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In this work, we show the robustness of uberholography and its associated quantum error correcting code
against the breakdown of entanglement wedge in the presence of highly entropic mixed states in the bulk.
We show that for Cantor-setlike erasure in the boundary in AdS3=CFT2, the code distance is independent of
the mixed-state entropy in the bulk in the m → ∞ limit. We also show that for a Sierpinski triangle shaped
boundary subregion with fractal boundary erasures in AdS4=CFT3, bulk reconstruction is possible in the
presence of highly entropic mixed states in the bulk in the large m regime.
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I. INTRODUCTION

The study of quantum error correction has proven quite
fruitful in the context of AdS=CFT, from the resolution of
the commutator puzzle [1] to the formalization of bulk
reconstruction [2–5] to ideas on subregion duality [6]. For
recent reviews on holography and quantum error correc-
tion, see [7,8].
Increasingly, there is also interest in how holographic

studies of quantum error correction can influence quantum
error correction as applied in quantum computing. There
are some known limitations of existing nonholographic
quantum error correcting codes such as the surface code,
particularly in terms of their robustness against fractal
noise [9]. In a previous work [10], we demonstrated the
robustness of the holographic code and presumably codes
derived thereupon to such types of noise using entangle-
ment wedge-based arguments.
In the present work, we seek to expand upon this study by

studying robustness properties against fractal noise in the
presence of a black hole background in AdS=CFT, or
equivalently at states of finite temperature in the boundary
CFT.Theworkwill be divided as follows. InSecs. II and IIIwe
will give a brief review of state-specific bulk-reconstruction
and uberholography, as developed in [11,12], respectively.
In Sec. IV, wewill generalize this study to higher dimensions,

in the context of a black hole background, and demonstrate
that the robustness property continues to hold. Finally, wewill
give some concluding comments in Sec. V.

II. STATE-SPECIFIC RECONSTRUCTION

Recently it has been shown in [11] that there is a
macroscopic breakdown of the entanglement wedge when
the von Neumann entropy of an object in the bulk cannot be
ignored. In particular, this can occur when the bulk state is a
highly mixed state. While one way to get past this is to
purify those highly mixed states into, e.g., Bell pairs, the
existence of this breakdown nevertheless establishes the
fact that the entanglement wedge is state-specific in
general. An object that was defined in the study of such
breakdowns is the reconstruction wedge, defined by [11] as
the following:
Definition: The reconstruction wedge of a boundary

region A is the intersection of all entanglement wedges of A
for every state in the code subspace, pure or mixed. It is the
region of space-time within which bulk operators are
guaranteed to be reconstructible from the boundary in a
state-independent manner.
Recently, it has also become clear that the entropy of the

boundary at higher orders is no longer given by the RT
surface area, but a more generalized entropy is associated
with the quantum extremal surface, which is also defined in
a state-dependent way [13]. More recent works on quantum
error correction and quantum extremal surfaces have
further established the importance of state-dependent bulk
reconstruction [14]. Nonisometric codes [15] seem to
suggest some state dependence in the nonisometric encod-
ing in the sense of not modifying simple states but heavily
modifying complex states.
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The key idea is to relate the bulk entropy with the
boundary entropy while taking into account the entropy of
the bulk state. For a boundary subregion B corresponding
to a bulk subregion bwith a bulk state ρwith von Neumann
entropy SbðρÞ the entanglement entropy SðBÞρ is given
by [16]

SðBÞρ ¼
ABðbÞ
4G

þ SbðρÞ; ð1Þ

where G is Newton’s constant in 2þ 1 dimensions and
ABðbÞ is the area of the bulk surface bounding b.

III. UBERHOLOGRAPHY IN AdS3=CFT2

The scheme of uberholography in AdS3=CFT2 was first
proposed in [12] and was extended to AdS4=CFT3 in [10].
More literature related to uberholography can be found
in [17–19].
The idea of uberholography is as follows is: Given a

boundary subregion R, one punches a hole H from it
leaving disjoint boundary subregions R1, R2 and hole H as
shown in Figs. 1 and 2 with their respective entanglement
wedges. The hole H is punched such that with 0 < r < 1

jR1j ¼ jR2j ¼
�
r
2

�
jRj; jHj ¼ ð1 − rÞjRj: ð2Þ

For the same boundary subregion R, there are two
candidate surfaces that might be the minimal surface,
giving rise to two different candidate entanglement wedges.

Bulk reconstruction is possible when the RT surface (in
this dimension, a geodesic) corresponding to the candidate
entanglement wedge ϵ½R0� ¼ ϵ½R�nϵ½H� (Fig. 2) is smaller
than the one corresponding to ϵ½R0� ¼ ϵ½R1� ∪ ϵ½R2� (Fig. 1)
where ϵ½A� is the entanglement wedge in the bulk corre-
sponding to boundary subregion A and the RT surface of
this entanglement wedge is denoted by χA. The area of this
RT surface is simply given by [20,21]

jχAj ¼ 2L log

�jAj
a

�
; ð3Þ

where L is the AdS radius and jAj denotes the length of A.
The division of the boundary subregion R into H, R1 and
R2 imposes a constraint on the allowed values of r as it has
to satisfy

jχR1
j þ jχR2

j ≥ jχRj þ jχHj ð4Þ

at level 1.1 Solving the critical case saturating this inequal-
ity, one arrives at the value

rC ¼ 2ð
ffiffiffi
2

p
− 1Þ; ð5Þ

where rC is the critical value of r for the continuous phase
to be favored over the discontinuous one. We will drop the
subscript C from now on for convenience and just write r. It
is interesting to note here that as we increase the number of
iterations, the value of this critical r remains unchanged.
This property of m-independence breaks down by the
inclusion of bulk entropy Sb.

2

Recalling the definition of distance of the code with
operator algebra A in bulk region X to be

dðAXÞ ≤
jRminj
a

¼ 2m ¼
�jRj

a

�
α

; ð6Þ

where

α ¼ log 2
log 2=r

¼ 1

log2 ð
ffiffiffi
2

p þ 1Þ ¼ 0.786 ð7Þ

and Rmin is the union of boundary subregions remaining
after punching fractals holes until level m when the size of
the smallest subregion is of the order of short-distance
cutoff “a.”

FIG. 1. Surface χR0 ¼ χR1 ∪ χR2. Disconnected regions R1 and
R2 are drawn in red. The hole H is drawn in black. The shaded
region is the entanglement wedge ϵ½R0� ¼ ϵ½R1� ∪ ϵ½R2�.

FIG. 2. Surface χR0 ¼ χR ∪ χH . Disconnected regions R1 and
R2 are drawn in red. The hole H is drawn in black. The shaded
region is the entanglement wedge ϵ½R0� ¼ ϵ½R�nϵ½H�.

1Level 0 indicates no holes in the boundary, Level 1 refers to
punching out holes once, Level 2 twice and so on...

2The bulk entropy Sb could be arising from a pure or mixed
state. We shall be referring it as the entropy of the maximally
mixed state.
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A. Reconstruction wedge in AdS3=CFT2

There are two questions that we will address in this
section. First, does uberholography survive state-dependent
reconstruction, i.e., can we still perform bulk reconstruction
with fractal erasures in the boundary, when the bulk has a
mixed state with large von Neumann entropy? Second,
even if the scheme of reconstructing bulk information with
fractal erasures on the boundary survives, to reconstruct the
bulk information, how does the support on the boundary
change, i.e., does it increase with the introduction of a
maximally mixed state in the bulk? We find that the answer
to the first question is yes at every level of iteration and the
answer to second question turns out to be “no” to leading
order as m → ∞. The effect of entropy of the bulk state is
exponentially suppressed with increasing iteration.
Consider a state in the bulk with entropy Sb. At the first

iteration, for the continuous phase to dominate over the
discontinuous one, the following inequalitymust be satisfied:

jχR1
j þ jχR2

j ≥ jχRj þ jχHj þ 4GSb ð8Þ

hinting an upper bound on Sb for a scheme for bulk
reconstruction of deep interior operators to exist. This
perceived upper bound is given by

4GSb ≤ 2L log

�ðr=2Þ2
ð1 − rÞ

�
: ð9Þ

Rearranging, the critical condition for r is given by

ðr
2
Þ2

ð1 − rÞ ¼ e4GSb=2L: ð10Þ

Setting Sb ¼ 0, we recover the condition in [12]

ðr
2
Þ2

ð1 − rÞ ¼ 1; ð11Þ

giving us (5). Apparently it may look like from (9) that at
level 1, Sb is bounded above by a finite value and as the
bulk entropy becomes larger than this value, the connected
phase gets dominated by the disconnected one, implying
that information in the bulk can no longer be reconstructed.
But it is not the case, as we will show here. For simplicity,
let x ¼ e4GSb=2L, which gives us the inequality

r2 þ 4rx − 4x ≥ 0: ð12Þ

Solving for the critical case of equality, we get

r ¼ 2x

� ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

x

r
− 1

�
: ð13Þ

Setting x ¼ 1 (Sb ¼ 0), we recover the value of r as in (5).
But it is clear that 0 < r < 1 for any value of Sb, making

bulk reconstruction possible in principle. However, as we
increase Sb, r approaches 1, making it less viable for any
practical considerations (see Fig. 3).
Our central interest is in understanding the behavior at

large m. At level m of the fractal boundary erasure, the
disconnected phase has a RT surface given by:

jχR0 jdisconn ¼ 2L

�
2m log

�ðr
2
ÞmjRj
a

��
; ð14Þ

while the connected phase has a RT surface

jχR0 jconn¼2L

�
log

�jRj
a

�
þ
Xm
j¼1

2j−1 log

�ðr
2
Þj−1ð1−rÞjRj

a

��
:

ð15Þ

With a bulk state having entropy Sb, we arrive at the
following inequality in place of (9):

4GSb ≤ 2Lð2m − 1Þ log
�ðr=2Þ2
ð1 − rÞ

�
: ð16Þ

In the m → ∞ limit, bulk reconstructability holds for any
finite nonzero bulk entropy Sb, i.e., the connected phase
always dominates over the disconnected one and the
scheme of quantum error correction via uberholography
for fractal erasures on the boundary is robust against state-
dependent reconstruction. However, the support on the
boundary increases. We will now show that this increment
is very small (negligible). Inverting Eq. (16) and consid-
ering the critical equality, we get the condition on r

ðr
2
Þ2

ð1 − rÞ ¼ e4GSb=2Lð2m−1Þ: ð17Þ

FIG. 3. r vs x plot at level 1. One can always tune 0 < r < 1,
such that regardless of how large Sb is, uberholographic error
correction is always possible.
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In the limit m → ∞, the RHS → 1, approaching the value
of r in Sb ¼ 0 limit [12]

r → 2ð
ffiffiffi
2

p
− 1Þ: ð18Þ

Comparing this result with Fig. 3, the asymptotic value of r
at a higher level m → ∞ is not 1, but (18) (see Fig. 4).
Thus, the code distance remains the same and we have a

robust, state-independent uberholographic quantum error
correcting code.
This becomes more clear in the context of the con-

struction discussed in [12]. In Fig. 5, with Sb ¼ 0, Λ is the
logical boundary and Φ is the physical boundary. The
boundary subregion R is the remaining boundary after
punching out holes. One may interpret the introduction of a
bulk state with entropy Sb as the bulk geodesic moving
further away from the logical inner boundary Λ increasing
the support on the boundary for bulk reconstruction. One
may imagine a boundary Λ0 to be the new “effective”
logical boundary with the inclusion of a mixed state in the
bulk. This means that the radius of the inner boundary rin
gets modified to some r0in (r

0
in > rin) while the radius of the

outer boundary rout remains the same. As long as rout is
much greater than r0in, the bulk reconstruction is possible.
This is a reasonable assumption as rout is the boundary of
the AdS space. Said another way, we can write the code rate
(with Sb ¼ 0) to be

k
n
¼ eðrin−routÞ=L; ð19Þ

where k and n are the number of logical and physical qubits
respectively expressed in terms of lengths of inner and
outer boundaries. With the introduction of mixed state in
the bulk, rin → r0in, implying that the code rate depreciates
with k → k0 (k0 > k). As long as k0 ≪ n, the is a reasonable
error correcting scheme.

IV. THE HOLOGRAPHIC SIERPINSKI
CODE IN AdS4=CFT3

An example of uberholography in AdS4=CFT3 with a
Sierpinski triangle shaped boundary is constructed in [10].
We will briefly review this. Consider the boundary
Sierpinski triangle at level 0 (without holes) which is
an equilateral triangle having sides of length l0. At level 1,
we divide this triangle R into four smaller triangles
and make a hole H by taking away the equilateral
triangle in the center of side l1 ¼ l0

2
− ϵ where ϵ > 0 is

extremely small compared to l0. It suffices to take the
length of the remaining triangles R1, R2, and R3 to be l0

2

(see Fig. 6).
The punching of holes is reiterated (see Fig. 7). At level

m, the 3m small triangles are taken to have a side of length
lm ¼ l0=2m, while the length of triangles forming holes
ranges from l0=2 − ϵ to l0=2m − ϵ. This construction is
more subtle in the sense that the connected phase and
disconnected phase have equal RT surface area at leading
order at every level of hole iteration in the ϵ ¼ 0 limit. It is
shown in [22] that the minimal surface associated with a
regular polygon with sharp corner picks up a corner
contribution. For the case of a boundary subregion A in
the shape of equilateral triangle of side L, the area of RT
surface is given by

FIG. 4. r vs Sb plot for variousm. Atm → ∞, the curve is given
by the line r ¼ 2ð ffiffiffi

2
p

− 1Þ. We have set 4G=L ¼ 1 for simplicity.

FIG. 5. The inner logical boundary Λ is contained inside the
entanglement wedge (shaded in blue) of outer boundary sub-
region R ⊂ Φ where Φ is the outer physical boundary. We keep
punching more holes of decreasing size in the boundary such that
the remaining boundary region R (whose measure goes to zero
when m → ∞Þ has an entanglement wedge that contains the
logical boundary. By introducing a bulk mixed-state with large
entropy, the volume of the entanglement wedge increases as the
support on the outer boundaryΦ increases. The new minimal area
at level 1 is now the red line which does not touch the inner
boundary Λ. One may imagine it as touching a larger inner
boundary Λ0.
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jχAj ¼
3L
a

− 6b

�
π

3

�
log

�
3L
a

�
; ð20Þ

where a is the short-distance cutoff and χA is the RT surface
associated with the boundary subregion A. Here bðπ

3
Þ is a

regulator-independent coefficient that depends only on the
opening angle (in this case π=3) defined in [22]. See [23]
for illuminating details about this coefficient. Recalling that
in the absence of a bulk entropy, one arrived at the
following inequality at level 1

jχRj þ jχHj ≤ jχR1
j þ jχR2

j þ jχR3
j; ð21Þ

where the boundary is divided as shown in Fig. 6.
Solving the critical case where this inequality is saturated

under reasonable approximations discussed in [10], we get
a lower bound on the value of ϵ

ϵ ≥ 2ab

�
π

3

�
log

3l0
4a

: ð22Þ

For a generic levelm, ϵ depends onm and now in general it
would also depend on the bulk entropy Sb. This should be
contrasted with the construction in AdS3=CFT2, where in
the absence of bulb entropy Sb, the critical value of r did not
depend on the level of m. The m-dependence of r was
introduced by the presence of bulk entropy Sb on which r
depended as well (as illustrated in Fig. 4).

A. Reconstruction wedge of the Sierpinski triangle

In the presence of bulk entropy Sb, at level 1, we want to
solve the inequality

jχRj þ jχHj þ 4GNSb ≤ jχR1
j þ jχR2

j þ jχR3
j; ð23Þ

where GN is the Newton’s constant in 3þ 1 dimensions.
This gives us a lower bound on ϵ

ϵ ≥ a

�
4GNSb

3
þ 2b

�
π

3

�
log

�
3l0
4a

��
: ð24Þ

As we see ϵ scales linearly in Sb and we can work in the
small ϵ limit, as long as the product of length cutoff a and
Sb remains small. Moving on, we are interested in the case,
where there are large number of iterations of hole punching.
After m iterations, the connected phase has an area

jχR0 jc: ¼ jχRj þ jχH1
j þ 3jχH2

j þ 32jχH3
j þ � � � þ 3m−1jχHm

j

¼ jχRj þ
Xm
j¼1

3j−1jχHj
j

¼
�
3l0
a

þ
Xm
j¼1

3j−1
3l0
2ja

�
−
3ϵ

a

Xm
j¼1

3j−1

− 6b

�
π

3

��
log

�
3l0
a

�
þ
Xm
j¼1

3j−1 log

�
3l0
2ja

��

− 6b

�
π

3

��Xm
j¼1

3j−1 log

�
1−

2jϵ

l0

��
; ð25Þ

while the area of the disconnected phase is

jχR0 jdisc ¼ 3m
�
3l0
2ma

�
− 3m6b

�
π

3

�
log

�
3l0
2ma

�
: ð26Þ

Introducing an entropic state in the bulk with von Neumann
entropy Sb, the bound on ϵ comes out to be

ϵ ≥ 2a

�
2GNSb
3mþ1

þ b

�
π

3

��
log

�
3l0
2ma

�
−
mðmþ 1Þ

3m
log2

��
:

ð27Þ

FIG. 6. We divided the full triangle R into four triangular
regions and punched a hole H out of it. The remaining portion of
the boundary are the union of three triangles R1, R2, and R3.

FIG. 7. The Sierpinski triangle. The fractal is constructed by
removing triangular holes (shaded black) of decreasing size from
the big triangle.
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As long as we are in the regime where at level m, the
quantity ( l0

2m
) is of the order of lattice spacing “a” [the ratio

lm
a ¼ Oð1Þ], in the very largem limit, the linear dependence
on the bulk entropy Sb is suppressed by a very large factor
3mþ1. Effectively, in this limit, one can drop the first and the
third term, arriving at

ϵ ¼ 2ab

�
π

3

�
log

�
3l0
2ma

�
; ð28Þ

which is state-independent. However, it is worth mention-
ing that as we make the length of the side of the triangle
smaller than this cutoff length “a,” there is a breakdown of
the entanglement wedge. Such a case would mean that the
cutoff could be bounded below by a negative number and
is thus unphysical. This is perhaps a relic of the untrust-
worthiness of theories below cutoffs. As we are talking
about the Sierpinski triangle as boundary to AdS4, it is
reasonable to assume l0 is very large and short-distance
cutoff a is very small, one can always choose sufficiently
large m to allow for state-independent bulk reconstruction
(see Fig. 8).

V. CONCLUSION

We see that the robustness of the holographic quantum
error correcting code against fractal noise persists even in
finite temperature states of the CFT, or equivalently in
black hole backgrounds. This is a priori surprising, as one
might have thought that the black hole horizon size would
have served as a finite cutoff to the uberholography
generalization to higher dimensions. We believe that any
purely IR contribution (e.g., a black hole in the center)
becomes entropically negligible when the fractal contribu-
tions of (infinitely) many holes are considered, rendering
the property of state-independence. A recent work [19] that
appeared at the time of completion of this manuscript
discusses uberholography in Cantor-set like erasures in
higher dimensions. It also discusses the finite temperature
effects on uberholography. This work is complementary to
our work and tells a similar story in a different language.3

Given the continued robustness of uberholographic
codes to fractal noise, the logical next step would be to
determine the precise features of the holographic quantum
error correcting code that permit its robustness against this
form of error, and to port a novel code with such features
into the realm of quantum computing. We will reserve both
of these studies for future work.
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