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1 Introduction

Noncommutative geometry [15] offers a spectral viewpoint to geometry that allows to
simultaneously capture field theories and gravity in a single framework. In fact, it allows
for a unified geometrical derivation of the Standard Model of particle physics minimally
coupled to gravity [10, 41], including the Higgs mechanism and the see-saw mechanism to
yield masses for the right-handed neutrinos. This extends beyond the Standard Model to
yield Pati-Salam grand unification [12, 13], which is currently one of the few candidate
BSM-theories that is still found to be compatible with experiment. Variations on particle
theories obtained in the same framework are considered in [4, 6–8, 19–23, 37], while the
more foundational aspects on quanta of geometry were considered in [11].

The key ingredient in this description of field theories arising from noncommutative
spaces is the spectral action principle [9]. It yields Lagrangians that are based solely on the
spectrum of a given Dirac operator on a noncommutative spacetime. In the applications to
particle physics phenomenology one then adopts the usual renormalization group methods
to arrive at couplings and mass parameters at lower energy. Even though the appearance
of such experimentally testable results from a geometrical framework valid at high-energies
is very intriguing, we must confess that this step is a weak point of the noncommutative
approach to particle physics. Indeed, it means that in the passage to the quantum theory
one looses the elegant spectral and unifying picture that one started with and which one
admired so much.

In this paper, we take a crucial step in the quantization program and analyze the
form of loop corrections to the spectral action. Working in a very general context, in fact
beyond [14, 18], we find that the resulting quantum fluctuations can be entirely formulated
within the same unifying spectral framework and is thus a major improvement with respect
to the usual RG-approach to the spectral action. The approach we take to the perturbative
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quantization of the spectral action is that of random noncommutative geometries [2, 26, 33]
(see also [3, 25] for computer simulations) and bears some similarities with [24]. More
specifically, we adopt the background field method for which the path integral will be
defined over all matrix fluctuations around a fixed noncommutative gauge background.

The key mathematical input is given by our paper [36] which gives a perturbative ex-
pansion of the spectral action in terms of noncommutative integrals over higher Yang-Mills
and Chern-Simons forms. We will here show that the one-loop corrections to the spectral
action are of exactly the same form, and can thus safely be subtracted as counterterms
from the spectral action. This establishes one-loop renormalizablity in the generalized
sense of [27], where one allows for infinitely many counterterms.

2 Diagrammatic expansion of the spectral action

The spectral action [9] is defined on the eigenvalue spectrum {λk}k of a Dirac operator
D by

Tr f(D) =
∑
k

f(λk)

for some suitable even function f . We want to analyze the spectral action for perturbations
D → D + V by bosonic gauge fields of the form V = aj [D, bj ] (summation over j under-
stood), where aj , bj are coordinate functions on a noncommutative space. Even though
our analysis is valid in the general setting of noncommutative geometry [15, 16] the most
interesting cases that occur in physics are:

• Hermitian matrix models where both D and V are hermitian matrices.

• Almost-commutative geometries M × F , where M is the spacetime manifold with
Dirac operator /∂ and F is a discrete noncommutative space describing the internal
degrees of freedom, also equipped with a ‘finite’ Dirac operator DF . The gauge fields
V describe both Yang-Mills gauge fields A and scalar (Higgs) fields Φ in the sense that

V = aj /∂(bj)︸ ︷︷ ︸
/A

+γ5 aj [DF , bj ]︸ ︷︷ ︸
Φ

,

More details, also on the applications to particle physics, can be found in [10, 12, 14,
22, 41].

Our starting point is the following expansion of the spectral action [36, 38, 39]:

SD[V ] := Tr (f(D + V )− f(D)) =
∞∑
n=1

1
n
〈V, . . . , V︸ ︷︷ ︸

n

〉. (2.1)

The brackets stand for the following contour integrals:

〈V1, . . . , Vn〉 = Tr
∮

dz

2πif
′(z)V1(z −D)−1 · · ·Vn(z −D)−1
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where V1, . . . , Vn are gauge fields as above; this can be represented nicely as a Feynman
diagram:

〈V1, . . . , Vn〉 = V4

V3V2

V1

Vn

. (2.2)

The loop diagram nicely reflects the cyclicity of the bracket: 〈V1, . . . , Vn〉 = 〈Vn, V1,

. . . , Vn−1〉. The second crucial property is that

〈aV1, . . . , , Vn〉 − 〈V1, . . . , Vna〉 = 〈[D, a], V1, . . . , Vn〉

for any (noncommutative) coordinate function a. In fact, this identity boils down to the
following Ward identity,

(z −D)−1a− a(z −D)−1 = (z −D)−1[D, a](z −D)−1,

and may be represented diagrammatically:

a

−

a

=

[D, a]

(2.3)

2.1 The brackets as noncommutative integrals

We want to express the amplitudes corresponding to the above loop diagrams in terms of
suitable noncommutative integrals [15] (cf. [17, eq. (4.182)] or [36, section 4.2]). They are
defined by

∫
φn

a0da1 · · · dan := [D, a4]

[D, a3][D, a2]

a0[D, a1]

[D, an]

. (2.4)

Here d is the universal differential, i.e., d is only assumed to satisfy d2 = 0 and
d(ab) = adb+da b. The noncommutative integral

∫
φ over a form such as adb adb is obtained

by first writing adb adb = ad(ba)db− abdadb and then applying the definition (2.4) linearly
to the resulting terms. Thus the noncommutative integral

∫
φ is defined on all forms.

As a first example, for one external edge we find

〈V 〉 = 〈aj [D, bj ]〉 =
aj [D, bj ]

=
∫
φ1
A, (2.5)

where we have defined A = ajdbj as the universal gauge form underlying the physical
gauge field V = aj [D, bj ]. Note that the vanishing of this tadpole diagram corresponds to
the vanishing of the first derivation of the spectral action under perturbations D 7→ D+V .
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For natural choices of D one may thus expect this term to vanish and, in fact, [18] works
under this ‘vanishing tadpole’ assumption.

For two external edges, we apply the Ward identity (2.3) and derive

〈V, V 〉 =
aj [D, bj ]

[D, bj′ ]

aj′

= [D, bj′ ]

aj [D, bj ]

aj′

+ [D, bj′ ]

[D, aj′ ]

aj [D, bj ]

=
∫
φ2
A2 +

∫
φ3
AdA.

In the last line we used aj [D, bj ]aj′ = aj [D, bjaj′ ]− ajbj [D, aj′ ] to apply (2.4), and subse-
quently ajd(bjaj′)−ajbjdaj′ = ajdbj aj′ to arrive at the term

∫
φ2
A2. Similarly, by applying

the Ward identity several times one finds that [36]

〈V, V, V 〉 =
∫
φ3
A3 +

∫
φ4
AdAA+ · · · ,

〈V, V, V, V 〉 =
∫
φ4
A4 + · · · .

We now introduce a noncommutative integral
∫
ψ that differs from

∫
φ by a total derivative:∫

ψ2k−1
ω =

∫
φ2k−1

ω − 1
2

∫
φ2k

dω (2.6)

and rewrite the above brackets in terms of ψ1 and ψ3, as well as the remaining φ2 and φ4.
For the first two terms, we readily find∫

φ1
A+ 1

2

∫
φ2
A2 =

∫
ψ1
A+ 1

2

∫
φ2

(dA+A2).

while after a slightly more involved derivation we also find for the next few terms that

1
2

∫
φ3
AdA+ 1

3

∫
φ3
A3 + 1

3

∫
φ4
AdAA+ 1

4

∫
φ4
A4

= 1
2

∫
ψ3

(
AdA+ 2

3A
3
)

+ 1
4

∫
φ4

(dA+A2)2 + · · · .

The important message from the above derivation is that the expansion of the spectral
action yields Yang-Mills and Chern-Simons terms. In fact, if we write F = dA+A2 for the
curvature and

cs1(A) = A; cs3(A) = 1
2

(
AdA+ 2

3A
3
)
,
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then it turns out that the expansion has the following form of a Yang-Mills-Chern-Simons
theory:

SD[V ] =
∫
ψ1

cs1(A) + 1
2

∫
φ2
F

+
∫
ψ3

cs3(A) + 1
4

∫
φ4
F 2 + · · ·

Quite surprisingly, the systematics behind this derivation persists at all orders [36], while
being based solely on the cyclicity of the loop diagram and the Ward identity (2.3). It
yields the following expansion for the spectral action

SD[V ] =
∞∑
k=1

(∫
ψ2k−1

cs2k−1(A) + 1
2k

∫
φ2k

F k
)
. (2.7)

The higher-order Chern-Simons forms are defined as in [35, section 11.5.2] by

cs2k−1(A) :=
∫ 1

0
A(tdA+ t2A2)k−1dt. (2.8)

Again based solely on cyclicity of the loop diagram and the Ward identity, one can show
that the integrals over φ2k and ψ2k−1 define even and odd cyclic cocycles, respectively; we
refer to [36] for more details.

3 Loop corrections to the spectral action

In order to analyze the quantum theory corresponding to the above classical action func-
tional SD[V ] we adopt the background field method. That is to say, we take the background
fields to be gauge fields of the form V = aj [D, bj ]. However, the path integral is defined
over the ensemble of all finite-size hermitian complex-valued matrices. This is in the spirit
of random noncommutative geometries in the sense of [2, 26, 33] (see [3, 25] for computer
simulations). As in these works, we consider the dimension, say N , of these matrices as a
regularizing cutoff of our model, which should eventually be sent to ∞, while allowing us
to realize our quantum theory as a hermitian matrix model.

In fact, for such finite-size matrices Q = (Qkl), the brackets can be conveniently
expressed in terms of divided differences of f ′. Divided differences are noncommutative
extensions of derivatives that arise naturally in derivatives of operator-valued functions
(and traces thereof) [39]. Recall that the first order and second order divided differences
of f ′ are

f ′[x, y] = f ′(x)− f ′(y)
x− y

; (3.1)

f ′[x, y, z] = f ′[x, y]− f ′[y, z]
x− z

. (3.2)

Divided differences are fully symmetric in their arguments, so we have f ′[y, x] = f ′[x, y],
f ′[x, z, y] = f ′[x, y, z], et cetera. Because our brackets 〈·〉 correspond to derivatives of the
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spectral action, we find [39]
1
2〈Q,Q〉 = 1

2
∑
k,l

QklQlkf
′[λk, λl]

1
3〈Q,Q,Q〉 = 1

3
∑
k,l,m

QklQlmQmkf
′[λk, λl, λm]

et cetera, where λk are the eigenvalues of D.
We now make the assumption that the first divided difference of f ′ is strictly positive

on the N relevant eigenvalues of D (see figure 1). We may then perform the Gaussian
integration as in [5, section 2], without the need for introducing a gauge-fixing and ghost
sector, to get for the propagator:

QklQmn =
∫
QklQmne

− 1
2 〈Q,Q〉dQ∫

e−
1
2 〈Q,Q〉dQ

= δknδlmGkl

in terms of Gkl := 1
f ′[λk,λl] . Notice that the inverse propagator is bounded, which is in stark

contrast to the usual unbounded nature of inverse propagators in ordinary local quantum
field theory. We see this as another manifestation of the regularizing properties of the
spectral action, in line with [1, 30, 34, 40].

It is an interesting problem to analyze the form of the propagator for more general f ,
including a possible gauge fixing, for instance along the lines of [31, 32] or by means of
orthogonal polynomials as in [5].

In any case, we are now in a position to consider higher-loop contributions to the
spectral action, and, in particular, all one-particle irreducible n-point Feynman graphs.
Their (possibly divergent) amplitudes form the starting point of the renormalization process
of the spectral action.

3.1 Ward identity for the gauge propagator

In addition to the Ward identity (2.3) for the fermion propagator, we claim that we also
have the following Ward identity for the gauge propagator:

a

−

a

=

[D, a]

(3.3)

where every fermion loop adds a minus sign. Indeed, the left-hand side is

QikQlmamn − aimQmkQln = Gikδimδklamn −Glnδmnδklaim
= (Gik −Gnk)δklain

while for the right-hand side we use the defining property of the divided differences to find:

−QikQrpapq(λp − λq)QqrQlnf ′[λp, λq, λr]
= −GikδipδkrGqrδqnδrlapq(λp − λq)f ′[λp, λq, λr]
= GikGnk

(
f ′[λk, λn]− f ′[λi, λk]

)
δklain.
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(a) An example of a positive function: f(x) =
(1 + ax2)Φ(bx) with Φ a bump function and
a = 1/900, b = 1/100.

(b) The divided difference f ′[λk, λl] for this
function f .

Figure 1. The inverse gauge propagator f ′[λk, λl] for the N = 61 smallest eigenvalues of the Dirac
operator on the circle (i.e. λk, λl = −30,−29, . . . , 30).

Table 1. The two-point graphs at one-loop.

The two expressions coincide because of the very fact that the free propagator is the inverse
of the divided difference.

3.2 Two-point functions at one-loop

The two-point graphs at one-loop are given in table 1. The external fields V1, V2 should be
assigned to the external legs in all different cyclical manners.

The amplitude for the first graph is given by

V1 V2
=
∑
i,j,k
l,m,n

(V1)ijQjkQki(V2)lmQmnQnlf ′[λi, λj , λk]f ′[λl, λm, λn]

=
∑
i,k

(V1)ii(V2)kkG2
ikf
′[λi, λi, λk]f ′[λi, λk, λk]. (3.4)

In particular, there is no running loop index in this expression and so this diagram remains
finite even when the size N of the matrices is sent to ∞. We conclude that the amplitude
of this graph is not relevant for renormalization purposes.

We then turn to the second graph in table 1, and compute

V1 V2 =
∑
i,j,k
l,m,n

(V1)ijQjkQki(V2)lmQmnQnlf ′[λi, λj , λk]f ′[λl, λm, λn]

=
∑
i,j,k

(V1)ij(V2)jiGikGkjf ′[λi, λj , λk]2. (3.5)
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(a) Summands in (3.5) for (λi, λj) = (0, 0). (b) Summands in (3.5) for (λi, λj) = (10, 0).

(c) Summands in (3.6) for (λi, λj) = (0, 0). (d) Summands in (3.6) for (λi, λj) = (10, 0).

Figure 2. The divergencies of the summands of the series (3.5) and (3.6) for two different values
of (λi, λj). Here D is the Dirac operator on the circle and f is the function occuring in figure 1(a).
The x-axis represents λk = k for k varying from −30 to 30. On the y-axis we have values of the
summands in the sums on the right-hand sides of (3.5) and (3.6) for fixed values of i, j and varying
values of k.

We find that this amplitude has a potential divergence in the limit that N → ∞ (see
figure 2 for the behaviour of the summands). As such it should be subtracted from the
effective action in order to render the theory finite after removal of the regulator.

For the final diagram with two external lines we compute its amplitude to be:

V1

V2

=
∑
i,j,k,l

(V1)ijQjkQkl(V2)lif ′[λi, λj , λk, λl] (3.6)

=
∑
i,j,k

(V1)ij(V2)jiGjkf ′[λi, λj , λj , λk].

Again, this graph amplitude is potentially divergent in the limit N →∞ and should thus
be subtracted. The same applies to the same graph but with V1 and V2 exchanged.

3.3 One-loop counterterms to the spectral action

The computations of the graph amplitudes in the previous section show that the second
two graphs in table 1 are the relevant ones to consider as counterterms for the spectral
action. However, since the spectral action is in particular a gauge theory, it is crucial that
such counterterms are of the same form as the terms appearing in the spectral action.

As may be expected, a crucial role will be played by so-called quantum Ward identities.
They form the analogue of (2.3) for the divergent component of the 1PI n-point functions
at one loop. Let us denote by 〈〈V1, . . . , Vn〉〉1L all relevant one-loop n-point graphs, namely
those whose amplitudes involve a sum over a loop index. We now make an important
observation: namely that the relevant graphs are precisely the planar diagrams whose
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fermion loops are oriented clockwise and whose external edges extend outward. Let us
consider a relevant one-loop graph, whose fermion loops may be drawn clockwise, and are
arranged in a gauge loop which a priori might have crossings. However, as the graph is
1PI, each fermion loop has exactly two gauge edges belonging to the gauge loop. Moreover,
any running index will be associated to the fermion line in between these two gauge edges.
We can now walk through the diagram in a planar way, alternating between following a
gauge edge and following a fermion line in the direction of the arrow, and conclude that the
same running index will be associated to every fermion loop we visit. If this walk stops, it
has to be because of visiting an external line, but this would mean that the index does not
run, but is fixed by the gauge field attached (as in equation (3.4)). Hence, for a running
index to occur, the walk has to be in a loop, and therefore the graph can be drawn in the
plane with external edges extending outward.

The skeletons for such graphs are depicted in table 3. We note that the external lines
can be labelled in cyclical order, and hence the notation 〈〈V1, . . . , Vn〉〉1L is defined.

The quantum Ward identities are now given by

〈〈V1, . . . , aVj , . . . , Vn〉〉1L − 〈〈V1, . . . , Vj−1a, . . . , Vn〉〉1L

= 〈〈V1, . . . , Vj−1, [D, a], Vj , . . . , Vn〉〉1L.

It is this identity, in combination with cyclicity of the bracket 〈〈V1, . . . , Vn〉〉 = 〈〈Vn,
V1, . . . , Vn−1〉〉, which allows us to follow line-by-line the derivation of the Chern-Simons
and Yang-Mills terms in the previous section (cf. [36]). We thus arrive at our main con-
clusion which is that the divergent part of the one-loop quantum effective spectral action
can be expanded as∑

n

1
n
〈〈V, . . . , V 〉〉1L∞ =

∞∑
k=1

(∫
ψ̃2k−1

cs2k−1(A) + 1
2k

∫
φ̃2k

F k
)
.

Here φ̃ and ψ̃ are the analogues of φ and ψ as defined in (2.4) and (2.6) but now using the
double bracket. We conclude that the passage to the one-loop renormalized spectral action
can be realized by a transformation in the space of noncommutative integrals, sending
φ 7→ φ− φ̃ and ψ 7→ ψ− ψ̃, thus rendering the theory (one-loop) renormalizable as a gauge
theory.

Before addressing the general case of n-point vertex contributions, we will present a
diagrammatic proof of the quantum Ward identity for divergent one-loop two-point func-
tions.

We first consider the contribution from the second diagram in table 1 to the term
〈〈aV1, V2〉〉 − 〈〈V1, V2a〉〉 in the quantum Ward identity:

V1

a

V2 −
V1

V2

a

=
V1

[D, a]

V2 +
[D, a]

V1

V1
+

V1

[D, a]

V2
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Table 2. The relevant three-point graphs at one-loop.

Table 3. Skeletons for divergent one-loop n-point functions with increasing number of vertices.
The fermion loops that define the vertices are all oriented as clockwise.

For the third two-point diagram in table 1 there are two possible assignments of the
external fields, so that their contribution to 〈〈aV1, V2〉〉 − 〈〈V1, V2a〉〉 is

V1 V2

a

−
V1 V2

a

=
V1 V2

[D, a]

and

V2 V1

a

−
V2 V1

a

=
V2 [D, a]

V1 +
[D, a] V1

V2 +
V1

V2
[D, a]

.

We have coloured the Feynman graphs on the right-hand side of the quantumWard identity
according to their topology, i.e. as they appear in table 2. One then readily sees that the
graphs conspire to yield all cyclic permutations of [D, a], V1, V2 as external fields on all
planar one-loop graphs with three external legs.

This argument extends to all potentially divergent one-loop n-point functions 〈〈V1,

. . . , Vn〉〉1L as follows. Recall that all such divergent one-loop diagrams have skeletons as
depicted in table 3, with the external lines labelled cyclically from 1 to n. The decoration of
the external legs of our graphs with the external fields V1, . . . , Vn then proceeds according
to this labelling 1, . . . , n and, upon summing over all such decorated graphs G, we get

〈〈V1, . . . , Vn〉〉1L =
∑
G

GV1,...Vn .

The left-hand side of the quantum Ward identity essentially comes down to connecting
external edges to the graphs G. We will write Gi for the graph G with an insertion of an
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external gauge edge at a point i in between n and 1: this insertion point i can be either
an outer fermion line in G (as in (2.3)) or, if 1 and n are not attached to the same vertex
in G, a gauge propagator (as in (3.3)). We then find

〈〈aV1, . . . , Vn〉〉1L − 〈〈V1, . . . , Vna〉〉1L =
∑
G,i

(Gi)[D,a],V1,...,Vn
,

where the decoration [D, a] is attached to the external gauge edge inserted at the point i
of Gi.

It is clear that the sum over G and i yield all decorated n + 1-point graphs, and,
moreover, that any n+ 1-point graph with labels [D, a], V1, . . . , Vn is obtained in a unique
manner from an insertion of an external edge in an n-point graph, as described above. We
are thus left precisely with 〈〈[D, a], V1, . . . , Vn〉〉1L as desired.

4 Conclusions

In this paper we have analyzed the quantum gauge fluctuations for the spectral action in
noncommutative geometry. Using the background field method we have showed one-loop
renormalizability of the spectral action, while staying within the same spectral framework.

Naturally, this forms the starting point for more direct applications of noncommutative
geometry to particle physics phenomenology. Instead of the spectral action playing the role
of a bare action functional, to which subsequent RG-methods are applied, we now have
a candidate for a so-called quantum effective spectral action, given by the sum of all 1PI
Feynman diagrams and which is supposed to be valid at all energies. One may then try
to extend the derivation of bare physical Lagrangians from the spectral action [9, 41]
to the renormalized spectral action, and arrive at a spectral, noncommutative geometric
description of particle physics which is also valid and falsifiable at lower energies.

Besides these future steps in the applications to particle physics phenomenology, it is
also important to extend the “power-counting” and diagrammatics of the one-loop renor-
malizability that we presented here to arbitrary loop order. This, and also a more detailed
account of the derivation presented in this paper, will be reported elsewhere. The connec-
tion with the proof of renormalizability for noncommutative scalar field theories [29] also
deserves further investigation. One of the main differences is that they consider so-called
non-local matrix models [28] with a quartic vertex, while instead we have a local matrix
model but with vertices of arbitrary valence.

Acknowledgments

We thank Steven Lord, Fedor Sukochev and the other members in their research group for
fruitful discussions during a visit in August 2019, where the basis for the current paper
was laid. We also thank Ali Chamseddine and Alain Connes for useful comments.

Research supported by NWO Physics Projectruimte (680-91-101).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

– 11 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
5
(
2
0
2
2
)
0
7
8

References

[1] N. Alkofer, F. Saueressig and O. Zanusso, Spectral dimensions from the spectral action, Phys.
Rev. D 91 (2015) 025025 [arXiv:1410.7999] [INSPIRE].

[2] S. Azarfar and M. Khalkhali, Random Finite Noncommutative Geometries and Topological
Recursion, arXiv:1906.09362 [INSPIRE].

[3] J.W. Barrett and L. Glaser, Monte Carlo simulations of random non-commutative
geometries, J. Phys. A 49 (2016) 245001 [arXiv:1510.01377] [INSPIRE].

[4] W. Beenakker, T. van den Broek and W.D. van Suijlekom, Supersymmetry and
noncommutative geometry, in SpringerBriefs in Mathematical Physics 9, Springer, Cham,
Switzerland (2016).

[5] D. Bessis, C. Itzykson and J.B. Zuber, Quantum field theory techniques in graphical
enumeration, Adv. Appl. Math. 1 (1980) 109 [INSPIRE].

[6] A. Bochniak and A. Sitarz, Spectral geometry for the standard model without fermion
doubling, Phys. Rev. D 101 (2020) 075038 [arXiv:2001.02902] [INSPIRE].

[7] L. Boyle and S. Farnsworth, Non-Commutative Geometry, Non-Associative Geometry and
the Standard Model of Particle Physics, New J. Phys. 16 (2014) 123027 [arXiv:1401.5083]
[INSPIRE].

[8] T. van den Broek and W.D. van Suijlekom, Supersymmetric QCD from noncommutative
geometry, Phys. Lett. B 699 (2011) 119 [INSPIRE].

[9] A.H. Chamseddine and A. Connes, Universal formula for noncommutative geometry actions:
Unification of gravity and the standard model, Phys. Rev. Lett. 77 (1996) 4868
[hep-th/9606056] [INSPIRE].

[10] A.H. Chamseddine, A. Connes and M. Marcolli, Gravity and the standard model with
neutrino mixing, Adv. Theor. Math. Phys. 11 (2007) 991 [hep-th/0610241] [INSPIRE].

[11] A.H. Chamseddine, A. Connes and V. Mukhanov, Quanta of Geometry: Noncommutative
Aspects, Phys. Rev. Lett. 114 (2015) 091302 [arXiv:1409.2471] [INSPIRE].

[12] A.H. Chamseddine, A. Connes and W.D. van Suijlekom, Beyond the Spectral Standard Model:
Emergence of Pati-Salam Unification, JHEP 11 (2013) 132 [arXiv:1304.8050] [INSPIRE].

[13] A.H. Chamseddine, A. Connes and W.D. van Suijlekom, Grand Unification in the Spectral
Pati-Salam Model, JHEP 11 (2015) 011 [arXiv:1507.08161] [INSPIRE].

[14] A.H. Chamseddine, J. Iliopoulos and W.D. van Suijlekom, Spectral action in matrix form,
Eur. Phys. J. C 80 (2020) 1045 [arXiv:2009.03367] [INSPIRE].

[15] A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA, U.S.A. (1994).

[16] A. Connes, Gravity coupled with matter and foundation of noncommutative geometry,
Commun. Math. Phys. 182 (1996) 155 [hep-th/9603053] [INSPIRE].

[17] A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields and Motives,
American Mathematical Society, Providence, RI, U.S.A. (2008).

[18] A. Connes and A.H. Chamseddine, Inner fluctuations of the spectral action, J. Geom. Phys.
57 (2006) 1 [hep-th/0605011] [INSPIRE].

– 12 –

https://doi.org/10.1103/PhysRevD.91.025025
https://doi.org/10.1103/PhysRevD.91.025025
https://arxiv.org/abs/1410.7999
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD91%2C025025%22
https://arxiv.org/abs/1906.09362
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.09362
https://doi.org/10.1088/1751-8113/49/24/245001
https://arxiv.org/abs/1510.01377
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CA49%2C245001%22
https://doi.org/10.1007/978-3-319-24798-4
https://doi.org/10.1016/0196-8858(80)90008-1
https://inspirehep.net/search?p=find+J%20%22Adv.Appl.Math.%2C1%2C109%22
https://doi.org/10.1103/PhysRevD.101.075038
https://arxiv.org/abs/2001.02902
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD101%2C075038%22
https://doi.org/10.1088/1367-2630/16/12/123027
https://arxiv.org/abs/1401.5083
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2C16%2C123027%22
https://doi.org/10.1016/j.physletb.2011.03.053
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB699%2C119%22
https://doi.org/10.1103/PhysRevLett.77.4868
https://arxiv.org/abs/hep-th/9606056
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C77%2C4868%22
https://doi.org/10.4310/ATMP.2007.v11.n6.a3
https://arxiv.org/abs/hep-th/0610241
https://inspirehep.net/search?p=find+J%20%22Adv.Theor.Math.Phys.%2C11%2C991%22
https://doi.org/10.1103/PhysRevLett.114.091302
https://arxiv.org/abs/1409.2471
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C114%2C091302%22
https://doi.org/10.1007/JHEP11(2013)132
https://arxiv.org/abs/1304.8050
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1311%2C132%22%20and%20year%3D2013
https://doi.org/10.1007/JHEP11(2015)011
https://arxiv.org/abs/1507.08161
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1511%2C011%22%20and%20year%3D2015
https://doi.org/10.1140/epjc/s10052-020-08618-z
https://arxiv.org/abs/2009.03367
https://inspirehep.net/search?p=find+J%20%22Eur.Phys.J.%2CC80%2C1045%22
https://doi.org/10.1007/BF02506388
https://arxiv.org/abs/hep-th/9603053
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C182%2C155%22
https://doi.org/10.1016/j.geomphys.2006.08.003
https://doi.org/10.1016/j.geomphys.2006.08.003
https://arxiv.org/abs/hep-th/0605011
https://inspirehep.net/search?p=find+J%20%22J.Geom.Phys.%2C57%2C1%22


J
H
E
P
0
5
(
2
0
2
2
)
0
7
8

[19] L. Dąbrowski, F. D’Andrea and A. Sitarz, The Standard Model in noncommutative geometry:
fundamental fermions as internal forms, Lett. Math. Phys. 108 (2018) 1323 [Erratum ibid.
109 (2019) 2585] [arXiv:1703.05279] [INSPIRE].

[20] L. Dąbrowski and A. Sitarz, Fermion masses, mass-mixing and the almost commutative
geometry of the Standard Model, JHEP 02 (2019) 068 [arXiv:1806.07282] [INSPIRE].

[21] A. Devastato, F. Lizzi and P. Martinetti, Higgs mass in Noncommutative Geometry, Fortsch.
Phys. 62 (2014) 863 [arXiv:1403.7567] [INSPIRE].

[22] A. Devastato, F. Lizzi and P. Martinetti, Grand Symmetry, Spectral Action, and the Higgs
mass, JHEP 01 (2014) 042 [arXiv:1304.0415] [INSPIRE].

[23] A. Devastato and P. Martinetti, Twisted spectral triple for the Standard Model and
spontaneous breaking of the Grand Symmetry, Math. Phys. Anal. Geom. 20 (2017) 2.

[24] E. Gesteau, Renormalizing Yukawa interactions in the standard model with matrices and
noncommutative geometry, J. Phys. A 54 (2020) 035203.

[25] L. Glaser and A. Stern, Understanding truncated non-commutative geometries through
computer simulations, J. Math. Phys. 61 (2020) 033507 [arXiv:1909.08054] [INSPIRE].

[26] L. Glaser and A.B. Stern, Reconstructing manifolds from truncations of spectral triples, J.
Geom. Phys. 159 (2021) 103921.

[27] J. Gomis and S. Weinberg, Are nonrenormalizable gauge theories renormalizable?, Nucl.
Phys. B 469 (1996) 473 [hep-th/9510087] [INSPIRE].

[28] H. Grosse and R. Wulkenhaar, Power counting theorem for nonlocal matrix models and
renormalization, Commun. Math. Phys. 254 (2005) 91 [hep-th/0305066] [INSPIRE].

[29] H. Grosse and R. Wulkenhaar, Renormalization of φ4 theory on noncommutative R4 in the
matrix base, Commun. Math. Phys. 256 (2005) 305 [hep-th/0401128] [INSPIRE].

[30] B. Iochum, C. Levy and D. Vassilevich, Spectral action beyond the weak-field approximation,
Commun. Math. Phys. 316 (2012) 595 [arXiv:1108.3749] [INSPIRE].

[31] R.A. Iseppi, The BV formalism: theory and application to a matrix model, Rev. Math. Phys.
31 (2019) 1950035.

[32] R.A. Iseppi and W.D. van Suijlekom, Noncommutative geometry and the BV formalism:
application to a matrix model, J. Geom. Phys. 120 (2017) 129 [arXiv:1604.00046]
[INSPIRE].

[33] M. Khalkhali and N. Pagliaroli, Phase Transition in Random Noncommutative Geometries,
J. Phys. A 54 (2021) 035202 [arXiv:2006.02891] [INSPIRE].

[34] M.A. Kurkov, F. Lizzi and D. Vassilevich, High energy bosons do not propagate, Phys. Lett.
B 731 (2014) 311 [arXiv:1312.2235] [INSPIRE].

[35] M. Nakahara, Geometry, Topology and Physics, IOP Publishing, Bristol, U.K. (1990).

[36] T.D.H. van Nuland and W.D. van Suijlekom, Cyclic cocycles in the spectral action, to appear
in J. Noncommut. Geom., arXiv:2104.09899 [INSPIRE].

[37] A. Sitarz, Towards the signs of new physics through the spectral action, Int. J. Geom. Meth.
Mod. Phys. 17 (2020) 2040008 [INSPIRE].

[38] A. Skripka, Asymptotic expansions for trace functionals, J. Funct. Anal. 266 (2014) 2845.

– 13 –

https://doi.org/10.1007/s11005-017-1036-x
https://arxiv.org/abs/1703.05279
https://inspirehep.net/search?p=find+J%20%22Lett.Math.Phys.%2C108%2C1323%22
https://doi.org/10.1007/JHEP02(2019)068
https://arxiv.org/abs/1806.07282
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1902%2C068%22%20and%20year%3D2019
https://doi.org/10.1002/prop.201400013
https://doi.org/10.1002/prop.201400013
https://arxiv.org/abs/1403.7567
https://inspirehep.net/search?p=find+J%20%22Fortsch.Phys.%2C62%2C863%22
https://doi.org/10.1007/JHEP01(2014)042
https://arxiv.org/abs/1304.0415
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1401%2C042%22%20and%20year%3D2014
https://doi.org/10.1007/s11040-016-9228-7
https://doi.org/10.1088/1751-8121/abd153
https://doi.org/10.1063/1.5131864
https://arxiv.org/abs/1909.08054
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C61%2C033507%22
https://doi.org/10.1016/j.geomphys.2020.103921
https://doi.org/10.1016/j.geomphys.2020.103921
https://doi.org/10.1016/0550-3213(96)00132-0
https://doi.org/10.1016/0550-3213(96)00132-0
https://arxiv.org/abs/hep-th/9510087
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB469%2C473%22
https://doi.org/10.1007/s00220-004-1238-9
https://arxiv.org/abs/hep-th/0305066
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C254%2C91%22
https://doi.org/10.1007/s00220-004-1285-2
https://arxiv.org/abs/hep-th/0401128
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C256%2C305%22
https://doi.org/10.1007/s00220-012-1587-8
https://arxiv.org/abs/1108.3749
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C316%2C595%22
https://doi.org/10.1142/S0129055X19500351
https://doi.org/10.1142/S0129055X19500351
https://doi.org/10.1016/j.geomphys.2017.05.009
https://arxiv.org/abs/1604.00046
https://inspirehep.net/search?p=find+J%20%22J.Geom.Phys.%2C120%2C129%22
https://doi.org/10.1088/1751-8121/abd190
https://arxiv.org/abs/2006.02891
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CA54%2C035202%22
https://doi.org/10.1016/j.physletb.2014.02.053
https://doi.org/10.1016/j.physletb.2014.02.053
https://arxiv.org/abs/1312.2235
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB731%2C311%22
https://arxiv.org/abs/2104.09899
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.09899
https://doi.org/10.1142/S0219887820400083
https://doi.org/10.1142/S0219887820400083
https://inspirehep.net/search?p=find+J%20%22Int.J.Geom.Meth.Mod.Phys.%2C17%2C2040008%22
https://doi.org/10.1016/j.jfa.2013.12.021


J
H
E
P
0
5
(
2
0
2
2
)
0
7
8

[39] W.D. van Suijlekom, Perturbations and operator trace functions, J. Funct. Anal. 260 (2011)
2483.

[40] W.D. van Suijlekom, Renormalization of the spectral action for the Yang-Mills system, JHEP
03 (2011) 146 [arXiv:1101.4804] [INSPIRE].

[41] W.D. van Suijlekom, Noncommutative Geometry and Particle Physics, in Mathematical
Physics Studies, Springer, Dordrecht, The Netherlands (2015).

– 14 –

https://doi.org/10.1016/j.jfa.2010.12.012
https://doi.org/10.1016/j.jfa.2010.12.012
https://doi.org/10.1007/JHEP03(2011)146
https://doi.org/10.1007/JHEP03(2011)146
https://arxiv.org/abs/1101.4804
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1103%2C146%22%20and%20year%3D2011
https://doi.org/10.1007/978-94-017-9162-5
https://doi.org/10.1007/978-94-017-9162-5

	Introduction
	Diagrammatic expansion of the spectral action
	The brackets as noncommutative integrals

	Loop corrections to the spectral action
	Ward identity for the gauge propagator
	Two-point functions at one-loop
	One-loop counterterms to the spectral action

	Conclusions

