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We study the survival probability of moving relativistic unstable parti-
cles with definite momentum ~p 6= 0. The amplitude of the survival proba-
bility of these particles is calculated using its integral representation. We
found decay curves of such particles for the quantum mechanical models
considered. These model studies show that late time deviations of the sur-
vival probability of these particles from the exponential form of the decay
law, that is the transition times region between exponential and non-expo-
nential form of the survival probability, should occur much earlier than it
follows from the classical standard approach resolving itself into replacing
time t by t/γ (where γ is the relativistic Lorentz factor) in the formula
for the survival probability and that the survival probabilities should tend
to zero as t → ∞ much slower than one would expect using classical time
dilation relation. Here, we show also that for some physically admissible
models of unstable states, the computed decay curves of the moving parti-
cles have a fluctuating form at relatively short times including times of the
order of the lifetime.
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1. Introduction

Physicists studying the decay processes are often confronted with the
problem of how to predict the form of the decay law for a particle moving
in respect to the rest reference frame of the observer knowing the decay law
of this particle decaying in its rest frame. From the standard text book
considerations, one finds that if the decay law of an unstable particle in
rest has the exponential form of P0(t) = exp [−Γ0 t

~
], then the decay law of

the moving particle with momentum p 6= 0 is Pp(t) = exp [− Γ0 t
~ γ ], where
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t denotes time, Γ0 is the decay rate (time t and Γ0 are measured in the
rest reference frame of the particle), and γ is the relativistic Lorentz factor,

γ ≡ 1/
√

1− β2, β = v/c, v is the velocity of the particle. This equality is
the classical physics relation. It is almost common belief that this equality
is valid also for any t in the case of quantum decay processes and does not
depend on the model of the unstable particles considered. For the proper
interpretation of many accelerator experiments with high-energy unstable
particles as well as of results of observations of astrophysical processes in
which a huge numbers of elementary particles (including unstable one) are
produced, we should be sure that this belief is supported by theoretical
analysis of quantum models of decay processes. The problem seems to be
extremely important because from some theoretical studies, it follows that
in the case of quantum decay processes, this relation is valid to a sufficient
accuracy only for not more than a few lifetimes τ0 = ~/Γ0 [1–4]. What is
more, it appears that this relation may not apply in the case of the famous
result of the GSI experiment, where an oscillating decay rate of the ionized
isotopes 140Pr and 142Pm moving with relativistic velocity (γ ≃ 1.43) was
observed [5, 6]. So we can see that the problem requires a deeper analysis.
In this paper, the basis of such an analysis will be the formalism developed
in [1, 2] where within the quantum field theory, the formula for the survival
amplitude of moving particles was derived. We will follow the method used
in [4] and analyze numerically properties of the survival probability for a
model of the unstable particle based on the Breit–Wigner mass distribu-
tion considered therein and as well as the other different ones. Here, we
show that the relativistic treatment of the problem within the Stefanovich–
Shirokov theory [1, 2] yields decay curves tending to zero as t → ∞ much
slower than one would expect using classical time dilation relation which
confirms and generalizes some conclusions drawn in [4]. We show also that
for some physically admissible models of unstable states, decay curves of
the moving particles computed using the above-mentioned approach have
analogous fluctuating form as the decay curve measured in the GSI experi-
ment, and that in the model considered, these fluctuations begin from times
much shorter than the lifetime. Our results show that conclusions relating
to the quantum decay processes of moving particles based on the use of the
classical physics time dilation relation need not be universally valid.

One of the aims of this paper is to analyze numerically properties of
the survival probability in a wide range of times t from very short t ≪ τ0
through t ∼ τ0 until t ≫ τ0 of moving unstable particles derived in [1, 2],
and to present results of calculations of decay curves of such particles for the
model considered in [4] but for the more realistic parameters of this model,
and to confront them with results obtained for another more realistic model.
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Another intention is to demonstrate that when considering the relativistic
quantum unstable system, the only rational assumption seems to be the
assumption that the momentum ~p of such a system is constant. The paper
is organized as follows: Section 2 contains preliminaries and the main steps
of the derivation of all relations necessary for the numerical studies, which
results are presented in Section 3. Consequences of the assumption that the
momentum ~p of the moving freely quantum unstable system is constant are
analyzed in Section 4. Section 5 contains a discussion and conclusions.

2. Decay law of moving relativistic particles

Let us begin our considerations from the following assumptions: Suppose
that in a laboratory, a large number N0 of unstable particles was created
at the instant of time t0 and then, their decay process is observed there.
Suppose also that all these unstable particles do not move or are moving
very slowly in relation to the rest frame of the reference of the observer O,
and that the observer counts at instants t1 < t2 < . . . tn < . . ., (where
t1 > t0), how many particles N (t) survived up to these instants of time. All
collected results of these observations can be approximated by a function
of time P0(t) ≃ N (t)/N0 forming a decay curve. If N0 is large, then P0(t)
can be considered as the survival probability of the unstable particle. The
standard procedure is to confront results of the experiment with theoretical
predictions. Within the quantum theory, when one intends to analyze the
survival probability P0(t) of the unstable state or particle, say φ, in the
rest system, one starts from the calculation of the probability amplitude
a0(t). This amplitude defines the survival probability P0(t) = |a0(t)|2 we
are looking for. There is a0(t) ≡ 〈φ|φ(t)〉 and |φ(t)〉 = exp [− i

~
tH] |φ〉, where

H is the total, self-adjoint Hamiltonian of the system considered. Studying
the properties of the amplitude a0(t) it is convenient to use the integral
representation of a0(t) as the Fourier transform of the energy or, equivalently,
mass distribution function, ω(m) (see, e.g. [7–12]), with ω(m) ≥ 0 and
ω(m) = 0 for m < µ0 (µ0 is the lower bound of the spectrum of H). It
appears that the general form of the decay law P0(t) of the particle in its rest
reference frame practically does not depend on the form of the all physically
acceptable ω(m) (see, e.g. [9–11, 13–16]): There is, a0(t) = aexp(t) + alt(t),
starting from times slightly longer than the extremely short times [14–16].
Here, aexp(t) = N exp [−i t

~
(E0 − i

2 Γ0)] (E0 = m0 c
2 is the energy of the

system in the unstable state |φ〉 measured at the canonical decay times
when P0(t) has the exponential form, N is the normalization constant). The
component alt(t) exhibits inverse power-law behavior at the late time region.
The late time region denotes times t > T , where T is the cross-over time
and it can be found by solving the following equation, |aexp(t)| 2 = |alt(t)| 2.
There is |aexp(t)| ≫ |alt(t)| for t < T and |aexp(t)| ≪ |alt(t)| for t > T .



1414 K. Urbanowski

We came to the place where a flux of moving relativistic unstable parti-
cles investigated by an observer in his laboratory should be considered. Ac-
cording to the fundamental principles of the classical physics and quantum
theory (including relativistic quantum field theory), the energy and momen-
tum of the moving particle have to be conserved. There is no an analogous
conservation law for the velocity ~v. These conservation laws are one of the
basic and model-independent tools of the study of reactions between the
colliding or decaying particles. So it seems to be reasonable to assume, as
it was done in [1, 2, 17], that momentum ~p of the moving unstable particles
measured in the rest frame of the observer is constant (see also a discussion
in [18]). The question is: what is the picture seen by the observer in such a
case and what is the relation between this picture and the picture seen by
this observer in the case of non-moving unstable particles? In other words,
we should compare the decay law P0(t) with the decay law Pp(t) of the
moving relativistic unstable particle with the definite, constant momentum
~p = const. It is important to remember that the decay law Pp(t) does not
describe the quantum decay process of the moving particle in its rest frame
but describes the decay process of this particle seen by the observer in his
rest laboratory frame. One meets such a picture in numerous experiments
in the field of high-energy physics or when detecting cosmic rays: Detectors
of a finite volume are stationary in the frame of reference of the observer O
and stable or unstable particles together with their decay products passing
through the detector are recorded. According to the broadly shared opinion
reproduced in many textbooks, one expects that it should be

Pp(t) = P0(t/γ) (1)

in the considered case. This relation is a simple extension of the standard
time dilation formula to quantum decay processes. The question is: how
does the time dilation formula being the classical physics formula work in
the case of quantum decay processes? From the results reported in [1, 2, 4]
and obtained there for the model defined by Breit–Wigner mass (energy)
distribution function ω(m) = ωBW(m), it follows that relation (1) works in
this model only within a limited range of times: for no more than a few
lifetimes. What is more, it has been shown in [4] that for times longer
than few lifetimes, the difference between the correctly obtained survival
probability Pp(t) and P0(t/γ) is significant.

Now let us follow [1, 2] and calculate survival probabilities P0(t) and
Pp(t). Hamiltonian H and the momentum operator P have common eigen-
vectors |m; p〉. Momentum ~p is the eigenvalue of the momentum operator P .
There is in ~ = c = 1 units

P |m; p〉 = ~p |m; p〉 , (2)
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and
H|m; p〉 = E′(m, p) |m; p〉 . (3)

In the coordinate system of the unstable quantum state at rest, when ~p = 0,
we have |m; 0〉 = |m; p = 0〉

H|m; 0〉 = m |m; 0〉 , m ∈ σc(H) , (4)

where m ≡ E′(m, 0) and σc(H) is the continuous part of the spectrum of the
Hamiltonian H. Operators H and P act in the state space H. Eigenvectors
|m; p〉 are normalized as follows

〈

p;m|m′; p
〉

= δ
(

m−m′
)

. (5)

Now, we can model the moving unstable particle φ with constant mo-
mentum, ~p, as the following wave-packet |φp〉

|φp〉 =
∞
∫

µ0

ς(m) |m; p〉 dm, (6)

where expansion coefficients ς(m) are functions of the mass parameter m,
that is of the rest mass m, which is Lorentz invariant and, therefore, the
scalar functions ς(m) of m are also Lorentz invariant. (Here, µ0 is the
lower bound of the spectrum σc(H) of H). We require the state |φp〉 to be
normalized: So it has to be

∫∞
µ0

|ς(m)|2 dm = 1.

By means of relation (6) we can define the state vector |φ〉 def
= |φ0〉 ≡

|φp=0〉 ∈ H describing an unstable state in rest as follows:

|φ0〉 = |φ〉 =
∞
∫

µ0

ς(m)|m; 0〉 dm. (7)

This expansion and (4) allow one to find the amplitude a0(t) and to write

a0(t) ≡
∞
∫

µ0

ω(m) e− im t dm, (8)

where ω(m) ≡ |ς(m)|2 > 0.
We need also the probability amplitude ap(t) = 〈φp|φp(t)〉, which defines

the survival probability Pp(t) = |ap(t)|2. There is |φp(t)〉 def
= exp [−itH] |φp〉

in ~ = c = 1 units. We have the vector |φp〉 (see (6)) but we still need
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eigenvalues E′(m, p) solving Eq. (3). Vectors |φ〉, |φp〉 are elements of the
same state space H connected with the coordinate rest system of the ob-
server O: We are looking for the decay law of the moving particle mea-
sured by the observer O. If to assume for simplicity that P = (P1, 0, 0)
and that ~v = (v1, 0, 0) ≡ (v, 0, 0), then there is ~p = (p, 0, 0) for the eigen-
values ~p of the momentum operator P . Let Λp,m be the Lorentz trans-
formation from the reference frame O, where the momentum of the un-
stable particle considered is zero, ~p = 0, into the frame O′, where the
momentum of this particle is ~p ≡ (p, 0, 0) 6= 0 and p ≥ 0, or, equiv-

alently, where its velocity equals ~v = ~vp,m ≡ ~p
mγm

(where m is the rest

mass and γm ≡
√

p2 + (m)2/m). In this case, the corresponding 4-vectors
are: ℘ = (E/c, 0, 0, 0) ≡ (m, 0, 0, 0) ∈ O within the considered system of
units, and ℘′ = (E′/c, p, 0, 0) ≡ (E′, p, 0, 0) = Λp,m ℘ ∈ O′. There is ℘′·℘′ ≡
(Λp,m ℘) · (Λp,m ℘) = ℘ · ℘ in Minkowski space, which is an effect of the
Lorentz invariance. (Here, the dot denotes the scalar product in Minkowski
space). Hence, in our case: ℘′ · ℘′ ≡ (E′)2 − p2 = m2 because ℘ · ℘ ≡ m2

and thus (E′)2 ≡ (E′(m, p))2 = p2 +m2.
Another way to find E′(m, p) is to use the unitary representation,

U(Λp,m) of the transformation Λp,m, which acts in the Hilbert space H of
states |φ〉 ≡ |φ; 0〉, |φp〉 ∈ H: One can show that the vector U(Λp,m)|m; 0〉
is the common eigenvector for operators H and P , that is

|m; p〉 ≡ U(Λp,m)|m; 0〉

(see, e.g. [19]). Indeed, taking into account that operators H and P form a
4-vector Pν = (P0,P ) ≡ (P0, P1, 0, 0) and P0 ≡ H, we have

U−1(Λp,m)PνU(Λp,m) = Λp,m; νλ Pλ ,

where ν, λ = 0, 1, 2, 3 (see, e.g., [19], Chap. 4). From this general transfor-
mation rule, it follows that

U−1(Λp,m)P0U(Λp,m) = γm (P0 + vm P1)

≡ γm(H + vm P1) . (9)

Based on this relation, one can show that vectors U(Λp,m)|m; 0〉 are eigen-
vectors for the Hamiltonian H. There is

H U(Λp,m)|m; 0〉 = U(Λp,m)U−1(Λp,m)H U(Λp,m)|m; 0〉
= γm U(Λp,m) (H + vm P1) |m; 0〉 . (10)

The Lorentz factor γm corresponds to the rest mass m being the eigenvalue
of the vector |m; 0〉. There are γm 6=γm′ and vm 6= vm′ for m 6= m′. From (2),



Non-classical Behavior of Moving Relativistic Unstable Particles 1417

it follows that P1 |m; 0〉 = 0 for p = 0, which means that using (4), relation
(10) can be rewritten as follows:

H U(Λp,m)|m; 0〉 = mγm U(Λp,m)|m; 0〉 . (11)

Taking into account the form of the γm forced by the condition p = const,
one concludes that, in fact, the eigenvalue found, mγm, equals mγm ≡
√

p2 +m2. This is exactly the same result as that at the conclusion follow-

ing from the Lorentz invariance mentioned earlier: E′(m, p) =
√

p2 +m2,
which shows that the above considerations are self-consistent.

Similarly, one can show that vectors U(Λp,m)|m; 0〉 are the eigenvectors
of the momentum operator P for the eigenvalue mγm vm ≡ p, that is that
U(Λp,m)|m; 0〉 ≡ |m; p〉 which was to show.

Thus, finally, we come to desired result

H|m; p〉 =
√

p2 +m2 |m; p〉 (12)

which replaces Eq. (3).
Now, using (12) and equation (6), we obtain the final, required relation

for the amplitude ap(t)

ap(t) =

∞
∫

µ0

ω(m) e− i
√

p2 +m2 t dm. (13)

The above derivation of the expression for ap(t) is similar to that of [4]. It is
based on [19] and it is reproduced here for the convenience of readers. This
is a shortened and slightly changed, simplified version of the considerations
presented in [1] and mainly in [2], and more explanations and more details
can be found therein and in [20, 21], where this formula was derived using
the quantum field theory approach.

3. Results of numerical studies

According to the literature a reasonable simplified representation of the
density of the mass distribution is to choose the Breit–Wigner form ωBW(m)
for ω(m), which under rather general condition approximates sufficiently well
many real systems [1, 9, 13]

ωBW(m)
def
=

N

2π
Θ(m− µ0)

Γ0

(m−m0)
2 +

(

Γ0

2

)2 , (14)

where N is a normalization constant and Θ(m) is the unit step function, m0

is the rest mass of the particle, and Γ0 is the decay rate of the particle in the
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rest. Inserting ω(m) ≡ ωBW(m) into (8) and into (13), one can find decay
curves (survival probabilities) P0(t) and Pp(t). Results of numerical calcu-
lations are presented in Figs. 1 and 2, where calculations were performed for
µ0 = 0, E0/Γ0 ≡ m0/Γ0 = 1000 and cp/Γ0 ≡ p/Γ0 = 1000. Values of these
parameters correspond to γ =

√
2, which is very close to γ from the exper-

iment performed by the GSI team [5, 6] and this is why such values were
chosen in our considerations. Similar calculations were performed in [4] but
for different and less realistic values of the ratio m0/Γ0: For m0/Γ0 = 10, 25
and 100 and different p/Γ0. According to the literature, for laboratory sys-
tems, a typical value of the ratio m0/Γ0 is m0/Γ0 ≥ O(103–106) (see e.g.

[22]), therefore, the choice m0/Γ0 = 1000 seems to be reasonable and more
realistic than those used in [4].

Fig. 1. Decay curves obtained for ωBW(m) given by Eq. (14). Axes: x = t/τ0
— time t is measured in lifetimes τ0, y — survival probabilities. Panel A: the

logarithmic scales, (a) the decay curve Pp(t), (b) the decay curve P0(t/γ), (c) the

decay curve P0(t); Panel B: (a) Pp(t), (b) P0(t/γ), (c) P0(t) .

Results presented in Figs. 1 and 2 show that in the case of ω(m) having
the Breit–Wigner form, the survival probabilities P0(t/γ) and Pp(t) overlap
for not too long times when Pp(t) has the canonical, that is the exponential
form. This observation confirms conclusions drawn in [1, 2, 4]. On the other
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A

B

C

Fig. 2. Decay curves obtained for ωBW(m) given by Eq. (14). Axes: x = t/τ0 and

y — survival probabilities: (a) the decay curve Pp(t), (b) the decay curve P0(t/γ),

(c) the decay curve P0(t).

hand, results presented in panel A of Fig. 1 and Fig. 2 show that in the
case of moving relativistic unstable particles, the transition times region,
when the canonical form of the survival probability Pp(t) transforms into
inverse power-like form of t, begins much earlier than in the case of this
particle observed in its rest coordinate system and described by P0(t). This
observation agrees with results obtained in [4].
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To be sure that the above conclusions are valid not only in the approxi-
mate case ωBW(m) of the density of the mass distribution ω(m), we should
consider a more general form of ω(m). The most general condition for ω(m)
following from (8) is that ω(m) ∈ L1(−∞,∞). So, if to assume that
ω(m) ∈ L1(−∞,∞) and additionally that ω(m) = 0 for m < µ0, ω(µ0 = 0)
and ω(m) ≥ 0 for m > µ0, that is that

ω(m) = Θ(m− µ0) (m− µ0)
κ+l ̺(m) , (15)

(where 0 ≤ κ < 1, l = 0, 1, 2, . . . ;), and ̺(µ0)
def
= ̺0 > 0, ̺(m) ≥ 0 for m >

µ0 and ̺(k)(m) = d
dm ̺(m), (k = 0, 1, . . . , n) exist and they are continuous

in [µ0,∞), and limits limm→µ0+ ̺(k)(m)
def
= ̺

(k)
0 exist, and

lim
m→∞

(m− µ0)
κ+l ̺(k)(m) = 0

for all above-mentioned k, then one finds for l = 0 that in the rest system
(see [14, 15])

a0(t) ∼
t→∞

(−1) e−iµ0t
[(

− i

t

)κ+1
Γ (κ+ 1) ̺0 (16)

+ κ
(

− i

t

)κ+2
Γ (κ+ 2) ̺

(1)
0 + . . .

]

= alt(t) ,

where Γ (x) is Euler’s gamma function. Hence, one finds that, e.g. for κ =
1/2, the leading term of alt(t) has the following form:

alt(t) ≃ (−1) e−iµ0t
√
π

2

[(

− i

t

)3/2
̺0 + . . .

]

. (17)

From an analysis of general properties of the mass (energy) distribution
functions ω(m) of real unstable systems, it follows that they have prop-
erties similar to the scattering amplitude, i.e., they can be decomposed
into a threshold factor, a pole-function, with a simple pole (often mod-
eled by ωBW(m)) and a smooth form factor f(m) [9, 13]. This means that
̺(m) in (15) should have the following form ̺(m) = ωBW(m) f(m), where
f(m) → 0 as m → ∞. Guided by this observation, we follow [13] and assume
that

ω(m) = N
√
m− µ0

√
Γ0

(m−m0)2 + (Γ0/2)2
e
−η m

m0−µ0 (18)

with η > 0. The asymptotic form of the survival amplitude a0(t) for such a
ω(m) is given by relation (17). Hence, one finds that at late times t → ∞
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there is P0(t) ∼ 1/t3 in the case considered. Decay curves corresponding
to ω(m) defined by (18) were find numerically for the case of the particle
decaying in the rest system (the survival probability P0(t)) as well as for the
moving particle (the non-decay probability Pp(t)). Results are presented
in Figs. 3 and 4. In order to compare them with the results obtained for
ωBW(m), calculations were performed for the same ratios as in that case:
m0/Γ0 = p/Γ0 = 1000, and µ0 = 0. The ratio ηΓ0/(m0 − µ0) ≡ ηΓ0/m0

was chosen to be ηΓ0/m0 = 0.01 (Fig. 3) and ηΓ0/m0 = 0.006 (Fig. 4).

Fig. 3. Decay curves obtained for ω(m) given by Eq. (18). Axes: x = t/τ0 and y —

survival probabilities; Panel A: the logarithmic scales, (a) the decay curve Pp(t),

(b) the decay curve P0(t/γ), (c) the decay curve P0(t); Panel B: (a) Pp(t), (b)

P0(t/γ), (c) P0(t). The case ηΓ0/m0 = 0.01.

From Figs. 3, 4, it is seen that in the case of ω(m) 6= ωBW(m), e.g.

when ω(m) has the form given by Eq. (18), the survival probabilities P0 and
P0(t/γ) have an analogous form as the corresponding probabilities obtained
for ω(m) = ωBW(m) both for relatively short times t ∼ τ0 and for long
times t ≫ τ0. On the other hand, in the case of the survival probabilities
Pp(t), the difference between decay curves calculated for the density ω(m)
given by formula (18) and for ω(m) = ωBW(m) is significant: The decay
curves Pp calculated for ω(m) defined in (18) have an oscillating form at
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Fig. 4. Decay curves obtained for ω(m) given by Eq. (18). Axes: x = t/τ0 and

y — survival probabilities. Panel A: the logarithmic scales, (a) the decay curve

Pp(t), (b) the decay curve P0(t/γ), (c) the decay curve P0(t); Panel B: Pp(t); Panel

C: P0(t/γ). The case ηΓ0/m0 = 0.006.

times t ∼ τ0 and shorter while those obtained for ωBW(m) do not have.
This is rather unexpected result but it shows that in the case of moving
relativistic particles quantum decay processes may have non-classical form
even at times shorter than the lifetime.
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4. Analysis of masses and velocities of unstable states

It was assumed in Sections 2 and 3 that the momentum ~p of the rel-
ativistic unstable particle moving like a free particle is conserved. Using
this assumption, one usually concludes that in such a case, the velocity of
the particle has to be conserved and constant in time. Such a conclusion is
true in the case of the classical particles: In the case of a classical object
moving like a free particle, the conservation of the momentum means that
the velocity of this object is constant in time. The question is whether such
a conclusion is true in the case of moving quantum unstable objects or not.
In order to solve this problem, we should analyze relativistic formula for the
momentum ~p, which within the assumed system of units has the following
form: ~p = mγ(~v )~v. In this relation, m is the rest mass of the moving
quantum or classical objects and ~v is the velocity of these objects. From the
point of view of the quantum theory, the problem is that the state vector
|φp〉 of the form of (6) corresponding to such a quantum object cannot be an
eigenvector of the Hamiltonian H (including the case of ~p = 0), otherwise, it
would be that Pp(t)= |〈φp|φp(t)〉|2= |〈φp| exp [−itH]φp〉|2≡1 for all times t.
The fact that the vector |φ〉 describing the unstable quantum object is not
the eigenvector for H means that the mass (energy) of this object is not
defined. Simply, the mass cannot take the exact constant value in this state
|φp〉. In such a case, quantum objects are characterized by the mass (energy)
distribution density ω(m) and the average mass

〈m〉 =
∞
∫

µ0

mω(m) dm,

or by the instantaneous mass (energy) mφ(t) (see, e.g. [23, 24]) but not by
the exact value of the mass.

Let us analyze the properties of the instantaneous mass. The instanta-
neous mass mφ(t) (energy) can be found using the exact effective Hamilto-
nian hφ(t) governing the time evolution in the subspace of states spanned
by the vector |φ〉 6= 0

hφ(t) =
i

a0(t)

∂a0(t)

∂t
, (19)

≡ 〈φ|H|φ(t)〉
〈φ|φ(t)〉 , (20)

which results from the Schrödinger equation when one looks for the exact
evolution equation for the mentioned subspace of states (for details, see
[14, 16, 23–26]), where the system of units ~ = c = 1 is used. It is assumed
that the vector |φ〉 is not an eigenvector of H: There does not exist any
number λ such that H|φ〉 = λ|φ〉.
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Within the assumed system of units, the instantaneous mass (energy) of
the unstable quantum system in the rest reference frame is the real part of
hφ(t)

mφ(t) = ℜ [hφ(t)] , (21)

and Γφ(t) = −2ℑ [hφ(t)] is the instantaneous decay rate.
Using relation (20), one can find some general properties of hφ(t) and

mφ(t). Indeed, if to rewrite the numerator of the right-hand side of (20) as
follows

〈φ|H|φ(t)〉 ≡ 〈φ|H|φ〉 a0(t) + 〈φ|H|φ(t)〉⊥ , (22)

where |φ(t)〉⊥ = Q|φ(t)〉, Q = I − P is the projector onto the subspace of
decay products, P = |φ〉〈φ| and 〈φ|φ(t)〉⊥ = 0, then one can see that there
is a permanent contribution of decay products described by |φ(t)〉⊥ to the
instantaneous mass (energy) of the unstable state considered. The intensity
of this contribution depends on time t. Using (20) and (22), one finds that

hφ(t) = 〈φ|H|φ〉 +
〈φ|H|φ(t)〉⊥

a0(t)
(23)

def
= 〈φ|H|φ〉 + Vφ(t) . (24)

From this relation, one can see that hφ(0) = 〈φ|H|φ〉 and Vφ(0) = 0 if
the matrix elements 〈φ|H|φ〉 exist. It is because |φ(t = 0)〉⊥ = 0 and
a0(t = 0) = 1.

Now, let us assume that 〈φ|H|φ〉 exists and i∂a0(t)∂t ≡ 〈φ|H|φ; t〉 is a
continuous function of time t for 0 ≤ t < ∞. If these assumptions are
satisfied then hφ(t) is a continuous function of time t for 0 ≤ t < ∞ and
hφ(0) = 〈φ|H|φ〉 exists. Now, if to assume that for 0 ≤ t1 6= t2 there
is hφ(0) = hφ(t1) = hφ(t2) = const, then from the continuity of hφ(t)
immediately follows that there should be hφ(t) = hφ(0) ≡ 〈φ|H|φ〉 = const
for any t ≥ 0. Unfortunately, such an observation contradicts implications
of (23), (24): From relations (23), (24), one concludes that it is possible if
and only if

Vφ(t > 0) = 0 (25)

for every t such that 0 < t < ∞. There is |a0(t)| > 0 for t < ∞, therefore

Vφ(t > 0) = 0 ⇔ 〈φ|H|φ(t > 0)〉⊥ = 0 , (26)

for every t > 0 and t < ∞. Relation (26) can take place if and only if

(〈φ|H)+ ≡ H|φ〉 ⊥ |φ(t > 0)〉⊥ for all t > 0 . (27)

This last condition leads to the conclusion that
{

|Vφ(t > 0)| = 0 for every t > 0
}

⇔ H|φ〉 = λ|φ〉 . (28)



Non-classical Behavior of Moving Relativistic Unstable Particles 1425

This observation means that

hφ(t) = const (29)

if and only if there is no any decay of the state |φ〉 considered (if there is
no any transitions between H‖ = PH and H⊥). So, in the case of unstable
systems, hφ(t > 0) 6= const, which means that the instantaneous mass (en-
ergy) mφ(t) ≡ ℜ [hφ(t)], and the instantaneous decay rate Γφ(t) cannot be
constant in time: mφ(t) 6= const and Γφ(t) 6= const. Results of numerical
calculations presented in Figs. 5–7 (or those one can find in [23, 24]) confirm
this conclusion. In Figs. 5–7, the function

κ(t) =
mφ(t)− µ0

m0 − µ0
(30)

is presented, which illustrates a typical form of time-varying mφ(t). (All
calculations were performed for (m0 − µ0)/Γ0 = 1000.)
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Fig. 5. The instantaneous mass mφ(t) as a function of time obtained for ωBW(m).

Axes: y = κ(t) − 1, where κ(t) is defined by (30); x = t/τφ: Time is measured in

lifetimes. The horizontal dashed line represents the value of mφ(t) = m0.

As it is seen from Figs. 5, 6, 7, the amplitude of variations of mφ(t) needs
not be large at relatively short times: It is almost negligible small but these
variations always exist (see Figs. 5–7 and results presented in [27]).
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Fig. 6. The instantaneous mass mφ(t) as a function of time obtained for ωBW(m).

Axes: y = κ(t), where κ(t) is defined by (30); x = t/τφ: Time is measured in

lifetimes. The horizontal dashed line represents the value of mφ(t) = m0.

When the time increases, the amplitude of these variations grows and
reaches maximal values for times t ∼ T . Now, if this particle is a moving
relativistic particle, then within the assumed system of units its momentum
equals ~p = mφ γ(~v )~v, where mφ is the rest mass of the particle φ, ~v is the
velocity. The total momentum (and energy) of the objects moving like a
free particle both quantum and classical must be conserved. Thus, it has to
be ~p (t1) = ~p (t2), that is mφ(t1) γ(~v )~v = mφ(t2) γ(~v )~v for any t1 6= t2. It
is possible only if changes of mφ(t) are compensated by suitable changes of
γ(~v )~v, that is by corresponding changes in the velocity ~v. (A similar mech-
anism was described in [23, 24], where its consequences were analyzed for
times of the order of the cross-over time T .) So the principle of conserva-
tion of the momentum forces compensation of changes in the instantaneous
mass mφ(t) through appropriate changes in the velocity of the moving un-
stable system. (It is a pirouette-like effect.) This is why the assumption
~v = const when considering moving quantum unstable objects leads to the
result P~v(t) = P0(γt), i.e., to the result never observed in experiments [21].
Thus, the assumption ~p = const mentioned seems to be the only acceptable
choice in the case of moving quantum unstable systems (see also a discussion
in [18]).
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Fig. 7. The same as in Fig. 6 for longer times.

Let us analyze now implications of the observation that the velocity ~v of
the quantum unstable system moving like a free particle cannot be constant
in time and it has to vary in time ~v ≡ ~v (t) 6= const. This property has

an effect that d~v
dt 6= 0. Now, let us denote by O′ the reference frame which

moves together with the moving quantum unstable system considered and
in which this system is in rest. This reference frame moves relative to O
with the velocity ~v = ~v (t) 6= const measured in O. The observation that
d~v
dt 6= 0 means that the rest reference frame O′ of the quantum unstable
system moving like a free particle cannot be the inertial one.

5. Discussion and conclusions

Let us begin from a general remark: In any case, we should remember
that relation (1) is the classical physics relation and that the quantum decay
processes are analyzed in this paper. The relativistic time-dilation relation
in its form known from classical physics does not need to manifest itself
in quantum processes in the same way as in classical physics processes. It
is also important to be aware that, as it was shown in [28], the Quantum
Field Theory models of the decay processes can be also described within the
formalism used in Sec. 2.
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All results presented in Figs. 1–4 show decay curves seen by the ob-
server O in his rest reference frame (curves P0(t/γ) correspond to the situa-
tion when the classical dilation relation (1) is assumed to be true in the case
of quantum decay processes). The time (the horizontal axes) in all these fig-
ures is the time measured by the observer in his rest system. These results
show that the Stefanovich–Shirokov theory [1, 2] predicts such a form of the
survival probability Pp(t) that the expected relation (1) holds to a very good
approximation only for times t ∼ τ0 and only for ω(m) = ωBW(m). The
visible difference between Pp(t) and P0(t/γ) takes place at times t ≫ τ0 but
this needs not mean that this theory is wrong: To this day, there have been
no published reports on experiments analyzing the form of the decay law of
moving relativistic unstable particles at times t ≫ τ0 or t ∼ T and t > T .

Analyzing the results presented in Figs. 1–4, we can conclude that prop-
erties of the survival probability of the moving unstable particle, Pp(t) =
|ap(t)|2, where ap(t) is calculated using Eq. (13) (i.e. the formula derived
in [1, 2]), are much more sensitive to the form of ω(m) than properties of
P0(t). It is a general observation. Another general conclusion following from
these results is that starting from times t from the transition time region,
t > T , the decay process of moving particles is much slower than one would
expect assuming the standard dilation relation (1).

From Figs. 3 and 4, it follows that in the case of moving relativistic
unstable particles, the standard relation (1) does not apply in the case of
the density ω(m) of the form of (18) and leads to the wrong conclusions for
such densities. Results presented in these figures show also that a conclusion
drawn in [1, 2, 4] on the basis of studies of the model defined by the Breit–
Wigner density ωBW(m) that relation (1) is valid for not more than few
lifetimes and is true only for the density ωBW(m), and need not be true
for densities ω(m) having a more general form. Similar limitations concern
the result presented in [3], where it is stressed that the approximations
used to derive the final result may work only for times no longer than a
few lifetimes. What is more, a detailed analysis shows that the final result
presented therein was obtained using the non-relativistic limit of

√

m2 + p2.

There was used the following approximation:
√

m2 + p2 ≃ m + p2

2m + . . .
(see [3], formula (20) and then (30a), (30b)). So, in general, relation (1) can
be considered as sufficiently accurate approximation only for not too long
times t if at these times Pp(t) has the same exponential form as the decay
laws obtained within classical physics considerations. If quantum effects
force Pp(t) behave non-classically at these times then relation (1) which is
the classical physics relation is not applicable.

In general, as it follows from the results obtained within the considered
theory and presented in Figs. 3 and 4 contrary to the standard expectations
based on the classical physics time dilation relation of the special relativity,
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some quantum effects should be registered earlier by the observer O study-
ing the behavior of moving unstable particles in relation to his rest reference
frame than the same effects observed by O in the case of the particles de-
caying in the common rest reference frame for the particle and the observer
O: The transition times region, that is the time region when contributions
from the exponential and late time non-exponential parts of the amplitude
ap(t) or a0(t) are comparable, which manifest itself as sharp and frequent
oscillations of the survival probability, takes place earlier for Pp(t) (Fig. 2,
the curve (a) and Figs. 3 and 4, panel A, curves (a)) than for P0(t) (Fig. 2,
the curve (c) and Figs. 3 and 4, panel A, curves (c)). The same observation
concerns results presented in panels B of Figs. 3 and 4.

These properties that is the form of the decay curves presented in panel A
of Figs. 1, 3 and 4 can be easily explained analyzing the equivalent expression
of formula (13) for ap(t)

ap(t) ≡
∞
∫

µ0

ω(m) e− imγm t dm = a<p(t) + a>p(t) , (31)

where γm can be equivalently written as γm ≡
√

1 + p2

m2 and within the used

system of units

a<p(t) ≡
p

∫

µ0

ω(m) e− imγm t dm, (32)

a>p(t) ≡
∞
∫

p

ω(m) e− imγm t dm. (33)

It is easy to see that for m < p, there is γm >
√
2 and γm becomes very

large for m ≪ p, which means that a<p(t) reaches values proper for times t
of the order of the crossover time T much earlier comparing with a0(t) given
by formula (8). Therefore, the visible oscillations of decay curves of moving
particles can begin earlier than in the case of the particles decaying in the
rest system. On the other hand, for m > p, one has γm <

√
2 and for m ≫ p,

we observe that and γm ≃ 1 which shows that contribution of a>p(t) into
ap(t) is almost the same as in the case the of a0(t). This explains why at
very late time the decay curves of moving unstable particles presented in
panels A of Figs. 1, 3 and 4 have the same form as in the case of particles
decaying in the rest system. The final form of the decay curve Pp(t) of the
moving unstable particle with a definite momentum depends on the balance
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of contributions to ap(t) coming from amplitudes a<p(t) and a>p(t) and on
the interference between them

Pp(t) = |ap(t)|2 ≡ |a<p(t) + a>p(t)|2 . (34)

The balance between contributions of |a<p(t)|2 and |a>p(t)|2 into Pp(t) de-
pends on the form and properties of ω(m).

In all figures, the time is measured in lifetimes τ0. So, fluctuations of
Pp(t) calculated for the density ω(m) = ωBW(m) and presented in Fig. 2
(the decay curve (a)) are rather unmeasurable: They take place at t ∼ 20τ0.
On the other hand, similar fluctuations appearing in the case of ω(m) given
by Eq. (18) and presented in Fig. 3 (panel B, the decay curve (a)) and
Fig. 4 (panel B) take place at times t ≤ τ0 and longer. This means that the
probability that they can be registered in some cases is very high.

Results of Sec. 4 explain the growing with time differences between Pp(t)
and P0(t/γ). Note that P0(t/γ) corresponds to the classical physics expecta-
tions. The cause of these differences is a pure quantum effect: fluctuations in
time of the instantaneous mass mφ(t) of the unstable quantum system. Sim-
ply for relatively long times, fluctuations of this instantaneous mass mφ(t)
become significant and grow with time t. Hence, variations of ~v (t) have to
be larger and larger. This means that deviations from the classical physics
predictions become also large and grow with the increasing fluctuations of
mφ(t).

Let us have a look again at Figs. 3 and 4. A more detailed analysis
of panels B in these figures indicates striking similarity of the decay curves
Pp(t) presented there by solid lines (curves P0(t/γ) are represented there by
long-dashed lines) to the results presented in Figs. 3–5 in [5] known as the
“GSI anomaly”. This suggests that the nature of GSI anomaly is probably
purely quantum-mechanical. (Readers can meet a several theoretical pro-
posals that attempt to explain the GSI anomaly: There are authors using
the interference of two mass eigenstates (see, e.g. [29]); Some authors use
neutrino oscillations [30]; In [31], time is used as a dynamical variable and
the time representation is used; In [32], a truncated Breit–Wigner mass dis-
tribution with an energy-dependent decay with Γ such that ω(m) = 0 for
m < Λ1 and ω(m) = 0 for m > Λ2 > Λ1 is applied, and so on.)

Let us make one more observation. Note that from properties of the
relativistic expression Pp(t), it follows that within the considered theory the
number of unstable particles which are able to survive up to times t longer
than the transition time T is much greater than one would expect perform-
ing suitable estimations using P0(t/γ) (see results presented in panels A of
Figs. 1, 3 and 4) and that the decay process at times t > T is significantly
slower than it results from the properties of P0(t/γ). These properties seem
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to be important when one analyzes some accelerator experiments with unsta-
ble particles of high energies or results of observations of some astrophysical
and cosmological process: In many astrophysical processes, an extremely
huge numbers of unstable particles are created and they all are moving with
relativistic velocities. These numbers are so huge that many of them may
survive up to times t ∼ T or even to much longer times t ≫ T . So, taking
into account the results presented in panels A of the above-mentioned fig-
ures, one can conclude that at asymptotically late times t > T , much more
unstable particles may be found undecayed than an observer from Earth
expects considering the classical relation (1).

All the above conclusions following from the results presented in Figs. 1–3
are the consequence of the form of the amplitude ap(t) derived in [1, 2] and
briefly described in Sec. 2. The question is if this amplitude reflects cor-
rectly real properties of the moving unstable quantum objects (particles)
and thus if the possible effects predicted using this ap(t) and described in
this section can occur: Only the suitable experiments can decide about this.
The problem is that all known tests of relation (1) were performed for times
t ∼ τ0 (where τ0 is the lifetime) (see, e.g. [33, 34]). In the light of the re-
sults presented in this paper and of the above discussion, one concludes that
the problem of the fundamental importance is to examine how the relativis-
tic dilation really works in quantum decay processes of moving relativistic
particles for very long times: From times longer than a few lifetimes up to
times longer than the cross-over time T . Only this kind of an experiment
can decide how time dilation being classical physics relation is manifested
in the quantum decay processes of relativistic particles.
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