

1 − Nλ2
, (3.2)

where Ah = 4πr2
h is the original area of black hole horizon.

Next we try to derive the black hole entropy by following the 
approach of the work [8].

dS

dA
� (�S)min

(�A)min
, (3.3)

where (�S)min represents the minimal increase of entropy, the 
value of which is a constant ln 2 according to information theory. 
In the following we mainly focus on the calculation of the minimal 
increase of the surface area, (�A)min.

Considering the fractal structure, when the black hole absorbs 
a particle the minimal increase of total area should be the area of 
the smallest sphere, namely

(�A)min = 4πr2
n1

= 4π(rhλ
n1)2 = λ2n1 Ah. (3.4)

Combining Eqs. (3.2) and (3.4), one can obtain

(�A)min = Ac1, (3.5)

where we have set c1 = λ2n1(1 − Nλ2)

1 − (Nλ2)n1+1 , which should be a positive 

constant.
Substituting Eq. (3.5) into Eq. (3.3), we can obtain

dS

dA
� (�S)min

(�A)min
= ln 2

c1 A
. (3.6)

Clearly, we have

S = ln 2

c1
ln

A

Apl
+ c0, (3.7)

where we introduce Apl to obtain a dimensionless quantity in the 
logarithmic function. Below we will call this result as Barrow en-
tropy for short.

Clearly, the Barrow entropy does not satisfy the usual area 
law, or the logarithmic correction to area law. However, this form 
makes one reminiscent of the well-known Boltzmann formula: 
S = kB ln �. If we make the correspondence A/Apl ↔ � and cal-
ibrate ln 2/c1 to one1 and set the integration constant to be zero, 
we can understand the Barrow entropy as Boltzmann entropy. In 
analogy to statistical mechanics, we can consider A pl as the area 
occupied by one microscopic state and therefore A/A pl is just the 
number of microscopic states of the black holes, �.

4. Temperature and heat capacity of Barrow black holes

As a thermodynamic system, the thermodynamic quantities of 
black holes should satisfy the thermodynamic identity:

1 Because we take the natural unit. The Boltzmann constant kB has been set 1.
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dM = T dS + · · · . (4.1)

On the basis of Barrow entropy, below we will further analyze 
the influence of the fractal structure on the thermodynamic prop-
erties of several black holes.

4.1. Schwarzschild black hole

If the metric of Schwarzschild black hole is not affected, we can 
derive the temperature

1

T B
= ∂ S

∂M
= 4 ln 2

c1

1

rh
, (4.2)

where the subscript “B” is for Barrow for short.
Clearly, this temperature is proportional to the Schwarzschild 

radius, while in standard Schwarzschild black hole the Hawking 
temperature is inversely proportional to rh . Until now, we still do 
not know how black hole temperature depends on horizon radius 
through observation. We cannot directly rule out this possibility. 
Moreover, with this temperature, we find that the heat capacity of 
Schwarzschild black hole is always positive:

C B = ∂M

∂T
= 2 ln 2

c1
> 0. (4.3)

Therefore, with this fractal structure Schwarzschild black hole can 
be thermodynamically stable.

4.2. Reissner-Nordstrom (RN) black hole

Barrow’s idea can also be used for other static spherically sym-
metric black holes. We first take RN black hole as an example. The 
line element is

ds2 = − f (r)dt2 + f (r)−1dr2 + r2d�2
2, (4.4)

with the metric function

f (r) = 1 − 2M

r
+ Q 2

r2
, (4.5)

where the parameters M, Q are the ADM mass and electric charge 
of the black hole.

The position of the event horizon of the black hole can be de-
termined as the larger root of f (rh) = 0. Reversely, one can express 
the black hole mass M according to rh ,

M = Q 2 + r2
h

2rh
. (4.6)

The temperature corresponding to the Bekenstein-Hawking en-
tropy is

T = f ′(rh)

4π
= r2

h − Q 2

4πr3
h

. (4.7)

We then calculate the heat capacity at constant Q , which is a 
counterpart of the heat capacity at constant volume, C V , in P V T
system.

C = ∂M

∂T

∣∣∣∣
Q

= 2πr2
h

(
Q 2 − r2

h

)

r2
h − 3Q 2

. (4.8)

Using the Barrow entropy and similar to Eq. (4.2), we can ob-
tain the Barrow temperature of RN black hole

T B = c1
(
r2

h − Q 2
)
. (4.9)
rh4 ln 2

3

Fig. 1. The Barrow temperature T B (the red dashed line) and Hawking temperature 
T (the blue solid line) for RN black hole. We have set Q = 0.5, c1 = 0.1.

Fig. 2. C B (the red dashed line) and C (the blue solid line) are the heat capacities 
of the RN black hole with fractal structure and the standard RN black hole, respec-
tively. We have set Q = 0.5, c1 = 0.1.

Furthermore, the heat capacity should be

C B = ∂M

∂T B

∣∣∣∣
Q

= ln 4
(
r2

h − Q 2
)

c1
(
r2

h + Q 2
) . (4.10)

From Fig. 1, we can see that the two temperatures both become 
zero in the extremal limit, rh = Q . As rh increases, the Barrow 
temperature is monotonically increasing, while the Hawking tem-
perature first increases to a maximum and then decreases mono-
tonically. Correspondingly, as is shown in Fig. 2, the heat capacity 
for the RN black hole with fractal structure is always positive and 
finite, while for the standard RN black hole the heat capacity is 
positive only at a finite interval and turns negative after undergo-
ing a divergent point.

4.3. RN-AdS black hole

For RN-AdS black hole, the metric function is

f (r) = 1 − 2M

r
+ Q 2

r2
+ r2

l2
, (4.11)

where l represents the cosmological radius.
The mass function can be expressed according to the horizon 

radius,

M = l2 Q 2 + l2r2
h + r4

h
2

. (4.12)

2l rh
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Fig. 3. The Hawking temperature of RN-AdS black hole as a function of horizon 
radius. The solid and dot-dashed curves correspond to l = 4 and l = 2.5, respectively. 
Besides, we set Q = 0.5, c1 = 0.1. We also sketch the behaviors of heat capacities 
at different values of l.

The standard Hawking temperature is

T = l2r2
h + 3r4

h − l2 Q 2

4π l2r3
h

. (4.13)

And the heat capacity is

C = 2πr2
h

(
l2r2

h + 3r4
h − l2 Q 2

)

−l2r2
h + 3r4

h + 3l2 Q 2
. (4.14)

As is shown in Fig. 3, for different values of l this temperature 
can increase monotonically or have some extrema. In the former 
case, the heat capacity is always positive. In the latter case, the 
heat capacity is positive only in the interval where the slope of 
the temperature is positive. This configuration corresponds to the 
first-order phase transition between the smaller black hole and the 
larger one.

Similar to the RN black hole, we can also obtain the Barrow 
temperature and the corresponding heat capacity, which are

T B = c1
(
l2r2

h + 3r4
h − l2 Q 2

)

4 ln 2l2rh
, (4.15)

C B = 2 ln 2
(
l2r2

h + 3r4
h − l2 Q 2

)

c1
(
l2r2

h + 9r4
h + l2 Q 2

) . (4.16)

Their behaviors are depicted in Fig. 4. Similar to Schwarzschild 
and RN black holes, the Barrow temperature is also monotonically 
increasing. The heat capacity is always positive for positive Barrow 
temperature.

To further clarify the relation between C B and T B , we de-
pict the curve of C B − T B in Fig. 5. C B tends to zero as T B → 0
and tends to a constant when T B → ∞, and in between it has a 
maximum. This behavior of C B has a striking resemblance to the 
Schottky anomaly of heat capacity of ordinary solid matter. The 
existence of the peak means the RN-AdS black hole should have 
discrete energy levels microscopically. If we treat the black hole 
mass M as the internal energy, then M should be the statistical 
average of these energy levels. M increases monotonically with T B , 
but at an ever increasing rate. At high enough temperature, M is 
nearly proportional to T B . And the heat capacity keeps a constant 
value thereafter.

5. Discussions and conclusions

On the basis of Barrow’s idea of the fractal horizon and the ex-
istence of a minimal length, we try to re-derive black hole entropy. 
4

Fig. 4. The Barrow temperature (the red dashed curve) and heat capacity (the 
red solid curve) of the RN-AdS black hole with fractal structure. We have set 
Q = 0.5, c1 = 0.1, l = 4.

The result relies on the choice of the minimal increase of horizon 
area, �Amin . Due to the fractal structure, we think that the most 
natural choice should be the area of the smallest bubble sphere. 
In this way, we found that the entropy has a logarithmic form for 
static spherically symmetric black holes. This Boltzmann-like en-
tropy may reflect the microscopic structure of black holes if we 
consider A/Apl as the number of microscopic states.

We assumed the laws of black hole thermodynamics still hold 
and further calculated the temperature and heat capacity of these 
black holes with fractal structures. First, the temperature is gener-
ally given by

T B = ∂M

∂ S B
= ∂M

∂ S

∂ S

∂ S B
= T

∂ S

∂ S B
= πc1

ln 2
r2

h T . (5.1)

On the one hand, this result guarantees that the Barrow tempera-
ture has the same sign as that of the Hawking temperature. On the 
other hand, the factor r2

h makes the Barrow temperature increase 
more quickly for large rh and leads to a monotonically increasing 
T B . Therefore, for the black holes we considered,

C B = ∂M

∂T B
= T B

∂ S B

∂T B
= T B

∂ S B/∂rh

∂T B/∂rh
> 0. (5.2)

This means these black holes are, at least locally, thermodynami-
cally stable. Besides, the monotonicity of T B means that ∂T B/∂rh �=
0, which implies that the heat capacities are continuous and have 
no divergent points. This indicates that the phase structures of 
these black holes are very simple.

There is an unexpected result for RN-AdS black hole with frac-
tal structure. Its heat capacity exhibits a Schottky anomaly-like 
behavior, which has also been found and discussed in other gravi-
tational system [26–28]. This can be attributed to the existence of 
discrete energy levels and restricted microscopic degrees of free-
dom. At least there are some low-lying energy levels separated 
from the remainder of the energy spectrum. At very low tempera-
tures, the heat capacity increases rapidly with the temperature. At 
high enough temperature, the behavior of any thermodynamic sys-
tem approaches that of its classical counterpart. In this case, kB T is 
much larger than the interval of adjacent energy levels, so the en-
ergy levels are quasi-continuous. In thermodynamic systems with 
finite energy, such as two-level system and dS black holes [28], the 
heat capacity should tend to zero in the high temperature limit. 
But the heat capacity of RN-AdS black hole with fractal structures 
has a nonzero value in this limit. This reveals that the total mass 
M of this black hole has no upper limit. As the temperature in-
creases, the black hole can always absorb heat and become more 
energetic.
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Fig. 5. The mass and the heat capacity as a function of Barrow temperature for the RN-AdS black hole with fractal structure. We have set Q = 0.5, c1 = 0.1, l = 4.
The presence of the discrete energy levels must be relevant 
to the fractal structure of the RN-AdS black hole. However, the 
Schwarzschild black hole and the RN black hole do not possess this 
property. We also want to know whether these interesting thermo-
dynamic properties also exist for other black holes. It is of great 
interest to extend our current study to the higher-dimensional and 
more complicated spherically symmetric black holes, which may 
provide new insights toward a better understanding of the micro-
scopic structure of black holes.
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