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1 Introduction

The semi-classical description of a black hole and the Hawking quanta entangled with it
has appeared to be inconsistent with principles of quantum theory in many respects [1, 2].
In particular, although the von Neumann entropy of the Hawking radiation should follow a
Page curve [3, 4] due to the unitarity of quantum theory, the naive von Neumann entropy of
the Hawking radiation in the semi-classical description does not. Recent developments show
that we can get the von Neumann entropy of the Hawking radiation R in a semi-classical
way by using the so-called island formula [5–7],

Sisland(ρR) = MinExt
I

[Area(∂I)
4GN

+ Seff(R ∪ I)
]
, (1.1)
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Figure 1. The Penrose diagram of an AdS black hole coupled to the non-gravitating external bath.
We take the radiation region R (red solid line) in the non-gravitating external bath. After the Page
time, the island region I (orange solid line) becomes non-empty, and the entanglement wedge of the
black hole BH is outside the horizon of the black hole (green shaded region).

where Area(∂I) is the area of the endpoints of a new region I called the island, and Seff(R∪I)
is the von Neumann entropy of the bulk effective quantum field theory on the union of the
two regions R and I, computed on a fixed background spacetime, and MinExt

I
denotes the

extremization and the minimization of the generalized entropy over all possible islands I (see
figure 1). The island contribution originates from so-called replica wormholes connecting
different replicas in computing the von Neumann entropy of the Hawking radiation by using
the replica trick in the semi-classical description of gravity [8, 9]. See also e.g., [10–65] for
discussions on the island formula, and e.g., [66–72] on replica wormholes.

A frequently used setup for studying the von Neumann entropy of Hawking radiation
consists of a black hole in anti-de Sitter (AdS) spacetime and a non-gravitating external bath
system attached at the AdS boundary (see figure 1 again) with the transparent boundary
conditions [5–7, 9, 73]. Using such a setup, we can actually get the Page curve by using the
island formula.

The introduction of the non-gravitating bath helps to define the Hawking radiation R
without ambiguities coming from gravitational effects and simplifies the situation. However,
if we consider a bath which is also gravitating, then the situation drastically changes and
becomes more complex. Such setups are studied in [40], see also [48, 53, 54, 62]. However,
there are subtle points in defining the von Neumann entropy in the presence of dynamical
gravity. One of them is that the tensor factorization of Hilbert spaces associated with
gravitating regions is not well-defined because of the existence of the gravitational edge
modes living in the boundary of such regions [74], see also [75] for a recent discussion on the
implication of this fact to the island formula. The other difficulty is that the diffeomorphism
invariance of gravity does not allow us to define a region in an unambiguous way.

One way to avoid these subtleties is to prepare two disjoint gravitating universes A
and B, then make them entangled [54].1 In this setup, one can take the entangled state to

1See also [48] for the related discussion, and [28, 29, 49] for the discussion on entangled two disjoint
universes, one of which is non-gravitating and the other is gravitating and contains a black hole.
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be the thermo-field double state on the two universes

|Ψ〉 =
∑
i

√
pi|ψi〉A ⊗ |ψi〉B, pi = e−βEi

Z(β) , (1.2)

where |ψi〉A,B are bulk effective field theory eigenstates with energy Ei. We will study
this state in detail in next section 2. In computing the entanglement entropy of the state
on the universe A (or the universe B) by using the replica trick, the dominant replica
wormhole contribution is the one connecting all the gravitating universe’s replicas when the
entanglement between the two universes is sufficiently large β → 0 [54]. Such a contribution
leads us to the formula,

S(ρA) = Min{Sth(β), Sswap(ρA)}, Sswap(ρA) = MinExt
I

[Area(A/B, ∂I)
4GN

+ Seff(I)
]
,

(1.3)
where Area(A/B, ∂I) is the area of ∂I on a new spacetime denoted by A/B, which is
constructed by gluing two original universes A and B, and Seff(I) is the von Neumann
entropy in the bulk quantum field theory of the region I on the new spacetime A/B
(see figure 2). Also Sth(β) denotes the thermal entropy of the same bulk QFT with the
temperature 1/β. The appearance of the new spacetime A/B comes from the above
mentioned wormhole, and one can consider such a new spacetime A/B as a realization
of the “ER=EPR” [76], which states that the existence of the entanglement between two
distant regions is related to the existence of a wormhole connecting the two regions. In other
words, the sufficiently large entanglement between the two disjoint universes A,B induces a
geometric connection between them, leading to the introduction of the new spacetime A/B
(see figure 2 again).

In the previous paper [54], only the simplest setup where the universes A,B have eternal
black holes with the same black hole mass (or equivalently a same black hole entropy) was
studied. The resulting glued spacetime A/B also contains eternal black holes with the
same mass.

In this paper, we generalize this entropy calculation, and discuss more involved setups
where the black hole mass in the universe A is different from the one in the universe B, to
further understand the detailed properties of the formula (1.3). In such situations, there are
several possibilities for the glued geometry A/B, which are indistinguishable in the previous
setup [54]. Our results show that the dominant glued geometry A/B, which contributes to
the entropy formula (1.3) is given by the one which minimizes the total black hole entropy
in A/B. For definiteness, in this paper we focus on two dimensional dilaton gravities;
Jackiw-Teitelboim gravity in two-dimensional AdS spacetime and CGHS gravity in two
dimensional flat spacetime.

The outline of our paper is as follows. In section 2, we review and explain the results of
the previous paper [54] on the entanglement entropy between two gravitating universes. In
section 3, we construct a dilaton profile describing the glued spacetimes A/B with different
black hole masses for AdS JT gravity, and in the next section 4 we do a similar construction
for CGHS gravity. In section 5, by using the dilaton profiles constructed in previous sections
we compute the von Neumann entropy of the universe A and give its interpretation. In
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AL

AR

BL

BR

A/B

B/A

I

Figure 2. Schematic picture of two phases of entangled two universes (AdS) A,B. (Top) The
two universes are disjoint and just entangled with each other. In this case, the entanglement
entropy of the state (1.2) on the universe A is the Hawking-like thermal entropy Sth(β). (Bottom)
A sufficiently large entanglement between the two universes induces the geometric connection of
the two spacetimes, resulting in two glued spacetimes A/B and B/A. Unlike the above disjoint
universes, since there is an island in the glued spacetime A/B, the entanglement entropy of the
universe A is given by the black hole entropy of the glued spacetime A/B.
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section 6 we discuss an approximate way to construct such a glued geometry using shock
waves. In section 7, we consider more general settings where the each of these two eternal
black holes has different the left and the right black hole masses, MAL 6= MAR,MBL 6= MBR,
for AdS JT gravity and for flat CGHS gravity, and then compute the entanglement entropy
of the universe A. In section 8, we summarize our results and discuss their implications and
future directions. In appendix A, we provide ADM mass formulae for AdS JT gravity and
CGHS gravity. In appendix B, we explain another method to construct glued spacetimes
approximately by using shock waves for AdS JT gravity, in appendix C we explain a similar
method for CGHS gravity.

2 Entanglement between two gravitating universes

In this paper, we are interested in the following setup discussed in [54]. First, we prepare
two disjoint gravitating universes, say A and B with the identical cosmological constant as
in figure 2. Furthermore we assume A and B are described by a two dimensional dilaton
gravity theory. For simplicity, we consider two dimensional AdS JT gravity

IAdS
grav = − φ0

16πGN

[∫
D
R+

∫
∂D

2K
]
− 1

16πGN

∫
D

Φ(R− Λ)− Φb

16πGN

∫
∂D

2K, (2.1)

when the cosmological constant is negative, and CGHS gravity

IFlat
grav = − 1

16πGN

∫
M

(ΦR− Λ)− 1
16πG

∫
∂M

2ΦK, (2.2)

when these two universes are asymptotically flat. In these theories, only the dynamical
degree of freedom is the dilaton Φ, and we can always fix the metric part. We will especially
discuss situations where each universe contains a two-sided eternal black hole. The eternal
black hole in the universe A is specified by the dilaton profile ΦA and we also have ΦB for
the black hole in B.

As matter degrees of freedom coupled to the gravity degrees of freedom, we take a
conformal field theory. We define it on both of these universes A and B, so that the Hilbert
space of the matter degrees of freedom is bipartite. On this Hilbert space, we take the
following entangled CFT state,

|Ψ〉 =
∞∑
i=1

√
pi|ψi〉A|ψi〉B pi = e−βEi

Z(β) , (2.3)

where {|ψi〉A}∞i=1 are energy eigenstates. We can safely assume that CFTA on the universe
A and CFTB have the same spectrum {Ei}∞i=1, because this conformal field theory only
couples to the metric which is non-dynamical in theories of dilaton gravity.

This setup provides an ideal toy model to study the entanglement structure of evapo-
rating black holes emitting Hawking radiation. Imagine an observer keeps collecting the
Hawking quanta emitted from an evaporating black hole in some universe, say A. Then the
observer sends these quanta to another universe, say the universe B, which means that the
universe B plays a role of a bath collecting the Hawking quanta. This operation provides a
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concrete way to prepare the state (2.3) in question. Specifically, increasing 1/β corresponds
to increase of the entanglement in the radiation state (2.3). Thus, this identification makes
it possible to study the information loss problem of an evaporating black hole through the
study of the entanglement entropy between two universes in (2.3).

Since the universe B can be regarded as a bath collecting the Hawking quanta, it is often
assumed that the universe B is non-gravitating. In this case, the entanglement entropy of
the universe A is computed by the island formula (1.1). However, for an actual evaporating
black hole in our universe, the Hawking quanta are always located in the gravitating
region. This motivates us to study the setup where the universe B is also gravitating. This
generalization is not only for the sake of precision. Instead, in this generalization, we expect
a new physical effect, called ER=EPR [76] comes into play. This correspondence states that
in a theory of gravity, two entangled systems must have a geometric connection through a
wormhole. One of the goals of this paper is to understand how ER=EPR affects the entropy
of Hawking radiation.

We are interested in the entanglement entropy S(ρA) of (2.3) on the universe A,

S(ρA) = −tr ρA log ρA, ρA = trB|Ψ〉〈Ψ|. (2.4)

In [54], this entropy S(ρA) was computed through the replica trick, and the result reads,

S(ρA) = Min{Sth(β), Sswap(ρA)}, Sswap(ρA) =min ext
C

[
ΦA/B

(
∂C
)

4GN
+Sβ/2

(
C
)
−Svac

(
C
)]
.

(2.5)

This expression is quite similar to a version of the island formula [28, 29, 49], which
computes the same entropy of the same state (2.3) defined on a gravitating universe A and
a non-gravitating universe B. However, there is one important difference between (2.5) and
the island formula. Namely the dilaton profile ΦA/B appears in (2.5) is neither the dilaton
profile ΦA on the universe A nor, ΦB on the universe B.

Instead, ΦA/B is the dilaton profile of a new spacetime A/B, which is constructed by
gluing two universes A and B. For example, when A and B are both asymptotically AdS,
the spacetime geometry of each universe ΦA,ΦB is specified by the boundary conditions at
the left and right conformal boundaries (see figure 3). The dilaton profile on A/B has the
boundary conditions for the universe A at its left conformal boundary, and the boundary
conditions for B at its right boundary. One of the goals of this paper is to construct this
glued geometry ΦA/B for a variety of examples.

Sβ/2(C) in (2.5) denotes the entanglement entropy of the thermal ensemble of the bulk
conformal field theory, with the inverse temperature β/2, and Svac(C) is the entanglement
entropy of the vacuum.

We compute the generalized entropy Sgen[C] = ΦA/B(∂C) + Sβ/2(C)− Svac(C) in the
right hand side of (2.5) for all possible intervals C in A/B (see the right panel of figure 3),
then extremize to obtain what we call the swap entropy Sswap(ρA). The minimum between
Sswap(ρA) and the thermal entropy Sth(β) → 2π2c/3β, β → 0 gives the entanglement
entropy S(ρA) for the universe A. This rule for constructing ΦA/B was obtained by properly
including the wormhole saddle points of the corresponding Rényi entropy tr ρnA.

– 6 –
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Figure 3. Left: the Penrose diagram of the new spacetime A/B in AdS. The spacetime is specified
by the left and right conformal boundary conditions (red and blue vertical lines). Right: the same
Penrose diagram of the new spacetime A/B with the region C (green region) on which we evaluate
the generalized entropy Sgen[C].

Sketch of the derivation. For later convenience, let us sketch the derivation of the
result (2.5) for AdS black holes [54]. To this end, we start from the replica trick for the
entanglement entropy,

S(ρA) = lim
n→1

1
1− ntr ρnA. (2.6)

We then compute the right hand side for positive integers n. From the definition of the
state (2.3), we have

tr ρnA = 1
Zn1

∞∑
{ik,jk}=1

n∏
k=1

√
pikpjk 〈ψik |ψjk〉Ak 〈ψjk |ψik+1〉Bk , (2.7)

where Ak(Bk) denotes the k-th copy of the universe A(B), with the normalization factor Z1
defined by

Z1 =
∞∑

i,j=1

√
pipj 〈ψi|ψj〉A〈ψj |ψi〉B. (2.8)

The eternal black hole state in the universe A can be prepared by a Euclidean path
integral on a half disc with an appropriate boundary condition at the conformal boundary.
We collectively denote them by λA(u), where u is the coordinate for the boundary circle.
Similarly, we denote the boundary conditions for the black hole in B by λB(u). Since each
|ψi〉Ak is a small CFT excitation on top of the fixed black hole in A, we can prepare it again
by a path integral on the half disc with λA(u), but now with the insertion of a CFT operator
corresponding to the excitation on the south pole of the half disc. Similarly each overlap
〈ψik |ψjk〉Ak appearing in (2.7) is computed by inserting two local operators of the bulk
CFT to the full disc. Altogether, the Rényi entropy (2.7) has a gravitational path integral
expression, with 2n circle boundaries {∂Ak, ∂Bk} with 4n CFT local operator insertions
(see figure 4).

As was shown in [54], in the high entanglement temperature limit β → 0, the gravi-
tational path integral is dominated by a single gravitational saddle M2n where all the 2n
boundaries {∂Ak, ∂Bk} are connected by a single wormhole. One way to think about this
manifold is first introducing a wormhole connecting the disc Ak to the other Bk in the
same replica to make them a cylinder (or equivalently an annulus), then connect these n

– 7 –
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Figure 4. Schematic picture of the replica geometry M2n (n = 3 case). The n (n = 3) red
boundaries correspond to the boundaries of the universe A, i.e., ∂A. The others (blue) correspond
to the boundaries of the universe B, i.e., ∂B. The cyan dots are the fixed points of this replica
geometry. Upon taking the quotient of the geometry by the replica symmetry ZN , the orange lines
become the branch cuts.

cylinders by a replica wormhole. This manifold therefore has a replica symmetry Zn which
shifts the k-th replica to the (k + 1)-th.

The gravitational action of the saddle M2n is computed by the standard trick developed
in [77]. Since the saddle has a replica symmetry Zn, one can take its quotient M̃2n = M2n/Zn,
which has the topology of an annulus with a cut, whose two boundary circles can be identified
with the boundary of the universe A and B. Including the CFT operators, this path integral
on the annulus can be written as the thermal correlator

tr
[
e−βannH/2ψikψik+1e

−βannH/2ψjkψjk

]
(2.9)

where βann denotes the circumference of the annulus, which should be distinguished from
the entanglement temperature β (see figure 5). When the entanglement between A and B
is strong β → 0, it is natural to expect the renormalized length between two boundaries
{∂Ak, ∂Bk} becomes shorter and shorter. This means that if we fix its spatial size, the
circumference gets longer, βann → ∞. In this limit, one can replace e−βannH/2 to the
projection operator |0〉〈0|, thus the annulus amplitude is split into two disc path integrals,
one is with a cut, and the other without. See again figure 5. The path integral on the
disc without the cut cancels with the path integral of Z1 (2.8) in the denominator of (2.7).
Finally, in the n → 1 limit the remaining path integral on the disc with the cut can be
identified with the generalized entropy on the left hand side of (2.5). This manifests the
origin of the appearance of ΦA/B in (2.5). As is clear from figure 5 on the half boundary of
this disk, we impose the boundary conditions of the universe A and on the other half we
impose the condition for B.

– 8 –
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Figure 5. Left: schematic picture of the annulus geometry M2n/Zn. This annulus geometry has a
cut (orange line) whose endpoints are the fixed points of the replica symmetry. Right: schematic
picture of the two disc geometries, which are obtained from the annulus geometry (left figure) by
taking the β → 0 limit. One of the two disks contains a cut (orange line). The green dots are
boundary condition changing points between the two conditions of the universes A and B.

3 Entangled eternal black holes in AdS with two different masses

In this section, we discuss the construction of the glued geometry ΦA/B which computes
the entanglement entropy on two gravitating universes (2.5).2 We focus on the case where
the universe A is an eternal AdS black hole with the mass MA, and similarly the universe
B contains an AdS eternal black hole with MB. We work in the global coordinates (µ, τ),
where the AdS metric takes the following form,

ds2 = −dτ
2 + dµ2

cos2 µ
. (3.1)

In the coordinates, the conformal boundaries are located at µ = ±π
2 . The dilaton profile of

the universe A is given by
ΦA(µ, τ) = bA

cos τ
cosµ, (3.2)

where the parameter bA is related to the black hole mass MA through

MA = b2A
16πGφb

. (3.3)

2See [78] for a related discussion.
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We can see the above relation through the ADM mass formula (A.5). This dilaton profile
represents an eternal black hole. We have a similar dilaton profile ΦB for B.

The dilaton profile ΦA/B which appears in the entropy functional (2.5) satisfies the
following boundary conditions,

ΦA/B → ΦA, µ→ π

2 , and ΦA/B → ΦB, µ→ −π2 , (3.4)

thus ΦA/B is the dilaton profile of a two sided black hole with different left and right masses.
The dilaton profile satisfies the following equations of motion,

1
cos2 µ

∂+
[
cos2 µ∂+Φ

]
= −8πG 〈T++〉β ,

1
cos2 µ

∂−
[
cos2 µ∂−Φ

]
= −8πG 〈T−−〉β ,

2∂+∂−Φ− 1
cos2 µ

Φ = 16πG 〈T+−〉β ,

(3.5)

with the CFT stress energy tensor evaluated on the state (2.3)

〈T++〉β = 〈T−−〉β = c

24π

(2π
β

)2
≡ 〈T 〉β , 〈T±∓〉β = 0, (3.6)

where the chiral coordinates x± are defined by

x± = µ± τ. (3.7)

As we increase the entanglement temperature 1/β, the eternal black hole (3.2) receives
the back reaction from the CFT stress energy tensor 〈T±±〉β . The result reads [28],

ΦA(µ, τ) = bA
2

[(
b0 + 1

b0

)
− 2
π

(
b0 −

1
b0

)
(µ tanµ+ 1)

]
, (3.8)

where b0 is related to 〈T 〉β by

bA
π

(
b0 −

1
b0

)
= 16πG〈T 〉β . (3.9)

The mass MA of the black hole remains unchanged by this back reaction.
Now let us specify the dilaton profile ΦA/B which solves (3.5) and satisfies the boundary

conditions (3.4). First, we note that the general solution of (3.5) is given by

Φ(µ, τ) = Φ0(µ, τ)− 16πG〈T 〉β (µ tanµ+ 1)

=
(
a tanµ+ b

cos τ
cosµ

)
− 16πG〈T 〉β (µ tanµ+ 1) , (3.10)

where Φ0 denotes the “sourceless” part of the dilaton, satisfying (3.5) with the vanishing
stress energy tensor 〈Tµν〉 = 0, and this depends on two parameters a and b.3

3Although there is an additional term, sin τ
cosµ for the general solution, we do not include such a term

for simplicity. In the absence of this term, bifurcation surfaces are located on the τ = 0 time slice, as
explained later.
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In the µ→ π
2 limit, the solution (3.10) approaches

Φ(µ, τ) = b
cos τ
cosµ −

(
8π2G〈T 〉β − a

)
tanµ. (3.11)

This describes a black hole with the mass

MR = 1
16πGφb

(
b2 −

(
8π2G〈T 〉β − a

)2
)
. (3.12)

This can be seen by directly using the ADM mass formula (A.5) or applying an SL(2,R)
transformation to the dilaton profile (3.11), which brings the event horizon to the center of
the space (µ, τ) = (0, 0). Then the profile of the right Rindler wedge is that of the usual
AdS Schwarzchild black hole.

Similarly, by taking the µ → −π
2 limit of (3.10), we read off the mass of the left

black hole,

ML = 1
16πGφb

(
b2 −

(
8π2G〈T 〉β + a

)2
)

(3.13)

We identify the left mass ML to be the mass of the black hole in the universe A,
ML = MA, and similarly MR = MB . These conditions fix the parameters a, b in the dilaton
profile (3.10) to be

a = φb
2π〈T 〉β

(MB −MA)

b =

√√√√8πGφb(MA +MB) + 64π2G2〈T 〉2β + φ2
b

4π2〈T 〉2β
(MB −MA)2

≈
β→0

√
8πGφb(MA +MB) + 64π2G2〈T 〉2β .

(3.14)

3.1 The Penrose diagram of the glued geometry in JT gravity

Having specified the dilaton profile ΦA/B of the glued spacetime A/B, now let us study the
causal structure of the black hole. We are particularly interested in the high entanglement
temperature limit β → 0.

Let us first specify the locations of the bifurcation surfaces. These surfaces are local
minima of the profile, ∂τΦA/B = ∂µΦA/B = 0. It turns out that there are two such
surfaces at µ = µR, µL on the time slice τ = 0. First, let us consider the right horizon, at
µ = µR, τ = 0. As we will see, this horizon approaches the right boundary µR → π

2 in the
limit of our interest β → 0, so near the right horizon we can approximate the dilaton profile
as (3.11), with the parameters (3.14). Then we get

sinµR = 1
b

(
8π2G〈T 〉β − a

)
. (3.15)

In this limit, the value of the dilaton profile at this surface is

ΦA/B(µ = µR, τ = 0)→ bA, β → 0, (3.16)

– 11 –



J
H
E
P
0
9
(
2
0
2
2
)
0
0
9
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A B
µL µR

Figure 6. The Penrose diagram of the glued spacetime A/B with two distinct black hole masses
MA 6= MB in JT gravity.

where bA is defined in (3.3). This is expected, since ΦA/B → ΦA near the right conformal
boundary. Similarly in the high entanglement temperature limit β → 0, the left horizon
approaches the left boundary µL → −π

2 , and satisfies,

sinµL = 1
b

(
8π2G〈T 〉β + a

)
. (3.17)

thus the dilaton value at the horizon is Φ(µL, 0) = bB.
Since these two horizons move toward different conformal boundaries µR → π

2 and
µL → −π

2 as we decrease β, the black hole develops a large interior region between the
two horizons. Since this is inaccessible from both left and right conformal boundaries, it is
often called a causal shadow region. Finally the singularity of the black hole is located at
ΦA/B(µ, τ) = 0. Taking into account these, we get the Penrose diagram (figure 6) for the
glued geometry A/B with the dilaton profile ΦA/B in JT gravity. A similar dilaton profile
was discussed for example in [28].

4 Entangled eternal black holes in flat space with two different masses

In this section, we construct the dilaton profile ΦA/B in CGHS gravity, starting from two
asymptotically flat black holes in A and B with distinct masses MA, MB. We begin our
discussion from the following expression of the flat space metric,

ds2 = dx+dx−

cos2 x+ cos2 x−
, (4.1)

related to the standard form ds2 = dX+dX− by the coordinate transformation X± = tan x±.
The asymptotic spatial infinity is located at x+ = ±π

2 or x− = ±π
2 . The equations of

motion of CGHS gravity are given by

− 1
cos2 x+∂+

[
cos2 x+∂+

]
Φ = 8πG 〈T++〉β ,

− 1
cos2 x−

∂−
[
cos2 x−∂−

]
Φ = 8πG 〈T−−〉β ,

2∂+∂−Φ = 16πG 〈T+−〉β −
Λ
2

1
cos2 x+ cos2 x−

,

(4.2)

where the expectation value of the stress energy tensor 〈Tµν〉β is again given by (3.6).
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When there is no entanglement in the state (2.3), i.e., β =∞, the dilaton profile for
the eternal black hole in A is

Φ0
A = φ0,A + |Λ|4 tan x+ tan x−. (4.3)

The mass of this black hole is given by

MA =
√
|Λ|

16πGφ0,A, (4.4)

where we used the ADM formula (A.8). A similar profile for the black hole in the universe
B is obtained by the replacement φ0,A → φ0,B in (4.3). This black hole has the unique
bifurcation surface at x± = 0.

As we increase the entanglement temperature 1/β, these black holes receive back
reaction from the CFT stress energy tensor. From the equations of motion (4.2), we find
the dilaton profile with the back reaction is [49]

ΦA(x+, x−) = φ0,A + |Λ|4 tan x+ tan x− − 4πG〈T 〉β (x+ tan x+ + x− tan x−), (4.5)

where 〈T 〉β ≡ 〈T±±〉β is given by (3.6). Again we have a similar expression for the universe
B. The mass of this black hole is given by

MA =
√
|Λ|

16πG

(
φ0,A −

(
4π2G〈T 〉β

)2
|Λ|

)
. (4.6)

MA decreases as we increase the entanglement temperature 1/β. This is in contrast with
the similar black hole in AdS JT gravity (3.8) whose mass kept fixed under the increase.

Having specified the dilaton profiles ΦA and ΦB , let us construct ΦA/B in CGHS model.
The boundary conditions for ΦA/B are given by

ΦA/B → ΦA, x± → −π2 , and ΦA/B → ΦB, x± → π

2 . (4.7)

This condition is analogous to the one in JT gravity (3.4). The general solution for (4.2) is
given by

ΦA/B

(
x+, x−

)
= Φ0

(
x+, x−

)
− 4πG〈T 〉β

(
x+ tan x+ + x− tan x−

)
=
(
D0 + |Λ|4 tan x+ tan x− +D+ tan x+ +D− tan x−

)
− 4πG〈T 〉β

(
x+ tan x+ + x− tan x−

) (4.8)

where Φ0 is the “sourceless” part, which satisfies the equations of motion with 〈Tµν〉 = 0. The
parameters D0,± in Φ0 are determined from the conditions (4.7). We are mainly interested
in D+ = D− ≡ D cases, which correspond to the situations where two bifurcation surfaces
of the black hole are located on the t = 0 time slice.4 To determine these parameters D0, D,

4The coordinates x± are related to t by x± = x± t.
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we focus on the asymptotic behaviors at x± → π
2 and x± → −π

2 . In the right asymptotic
limit x± → π

2 , the dilaton profile ΦA/B takes the form

ΦA/B→ΦR =D0+ |Λ|4 tanx+ tanx−+
(
D−π2 ·4πG〈T 〉β

)(
tanx++tanx−

)
as x±→ π

2 ,
(4.9)

where we introduced the notation ΦR to distinguish it from the original one (4.5).
By using the ADM black hole mass formula (A.8), we can see that this dilaton profile

ΦR corresponds to a black hole with the mass

MR =
√
|Λ|

16πG

(
D0 − 4

|Λ|
(
D − 2π2G〈T 〉β

)2
)
. (4.10)

On the other hand, in the left asymptotic limit x± → −π
2 , the dilaton profile

ΦA/B becomes

ΦA/B→ΦL =D0+ |Λ|4 tanx+ tanx−+
(
D+π

2 ·4πG〈T 〉β
)

(tanx++tanx−) as x±→−π2 ,
(4.11)

where we again introduced the notation ΦL, and from the ADM mass formula (A.8) this
dilaton profile ΦL gives the black hole mass

ML =
√
|Λ|

16πG

(
D0 − 4

|Λ|
(
D + 2π2G〈T 〉β

)2
)
. (4.12)

We identify these black hole massesML,MR withMA defined in (4.6) andMB obtained
by the replacement φ0,A → φ0,B in MA respectively, i.e, ML = MA and MR = MB. These
identifications determine the parameters D0, D in terms of φ0,A, φ0,B and 〈T 〉β as follows

D0 = φ0,A + φ0,B
2 + |Λ|(φ0,A − φ0,B)2

256π4G2〈T 〉2β

≈
β→0

φ0,A + φ0,B
2 ,

D = |Λ|φ0,B − φ0,A
32π2G〈T 〉β

.

(4.13)

4.1 The Penrose diagram in CGHS gravity

Let us study the causal structure of the dilaton profile ΦA/B obtained by plugging (4.13)
into (4.8) in CGHS model. We are again interested in the high entanglement temperature
limit β → 0.

At first, we determine the locations of the bifurcation surfaces of the black hole, at which
the dilaton profile ΦA/B takes local minima. From the extremality conditions ∂±ΦA/B = 0
and the local minima condition, we get two distinct extremal surfaces x+

R = x−R ≡ xR,
x+
L = x−L ≡ xL, which are located on the t = 0 time slice.

In the limit β → 0, the extremality conditions take the following simple form

tan xR = − 4
|Λ|

(
D − 2π2G〈T 〉β

)
, tan xL = − 4

|Λ|
(
D + 2π2G〈T 〉β

)
. (4.14)
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xL xR

Figure 7. The Penrose diagram of the glued spacetime A/B with two different black hole masses
in CGHS gravity.

These equations imply that, in the limit β → 0, the right bifurcation surface approaches
the right spatial infinity x±R →

π
2 and the left one does the left spatial infinity x±L → −

π
2 .

In this limit, the dilaton values at the bifurcation surfaces are given by

ΦA/B(x± = xR)→ D0 − 4
|Λ|

(
D − 2π2G〈T 〉β

)2
= φ0,B −

(
4π2G〈T 〉β

)2
|Λ| ,

ΦA/B(x± = xL)→ D0 − 4
|Λ|

(
D + 2π2G〈T 〉β

)2
= φ0,A −

(
4π2G〈T 〉β

)2
|Λ| .

as β → 0.

(4.15)
These dilaton values at the horizons are also consistent with the discussion in the previous
section. From the above discussion plus the location of the singularity at ΦA/B(x+, x−) = 0,
we get the Penrose diagram (figure 7) corresponding to the dilaton profile ΦA/B in CGHS
gravity.

5 Entropy calculation and its interpretation

In this section, we compute the entanglement entropy S(ρA) using (2.5), by plugging the
dilaton profile ΦA/B of the glued geometry into the formula. We take the following ansatz
for C̄ on the reflection symmetric slice,

C̄ :
[
−π2 −

πy

2

]
∪
[
πx

2 ,
π

2

]
, 0 < x, y < 1, (5.1)

see figure 3 for the AdS case.
Let us assume the bulk CFT has a holographic dual. Then the bulk entanglement

entropies have the following simple expressions

Sβ/2
[
C̄
]

= c

3 log
[
β

2π sinh π
2

β

(
1− x+ y

2

)]
, Svac

[
C̄
]

= c

3 log
[
2 sin π

(
x+ y

2

)]
.

(5.2)
The actual dilaton profile is given by (3.10) with (3.14) for AdS JT gravity, and (4.8)

with (4.13) for flat CGHS model. Then Sswap(ρA) in (2.5) is computed by taking the
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Figure 8. Left: plots of the entanglement entropy (2.5) of the AdS JT gravity case as a function of
the entanglement temperature T = 1/β. We set the parameters to be φ0,A = 300, φ0,B = 200, c =
10, 4GN = 1. Right: similar Plots for flat CGHS model case as a function of T = 1/β. We set the
parameters to be φ0,A = 300, φ0,B = 200, |Λ| = 100, c = 10, 4GN = 1.

extrema of the following function with respect to two variables x and y,

Sgen(x,y) =
ΦA/B(x)

4GN
+

ΦA/B(y)
4GN

+ c

3 log
[
β

2π sinh π
2

β

(
1−x+y

2

)]
− c3 log

[
2sinπ

(
x+y

2

)]
.

(5.3)
In both cases, in the β → 0 limit, the bifurcation surfaces approach the asymptotic
boundaries (or spatial infinities). The value of the entropy is half of the sum of the entropies
of the original black holes,

Sswap(ρA) = SBHA + SBHB . (5.4)

We plot the resulting entanglement entropy (2.5) as a function of the entanglement
temperature 1/β in figure 8 for black holes in AdS JT gravity as well as in flat CGHS
model. In both cases, in the low temperature limit the results coincide with the thermal
entropy of the bulk CFT, which reproduce the Hawking’s result. In the high temperature
regime where the results are proportional to the area of the black holes, two cases show
distinct behaviors. Namely, whereas for the black holes in AdS JT gravity, the entanglement
entropy saturates to a constant value, for the black holes in flat CGHS model, the entropy
is decreasing. This difference can be understood from the fact that the black holes in flat
space can evaporate by emitting Hawking quanta and lose their masses, on the contrary to
the black holes in AdS.

We emphasize that our result is not obtained by applying the island formula for the
universe A and B independently, then summing up their outcomes. Such a contribution
would come from the replica wormhole connecting n copies of A and the other replica
wormhole connecting Bs, without any further connection between A and B. However, as was
argued in [54] this does not yield the expected result, i.e., the sum of two island formulae
for A and B. This is because, in this saddle, the bulk CFT part of the path integral can not
be interpreted as a Rényi entropy, due to the alignment of the operators in the numerator
of (2.7). Also, if we choose this saddle, then one can not kill the unbounded growth of the
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denominator. Thus the resulting entropy increases without any bound as well, in the high
temperature limit.

6 Approximate gluings

We have discussed exact solutions for ΦA/B for the asymptotically AdS black holes (3.2)
and those in flat space (4.5). This was possible because the original dilaton profiles in A and
B are simple enough to find such interpolating solutions ΦA/B . Then the question arises, is
there any way to approximately construct such an interpolating solution, especially when it
is difficult to find an exact solution? In this section we propose an idea in this direction,
using shock waves in these geometries. Again, let us take the AdS black hole with the mass
MA (3.2) and the one with MB for example, and think gluing them to obtain ΦA/B by an
approximate mean. We start from the dilaton profile (3.2), and then imagine inserting a
left moving shock wave in the black hole interior. The expectation value of the CFT stress
energy tensor is given by

〈T±±〉 = 〈T±±〉β + 〈T±±〉S , 〈T±∓〉 = 0, (6.1)

with
〈T++〉S = Eδ(x+ − x+

0 ), 〈T−−〉S = 0. (6.2)

Here we also added the thermal expectation value 〈T±±〉β coming from the entanglement
temperature. Now the set of equations of motion for the dilaton is given by (3.5) with the
above stress tensor (6.1). The new geometry depends on two parameters, the energy E of
the shock wave, and its location x+ = x+

0 . As we show in appendix B, the mass of the black
hole to the right of the shock is changed to MAR = MAR(x+

0 , E) from its original mass MA.
On the other hand, the mass of the left black hole remains to be the same, MAL = MA.
The explicit form of the dilaton profile reads,

Φ = bA

( cos τ
cosµ

)
− 16πG〈T 〉β(µ tanµ+ 1)

− 16πGE cos2
(
x+

0 + x−

2

)[
tanµ− tan

(
x+

0 + x−

2

)]
Θ
(
x+ − x+

0

)
. (6.3)

To approximate the glued geometry ΦA/B by the dilaton profile with the shock (6.3),
we impose the condition that the right mass coincides with the mass of the black hole in B,
MAR(x+

0 , E) = MB. Let us denote the dilaton profile (6.3) with this condition by Φ̃A/B.
Details of the expression of MAR(x+

0 , E) can be found in appendix B. Of course, this is
not enough to entirely fix these two parameters x+

0 , E. However as we can immediately
see, if we plug the approximate dilaton profile Φ̃A/B into the generalized entropy (2.5) then
extremize, then it gives the correct swap entropy Sswap(ρA) in the β → 0 limit, as long as
the constraint is satisfied, because the resulting entropy is again given by the sum of two
entropies of the black holes in A and B. We can also see, the only difference between the true
dilaton profile ΦA/B and the approximate one Φ̃A/B the presence of the term proportional
to sin τ/ cosµ, which only shifts the location of the horizon in the timelike direction.

We have a similar construction for CGHS model, and explain it in appendix C.
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7 More general settings

So far, we have been discussing the cases where two horizons of the eternal black hole
of each universe have the same masses ML = MR. When they are different, we should
carefully construct the glued spacetime A/B on which we compute the generalized entropy.

As an example of such eternal black holes with ML 6= MR, let us again consider the
dilaton profile of the form (3.10), which we reproduce here,

ΦA(µ, τ) =
(
aA tanµ+ bA

cos τ
cosµ

)
− 16πGX(µ tanµ+ 1). (7.1)

In previous sections, we regard this as the dilaton profile of the glued geometry A/B,
which results from gluing two eternal black holes with the MAL = MAR, and MBL = MBR,
but now we regard it as an example of the dilaton profile of the single universe, say the
universe A, with MAL 6= MAR. Also in this setup, we are regarding the parameter X as
merely a parameter, not related to the entanglement temperature 1/β and the corresponding
CFT stress tensor 〈T 〉β .

The masses of the left and right black holes MAL, MAR are given by

MAL = 1
16πGφb

(
b2A −

(
8π2GX + aA

)2
)
, MAR = 1

16πGφb

(
b2A −

(
8π2GX − aA

)2
)
.

(7.2)
We also have a similar dilaton profile for the universe B by the replacement (aA, bA)→

(aB, bB) in (7.1), while keeping X intact.
Now we would like to specify the dilaton profile of the glued geometry ΦA/B which

appears in the formula for the entanglement entropy (2.5). In this generalized case, there are
four candidates of the dilaton profile, namely ΦAL/BR, ΦAL/BL, ΦAR/BL,ΦAR/BR. Here
for example we denote by ΦAL/BR the dilaton profile which approaches ΦA near the left
boundary and ΦB near the right boundary, satisfies the following boundary conditions,

ΦA/B → ΦA, µ→ −π2 , and ΦA/B → ΦB, µ→ +π

2 . (7.3)

This dilaton profile ΦAL/BR contains the left horizon of the black hole in A and the right
horizon of the black hole in B. Other dilaton profiles are also defined in a similar way,
according to the choice of two horizons in A/B out of candidate horizons {AL,AR} in A
and {BL,BR} in B. They all satisfy the equations of motion (3.5) with 〈T++〉 = 〈T−−〉 =
〈T 〉β+X. The difference between them is coming from the choice of the boundary conditions
near the conformal boundaries µ→ ±π

2 .
One may be puzzled by the fact that we are dealing with dilaton profiles obeying distinct

boundary conditions, for the reason that in a calculation of a semi-classical gravitational
path integral we always fix the boundary conditions. To clarify this point, let us come back
to the replica derivation of the formula (2.5) which was briefly reviewed in section 2, as in
figure 4. The entanglement entropy is computed by evaluating the on shell action of the
Euclidean wormhole connecting two discs for the universes A and B, in the presence of a
cut C. In this description we have a unique boundary condition on ∂A and ∂B. When the
masses of the left and right horizons are not necessarily the same MAL 6= MAR,MAL 6= MAR,
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there are four possible types of Euclidean wormholes. Such a wormhole is constructed
first by flipping the left and right of these discs, then connecting these two. For example,
suppose that we flip the disc of the universe B and then connect A and B. Its Lorenzian
continuation of the Euclidean cylinder gives two eternal black holes, one of which contains
the cut C. Furthermore, as is explained in [54] these two eternal black holes get disjoint in
the high entanglement temperature limit β → 0, as depicted in figure 5. This is because if
we regard the cylinder as an annulus, its circumference gets large in this limit. Therefore,
for the eternal black hole with the cut, when analytically continued, the dilaton is given
by ΦAR,BR.5 Similarly, if we flip both two universes we get a wormhole whose Lorenzian
dilaton profile is given by ΦAL,BR.

For each wormhole with the cut C, the gravitational action is proportional to its
dilaton profile −(n − 1)Φ[C] in the n → 1 limit. Upon taking the extremization, this
picks up the extremal surface ∂∂CΦA/B = 0, on which the dilaton value is equal to the
area of the horizon of the relevant black hole. The dominant saddle of the gravitational
path integral can be found by taking the minimum value among these four candidates
{ΦAL/BR, ΦAL/BL, ΦAR/BL,ΦAR/BR}. On the other hand the value of the denominator is
independent from the choice of the wormhole, i.e., in the absence of the cut, their action
values are always the same.

By combining these, we conclude that in the high temperature limit β → 0, the
entanglement entropy is given by the sum of the two smallest black hole entropies. In our
case, it is given by

S(ρA) = Min[SAL + SBL, SAL + SBR, SAR + SBR, SAR + SBL]. (7.4)

We can also construct dilaton profiles describing general glued geometries in CGHS
model too. This construction is parallel to the one in the previous section 4. In this case,
we consider the following dilaton profile

ΦA

(
x+, x−

)
= φ0,A + |Λ|4 tan x+ tan x− − 4πGX

(
x+ tan x+ + x− tan x−

)
+DA

(
tan x+ + tan x−

) (7.5)

for the universe A, and similarly for the universe B. This dilaton profile ΦA corresponds to
a black hole with the masses

MAR =
√
|Λ|

16πG

(
φ0,A−

4
|Λ|

(
DA−2π2GX

)2
)
, MAL =

√
|Λ|

16πG

(
φ0,A−

4
|Λ|

(
DA+2π2GX

)2
)
,

(7.6)
and similarly for ΦB.

For these masses, by repeating the analysis of the section 4, we get various dilaton profiles
ΦAL/BR, ΦAL/BR, ΦAR/BL,ΦAR/BL as in the case of JT gravity. Namely, each dilaton
profile can be constructed starting from the general solution (4.8) with the replacement
〈T 〉β → 〈T 〉β +X with the boundary conditions analogous to (4.7).

5Notice that without any flip, we get the dilaton ΦAR,BL, because as in [54] we rotate the disc B by π
relative to the disc A, to adjust the locations of the CFT operators.
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8 Conclusion and discussions

In this paper, we consider the entanglement entropy of states defined on two disjoint
universes, by generalizing the argument of [54].

Let us interpret the result we obtained. We started from the entangled state (2.3) on
two disjoint gravitating universes A and B. Since there is a black hole on the universe B, this
state can be regarded as an entangled state of the Hawking quanta in the universe A and
black hole microstates in the universe B. This interpretation is similar to the setup for the
island formula, where one takes the bath universe to be non gravitating. In the latter case,
although the number of the degrees of freedom in the non-gravitating universe is infinite,
the maximal entanglement that the system can accommodate is given by the entropy of the
black hole in the universe B in accord with the structure of the total Hilbert space.

In the current setup where both of these universes are gravitating, this scenario gets
modified. Namely, as is clear from the formula (2.5), the gravitational dynamics completely
changes the system. After the dominant saddle in (2.5) is changed, it becomes a system
where the Hawking radiation is entangled with the black holes in A/B, whose detailed
properties were studied in this paper. Thus we speculate the interior region of the new black
hole belongs to the entanglement wedge of the Hawking radiation. Such a gluing happens
due to the back reaction of the stress tensor induced from the entanglement between two
universes, A and B. This can be regarded as a concrete realization of ER=EPR [76], which
relates entanglement in presence of gravity to spatial wormholes.

It would be interesting to study this phenomenon further, with emphasis on its micro-
scopic origin. One consistent description of an evaporating black hole is in terms of a class
of states of the form

|Ψ〉 =
∑
α,i

Cα,i|ψα〉BH ⊗ |i〉R (8.1)

where Cα,i is a random matrix drawn from Gaussian ensemble, and |ψα〉BH , |i〉R are
orthonormal basis of the Hilbert space of black hole microstates HBH , and the similar basis
for Hawking radiation HR respectively. This point of view of evaporating black holes was
first studied by Page [3]. The randomness of the coefficient matrix is coming from the
chaotic nature of the black hole dynamics. Averaging over these random matrices leads
to a semi-classical description, but consistent with the principles of quantum theory. For
example the Page curve of the radiation entropy as well as the island formula follows from
it. From this point of view, the island region in the black hole interior can be regarded as a
region accommodating random fluctuations in the entangled state (8.1). See [79] for a recent
discussion on this topic and its relation to baby universes. Since the system we studied
in this paper involves two such black holes, it is natural to expect that the microscopic
description of the setup has to do with two such random matrices. Related discussions
toward this direction can be found in [48, 80].
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A ADM mass formula

In this appendix, we give ADM mass formulae in AdS JT gravity and CGHS gravity. We
also give the explicit ADM masses of general dilaton profiles in both cases.

A.1 ADM mass formula in AdS JT gravity

We consider the ADM mass of a dilaton profile in AdS JT gravity. The relation between
dilaton profiles and the ADM black hole mass is discussed in e.g. [81, 82]. To introduce the
ADM mass formula, we need to specify boundary conditions of the metric and the dilaton
on the asymptotic boundary. We assume that they are given by

Φ|bdy = φb
ε
, (A.1)

guu|bdy = − 1
ε2 , (A.2)

where ε is the cutoff, φb is the renormalized dilaton value, which is a constant at the cutoff
surface, and u is a boundary time coordinate along the cutoff surface. Also |bdy implies that
we evaluate the expression at the boundary.

Then the ADM mass formula associated with one side of the two AdS boundaries is
given by

MADM = −
√
−guu
8πG (∂nΦ− Φ)|bdy, (A.3)

where n is the (outward) normal vector to the boundary, ∂n denotes the normal derivative
to the boundary.

For example, we consider a dilaton profile Φ satisfying the equations of motion (3.10)
with a vanishing stress energy tensor. The general solution is given by

Φ = Q−1
cos τ
cosµ +Q0

sin τ
cosµ −Q1 tanµ, (A.4)

where Q−1, Q0, Q1 are constants.
For this general dilaton profile, the ADM black hole mass associated with one side of

the AdS boundaries becomes

MADM = (Q−1)2 + (Q0)2 − (Q1)2

16πGφb
. (A.5)

This expression is manifestly invariant under the SL(2,R) rotation, which is a symmetry of
JT gravity.

A.2 ADM mass formula in flat CGHS gravity

Next we consider the ADM black hole mass described by a dilaton profile in CGHS gravity.
For CGHS gravity, the relation between dilaton profiles and the ADM black hole mass is
discussed in e.g. [83, 84].

The ADM mass formula associated with one side of the two spatial infinities is given by

MADM = 1
16πG

√
|Λ|

(
−(∇Φ)2 + |Λ|Φ

)
|sp.inf., (A.6)

where |sp.inf. implies that we evaluate the expression at a spatial infinity.
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As in the case of JT gravity, we consider a dilaton profile Φ satisfying the equations of
motion (4.2) with a vanishing stress energy tensor. The general solution is given by

Φ = D0 + |Λ|4 tan x+ tan x− +D+ tan x+ +D− tan x−, (A.7)

where D0,± are constants.
This dilaton profile gives the ADM black hole mass associated with one side of the two

spatial infinities

MADM =
√
|Λ|

16πG

(
D0 − 4√

|Λ|
D+D−

)
. (A.8)

B The black hole solution with a shockwave in its interior
(AdS JT gravity)

In this appendix, we explain a method to construct a dilaton profile describing a glued
spacetime approximately by using shock waves for AdS JT gravity outlined in section 6.
This is closely related to the exact construction in section 3, but the resulting geometry
does not have the time reflection symmetry τ ←→ −τ .6

At first, we consider the equations of motion (3.10) with the stress tensor given by

〈T±±〉 = 〈T±±〉β + 〈T±±〉S , 〈T±∓〉 = 0, (B.1)

where the first term 〈T±±〉β is defined by (3.6) and the second term 〈T±±〉S is coming from
the contribution of the shock wave,

〈T++〉S = Eδ
(
x+ − x+

0

)
, 〈T−−〉S = 0. (B.2)

Here, the coefficient E characterizes the strength of the shock wave and x+
0 is the location

of the shock wave.
The general solution is given by7

Φ = b+

( cos τ
cosµ

)
− 16πG〈T 〉β(µ tanµ+ 1)

− 16πGE cos2
(
x+

0 + x−

2

)[
tanµ− tan

(
x+

0 + x−

2

)]
Θ(x+ − x+

0 ). (B.3)

As we will check in the next subsection, this dilaton profile corresponds to a black
hole with two different masses. In other words, this dilaton profile describes a new glued
spacetime with its masses.

6We can construct a dilaton profile describing a glued geometry which is not time reflection symmetric
with the method discussed in section 3 by including the additional term in (3.10). See footnote 3.

7Although the full general solution includes terms sin τ/ cosµ and tanµ, we omit such terms for simplicity.
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B.1 Black hole ADM mass formula in the AdS Jackiw-Teitelboim gravity

Next we compute the black hole masses described by the dilaton profile (B.3) by using the
ADM mass formula (A.3).

To use the ADM black hole mass formula, we need to calculate the normal derivative
of the dilaton ∂nΦ. After some algebras, we get

∂nΦ =
[
Φ2−

{
b+
(
b++16πGE sinx+

0 Θ
(
x+−x+

0

))
−16πG〈T 〉β ·16πGE ·µΘ

(
x+−x+

0

)
−(16πG〈T 〉β)2 ·µ2

}
+16πG〈T 〉β cosµ

{
2(b++8πGE sinx+

0 Θ
(
x+−x+

0

)
)cos t

−16πGE cosx+
0 sin t−16πG〈T 〉β cosµ

}
+· · ·

] 1
2

,

(B.4)
where the dots · · · denotes terms containing the delta function, which comes from the
derivative of the step function Θ

(
x+ − x+

0

)
, and the terms do not contribute to the black

hole mass and below we ignore such terms.
Therefore, from the ADM black hole mass formula (A.3) and the boundary condi-

tions (A.1), (A.2), the black hole masses associated with two AdS boundaries are

MADM,L = −
√
−guu
8πG (∂nΦ− Φ)|Left bdy, µ→−π/2

= 1
16πGφb

{
b2+ −

(
8π2G〈T 〉β

)2
} (B.5)

and

MADM,R = −
√
−guu
8πG (∂nΦ− Φ)|Right bdy, µ→π/2

= 1
16πGφb

{
b+
(
b+ + 16πGE sin x+

0

)
− 128π2G2E〈T 〉β −

(
8π2G〈T 〉β

)2
}
.

(B.6)

Since these ADS black hole masses associated with the dilaton profile (B.3) are clearly
different MADM,L 6= MADM,R unless E = 0, thus the dilaton profile (B.3) describes the
glued geometry with different black hole masses MADM,L,MADM,R.

C The black hole solution with a shockwave in its interior
(flat CGHS gravity)

In this appendix, for CGHS gravity in flat spacetime, we explain a method to construct
a dilaton profile describing a glued spacetime approximately by using a shock wave. The
discussion is parallel to the JT gravity case. This method is also closely related to the one
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in section 4, and the resulting geometry also does not have the time reflection symmetry
t←→ −t as in the case of JT gravity.8

Firstly, we consider the equations of motion (4.2) with the stress energy tensor given
by the previous one (B.1).

The full solution is given by9

Φ = φ0 + |Λ|4 tan x+ tan x− − 4πG〈T 〉β
(
x+ tan x+ + x− tan x−

)
− 8πGE cos2 x+

0

(
tan x+ − tan x+

0

)
Θ
(
x+ − x+

0

)
.

(C.1)

This dilaton profile (C.1) corresponds to a black hole with two different masses in
CGHS gravity. In other words, this dilaton profile describes a new glued spacetime with
its masses.

C.1 Black hole ADM mass formula in CGHS gravity

Next we compute the black hole mass described by the dilaton profile (C.1) by using the
ADM mass formula (A.6).

To use the ADM mass formula (A.6), we need to evaluate the factor (∇Φ)2, which is
given by

(∇Φ)2 = 4
[ |Λ|

4 tan x− − 4πG〈T 〉β
(
cosx+ sin x+ + x+

)]
×
[ |Λ|

4 tan x+ − 4πG〈T 〉β
(
cosx− sin x− + x−

)]
− 32πGE cos2 x+

0

[ |Λ|
4 tan x+ − 4πG〈T 〉β

(
cosx− sin x− + x−

)]
.

(C.2)

Thus the black hole masses at the left and right asymptotic spatial infinity are given by

MADM,L = lim
x±→−π2

1
16πG

√
|Λ|

(
−(∇Φ)2 + |Λ|Φ

)
=
√
|Λ|

16πG

{
φ0 −

(
4π2G〈T 〉β

)2
|Λ|

}
,

(C.3)

and

MADM,R = lim
x±→π

2

1
16πG

√
|Λ|

(
−(∇Φ)2 + |Λ|Φ

)
=
√
|Λ|

16πG

{
φ0 −

(
4π2G〈T 〉β

)2
|Λ| − 64π3G2E〈T 〉β cos2 x+

0
|Λ| + 8πGE cosx+

0 sin x+
0

}
.

(C.4)
In this case, since the black hole masses MADM,L,MADM,R are clearly different again,

the dilaton profile (C.1) describes the black hole with two different black hole masses.
8In this case, we can also construct a glued geometry which is not time reflection symmetric with the

method discussed in section 4 by considering D+ 6= D− cases.
9The full general solution also includes terms tan x+ and tan x−, but we omit them for simplicity.
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