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1 Introduction

Our interest in this paper is solvable interaction round the face (IRF) lattice models in

two dimensions. The solvable lattice models are important playground to study statistical

mechanics systems and their phase structure. For a review see [1, 2].

The IRF lattice models are strongly connected with two dimensional conformal field

theory. First, the models have a second order phase transition points which are described

by some conformal field theory. Second, the construction of the models themselves is

achieved through the data of some conformal field theories [3]. Apart from describing

second order phase transitions, the conformal field theories are important in string theory

compactifications, where they describe the world sheet dynamics, see, e.g., [4].

Our purpose in this paper is to describe the algebraic structure of solvable IRF lattice

models. We have already started this investigation in a previous paper [5], where it was

argued that any three blocks IRF model obeys the Birman-Murakami-Wenzl (BMW) al-

gebra [6, 7]. Here, we wish to prove this result in detail along with proving that the Yang

Baxter equation (YBE) is obeyed if the BMW algebra holds.

We then study four block theories and we show that they too obey the BMW algebra,

with a different skein relation. We exemplify this result by calculating numerically the

algebra from the 3× 3 fused SU(2) model [8].
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c

=
∑

dCc,d

[
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a b

]

×

a, z1

h, z3 v, z2

b, z4
d

Figure 1. Braiding matrix.

This result is enough to generate all the relations of the four block algebra. It is also

sufficient to define a new knot invariant, using the algebraic relations to ‘reduce’ words in

the braid group enveloping algebra. Thus, this algebraic structure is important in knot

theory. For a review on the application of IRF models to knot theory, see [2] and also [9].

The connection between solvable lattice models and BMW algebra was discussed pre-

viously in connection to the BCD models ref. [2], and refs. therein, for certain superalge-

bras [10] and in connection to the Izergin-Korepin model [11]. We agree with these works

and our results generalize them.

We hope that our results will further the understanding of solvable lattice models. An

important question is to figure out the algebra underlying the general n block lattice model,

with arbitrary n. We conjecture that the BMW algebra (without the skein relation) is a

sub-algebra for any number of blocks greater or equal three, n ≥ 3.

2 Interaction round the face lattice models

We define an Interaction Round the Face (IRF) lattice model from the braiding matrix of

a rational conformal field theory model. The Boltzmann weights obey the limit

lim
u→i∞

g(u)ω

(

a b

c d

∣

∣

∣

∣

u

)

= Cc,d

[

h v

a b

]

, (2.1)

where ω is the Boltzmann weight and C is the Braiding matrix of the conformal field

theory [12], i.e., the braiding of the four point conformal blocks (see figure 1), and g(u)

is some irrelevant function, used to make the limit finite. The primary fields h and v are

some fixed primary fields used in the definition of the IRF model and a, b, c, d are any of

the primary fields of the conformal field theory, O. The variables z1, z2, z3 and z4 are the

coordinates of the four point conformal block in the complex plane. We denote this IRF

model as IRF(O, h, v).

We find it convenient to define the face transfer matrix as the operator Xi,

〈

a1, a2, . . . , an|Xi(u)|a
′
1, a

′
2, . . . , a

′
n

〉

=





∏

j 6=i

δaj ,a′j



ω

(

ai−1 ai
a′i ai+1

∣

∣

∣

∣

u

)

. (2.2)

Our purpose is to introduce a solution of the Yang Baxter equation (YBE),

Xi(u)Xi+1(u+ v)Xi(v) = Xi+1(v)Xi(u+ v)Xi+1(u), (2.3)

which ensures that the transfer matrices for different spectral parameters, u, commute.
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The fusion rules of the primary fields h and v enter into the conformal data:

[h]× [v] =
n−1
∑

i=0

ψi, (2.4)

where [h] and [v] are some primary fields in the CFT O. The product is according to the

OPE (fusion rules) and n is the number of conformal blocks (for shortness blocks). The

eigenvalues of the braiding matrix are given by,

λi = ǫie
iπ(∆h+∆v−∆i), (2.5)

where ǫi = ±1, according to whether the product is symmetric or antisymmetric. We shall

assume that h = v and h is real, ψ0 = 1, the unit field, and that ǫi = (−1)i.

Denote by Xi the limit of the Brading matrix as u → i∞ (up to a factor). We then

see that Xi obeys an nth order polynomial equation,

n−1
∏

p=0

(Xi − λp) = 0. (2.6)

We define the projector operators by,

P a
i =

∏

p 6=a

[

Xi − λp

λa − λp

]

. (2.7)

The projection operators obey the relations,

n−1
∑

a=0

P a
i = 1, P a

i P
b
i = δa,bP

b
i ,

n−1
∑

a=0

λaP
a
i = Xi. (2.8)

In ref. [3], a conjecture for the trigonometric solution of the YBE was introduced. To

describe it, we define parameters

ζi = π(∆i+1 −∆i)/2, (2.9)

where ∆i is the dimension of ψi. The trigonometric solution of the Yang Baxter equation

is then,

Xi(u) =
n−1
∑

a=0

fa(u)P
a
i , (2.10)

where the functions fa(u) are

fa(u) =

[

a
∏

r=1

sin(ζr−1 − u)

][

n−1
∏

r=a+1

sin(ζr−1 + u)

]

/

[

n−1
∏

r=1

sin(ζr−1)

]

. (2.11)

For our purposes the following relations will be relevant. First, the Boltzmann weights

obey crossing symmetry:

ω

(

a b

c d

∣

∣

∣

∣

λ− u

)

=

[

GbGc

GaGd

]1/2

ω

(

c a

d b

∣

∣

∣

∣

u

)

, (2.12)
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where Ga is the crossing multiplier and λ = ζ0 is the crossing parameter.

Another relation is the inversion relation for the transfer matrices:

Xi(u)Xi(−u) = ρ(u)ρ(−u)1i, (2.13)

where

ρ(u) =
n−1
∏

r=1

sin(ζr−1 − u)

sin(ζr−1)
. (2.14)

3 Birman-Murakami-Wenzl algebra

Our aim is to connect the solvable IRF model with Birman-Murakami-Wenzl algebra [6, 7].

There are two generators of the algebra, Gi and Ei. The relations are,

GiGj = GjGi if |i− j| ≥ 2,

GiGi+1Gi = Gi+1GiGi+1, EiEi±1Ei = Ei,

Gi −G−1
i = m(1− Ei),

Gi±1GiEi±1 = EiGi±1Gi = EiEi±1, Gi±1EiGi±1 = G−1
i Ei±1G

−1
i ,

Gi±1EiEi±1 = G−1
i Ei±1, Ei±1EiGi±1 = Ei±1G

−1
i ,

GiEi = EiGi = l−1Ei, EiGi±1Ei = lEi. (3.1)

These relations imply the additional relations,

EiEj = EjEi if |i− j| ≥ 2, (Ei)
2 = bEi, (3.2)

where here b = (l − l−1)/m+ 1. Here l and m are the two parameters of the algebra.

Assume now the three block case, n = 3. We connect out solvable IRF lattice model

by defining

Gi = 4 sin(λ) sin(µ)e−iλXi, (3.3)

G−1
i = 4 sin(λ) sin(µ)eiλXt

i ,

where

Xt
i = lim

u→−i∞
e−2iuXi(u) (3.4)

and the normalization is fixed so that GiG
−1
i = 1i from the inversion relation, eq. (2.13).

The phase is arbitrary, and is fixed to be compatible with the BMW algebra. We also

define Ei = Xi(λ).

We propose the following Baxterization of the BMW algebra,

Ui(u) = 1−
i sin(u)

2 sin(λ) sin(µ)

[

e−i(u−λ)Gi − ei(u−λ)G−1
i

]

, (3.5)

where we identify λ = ζ0 and µ = ζ1.
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For three blocks, the face transfer matrix Xi(u), eq. (2.10), assumes the form,

Xi(u) =
[

P 0
i sin(ζ0 + u) sin(ζ1 + u) + P 1

i sin(ζ0 − u) sin(ζ1 + u) (3.6)

+P 2
i sin(ζ0 − u) sin(ζ1 − u)

]

/ [sin(ζ0) sin(ζ1)] .

We can then see that with this definition, the Baxterized BMW algebra, Ui(u), eq. (3.5),

and the face transfer matrix, are identical:

Ui(u) = Xi(u). (3.7)

We also identify

Ei = Ui(λ) = Ei(λ). (3.8)

Several relations are evident from the definitions of Xi(u) and Ui(u). First, from the

crossing symmetry, eq. (2.12), we find that

E

(

a b

c d

)

=

(

GbGc

GaGd

)1/2

δa,d, and EiEi±1Ei = Ei. (3.9)

From the definition of Ei in terms of projection operators, we find,

E2
i = bEi, where b =

sin(2λ) sin(µ+ λ)

sin(λ) sin(µ)
. (3.10)

Thus Ei obeys the Temperley-Lieb algebra. It is noteworthy that for any number of blocks,

the Temperley-Lieb algebra is obeyed with

b =
n−2
∏

r=0

sin(λ+ ζr)

sin(ζr)
.

Another relation that is evident is the braiding relation,

GiGi+1Gi = Gi+1GiGi+1,

GiGj = GjGi if |i− j| ≥ 2.
(3.11)

From the definition of Ei we find the skein relation,

Gi −G−1
i = m(1− Ei), (3.12)

where we identify

m = −2i sin(µ), (3.13)

as one of the parameters of the BMW algebra.

Another relation, which is evident from the definition of the face transfer matrix, Xi(u),

eq. (3.6), is

GiEi = EiGi = l−1Ei, (3.14)

where the parameter l is given by,

l = −ei(2λ+µ), (3.15)
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which is the second parameter of the BMW algebra. We note, in passing, that this relation,

eq. (3.14) is obeyed by any number of blocks, greater than two, with some value of l.

One can easily calculate

b = (l − l−1)/m+ 1, (3.16)

which is the relation required by the BMW algebra.

Once establishing these evident relations, which form part of the BMW algebra, we

wish to prove that the face transfer matrix, Xi(u), obeys the Yang Baxter equation if and

only if Gi and Ei obey the relations of the BMW algebra.

For this purpose, we convert the Yang-Baxter equation to a set of algebraic equations

obeyed by Gi and Ei. We do this by inserting Xi(u), eq. (3.6), into the YBE, eq. (2.3).

We then expand the YBE in terms of Gi, Ei and G−1
i , in powers of eiu and eiv. We get 19

equations and solve them in terms of the ‘basis’ elements which is BiBi+1Bi, where Bi is

either Gi, Ei or G
−1
i . We get from this 19 equations which are listed in appendix A.

We wish to show that these equations hold, if and only if, the BMW algebra holds.

There are 12 equations which contain a single term only. For example, eq. (A.10) is just the

braiding relation, eq. (3.11), which we know that it holds. Similarly, eqs. (A.1)–(A.4), (A.9),

are the same braiding relation, where we multiply by Gi or Gi+1 from the left and right.

Thus, these equations are all equivalent to the braiding relation, eq. (3.11).

The rest of the one-term equations are all equivalent to one equation. In particular,

eqs. (A.11), (A.19) are directly seen to be the BMW relation,

EiGi±1Gi = Gi±1GiEi±1. (3.17)

The rest of the relations, eqs. (A.4), (A.6), (A.11), (A.12), (A.17) are then seen to be

equivalent to this relation, eq. (3.17), by multiplying the l.h.s. and the r.h.s. by the algebra

elements Gi or Gi+1.

We get now to the 7 ‘composite’ relations (that is having more than one term). These

vary in complexity. First consider the relation (A.5). Using the skein relation, eq. (3.12),

we substitute in this relation G−1
j → −m + mEj + Gj , where j = i or i + 1. Then, the

relation (A.5) becomes,

0 = (m+ 1/s2 − s2)(−EiEi+1Ei + Ei+1EiEi+1). (3.18)

Now, since m = −2i sin(ζ1) = s2 − 1/s2, this equation is seen to hold. The relation (A.14)

is very similar and is shown to hold in the same way.

Consider now the relation eq. (A.7). Again we substitute G−1
j → −m+mEj +Gj for

j = i or i + 1. We find using the relation EiEi±1Ei = Ei (the Temperley Lieb relation)

that this equation is zero, if and only if,

EiGi±1Ei = lEi. (3.19)

This proves one direction of our assertion. Namely, that if the Yang Baxter equation

holds then the BMW algebra follows. This is because the BMW algebra is generated by

precisely the relations we found [6, 7]. These are:

– 6 –
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1) The skein relation: Gi −G−1
i = m(1− Ei).

2) Braid relations: GiGj = GjGi if |i− j| ≥ 2, and GiGi+1Gi = Gi+1GiGi+1.

3) Tangle relations: EiEi±1Ei = Ei and Gi±1GiEi±1 = EiGi±1Gi.

4) Delooping relations: GiEi = EiGi = l−1Ei and EiGi±1Ei = lEi.

Precisely, these relations we found to hold and thus we proved that the Birman-

Murakami-Wenzl algebra holds if the Yang Baxter equation holds.

The rest of the relations can be seen (with some effort) to hold if the BMW algebra

holds. The calculations are rather involved and we omit them. This proves that the YBE

holds if the BMW algebra is obeyed. We arrive at the conclusion that the Yang Baxter

equation is fulfilled, if and only if, the Birman-Murakami-Wenzl algebra is obeyed. Thus,

we proved that any three block integrable lattice model obeys the BMW algebra and it is

integrable if the BMW algebra holds.

4 Four blocks lattice IRF models

We turn now to the four block case. The algebra that governs this models is termed 4-CB

(4 Conformal Braiding) algebra. We do not know all the relations of the 4-CB algebra yet.

However, the relations that we know are enough to span the algebra.

We denote by BMW′ the BMW as described earlier, eq. (3.1), along with the Temperley

Lieb algebra, eq. (3.2) (with a different coefficient b), with all the relations, except, the

skein relation. Our first claim is that this algebra BMW′, is a sub-algebra of the 4-CB

algebra. In other words, the BMW algebra is obeyed, except, obviously, the skein relation

which is different. The BMW′ algebra is generated by Gi, G
−1
i and Ei, which are defined

below. In fact, we conjecture that the BMW′ algebra is obeyed by any number of blocks

greater than two, or, it is a sub-algebra of the n-CB algebra for n ≥ 3, again generated

by Ei, Gi and G−1
i , which are defined similarly. This in analogy to the Temperley-Lieb

algebra which, as we proved, eq. (3.9), (3.10), holds for any theory with n ≥ 2 blocks,

generated by Ei.

As before, we define the 4-CB algebra as the algebra generated by Gi and Ei where

Gi = 8

[

2
∏

r=0

sin(ζr)

]

e−3iλ/2Xi,

G−1
i = 8

[

2
∏

r=0

sin(ζr)

]

e3iλ/2Xt
i ,

(4.1)

where ζr were defined in eq. (2.9), λ = ζ0 is the crossing multiplier, and

Xi = lim
u→i∞

e3iuXi(u), Xt
i = lim

u→−i∞
e−3iuXi(u). (4.2)

Again

Ei = Xi(λ). (4.3)

– 7 –



J
H
E
P
0
2
(
2
0
1
9
)
0
3
3

The factor in equation (4.1) is demanded by the inversion relation, eq. (2.13), used to

ensure that GiG
−1
i = 1i. The phase in the definition of Gi is arbitrary, and is set to ensure

the relations of the BMW′ algebra, as is seen below.

Let us consider the relations of the 4-CB algebra that we already know. First, we have

the Temperley-Lieb algebra for Ei which is proved to be obeyed, eq. (3.9),

EiEi±1Ei = Ei. (4.4)

In addition, we have,

E2
i = bEi, where b =

2
∏

r=0

sin(λ+ ζr)

sin(ζr)
. (4.5)

This we see by substituting u = λ in eq. (2.10) and using (P 0
i )

2 = P 0
i .

The next relations are

GiEi = EiGi = l−1Ei. (4.6)

These relations are verified by substituting Gi from the definition, eq. (4.1), and using

P a
i P

0
i = P 0

i P
a
i = δa,0P

0
i . We find for l the value,

l = iei(3λ/2+ζ0+ζ1+ζ2). (4.7)

Now, we know the braiding relations for Gi:

GiGj = GjGi if |i− j| ≥ 2, GiGi+1Gi = Gi+1GiGi+1. (4.8)

The obvious relation not in BMW′ is the skein relation which is,

G2
i = α+ βEi + γGi + δG−1

i , (4.9)

where α, β, γ, δ are constants, which depend on ζr, r = 0, 1, 2. These constants are given

in appendix C, eq. (C.8).

From the skein relation, eq. (4.9) we find the relation

Gi±1GiEi±1 = EiGi±1Gi, (4.10)

which follows from the BMW′ algebra along with the skein relation.

We also find the relation,

EiG
2
i±1Ei = κEi, (4.11)

which again follows from the BMW′ algebra along with the skein relation, by substituting

the value of G2
i . The coefficient κ, which depends on ζi is determined from this and is

κ = αb+ β + γl + δl−1. (4.12)

For the SU(2) fused model (section 5) we have κ = 1, but this is not true for the general

four block model.

– 8 –
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In fact, the skein relation allows us to express G2
i in terms of Gi, Ei and G−1

i . Since, as

was argued above, the latter satisfy the BMW′ algebra, these relations are exactly enough to

span the entire 4-CB algebra, i.e., the four block algebra. The additional relations, involving

G2
i , which are only partially known, will be important as relations of the five block algebra.

Another consequence is that we can define a knot polynomial relation from the 4-

CB algebra. The knot polynomials are defined from words in the braid group enveloping

algebra, representing the particular knot, see e.g. [9]. Thus, this relations are exactly

enough to reduce every such word down to unity. This defines a new knot invariant. The

details are given in appendix D.

5 The fused 3 × 3 SU(2) model

Let us give now a concrete example of a four block IRF lattice model. This is the model

IRF(SU(2)k, [3], [3]). Namely, the conformal field theory O is SU(2)k and the fields h = v =

[3], i.e., the isospin 3/2 representation. We denote by l the isospin of the representation

and l = 0, 1, 2, . . . , k.

The fields appearing in the fusion product of h× v are

[3]× [3] = [0] + [2] + [4] + [6]. (5.1)

So, this is a four block theory.

The dimension formula for SU(2)k for the representation [l] is

∆l =
l(l + 2)

4(k + 2)
. (5.2)

The parameters ζi are given by

ζ0 = λ =
π

2
(∆2 −∆0) =

π

k + 2
, (5.3)

ζ1 =
π

2
(∆4 −∆2) = 2λ, (5.4)

and

ζ2 =
π

2
(∆6 −∆4) = 3λ. (5.5)

The Boltzmann weights of this model are listed in appendix B. We checked that all the

relations described by eq. (3.1), (3.2), except for the skein relation, are obeyed, numerically.

In particular, we verified the BMW′ algebra described there. The parameters l and b are

seen to be,

l = iei(3λ/2+ζ0+ζ1+ζ2) = iei(15λ/2), b =
sin(4λ)

sin(λ)
, (5.6)

in accordance with eqs. (4.5), (4.7). We checked the algebra at levels k = 8, 10, 11. We

find a complete agreement with the BMW′ algebra, as described in section 4. We were not

able to check this algebra for general k due to the complexity of the calculation.

We also checked that the algebraic relations coming from expanding the YBE are all

obeyed for this four block model. The details are given in appendix C.

– 9 –



J
H
E
P
0
2
(
2
0
1
9
)
0
3
3

6 Discussion

In this paper, and the previous one [5], we investigated the algebraic structure of solvable

lattice models. The related algebras were termed n-CB algebras, where n is the number

of blocks. We found that the 3-CB algebra is the Birman-Murakami-Wenzl algebra for

any three block theory. For the 4-CB algebra, we argued that it is generated by the

BMW algebra with a different skein relation. Clearly, more study is needed. In particular,

deciphering the general n-CB algebra, for any n, is a major challenge, left to future work.

Our present results indicate that the BMW algebra is a sub-algebra of the n-CB algebra

for any n, with different skein relations.

In physics, the knowledge of the algebraic structure of solvable lattice models would

contribute to the study of solvable lattice models, conformal field theory and integrable

soliton systems.

In mathematics, the studies of such models is important to knot theory, yielding new

knot invariants. In particular, as we indicated the 4-CB algebra gives a new knot invari-

ant which was described in appendix D. The IRF lattice models are also important in

combinatorics, yielding new Rogers-Ramanujan type identities. For examples, see [1].
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A The relations of the three block YBE algebra

We list the 19 relations obtained by expanding the YBE in powers of eiu and eiv. We

denote by ai,j,k[r, s, t] the element of the algebra ai[r]aj [s]ak[t], where ai[r] is Gr, G
−1
r or

Er according to whether i = 1, 2, 3, respectively. We define here,

s1 = e−iζ0 , s2 = e−iζ1 .

The 19 relations of the three block model are then calculated to be given as follows,

a2,1,1(i, i+ 1, i) = a1,1,2(i+ 1, i, i+ 1), (A.1)

a2,2,1(i, i+ 1, i) = a1,2,2(i+ 1, i, i+ 1), (A.2)

a2,2,2(i, i+ 1, i) = a2,2,2(i+ 1, i, i+ 1), (A.3)

a2,2,3(i, i+ 1, i) = a3,2,2(i+ 1, i, i+ 1), (A.4)

a3,3,1(i, i+ 1, i) =

(

1

s2
− s2

)

a3,3,3(i, i+ 1, i) (A.5)

+

(

s2 −
1

s2

)

a3,3,3(i+ 1, i, i+ 1)

+a1,3,3(i+ 1, i, i+ 1)− a2,3,3(i+ 1, i, i+ 1)

+a3,3,2(i, i + 1, i),
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a3,2,2(i, i+ 1, i) = a2,2,3(i+ 1, i, i+ 1), (A.6)

a3,1,3(i, i+ 1, i) =
a3,2,3(i, i+ 1, i)

s41
−

a3,2,3(i+ 1, i, i+ 1)

s1 4
(A.7)

+

(

s22 − 1
)

a3,3,3(i, i+ 1, i)

s21 s2

+

(

1− s22
)

a3,3,3(i+ 1, i, i+ 1)

s21s2
+ a3,1,3(i+ 1, i, i+ 1),

a1,2,2(i, i+ 1, i) = a2,2,1(i+ 1, i, i+ 1), (A.8)

a1,1,2(i, i+ 1, i) = a2,1,1(i+ 1, i, i+ 1), (A.9)

a1,1,1(i, i+ 1, i) = a1,1,1(i+ 1, i, i+ 1), (A.10)

a1,1,3(i, i+ 1, i) = a3,1,1(i+ 1, i, i+ 1), (A.11)

a2,3,1(i, i+ 1, i) = a1,3,2(i+ 1, i, i+ 1), (A.12)

a2,1,3(i, i+ 1, i) = −

(

s21 − 1
) (

s22 − 1
)2

a3,3,3(i, i+ 1, i)

s21 s22
(A.13)

+

(

s21 − 1
) (

s22 − 1
)2

a3,3,3(i+ 1, i, i+ 1)

s21 s22

−

(

s21 − 1
) (

s22 − 1
)

a1,3,3(i, i+ 1, i)

s21s2

+

(

s21 − 1
) (

s22 − 1
)

a3,3,1(i+ 1, i, i+ 1)

s21 s2

−
a1,2,3(i, i+ 1, i)

s21
+

a3,2,1(i+ 1, i, i+ 1)

s21

−

(

s21 − 1
) (

s22 − 1
)

a3,2,3(i, i+ 1, i)

s41s2

+

(

s21 − 1
) (

s22 − 1
)

a3,2,3(i+ 1, i, i+ 1)

s41 s2

+a3,1,2(i+ 1, i, i+ 1),

a2,3,3(i, i+ 1, i) =

(

s2 −
1

s2

)

a3,3,3(i, i+ 1, i) (A.14)

+

(

1

s2
− s2

)

a3,3,3(i+ 1, i, i+ 1)

+a1,3,3(i, i+ 1, i)− a3,3,1(i+ 1, i, i+ 1) + a3,3,2(i+ 1, i , i+ 1),

a3,1,2(i, i+ 1, i) =
s2 a1,2,1(i, i+ 1, i)
(

s21 − 1
) (

s22 − 1
) −

s2 a1,2,1(i+ 1, i, i+ 1)
(

s21 − 1
) (

s22 − 1
) (A.15)

−
s2 a2,1,2(i, i+ 1, i)
(

s21 − 1
) (

s22 − 1
) +

s2 a2,1,2(i+ 1, i, i+ 1)
(

s21 − 1
) (

s22 − 1
)

+

(

s21 − 1
) (

s22 − 1
)

a2,3,3(i+ 1, i, i+ 1)

s21 s2

−

(

s21 − 1
) (

s22 − 1
)

a3,3,2(i, i+ 1, i)

s21 s2

– 11 –
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+
a1,2,3(i, i+ 1, i)

s21
−

a2,3,2(i, i+ 1, i)

s21

+
a2,3,2(i+ 1, i, i+ 1)

s21
−

a3,2,1(i+ 1, i, i+ 1)

s21
+a2,1,3(i+ 1, i, i+ 1),

a1,3,1(i, i+ 1, i) = −

(

s21 − 1
) (

s22 − 1
)

a1,3,3(i, i+ 1, i)

s21 s2
(A.16)

+

(

s21 − 1
) (

s22 − 1
)

a2,3,3(i+ 1, i, i+ 1)

s21 s2

+

(

s21 − 1
) (

s22 − 1
)

a3,3,1(i+ 1, i, i+ 1)

s21 s2

−

(

s21 − 1
) (

s22 − 1
)

a3,3,2(i, i+ 1, i)

s21 s2

−
a2,3,2(i, i+ 1, i)

s21
+

a2,3,2(i+ 1, i, i+ 1)

s21
+a1,3,1(i+ 1, i, i+ 1),

a1,3,2(i, i+ 1, i) = a2,3,1(i+ 1, i, i+ 1), (A.17)

a3,2,1(i, i+ 1, i) = −
s21s2 a1,2,1(i, i+ 1, i)
(

s21 − 1
) (

s22 − 1
) +

s21s2 a1,2,1(i+ 1, i, i+ 1)
(

s21 − 1
) (

s22 − 1
) (A.18)

+
s21s2 a2,1,2(i, i+ 1, i)
(

s21 − 1
) (

s22 − 1
) −

s21s2 a2,1,2(i+ 1, i, i+ 1)
(

s21 − 1
) (

s22 − 1
)

−

(

s21 − 1
) (

s22 − 1
)

a3,2,3(i, i+ 1, i)

s21 s2

+

(

s21 − 1
) (

s22 − 1
)

a3,2,3(i+ 1, i, i+ 1)

s21 s2

−a1,2,3(i, i+ 1, i) + a1,2,3(i+ 1, i, i+ 1) + a2,3,2(i, i+ 1, i)

−a2,3,2(i+ 1, i, i+ 1) + a3,2,1(i+ 1, i, i+ 1),

a3,1,1(i, i+ 1, i) = a1,1,3(i+ 1, i, i+ 1). (A.19)

B Weights of the 3 × 3 fused model

These are the weights of the model IRF(SU(2)k, [3], [3]). We use the notation,

λ =
π

k + 2
(B.1)

and

s[x] =
sin(x)

sin(λ)
. (B.2)

The weights are taken from ref. [13], based on the calculations of ref. [8]. We shifted the

fields a → a + 1 so the weights range over a = 1, 2, . . . , k + 1, namely, a is the dimension

of the SU(2) representation.

ω

(

a± 3 a

a a± 3

∣

∣

∣

∣

u

)

=
s((a± 1)λ∓ u)s((a± 2)λ∓ u)s((a± 3)λ∓ u)

s((a± 1)λ)s((a± 2)λ)s((a± 3)λ)
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ω

(

a∓ 3 a

a a± 3

∣

∣

∣

∣

u

)

=
s(λ− u)s(2λ− u)s(3λ− u)

s(2λ)s(3λ)

ω

(

a± 1 a

a a± 3

∣

∣

∣

∣

u

)

= ω

(

a± 3 a

a a± 1

∣

∣

∣

∣

u

)

=
s(λ− u)s((a± 1)λ∓ u)s((a± 2)λ∓ u)

s((a± 1)λ)s((a± 2)λ)

ω

(

a∓ 1 a

a a± 3

∣

∣

∣

∣

u

)

= ω

(

a± 3 a

a a∓ 1

∣

∣

∣

∣

u

)

=
s(λ− u)s(2λ− u)s((a± 1)λ∓ u)

s(2λ)s((a± 1)λ)

ω

(

a± 1 a

a a± 1

∣

∣

∣

∣

u

)

=
s((a± 1)λ∓ u)s((a± 1)λ± u)s((a± 2)λ∓ u)

s((a± 1)λ)2s((a± 2)λ)

−
s(2λ)s((a− 2)λ)s((a+ 2)λ)s(λ− u)s(u)s((a± 1)λ∓ u)

s(3λ)s((a∓ 1)λ)s((a± 1)λ)2

ω

(

a∓ 1 a

a a± 1

∣

∣

∣

∣

u

)

=
s(2λ)2s((a∓ 2)λ)s(λ− u)s(aλ± u)s((a± 1)λ∓ u)

s(3λ)s((a∓ 1)λ)2s((a± 1)λ)

−
s((a∓ 3)λ)s((a± 1)λ)s(2λ− u)s(λ− u)s(λ+ u)

s(2λ)s(3λ)s((a∓ 1)λ)2

ω

(

a± 3 a

a± 6 a± 3

∣

∣

∣

∣

u

)

= −
s((a± 4)λ)s((a± 5)λ)s((a± 6)λ)s(u)s(λ+ u)s(2λ+ u)

s(2λ)s(3λ)s((a± 1)λ)s((a± 2)λ)s((a± 3)λ)
(B.3)

ω

(

a± 3 a

a± 4 a± 3

∣

∣

∣

∣

u

)

=
s((a± 4)λ)s((a± 5)λ)s(u)s(λ+ u)s((a± 3)λ∓ u)

s(2λ)s(3λ)s((a± 1)λ)s((a± 2)λ)s((a± 3)λ)

ω

(

a± 1 a

a± 4 a± 3

∣

∣

∣

∣

u

)

= ω

(

a± 3 a

a± 4 a± 1

∣

∣

∣

∣

u

)

= −
s((a± 4)λ)s((a± 5)λ)s(u)s(u− λ)s(λ+ u)

s(2λ)s(3λ)s((a± 1)λ)s((a± 2)λ)

ω

(

a± 3 a

a± 2 a± 3

∣

∣

∣

∣

u

)

= −
s((a± 4)λ)s(u)s((a± 2)λ∓ u)s((a± 3)λ∓ u)

s(3λ)s((a± 1)λ)s((a± 2)λ)s((a± 3)λ)

ω

(

a± 1 a

a± 2 a± 3

∣

∣

∣

∣

u

)

= ω

(

a± 3 a

a± 2 a± 1

∣

∣

∣

∣

u

)

=
s((a± 4)λ)s(u)s(u− λ)s((a± 2)λ∓ u)

s(3λ)s((a± 1)λ)s((a± 2)λ)

ω

(

a∓ 1 a

a± 2 a± 3

∣

∣

∣

∣

u

)

= ω

(

a± 3 a

a± 2 a∓ 1

∣

∣

∣

∣

u

)

= −
s((a± 4)λ)s(2λ− u)s(λ− u)s(u)

s(2λ)s(3λ)s((a± 1)λ)

ω

(

a± 1 a

a± 4 a± 1

∣

∣

∣

∣

u

)

=
s(3λ)s((a± 3)λ)(s(a± 4)λ)s(u)s(u+ λ)s((a± 1)λ± u)

s(2λ)s((a− 1)λ)s((a+ 1)λ)s((a± 2)λ)

ω

(

a± 1 a

a± 2 a± 1

∣

∣

∣

∣

u

)

= −
s(aλ)s((a± 3)λ)s((a± 4)λ)s(u)2s(u− λ)

s(2λ)s(3λ)s((a± 1)λ)2s((a± 2)λ)

−
s((a± 3)λ)s(u)s(aλ± u)s((a± 1)λ∓ u)

s((a∓ 1)λ)s((a± 1)λ)2

ω

(

a∓ 1 a

a± 2 a± 1

∣

∣

∣

∣

u

)

= ω

(

a± 1 a

a± 2 a∓ 1

∣

∣

∣

∣

u

)

=
s((a± 3)λ)s(u)s(u− λ)s(aλ± u)

s((a− 1)λ)s((a+ 1)λ)

ω

(

a± 1 a

a∓ 2 a± 1

∣

∣

∣

∣

u

)

= −
s(3λ)s((a∓ 2)λ)s(u)s(aλ∓ u)s((a± 1)λ∓ u)

s((a− 1)λ)s((a+ 1)λ)s((a± 2)λ)
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C The algebraic expansion of the four block YBE

According to the conjecture in [3] (checked recently for 3-block case in [5]), the trigono-

metric solution of the YBE, eq. (2.3) is given by eq. (2.10). The generators of the desired

algebra are defined to be proportional to the limiting values of Xi and Xt
i , arising in the

limit u → ±i∞.

Hence, in the four-block case we can identify

Gi = 8e
1

2
(−(3i))ζ0 sin(ζ0) sin(ζ1) sin(ζ2)

(

lim
u→i∞

exp(3iu)Xi(u)

)

(C.1)

G−1
i = 8e

1

2
(3i)ζ0 sin(ζ0) sin(ζ1) sin(ζ2)

(

lim
u→−i∞

exp(−3iu)Xi(u)

)

(C.2)

Ei = Xi(ζ0) (C.3)

Taking into account the properties of the projectors, eq. (2.8), we can also introduce forth

relation for the generator G2
i .

Explicitly we have

Gi = ie−
5

2
iζ0−iζ1−iζ2

(

e2iζ0P 1
i − e2iζ0+2iζ1P 2

i (C.4)

+ e2iζ0+2iζ1+2iζ2P 3
i − P 0

i

)

,

G−1
i = ie

1

2
iζ0−iζ1−iζ2

(

e2iζ0+2iζ1+2iζ2P 0
i (C.5)

− e2iζ1+2iζ2 P 1
i + e2iζ2P 2

i − P 3
i

)

,

Ei =
e−3iζ0

(

1 + e2iζ0
) (

−1 + eiζ0+iζ1
) (

1 + eiζ0+iζ1
)

(−1 + eiζ1) (1 + eiζ1) (−1 + eiζ2) (1 + eiζ2)
(C.6)

×
(

−1 + eiζ0+iζ2
)(

1 + eiζ0+iζ2
)

P 0
i ,

G2
i = −e−5iζ0−2iζ1−2iζ2P 0

i − e−iζ0−2i ζ1−2iζ2P 1
i (C.7)

− e−iζ0+2iζ1−2iζ2 P 2
i − e−iζ0+2iζ1+2iζ2P 3

i .

That is we have the system of four linear equations, which allows to express four

projectors in terms of four generators Gi, G
−1
i , Ei and G2

i . Using these expressions for

projectors and eq. (2.10), we get Xi(u) expressed in terms of the desired algebra generators.

Finally, we note that the dependence on the spectral parameters u, v in the YBE equa-

tion, enters only through the coefficients fa(u). So that The YBE becomes a polynomial

equation in the two variables eiu and eiv, which is equivalent to the requirement that all the

coefficients are equal to zero. This gives a set of three-linear relations for the new algebra

generators.

– 14 –
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→

Type I

→

Type II

→

Type III

Figure 2. Reidemeister moves.

By using the equation
∑

a P
a
i = 1 we get the skein relation expressing G2

i in terms of

Gi, Ei and G−1
i . The skein equation is then seen to be,

G2
i = ie−

1

2
iζ0−iζ1−iζ2

(

1− e2iζ1 + e2iζ1+2iζ2
)

Gi + ie−
3

2
iζ0+iζ1−iζ2 G−1

i (C.8)

+
e−2iζ0−2iζ1−2iζ2

(

e2iζ1 − 1
) (

1 + e2iζ0+2iζ1+2iζ2
) (

e2iζ2 − 1
)

(e2iζ0+2iζ2 − 1)
Ei

− e−iζ0−2iζ2
(

1− e2iζ2 + e2iζ1+2iζ2
)

.

We define the coefficients α, β, γ and δ by equating eq. (C.8) to

G2
i = α+ βEi + γGi + δG−1

i . (C.9)

D New knot invariants

We define an invariant on a link diagram K as follows,

υ(K) = lw(K)L(K),

where w(K) is the writhe of the link K which is defined as the number of left crossings

minus the number of right crossings, and l is given by eq. (4.7) and is a parameter.

We define the link function L(K) as follows,

1) L(0) = 1,

2) L(Sr) = l−1L(S) and L(Sl) = lL(S),

3) L is unchanged under type II, III Reidemeister moves, see figure 2.

Here 0 is the unknot, S is a strand and Sr (respectively Sl) is the same strand with a

right-handed (respectively left-handed) curl added, as in type I Reidemeister move.

In addition L obeys the skein relations,

E2
i

= b

Ei

– 15 –
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and

G2
i

= α

1i

+ β

Ei

+ γ

Gi

+ δ

G−1
i

where α, β, γ, δ are given by eq. (C.8) and b by eq. (4.5). It also obeys, from the skein

relation, eq. (C.8), (C.9),

b = 1/β
(

1/l2 − α− γ/l − δl
)

.

This is a three parameter tangle algebra depending on ζ0, ζ1, ζ2. This tangle algebra

is isomorphic to the BMW′ algebra. The isomorphism is given by,

Gi 7−→ . . . . . .

1 i-1 i i+1 i+2 n

and Ei 7−→ . . . . . .

1 i-1 i i+1 i+2 n

The BMW′ algebra ensures invariance under Reidemeister moves and skein relations.

Using this tangle algebra any knot invariant can be calculated. The fact that this

L(K) exists and is a regular isotopy invariant follows from the consistency of the BMW′

algebra, for which we have explicit representation for some ζi, which correspond to some

solvable lattice model. Thus, υ(K) is an invariant (ambient isotopy invariant) of oriented

links. For the general values of the parameters, we did not prove the consistency of the

BMW′ algebra, and this is left to further work.

This defines a three parameter link invariant. It is, in fact, the same invariant defined

through the Boltzmann weights in refs. [2, 9], which we term the IRF invariant. The

advantage of our approach is the following. First, our link invariant can be calculated by

the skein relations, unlike the IRF knot invariant where one cannot express G2
i , for four

block theories. Second, our invariant holds for all the values of the parameters ζ0, ζ1, ζ2,

and is thus a three parameter link invariant, whereas the IRF invariant is special to such

values of the parameters appearing in conformal field theory.

The benefit of our three parameter link invariant is that it could be used to distinguish

links which cannot be told apart by existing link invariants.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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