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Dense quantum chromodynamic matter accommodates various kind of topological solitons such
as vortices, domain walls, monopoles, kinks, boojums, and so on. In this review, we discuss
various properties of topological solitons in dense quantum chromodynamics (QCD) and their
phenomenological implications. Particular emphasis is placed on the topological solitons in
the color–flavor-locked (CFL) phase, which exhibits both superfluidity and superconductivity.
The properties of topological solitons are discussed in terms of effective field theories such as
the Ginzburg–Landau theory, the chiral Lagrangian, or the Bogoliubov–de Gennes equation.
The most fundamental string-like topological excitations in the CFL phase are non-Abelian vor-
tices, which are 1/3 quantized superfluid vortices and color magnetic flux tubes. These vortices
are created at a phase transition by the Kibble–Zurek mechanism or when the CFL phase is
realized in compact stars, which rotate rapidly. The interaction between vortices is found to
be repulsive and consequently a vortex lattice is formed in rotating CFL matter. Bosonic and
fermionic zero-energy modes are trapped in the core of a non-Abelian vortex and propagate
along it as gapless excitations. The former consists of translational zero modes (a Kelvin mode)
with a quadratic dispersion and CP2 Nambu–Goldstone gapless modes with a linear dispersion,
associated with the CFL symmetry spontaneously broken in the core of a vortex, while the lat-
ter is Majorana fermion zero modes belonging to the triplet of the symmetry remaining in the
core of a vortex. The low-energy effective theory of the bosonic zero modes is constructed as a
non-relativistic free complex scalar field and a relativistic CP2 model in 1+1 dimensions. The
effects of strange quark mass, electromagnetic interactions, and non-perturbative quantum cor-
rections are taken into account in the CP2 effective theory. Various topological objects associated
with non-Abelian vortices are studied; colorful boojums at the CFL interface, the quantum color
magnetic monopole confined by vortices, which supports the notion of quark–hadron duality,
and Yang–Mills instantons inside a non-Abelian vortex as lumps are discussed. The interactions
between a non-Abelian vortex and quasiparticles such as phonons, gluons, mesons, and pho-
tons are studied. As a consequence of the interaction with photons, a vortex lattice behaves as a
cosmic polarizer. As a remarkable consequence of Majorana fermion zero modes, non-Abelian
vortices are shown to behave as a novel kind of non-Abelian anyon. In the order parameters of
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chiral symmetry breaking, we discuss fractional and integer axial domain walls, Abelian and
non-Abelian axial vortices, axial wall–vortex composites, and Skyrmions.
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1. Introduction

Topological solitons are a subject of considerable interest in condensed matter physics [240]. Their
properties have been studied extensively and it has been found that they play quite important roles
phenomenologically. One such example is in superfluidity. Superfluidity emerges in a wide variety of
physical systems such as helium superfluids [361] or ultracold atomic gases [273,274,354]. Super-
fluids are known to accommodate quantized vortices as topological solitons, which are important
degrees of freedom to investigate the dynamics of superfluids [90,352,353,361]. The observation
of quantized vortices has worked as the evidence of superfluidity for ultracold atomic gases such
as Bose–Einstein condensates (BECs) [1] and Fermi gases in the BEC/Bardeen–Cooper–Schrieffer
(BCS) crossover regime [390]. A rotating superfluid is threaded with numerous vortices and they
form a vortex lattice. Vortices are also created at phase transitions by the Kibble–Zurek mechanism
[169,203,388,389]. Superfluid vortices also play pivotal roles in quantum turbulence in super-
fluid helium and atomic BECs [267,351,353,357]. In lower dimensions, vortices are essential in
Berezinskii–Kosterlitz–Thouless (BKT) transitions [49,50,212].
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Fig. 1. Examples of topological solitons in dense QCD. For details, see the relevant sections. (a) Vortex ring
(Sect. 4.2) (b) Vortex lattice and photons (Sect. 6.3) (c) Colorful boojum (Sect. 7) (d) Axial domain wall
junction (Sect. 10.4)

Topological solitons also manifest themselves in the condensed matter physics of quantum chromo-
dynamics (QCD), which is the theory of the strong interaction. The stability of topological solitons is
closely related to the structure of the vacuum. QCD matter exhibits a rich variety of phases at finite
temperatures and/or baryon densities [138]. Depending on the symmetry breaking patterns, QCD
matter accommodates various kind of topological solitons (see Fig. 1 for some examples), some of
which are listed in Table 1. Since topological solitons affect the bulk properties of the matter, it is
important to investigate their basic properties and phenomenological implications. They could affect
the properties of the matter created in heavy-ion collisions or the matter realized inside compact stars.
Theoretical studies suggest that quark matter is expected to exhibit color superconductivity, trig-
gered by quark–quark pairings, at high baryon densities and low temperatures [11,32,38,187,280].
It has been predicted in Refs. [11,12] that the ground state is the color–flavor-locked (CFL) phase
at asymptotically high densities, in which the three light flavors (up, down, and strange) of quarks
contribute symmetrically to the pairing. There are also various other phases, such as the two-flavor
superconducting (2SC) phase [32], the kaon condensation (CFL+K) phase [47], the crystalline super-
conducting phase [22,72], and the magnetic CFL (MCFL) phase [117,121,122]. For reviews of the
phase structure of QCD matter, see Refs. [6,13,138,279,283].

Among the various ground states of QCD matter, the CFL phase is an important phase, which is
realized at asymptotically high densities where weak coupling theory is applicable and theoretically
controlled calculations are possible. The CFL phase has an interesting property that it exhibits both
superfluidity and superconductivity, because of the spontaneous breaking of the global U (1)B baryon
number symmetry and the local SU (3)C color symmetry, respectively. As in superfluid helium, we
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Table 1. Topological solitons in dense QCD. For each topological soliton, we have summarized the phase in
which it appears, the relevant order parameter space, and relevant homotopy group. The types of topological
solitons are classified into “defects” or “textures”, denoted by D and T, respectively. The former are character-
ized by a map from the boundary ∂Rn � Sn−1 of space Rn to the order parameter space (OPS) and consequently
by the homotopy group πn−1(M), while the latter are characterized by a map from the whole space Rn to the
OPS and consequently by the homotopy group πn(M), where n counts the codimensions of the solitons. Con-
fined monopole and trapped instanton imply a monopole and instanton inside a non-Abelian vortex, where
the order parameter space is CP2. For vortons in the CFL+K phase, U (1)EM symmetry is broken only inside
a U (1)Y vortex. The section in which each topological soliton is explained in this review is also indicated.
Note that this table is not a complete list of topological solitons in dense QCD. “NA” is the abbreviation for
“non-Abelian” and “YM” is that for “Yang–Mills”. “relative” denotes a relative homotopy group [361].

Topological solitons Phase OPS M Type Homotopy πn(M) Sect.

U (1)B superfluid vortex CFL U (1)B D π1(M) � Z 3.1.1
NA semi-superfluid vortex CFL U (3)C−F+B D π1(M) � Z 3.3
confined monopole CFL Z3 (in CP2) D π0(M) � Z3 5.4
trapped YM instanton CFL CP2 T π2(M) � Z 5.5
U (1)A axial vortex CFL U (1)A D π1(M) � Z 3.1.2
NA axial vortex CFL U (3)L−R+A D π1(M) � Z 10.3.2
U (1)A integer axial wall CFL U (1)A T π1(M) � Z 10.1.2
U (1)A fractional axial wall CFL Z3 in U (1)A D π0(M) � Z3 10.1.1
Skyrmion (qualiton) CFL U (3)L−R+A T π3(M) � Z 10.7
boojum CFL edge U (3)C−F+B D relative 7
2SC domain wall 2SC U (1)A T π1(M) � Z 11.1
U (1)Y supercond. vortex CFL+K U (1)Y D π1(M) � Z 11.2
(drum) vorton CFL+K U (1)Y, U (1)EM D – 11.2
kaon domain wall CFL+K U (1)Y T π1(M) � Z 11.2

can expect the existence of topological vortices from consideration of the ground-state symmetry
[128,183]. Vortices in the CFL phase will be created if the matter is rotated, as is observed in rotat-
ing superfluids in condensed matter systems. Thus, if the CFL phase is realized in the cores of dense
stars, vortices are inevitably created since the stars rotate rapidly. The superfluid vortices discussed
in Refs. [128,183] have integer winding numbers with respect to U (1)B symmetry, and they are
dynamically unstable, since they can decay into a set of vortices with lower energies. It was first
pointed out by Balachandran, Digal, and Matsuura [35] that the stable vortices are so-called non-
Abelian vortices, which are superfluid vortices as well as color magnetic flux tubes. Since they
carry 1/3 quantized U (1)B circulations, an integer U (1)B vortex decays into three non-Abelian
vortices with different color fluxes canceled in total [242]. The color magnetic flux tubes studied
before [183] are non-topological and unstable, and have a color flux triple of a non-Abelian vortex.
The properties of non-Abelian vortices have been studied using the Ginzburg–Landau (GL) the-
ory [110,112,115,170,242,309,315] or in the Bogoliubov–de Gennes (BdG) equation [134,378]. A
remarkable property of non-Abelian vortices is that both bosonic and fermionic zero energy modes
are localized in the core of a non-Abelian vortex and propagate along it as gapless excitations.
Bosonic zero modes are found in the GL theory; one is the Kelvin mode, which also appears in
vortices in superfluids, and the other is the orientational zero modes, characterizing an orientation of
a vortex in the internal space [110,242]. Both of them are Nambu–Goldstone modes; the Kelvin mode
is associated with two translational symmetries transverse to the vortex, and the orientational modes
are associated with the spontaneous symmetry breaking of the CFL symmetry SU (3)C+F into its
subgroup [SU (2)×U (1)]C+F inside the vortex core. There is only one Kelvin mode for each vortex
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although two translational symmetries are spontaneously broken, because it has a quadratic disper-
sion and is a so-called type-II Nambu–Goldstone mode. The orientational zero modes have a linear
dispersion and are so-called type-I Nambu–Goldstone modes. The low-energy effective field theory
of Kelvin modes is a non-relativistic free complex field with the first order time derivative in the 1+ 1
dimensional vortex world-sheet [207]. The low-energy effective field theory of the orientational zero
modes is written as the relativistic CP2 model inside the 1+ 1 dimensional vortex world-sheet,
where CP2 � SU (3)/[SU (2)×U (1)] is the target space spanned by the Nambu–Goldstone modes
[110]. On the other hand, Majorana fermion zero modes belonging to a triplet of the core symmetry
SU (2)C+F have been found in the BdG equation and the low-energy effective theory in the 1+ 1
dimensional vortex world-sheet has been derived [378]. The existence of these fermion zero modes
is ensured by topology, which can be seen as the index theorem [134]. One remarkable consequence
of the Majorana fermion zero modes is that non-Abelian vortices obey a novel kind of non-Abelian
statistics [172,379] if they are parallel or are restricted to 2+ 1 dimensions.

While CP2 zero modes appear as Nambu–Goldstone gapless (zero) modes in the 1+ 1 dimen-
sional vortex world-sheet, exactly speaking they have to be gapped (massive) because of the
Coleman–Mermin–Wagner theorem [78,239], which prohibits Nambu–Goldstone modes in 1+ 1
dimensions. This problem is solved once non-perturbative effects are taken into account in the CP2

vortex world-sheet theory. There appears a quantum mechanically induced potential in the 1+ 1
dimensional CP2 model. As a consequence, there appear quantum magnetic monopoles confined
by non-Abelian vortices [116,150]. They provide a partial proof of the quark–hadron duality. In the
confining phase, quarks are confined and monopoles are conjectured to be condensed. As a dual of
this, in the CFL phase, monopoles are confined and quarks are condensed. As another example of
topological solitons inside a non-Abelian vortex world-sheet, we introduce Yang–Mills instantons,
which stably exist inside a non-Abelian vortex as lumps or sigma model instantons in the d = 1+ 1
dimensional CP2 model in the vortex world-sheet.

The interactions between a vortex and quasiparticles can be treated as couplings between the 1+ 1
dimensional vortex effective theory and fields propagating in the bulk. The U (1)B phonon field can be
mapped to a two-form field by a duality or the Hubbard–Stratonovich transformation. The interaction
between a vortex and the U (1)B phonons can be described as point particle interaction between a
vortex and the two-form field [170], as is usually done for superfluid vortices or global cosmic strings.
On the other hand, gluons can be dualized to non-Abelian two-form fields [314]. The interaction
between a vortex and gluons can be described by the interaction between the orientational zero modes
and the non-Abelian two-form fields. Since the U (1)EM electromagnetic symmetry is embedded in
the flavor SU (3)F symmetry that acts on the CP2 model as an isometry, the interaction with the
electromagnetic fields (photons) can be incorporated by the U (1)EM gauged CP2 model, where the
U (1)EM field propagates in the bulk. This model is similar to Witten’s superconducting strings [371],
in which the U (1)EM bulk gauge field couples to a U (1) zero mode on a string and consequently a
persistent superconducting current flows along the string. In our case, non-Abelian vortices are not
superconducting because of the difference between the zero modes. Instead, an interesting property
is found. When an electromagnetic wave enters a vortex lattice, the magnitude of the electric field
parallel to the lattice is reduced; consequently, the vortex lattice acts as a polarizer [171]. This may
give an observational signal if a rotating CFL matter exists.

Apart from the CFL phase or other color superconductors, it is likely that the npe phase is present
in the interiors of neutron stars. The npe phase is composed of a neutron superfluid and a proton
superconductor [42], where the neutron pairing is likely a spin triplet at high density. There, superfluid
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neutron vortices and superconducting proton vortices should exist under a rapid rotation and a strong
magnetic field of a neutron star, respectively. Such vortices are expected to explain the pulsar glitch
phenomenon [19]. If the CFL phase is realized in a neutron star core, it may be surrounded by the
npe phase. Then, one can ask how these vortices in the npe phase are connected to the CFL phase.
The endpoints of vortices at the interfaces of various superfluids are known as boojums. There appear
colorful boojums at the interface between the CFL phase and the npe phase, between which there
may be other phases such as the CFL+K, 2SC phases and so on. Three neutron vortices and three
proton vortices meet at the colorful boojum at which three non-Abelian vortices in the CFL phase join
with the total color magnetic flux canceled out. This boojum is accompanied by colored monopoles
appearing on non-Abelian vortices due to the presence of strange quark mass, a Dirac monopole of
the massless gauge field, and the surface current of the massive gauge field.

This paper is intended to be a catalog of topological solitons in dense QCD. We discuss various
properties of topological solitons and their phenomenological implications. Particular emphasis is
placed on the CFL phase, which accommodates a wide variety of topological solitons like vortices,
domain walls, kinks, monopoles and so on. The paper is organized as follows.

In Sect. 2, we review the effective theories for high density QCD, in terms of the Ginzburg–Landau
theory (for around the critical temperature) and the chiral Lagrangian (for zero temperature). In
Sect. 2.1, the CFL ground state, the pattern of symmetry breaking, the order parameter manifold
of the CFL phase, and the mass spectrum are discussed. The effect of finite strange quark mass,
the electromagnetic interaction, and the mixing of gluons and photons in the CFL ground state
are also discussed in the GL theory. We then give the time-dependent Ginzburg–Landau (TDGL)
Lagrangian. In Sect. 2.2, chiral symmetry breaking, U (1)B phonons, and CFL mesons are studied in
the framework of the chiral Lagrangian valid at zero temperature.

In Sect. 3, we turn to vortices in the CFL phase. In Sect. 3.1, we first study Abelian vortices,
i.e., U (1)B superfluid vortices and U (1)A axial vortices. In Sect. 3.2, we introduce non-topological
color magnetic flux tubes. In Sect. 3.3, we describe non-Abelian vortices. The numerical solutions,
asymptotic behaviors of the profile functions at large distances, and the tension of the minimal
stable non-Abelian vortices are obtained [112]. We also discuss non-minimal (unstable) non-Abelian
vortices. In Sect. 3.3.3, we discuss orientational zero modes (collective coordinates) of a non-Abelian
vortex. These modes are gapless modes propagating along the non-Abelian vortex and play important
roles in the dynamics of non-Abelian vortices.

In Sect. 4, we study the dynamics of non-Abelian vortices. In Sect. 4.1, we construct the effective
field theory of translational zero modes, known as Kelvin modes, and study the dynamics of a single
vortex string in terms of the low-energy effective theory [207]. We also discuss Magnus and inertial
forces exerted on vortices. In Sect. 4.2, the interaction between two non-Abelian vortices at large
distances is shown to be repulsive, independent of orientational modes, and 1/3 of that between two
Abelian superfluid vortices [242,243]. We also review the dynamics of two vortices and a vortex
ring. In Sect. 4.3, we discuss decays of a U (1)B vortex and an M2 vortex into three and two non-
Abelian vortices, respectively. In Sect. 4.4, colorful vortex lattices under rotation are discussed. In
Sect. 4.5, we discuss a relation between relativistic strings in relativistic scalar theories and superfluid
vortices by following Refs. [85,128,223], in which the dynamics of superfluid vortices is reproduced
in relativistic theory with a constant three-form field.

In Sect. 5, we discuss the dynamics of the orientational zero modes of non-Abelian vortices, which
is one of the main parts of this review paper. In Sect. 5.1, we first construct the low-energy effective
theory of the orientational zero modes of a non-Abelian vortex in the limit of zero quark masses
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and neglecting electromagnetic interactions, which is the CP2 model [110]. This model describes
gapless propagations of the CP2 orientational zero modes along the vortex string. In Sect. 5.2, we
take into account the strange quark mass, which induces an effective potential in the CP2 vortex
effective theory [115]. It turns out that all vortices decay into one kind immediately by this potential
term. In Sect. 5.3, we take into account the electromagnetic interactions [356]. First, the tension
of the non-Abelian vortex has a finite correction, which appears as the effective potential in the
CP2 vortex effective theory. Second, the low-energy effective vortex theory becomes a U (1) gauged
CP2 model. As stationary solutions of the effective potential, there exist the Balachandran–Digal–
Matsuura (BDM) vortex, which is the ground state in the absence of quark masses, metastable CP1

vortices, and the unstable pure color vortex. We present the decay probability of metastable CP1

vortices into the BDM vortex through quantum tunneling. In Sect. 5.4, we take into account the
quantum corrections in the low-energy effective theory in the vortex world-sheet in the high density
limit, in which strange quark mass can be neglected. There appears a quantum mechanically induced
potential in the low-energy CP2 vortex effective theory through non-perturbative effects, which is
consistent with the Coleman–Mermin–Wagner theorem [78,239]. One of the important consequences
is the appearance of quantum monopoles that are confined by non-Abelian vortices [116,150]. They
provide proof of some aspects of the quark–hadron duality [116], i.e., in the confining phase, quarks
are confined and monopoles are condensed while in the CFL phase, monopoles are confined and
quarks are condensed. In Sect. 5.5, Yang–Mills instantons trapped inside a non-Abelian vortex are
discussed. They become lumps or sigma model instantons in the d = 1+ 1 dimensional CP2 model
in the vortex world-sheet.

In Sect. 6, we study interactions of non-Abelian vortices with quasiparticles. In Sect. 6.1, the inter-
actions between a non-Abelian vortex and phonons and gluons are discussed. The interaction with
phonons is obtained by a dual transformation in which the phonon field is dualized to a Abelian two-
form field, while the interaction with gluons is achieved [170] by non-Abelian dual transformation in
which the gluon field is dualized to a non-Abelian massive two-form field [314]. The latter provides
interaction between two non-Abelian vortices at short distances intermediated by gluons. We also
give the orientation moduli dependence of the intervortex force mediated by exchange of massive
gluons, which is a new result in this paper. In Sect. 6.2, we also provide the chiral Lagrangian of the
mesons in the presence of a non-Abelian vortex, which is also a new result in this paper. In Sect. 6.3,
we study the interaction between a non-Abelian vortex and photons, which is described by a U (1)
gauged CP2 model. As an interesting consequence, we show that a lattice of non-Abelian vortices
behaves as a polarizer [171].

In Sect. 7, we study the interface of the CFL phase and the confining phase and find colorful
boojums [76]. Boojums appear at the interface of various superfluids as the endpoints of vortices.
In the interface between the CFL phase and the confining phase, there appears a colorful boojum, at
which three non-Abelian vortices join with canceling the total magnetic flux in the CFL phase; three
neutron vortices and three proton vortices join in the npe phase. In the CFL phase side, non-Abelian
vortices decay into one kind by the strange quark mass producing color magnetic monopoles, and
U (1)EM magnetic fluxes of proton vortices are decomposed into massless and massive fluxes. The
former forms a Dirac monopole and the latter forms the surface current. The shape of a colorful
boojum is calculated in a simplified model.

In Sect. 8, we study microscopic theory, i.e., the Bogoliubov–de Gennes (BdG) theory, which is
valid at any temperature, while the GL theory is valid only just below the critical temperature and
at the large distance scale. In Sect. 8.1, the BdG equations are discussed in the background of a
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non-Abelian vortex, in order to study structures of vortices far from the critical temperature and/or
core structures of the vortices. Fermions trapped inside the core of the vortex are found. Inside
the vortex core, the SU (2)C+F symmetry remains, so that localized fermions are classified by the
representations of SU (2)C+F. Triplet Majorana fermion zero modes, which are localized and normal-
izable, and a singlet Majorana fermion zero mode, which is localized but non-normalizable, are found
[378]. In Sect. 8.3, we construct the low-energy effective theory of the localized gapless fermions
propagating along the vortex string [378]. The chemical potential dependence of the velocity of gap-
less modes is obtained. In Sect. 8.4, we show the absence of supercurrent by Majorana fermion zero
modes as a new result of this paper, unlike the case of Witten’s superconducting fermionic strings.
In Sect. 8.5, we study the index theorem for the fermion zero modes in the background of a non-
Abelian vortex [134]. We calculate the topological and analytical indices and find the agreement
between them. In Sect. 8.6, the characterization of color superconductors as a topological supercon-
ductor is discussed [253]. Topological superconductors are a the topics of considerable interest in
condensed matter physics these days.

In Sect. 9, as a novel application of Majorana fermion zero modes of a non-Abelian vortex, we
study the exchange statistics of non-Abelian vortices in d = 2+ 1 dimensions. Zero-mode Majorana
fermions inside vortices lead to a new kind of non-Abelian anyons [172,379].

In Sect. 10, topological objects associated with chiral symmetry breaking, axial domain walls,
non-Abelian and Abelian axial vortices (strings) and Skyrmions, are discussed. In Sect. 10.1,
axial domain walls are discussed. In the chiral limit with massless quarks, the instanton-induced
potential term allows a fractional axial domain wall with 1/3 U (1)A winding. In the presence
of quark masses, this domain wall cannot exist alone, and only an integer axial domain wall,
made of a set of three axial domain walls with the unit U (1)A winding, is allowed as a com-
posite wall. In Sect. 10.3, Abelian and non-Abelian axial vortices are discussed in the absence
of quark masses and instanton effects [33,34,111,244,261]. These vortices are also accompa-
nied by CP2 orientational zero modes, but these modes are non-normalizable, unlike those of
non-Abelian semi-superfluid vortices. In the presence of the instanton-induced potential in the
chiral limit, each non-Abelian axial vortex is attached by one axial domain wall, while each
Abelian axial vortex is attached by three axial domain walls [33] and decays into three non-
Abelian axial vortices each of which is attached by an axial domain wall. In the presence of
quark masses, an Abelian axial vortex is attached by a composite domain wall consisting of
three axial domain walls. In Sect. 10.5, we discuss decays of axial domain walls through quan-
tum tunneling. In Sect. 10.6, we discuss the effects of axial anomaly on axial vortices and
axial domain walls. The axial current flows along U (1)B vortices, and the electric magnetic cur-
rent flows along axial vortices, producing large magnetic fields perpendicular to axial domain
walls in the presence of the external magnetic field. In Sect. 10.7, Skyrmions as qualitons are
discussed [175].

In Sect. 11, we review the topological solitons in phases other than the CFL phase. The CFL phase
is the ground state at high densities where all three flavors can be treated as massless. If one lowers
the density gradually, the strange quark mass should be taken into account. Then it is expected that
kaons form a condensation in addition to the CFL condensates. This is called the CFL+K phase [47].
If the density is further decreased, only the light flavors (u and d) contribute to the condensate, which
is called the 2SC phase [32]. In Sect. 11.1, we discuss the domain walls and color magnetic fluxes
in the 2SC phase. In Sect. 11.2, we review the superconducting strings, vortons, domain walls, and
drum vortons in the CFL+K phase.
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Section 12 is devoted to a summary and discussions. A lot of future problems including possible
applications to neutron star physics are addressed.

In Appendix A, we summarize the properties of non-Abelian vortices in supersymmetric QCD as a
comparison. In Appendix B, we give a brief review of the toric diagram, which is useful to understand
the CP2 zero modes of non-Abelian vortices. In Appendix C, we give a detailed derivation of the
low-energy effective action of the CP2 zero modes, which was not explained in detail in the original
papers. In Appendix D, we give the derivation of the dual Lagrangian for phonons and gluons, which
describes the interaction of vortices with those particles. In Appendix E, we give a detailed derivation
of the fermion zero modes, which were not explained in the original paper.

This review paper is based on our papers on non-Abelian semi-superfluid vortices [76,110,112,115,
116,134,170–172,242,243,356,377–379], non-Abelian axial vortices and axial domain walls [102,
111,244,261], superfluid vortices [207], and other developments, but this paper also contains several
new results in Sects. 4.3, 4.4, 6.1.2, 6.2, 8.4, 10.1.2 and detailed calculations, which were not given
in the original papers, in Appendices C and E.

2. Low-energy effective theories for high density QCD

In this section, we give a brief review of effective descriptions of the color–flavor-locking (CFL)
phase in high density QCD, i.e., the Ginzburg–Landau (GL) theory, which is valid around the critical
temperature T ∼ Tc, and the effective theories of massless Nambu–Goldstone bosons, which are
valid at zero temperature T = 0. In Sect. 2.1, we first explain the Ginzburg–Landau (GL) theory, and
take into account the finite strange quark mass and the electromagnetic interaction. We then extend
the GL theory to incorporate the time dependence of the fields. In Sect. 2.2, we first briefly review the
effective field theories for U (1)B phonons at zero temperature, and we introduce the effective theory
for chiral symmetry breaking, i.e., the chiral Lagrangian describing the (pseudo) Nambu–Goldstone
bosons, the CFL pions, and the η′ meson.

2.1. Ginzburg–Landau theories

2.1.1. The CFL phase. Let us start with giving a brief review of the GL free energy [143,181,182],
which is a low-energy effective theory for the CFL phase in the color superconductivity of massless
three-flavor QCD at sufficiently high baryonic densities. We first ignore the masses of the quarks,
which are taken into account in the subsequent sections.

The order parameters are the diquark condensates �L,R defined by

(�L)
A
a ∼ εabcεABC 〈(qL)

B
b C(qL)

C
c 〉, (2.1)

(�R)
i
a ∼ εabcεABC 〈(qR)

B
b C(qR)

C
c 〉, (2.2)

where qL,R stand for the left- (right)-handed quarks with the indices a, b, c = 1, 2, 3 = r, g, b being
those of colors while A, B,C = 1, 2, 3 = u, d, s are those of flavors, and C is the charge conjugation
operator. The diquark Cooper pairs are induced by an attractive interaction via one-gluon exchange
in the s-wave color antisymmetric channel. The flavor indices must also be antisymmetric because
of Pauli’s principle. The most generic form of the GL free energy for uniform matter is

�0 = a0LTr[�†
L�L]+ a0RTr[�†

R�R]

+ b1L

(
Tr[�†

L�L]
)2 + b1R

(
Tr[�†

R�R]
)2 + b2LTr[(�†

L�L)
2]

+ b2RTr[(�†
R�R)

2]+ b3Tr[�†
L�L�

†
R�R]+ b4Tr[�†

L�L]Tr[�†
R�R]. (2.3)
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The color symmetry SU (3)C, the flavor symmetry SU (3)L × SU (3)R, the U (1)B symmetry, and the
U (1)A symmetry act on �L and �R as

�L → eiθB+iθAUC�LUL,

�R → eiθB−iθAUC�RUR, (2.4)

with eiθB ∈ U (1)B, eiθA ∈ U (1)A, UC ∈ SU (3)C, and UL,R ∈ SU (3)L,R. Hereafter, we omit the last
two terms since they can be neglected in the high baryon density region1. Although the interactions
induced by the perturbative gluon exchanges do not distinguish the positive diquark condensates
from the negative one, the non-perturbative instanton effects do. It was found that the state with
positive parity is favored compared to the one with negative parity as a ground state [12,280]. We
then choose the positive-parity state in what follows,

�L = −�R ≡ �. (2.5)

For later convenience, let us explicitly show the structure of indices of the 3× 3 matrix field (�)a
A

� =

⎛
⎜⎝�gb

ds �gb
su �gb

ud

�br
ds �br

su �br
ud

�rg
ds �rg

su �rg
ud

⎞
⎟⎠ , (2.6)

with the color indices a, b, c = 1, 2, 3 = gb, br, rg and the flavor indices A, B,C = ds, su, ud. Let
us next give a GL free energy for the inhomogeneous condensate �, which includes gradient energies
and gluon fields to �0 given in Eq. (2.3),

� = Tr

[
1

4λ3
F2

i j +
ε3

2
F2

0i + K3Di�
†Di�

]
+ V,

V = αTr
(
�†�

)
+ β1

[
Tr(�†�)

]2 + β2Tr
[
(�†�)2

]
+ 3α2

4(β1 + 3β2)
, (2.7)

where λ3 is a magnetic permeability, and ε3 is a dielectric constant for gluons, i, j = 1, 2, 3 are
indices for space coordinates, and the covariant derivative and the field strength of gluons are
defined by

Dμ� = ∂μ�− igs Aa
μT a�, (2.8)

Fμν = ∂μAν − ∂ν Aμ − igs[Aμ, Aν]. (2.9)

Here, μ, ν are indices for spacetime coordinates and gs stands for the SU (3)C coupling constant.
The coupling constants α, β1,2, K0,3 are obtained from the weak-coupling calculations, which are
valid at a sufficiently high density as [143,181]

α = 4N (μ) log
T

Tc
, (2.10)

β1 = β2 = 7ζ(3)

8(πTc)2 N (μ) ≡ β, (2.11)

K3 = 7ζ(3)

12(πTc)2 N (μ), (2.12)

λ0 = ε0 = 1, λ3 = ε3 = 1, (2.13)

1 The coefficients b3 and b4 in (2.3) come from two loop diagrams in which bubble graphs are connected by
the gluon propagator; see Ref. [236] for details.
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where μ stands for the quark chemical potential. We have introduced the density of state N (μ) at the
Fermi surface

N (μ) = μ2

2π2 . (2.14)

The Lagrangian (2.7) has the same symmetry as QCD except for the chiral symmetry, which is
spontaneously broken to the diagonal one, reflecting the fact that the positive parity state is favored in
the ground state as Eq. (2.5). When only �L (�R) condenses, the color SU (3)C and the flavor SU (3)L

(SU (3)R) are spontaneously broken down to their diagonal subgroup SU (3)C+L (SU (3)C+R). The
ground state can be found by minimizing the potential energy in Eq. (2.7),

� = diag(�CFL,�CFL,�CFL), �CFL ≡
√
− α

8β
, (2.15)

up to a color and flavor rotation. This is the so-called color–flavor-locking (CFL) phase of the QCD.
The chiral symmetry is spontaneously broken as SU (3)L × SU (3)R → SU (3)L+R as explained
above. Since the condensate matrix � is proportional to the identity matrix, the diagonal symmetry
of the color SU (3)C and the flavor SU (3)L+R remains as the genuine symmetry in the CFL phase.

Let us see the detailed structure of the spontaneous symmetry breaking in CFL. Firstly, recall the
actions of the symmetries on the order parameter �,

�→ eiθBUC�UF, (2.16)

with eiθB ∈ U (1)B, UC ∈ SU (3)C, and UF ∈ SU (3)L+R. There is a redundancy in the action of the
symmetries, and the actual symmetry group is given by

G = SU (3)C × SU (3)F ×U (1)B

(Z3)C+B × (Z3)F+B
, (2.17)

where the discrete groups are defined by

(Z3)C+B :
(
ωk13, 13, ω

−k
)
∈ SU (3)C × SU (3)F ×U (1)B, (2.18)

(Z3)F+B :
(

13, ω
k13, ω

−k
)
∈ SU (3)C × SU (3)F ×U (1)B, (2.19)

with k = 0, 1, 2 and ω being

ω ≡ e2π i/3. (2.20)

Note that the discrete groups can be rearranged as

(Z3)C+B × (Z3)F+B � (Z3)C+F × (Z3)C−F+B (2.21)

with

(Z3)C+F :
(
ωk13, ω

−k13, 1
)
∈ SU (3)C × SU (3)F ×U (1)B, (2.22)

(Z3)C−F+B :
(
ωk13, ω

k13, ω
−2k

)
∈ SU (3)C × SU (3)F ×U (1)B. (2.23)

In the ground state, the full symmetry group G is spontaneously broken down to

H = SU (3)C+F × (Z3)C−F+B

(Z3)C+B × (Z3)F+B
� SU (3)C+F

(Z3)C+F
. (2.24)

Thus, we find the order parameter space of the ground state as

G

H
� SU (3)C−F ×U (1)B

(Z3)C−F+B
� U (3)C−F+B. (2.25)

13/149



PTEP 2014, 012D01 M. Eto et al.

This U (3) manifold is parametrized by 9 would-be NG modes, among which 8 are eaten by the gluons
via the Higgs mechanism and only one massless scalar field (referred to as the H boson) associated
with the U (1)B symmetry breaking remains in the physical spectrum2.

Including the broken U (1)A symmetry and the chiral symmetry, the full order parameter space
(OPS) in the CFL phase is given by

MCFL = U (3)C−F+B ×U (3)L−R+A. (2.26)

The GL Lagrangian (2.7) describes only the first part, while the second part describing the NG modes
associated with the broken U (1)A and the chiral symmetry is discussed in Sect. 2.2.2.

The spectrum of the GL theory (2.7) can be found by expanding the order parameter � around the
ground state given in Eq. (2.15) as

�(x) = �CFL13 + φ1(x)+ iϕ(x)√
2

13 +
φa

8 (x)+ iζ a(x)√
2

T a. (2.27)

The fields proportional to 13 and T a belong to the singlet (1) and adjoint (8) representations of the
CFL symmetry given in Eq. (2.24). The small fluctuations ζ a(x) are absorbed by the gluons and
ϕ(x) remains the massless U (1)B NG mode (phonon). The masses of the gluons, φ1, and φa

8 are
given respectively as follows:

m2
g = 2λ3g2

s �
2
CFLK3, m2

1 = −
2α

K3
, m2

8 =
4β�2

CFL

K3
. (2.28)

From this, together with Eq. (2.13), we find the following relation

mg ∼
√
λ3gsμ, m1 = 2m8 ∼ 2�CFL. (2.29)

Note that gsμ� �CFL at the high density limit, so that we have

κ1,8 ≡ m1,8

mg
 1. (2.30)

This implies that the CFL phase is in the type I superconductor [144].3

Note that the lightest mode in the GL Lagrangian (2.7) is the NG mode. As explained above, this
exists because of the U (1)B symmetry spontaneously broken by the condensations, implying that the
CFL phase is the U (1)B superfluid. Namely, the CFL phase of the color superconductivity of high
density QCD has the peculiarity of the coexistence of superfluidity and superconductivity.

2.1.2. Including strange quark mass. So far, we have considered the CFL phase at the asymptoti-
cally high density where all the quark masses mu,d,s are negligible compared to the baryon chemical
potential μ. In this subsection, let us consider the effect of the finite non-zero strange quark mass
while the masses of the u and d quarks are kept at zero,

0 � mu,d < ms  μ. (2.31)

The effects of non-zero quark masses become important at smaller baryon chemical potentials. It
was found [179] that the non-zero quark mass together with the β-equilibrium and the electric charge

2 To be precise, the U (1)B is broken to Z2, which flips the signs of L and R quarks (qL →−qL and qR →
−qR). This Z2 cannot be described in the GL theory.

3 This does not mean that a state with vortices is unstable in the CFL phase. NG bosons for the U (1)B

symmetry breaking induce a repulsive force between vortices, which stabilizes the multi-vortex state.
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neutrality changes the CFL phase to the modified CFL (mCFL) phase where the color–flavor-locking
symmetry is further broken as

SU (3)C+L+R → U (1)2. (2.32)

The important difference between the CFL and mCFL phases is that the quark chemical potentials
μu, μd, μs take different values. Hence, there appear difference between the Fermi momenta and the
gaps of the diquark condensation take different values as [179]

�ud > �ds > �us. (2.33)

This is responsible for the symmetry breaking in Eq. (2.32). The correction to quadratic order to the
GL potential in Eq. (2.7) was obtained as [178,179]

δV = 2

3
ε Tr

[
�†�

]
+ ε Tr

[
�† X3�

]
, (2.34)

ε = N (μ)
m2

s

μ2 log
μ

Tc
, (2.35)

X3 = diag

(
0,

1

2
,−1

2

)
. (2.36)

The first term in Eq. (2.34) can be absorbed into the definition of α as

α′ ≡ α + 2

3
ε. (2.37)

If we ignore the second term in Eq. (2.34), all the results in the previous sections are still valid under
the understanding of the replacement α with α′ in all equations. For instance, �CFL is replaced with

�ε ≡
√
− α′

8β
. (2.38)

Therefore, an essential difference from the massless case is given rise to by the second term in
Eq. (2.34). Since the term is sufficiently small if ms  μ, we will treat it as a perturbation in Sect. 5.2.

2.1.3. Including electromagnetic interactions. Let us next include the electromagnetic interaction
that is realized as a U (1) action from the right-hand side on � as

�→ �eieT EM
, T EM =

√
2

3
T 8 = diag

(
−2

3
,

1

3
,

1

3

)
. (2.39)

The covariant derivative of � is changed from Eq. (2.8) to

Dμ� = ∂μ�− igs Aa
μT a�− ieAEM

μ �T EM, (2.40)

and the field strength is

FEM
μν = ∂μAEM

ν − ∂ν AEM
μ . (2.41)

The GL thermodynamic potential is modified as

� = Tr

[
1

4λ3
F2

i j +
ε3

2
F2

0i + K3Di�
†Di�

]

+ 1

4λ0
(FEM

i j )2 + ε0

2
(FEM

0i )2 + V, (2.42)

where V is the same as the one in Eq. (2.7) and λ0 and ε0 are the magnetic permeability and the
dielectric constant for the electromagnetic field.
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There is mixing between AEM
i and A8

i in the CFL phase, since the electric charge is proportional
to T8 as shown in Eq. (2.39) [12]. Let us first rescale the gauge fields by

Aa
i =

1√
λ3

Aa
i , AEM

i = 1√
λ0

AEM
i . (2.43)

This redefinition changes the kinetic terms of the electromagnetic fields and the gluons into the
canonical forms as −1

4Tr[(Fi j )
2]− 1

4(FEM
i j )2. Then, the covariant derivatives are rewritten as

Di� = ∂i�− i
√
λ3gsAa

i T a�− i
√
λ0e�AEM

i T EM. (2.44)

When the order parameter � is diagonal (in particular in the ground state), the covariant derivative
acting on the � can be rewritten as

Di� = ∂i�− i
√
λ3gsAã

i T ã�− i
√
λ0gMAM

i T EM�, (2.45)

gM ≡
√

e2 + 3

2

λ3

λ0
g2

s , (2.46)

T M ≡ T EM (2.47)

with ã = 1, 2, . . . , 7, in terms of rotated gauge fields defined by

AM
i ≡ cosχAEM

i + sinχA8
i , (2.48)

A0
i ≡ − sinχAEM

i + cosχA8
i , (2.49)

with the mixing angle defined by

tanχ =
√

3
2
λ3
λ0

gs

e
. (2.50)

We have rewritten T EM by T M in order to remember that it acts on � from its left while T EM acts
on its right. One can see from Eq. (2.45) that AM

i couples to � and so is massive in the ground state
[see Eq. (2.52), below], while A0

i decouples from � and so is massless. However, one should note
that this rotation is valid only when � is diagonal, and it is meaningless for general �.

The ground state of the theory is unchanged with respect to the case without the electromagnetic
interaction:

〈� A
a 〉 = �CFLδ

A
a . (2.51)

Because of the nontrivial mixing, the masses of gluons are modified in the CFL phase as

m2
g,ã = 2λ3g2

s �
2
CFLK3, m2

g,M =
4

3
λ0g2

M�2
CFLK3, (2.52)

where ã runs from 1 to 7 and mg,M is the mass of the gluon corresponding to the generator T 8.
One of the important effects of introducing electromagnetic interactions is the explicit breaking

of the SU (3)F flavor symmetry, even if we still consider all quarks to be massless. Introducing elec-
tromagnetic interactions is equivalent to gauging the U (1) subgroup generated by T EM inside the
SU (3)F flavor symmetry. Therefore, the flavor SU (3) is explicitly broken as

SU (3)F
T em

−−→ SU (2)F ×U (1)em, (2.53)

where SU (2)F is a subgroup of SU (3)F commuting with TEM. The full set of symmetries of the CFL
phase of QCD with electromagnetic interactions is thus given by the following (apart from the chiral
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symmetry):

G = U (1)B ×U (1)em × SU (3)C × SU (2)F. (2.54)

Apart from the unbroken gauge U (1) symmetry, the CFL ground state Eq. (2.51) has the following
diagonal color–flavor symmetry:

Hem = SU (2)C+F. (2.55)

This reduced symmetry is crucial to understanding the property of non-Abelian vortices with
electromagnetic coupling.

2.1.4. Time-dependent Ginzburg–Landau theory. In this section, let us discuss the time-
dependent Ginzburg–Landau Lagrangian (TDGL) for the CFL phase [4]. The time-independent part
of the TDGL is the same as Eq. (2.7). Then, the TDGL is given by

L = Tr

[
−ε3

2
F0i F0i − 1

4λ3
Fi j Fi j

]
− ε0

2
(FEM)0i (FEM)0i − 1

4λ0
(FEM)i j (FEM)i j

+ Tr
[
2iγ K0(D0�

†�−�†D0�)+ K0D0�
†D0�+ K3Di�

†Di�
]
− V, (2.56)

with

K0 = 3K3. (2.57)

K0 has not been calculated in the literature, but can be derived following the same procedure as in
Refs. [2,287].

At zero temperature, there is no dissipation. However, the dissipation is present at finite tempera-
ture, which cannot be incorporated in the Lagrangian. Instead, the Euler–Lagrange equation can be
modified as

KD
∂�

∂t
= δL

δ�∗
(2.58)

with a real GL parameter KD = KD(T, μ), which has not been calculated from microscopic theory.
Formally, this term can be obtained by replacing 2i K0γ ∂/∂t by (2i K0γ − KD)∂/∂t in the Euler–
Lagrange equation of the Lagrangian in Eq. (2.56).

Let us construct the U (1)B Noether current:

jB
0 = γ K0Tr(�†�)+ 2i K0Tr

[
D0�

†�−�†D0�
]
,

jB
i = 2i K3Tr(Di�

†�−�†Di�). (2.59)

The Noether current satisfies the continuity equation:

∂0 jB
0 − ∂i jB

i = 0. (2.60)

The Noether charge defined by

QB =
∫

d3x jB
0 (2.61)

is a conserved quantity.
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When we ignore the second derivative with respect to the time coordinate, the charge density is
reduced as

jB
0 ∼ γ K0 Tr�†� ≡ ρ, (2.62)

where ρ is called the superfluid density. Then, the superfluid velocity is defined by dividing the spatial
components of the Noether current by the superfluid density:

J B
i =

2i K3

γ K0

Tr(Di�
†�−�†Di�)

Tr(�†�)
. (2.63)

The vorticity is defined by the rotation of the superfluid velocity

ωi = 1

2
εi jk∂ j J B

k . (2.64)

The conjugate momentum of � is

�� = K0

(
D0�

† − 2iγ�†
)
, (2.65)

and the Hamiltonian is given by

H = Tr

[
ε3

2
(F0i )

2 + 1

4λ3
(Fi j )

2 + K0 |D0�|2 + K3 |Di�|2
]

+ ε0

2
(FEM

0i )2 + 1

4λ0
(FEM

i j )2 + V . (2.66)

2.2. Effective theories for light fields at zero temperature

Thus far, we have explained the GL theory, which is valid around the transition temperature T ∼ Tc.
In this section, we introduce the effective Lagrangians for Nambu–Goldstone modes associated with
spontaneous symmetry breaking, which are valid around the zero temperature T ∼ 0. We study the
low-energy effective theory for U (1)B phonons in Sect. 2.2.1 and the chiral Lagrangian describing the
CFL mesons and the η′ meson in Sect. 2.2.2. In general, the effective theory for Nambu–Goldstone
modes can be constructed by nonlinear realizations up to decay constants [66,79]. At low baryon
densities, the decay constant of the chiral Lagrangian is determined experimentally. On the other
hand, at high baryon densities, the decay constant can be microscopically calculated from QCD, as
explained below.

2.2.1. Effective theory for U (1)B phonons at zero temperature. In the CFL phase the baryonic
U (1)B symmetry is spontaneously broken, so that a corresponding massless Nambu–Goldstone
boson ϕB appears. It will play important roles since it is deeply related to superfluidity. In this
section we give an brief review of low energy effective theories at high density and zero temperature
[71,331,333,334] of the U (1)B Nambu–Goldstone mode.

Let us first take the phase of the diquark condensate qq as the Nambu–Goldstone field. An effective
action takes the form

LB = 12 f 2
B

[
(∂0ϕB + 2μ)2 − v2

B(∂iϕB)
2
]
, (2.67)

where the coefficients were calculated [333,334] as

f 2
B =

3μ2

8π2 , v2
B =

1

3
, (2.68)

and μ is the quark chemical potential. Note that the time derivative is not ∂0 but ∂0 + 2μ. This
is needed for the effective theory to have the same symmetry as QCD. This can be understood as
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follows. The Lagrangian of QCD in the medium is given by

LQCD = q̄(iγν∂
ν)q + μq†q = q̄(iγ ν Dν)q, (2.69)

where we introduced a covariant derivative Dν = ∂ν + i Bν with a fictitious (spurion) gauge field Bμ,
which corresponds to the baryon current [128]. Bμ will be set to Bμ = (μ, 0, 0, 0) in the end. The
QCD Lagrangian is invariant under the U (1)B rotation

q → eiθBq, ϕB → ϕB + 2θB, Bν → Bν − ∂νθB. (2.70)

We now require the low energy effective field to have this symmetry; one then reaches the Lagrangian
(2.67).

There is another derivation of the effective theory in gauge invariant fashion [331] by taking the
phase of the gauge invariant operator qqqqqq as the U (1)B Nambu–Goldstone field. In Ref. [331],
it was found that the effective field theory takes the form

L′B =
NC NF

12π2

[
(∂0ϕB − 6μ)2 − (∂iϕB)

2
]2

. (2.71)

Expanding this Lagrangian and taking terms to the quadratic order in the derivative with
NC = NF = 3, one reproduces the same Lagrangian as Eq. (2.67).

Although we have ignored the amplitude (Higgs) modes in this section, they have been taken into
account in Ref. [23] and interactions between the U (1)B mode and the amplitude modes have been
studied.

2.2.2. Chiral Lagrangian of the CFL mesons: pions and the η′ meson. In this subsection, we
study the chiral Lagrangian describing the Nambu–Goldstone modes for chiral symmetry break-
ing, i.e., the CFL mesons and the η′ meson. So far, we have not considered the spontaneous
symmetry breaking of the axial U (1)A symmetry, since it is explicitly broken by quantum effects
(the chiral anomaly). Instantons induce vertices that break the U (1)A symmetry, since instantons
flip the chirality of fermions. The instanton effects becomes arbitrarily small at the high density
limit, so that the chiral anomaly is suppressed. Therefore, at high density, the spontaneous broken
U (1)A symmetry introduces a light meson, namely the η′ meson. Accordingly, there appears an
order parameter corresponding to this. Including the axial U (1)A symmetry, the flavor symmetry
SU (3)L × SU (3)R ×U (1)A of QCD acts on the gauge invariant

� ≡ �
†
L�R, (2.72)

as

�→ g†
L�gRe2iθA, (gL, gR, e2iθA) ∈ SU (3)L × SU (3)R ×U (1)A. (2.73)

While discrete groups are not well discussed in the literature, here we discuss them in more detail.
There is a redundancy of discrete groups in this action, and the actual flavor symmetry is

GF = SU (3)L × SU (3)R ×U (1)A

(Z3)L+A × (Z3)R+A
� SU (3)L × SU (3)R ×U (1)A

(Z3)L+R × (Z3)L−R+A
, (2.74)
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where the redundant discrete groups are

(Z3)L+A :
(
ωk13, 13, ω

−k
)
∈ SU (3)L × SU (3)R ×U (1)A, (2.75)

(Z3)R+A :
(

13, ω
k13, ω

−k
)
∈ SU (3)L × SU (3)R ×U (1)A, (2.76)

(Z3)L+R :
(
ωk13, ω

−k13, 1
)
∈ SU (3)L × SU (3)R ×U (1)A, (2.77)

(Z3)L−R+A :
(
ωk13, ω

k13, ω
−2k

)
∈ SU (3)L × SU (3)R ×U (1)A, (2.78)

with ω in Eq. (2.20). Here the suffix A always implies U (1)A. With the same group structures as
Eqs. (2.24) and (2.25), the unbroken symmetry in the ground state � ∼ 13 is

HF = SU (3)L+R × (Z3)L−R+A

(Z3)L+A × (Z3)R+A
� SU (3)L+R

(Z3)L+R
(2.79)

and the order parameter space is found to be

GF

HF
� SU (3)L−R ×U (1)A

(Z3)L−R+A
� U (3)L−R+A. (2.80)

The low-energy effective field theory for the U (3)L−R+A NG modes, the chiral Lagrangian at high
baryon density and at zero temperature, was first obtained in Ref. [71]. Let us first restrict the generic
field � in Eq. (2.72) by the constraints4

� = �
†
L�R, �L�

†
L = �R�

†
R = 13. (2.81)

Furthermore, we decompose � into SU (3) and U (1) parts as

� = �̃eiϕA, �̃ = �
†
L�R. (2.82)

Then, the chiral Lagrangian is given by [71]

L = f 2
π

4
Tr
[
∇0�̃∇0�̃

† − v2
π∂i �̃∂i �̃

†
]
+ 3 f 2

4

[
∂0V ∂0V ∗ − v2

η′∂i V ∂i V
∗
]

+
(

ATr
[

M�̃†
]

V ∗ + h.c.
)
+
(

B1Tr[M�̃†]Tr[M�̃†]V

+ B2Tr[M�̃† M�̃†]V + B3Tr[M�̃†]Tr[M†�̃]+ h.c.
)
+ · · · , (2.83)

where we have omitted the electromagnetic interaction. Here M = diag(mu,md,ms) is a mass
matrix, �̃ stands for the octet chiral field, and V is the axial U (1)A field

�̃ = exp

(
i
πaT a

fπ

)
, V = eiϕA = exp

(
i

2η′√
6 f

)
, (2.84)

with fπ and f being the octet and singlet decay constants. The covariant derivative of the time
derivative for �̃ is defined by [47]

∇0�̃ = ∂0�̃ + i

(
M M†

2μ

)
�̃ − i�̃

(
M† M

2μ

)
. (2.85)

4 Note that the GL theory can correctly describe physics at slightly lower temperatures than the transition
temperature. Only there does expansion in terms of the gap �CFL work well because �CFL is sufficiently small
and can be treated as an expansion parameter. On the other hand, the chiral Lagrangian is an effective theory
including only the derivative of massless zero modes; it can describe physics at zero temperature even if it is
not close to a transition temperature.
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The decay constants and speed of mesons are obtained as [333,334]

f 2
π =

21− 8 log 2

18

μ2

2π2 , f 2 = 3

4

μ2

2π2 , v2
π = v2

η′ =
1

3
. (2.86)

The mechanism of chiral symmetry breaking in the high baryon density is very different from that at
low densities. Indeed, the dominant contribution is not the usual 〈ψ̄ψ〉 but a four fermion operator
〈(ψ̄ψ)2〉 ∼ 〈ψψ〉2. Thus, dominant contributions from the quark mass terms appear as quadratic
terms of M in the chiral Lagrangian, namely the terms proportional to Bi . These coefficients are
obtained as [303,333,334]

B1 = −B2 =
3�2

CFL

4π2 , B3 = 0, (2.87)

with �CFL being the gap in the quasiparticle spectrum. The terms linear in M appear when 〈ψ̄ψ〉
is not zero. Although they vanish at the asymptotically high density limit, they appear through non-
perturbative effects, instantons [233,301,302,335,336]. The coefficient A is calculated by Ref. [302]
to the one-instanton level as

A = CN
8π4

3

�(6)

36

[
3
√

2π

gs
�CFL

(
μ2

2π2

)]2 (
8π2

g2
s

)6 (
�

μ

)12

�−3, (2.88)

with CN = 0.466 exp(−1.679NC)1.34NF/(NC − 1)!(NC − 2)!. Note that A is related to the chiral
condensate by A = −〈ψ̄ψ〉/2 [302].

From the chiral Lagrangian (2.84), one can read the masses of meson spectra. For instance, when
all the quark masses are equal, M = m13, setting � = 13, we have

Lη′ = 1

2
(∂0η

′)2 −
v2
η′

2
(∂iη

′)2 − V1−inst(η
′), (2.89)

V1−inst(η
′) =

(
2Am

f 2 +
4m2 B

f 2

)
(η′)2 + · · · . (2.90)

Thus the mass of η′ is

m2
η′
∣∣
1−inst =

4A

f 2 m + 8B

f 2 m2. (2.91)

Therefore, in the chiral limit, η′ is massless at the one-instanton level [302]. The η′-mass in the chiral
limit is generated by the two-instanton contribution. Although it is hard to evaluate it, the potential
for η′ can be easily read as [302]

Vsym.(ϕA) = −6m A cosϕA − 12m2 B cosϕA − 2C cos 3ϕA, (2.92)

where we have set the θ angle of QCD to zero and B1 = −B2 = B. The first term is the one-instanton
contribution and the last term is the two-instanton contribution. We leave C as a free parameter in
this work. “sym.” in the subscript indicates the flavor symmetric limit mu = md = ms = m.
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Before closing this section, let us show the original derivation of the above chiral Lagrangian by
Ref. [71]. Let �L and �R be coset fields for SU (3)C × SU (3)L and SU (3)C × SU (3)R, respectively:

�L�
†
L = �R�

†
R = 13, det�L = det�R = 1. (2.93)

Since an effective theory of QCD should have the same symmetry as QCD, the effective Lagrangian
derived in Ref. [71] is of the form

L = − f 2
π

4
Tr

[(
�R∂0�

†
R −�L∂0�

†
L

)2 − v2
π

(
�R∂i�

†
R −�L∂i�

†
L

)2
]

− Cα

f 2
π

4
Tr

[(
�R∂i�

†
R +�L∂i�

†
L + 2igs A0

)2 − v2
π

(
�R∂i�

†
R +�L∂i�

†
L + 2igs Ai

)2
]

− 3 f 2

4

(
|∂0V |2 − v2

η′ |∂i V |2
)
− 1

4
Tr
[
Fμν Fμν

]
. (2.94)

Since we are interested in the low-energy dynamics, we integrate out the gluons Aμ, which are heavy.
This can be done by neglecting the kinetic term of the gluons. Then, in this Lagrangian, the gluon is
just an auxiliary field and can be eliminated by its equation of motion. After eliminating the gluon,
we are left with the chiral Lagrangian

L = − f 2
π

4
Tr

[(
�R∂0�

†
R −�L∂0�

†
L

)2 − v2
π

(
�R∂i�

†
R −�L∂i�

†
L

)2
]

− 3 f 2

4

(
|∂0V |2 − v2

η′ |∂i V |2
)

= f 2
π

4
Tr
[
∂0�∂0�

† − v2
π∂i�∂i�

†
]
− 3 f 2

4

(
|∂0V |2 − v2

η′ |∂i V |2
)
. (2.95)

Based on the formulations above, we discuss the topological solitons associated with the chiral
symmetry breaking in Sect. 10.

3. Vortices

In this section we explain various kinds of vortices in the CFL phase. While we use the Ginzburg–
Landau theory valid around the transition temperature T ∼ Tc to study vortices, the chiral Lagrangian
before integrating out gluon fields, Eq. (2.94), valid at zero temperature T ∼ 0 can alternatively be
used if we study vortices with singular cores at large distances. In Sect. 3.1, we discuss Abelian
vortices, i.e., U (1)B superfluid vortices, and U (1)A vortices or axion strings. We also discuss non-
topological color-magnetic flux tubes in Sect. 3.2. In Sect. 3.3, we introduce non-Abelian vortices,
sometimes called semi-superfluid vortices. A peculiar feature of non-Abelian vortices, the existence
of internal orientational zero modes (collective coordinates), is explained in detail.

3.1. Abelian vortices

In this subsection, we give two concrete examples of Abelian vortices in the CFL phase. The first
one is Abelian U (1)B global vortices [128,183], which are topologically stable, while the second one
is U (1)A vortices or axion strings [128]. Since the authors in Ref. [128] used the effective theory
at T ∼ 0 describing only massless particles, reviewed in Sect. 2.2.1, the core structures of vortices
cannot be described in the absence of massive particles. Here, we use the GL theory that can deal with
the core structures of vortices. We also study color magnetic fluxes [180], which are non-topological
and decay immediately.
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Fig. 2. A profile function fB(r) of a minimally winding (k = 1) U (1)B vortex. The parameters are α = −1
and β = 2 for simplicity.

3.1.1. U (1)B superfluid vortices. Let us discuss U (1)B superfluid vortices. The phases of diquark
condensates can be parametrized as

�L = eiθA+iθB�CFL13, �R = e−iθA+iθB�CFL13. (3.1)

The phases ϕA and ϕB are the phases of the U (1)A and U (1)B symmetries, respectively. Both phase
symmetries U (1)B and U (1)A are spontaneously broken when the diquarks are condensed, while the
U (1)A is also broken explicitly by the chiral anomaly, namely the instanton effects. The spontaneous
breaking of U (1)B and U (1)A gives rise to U (1)B and U (1)A global vortices, respectively.

The U (1)B global vortices can be easily found in Eq. (2.7) by requiring the condensate matrix
to be proportional to the unit matrix �(x) = φ(x)13/

√
3. Then, the Lagrangian is reduced to the

following linear sigma model for the complex scalar field φ(x):

LU (1)B = K0

(
|∂0φ|2 − v2

B|∂iφ|2
)
−
[
α|φ|2 + 4β

3
|φ|4

]
+ 3α2

16β
,

vB ≡
√

K3

K0
= 1√

3
. (3.2)

The effective field φ develops the VEV 〈φ〉 = √3�CFL in the ground state, so that the U (1)B is
spontaneously broken. Since the first homotopy group is nontrivial,

π1[U (1)B] � Z, (3.3)

there exist topologically stable k vortices in general with k ∈ Z.
We make a standard ansatz for the axially symmetric k vortex strings, which are infinitely long

straight lines, say, along the x3 axis:

φ(r, θ) =
√

3�CFL fB(r)e
ikθ , (3.4)

with the cylindrical coordinates (r, θ, z), i.e., x1 + i x2 ≡ reiθ . A numerically obtained profile
function fB is shown in Fig. 2.

The circulation of the superfluid velocity in Eq. (2.63) obeys the famous Onsager–Feynman
quantization

cB =
∮

dxi J B
i = 2π

4K3

γ K0
k (3.5)

with the vortex number k ∈ π1[U (1)B].
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The Hamiltonian density with respect to the amplitude function fB(r) is given by

HU (1)B = 3�3
CFL

(
K3 f ′B

2 +
(

K3k2

r2 + α

)
f 2
B + 4β�2

CFL f 4
B

)
. (3.6)

The k static global string solution is obtained by solving the following equation of motion:

K3

(
f ′′B +

f ′B
r

)
− k2K3

r2 fB −
(
α + 8β�2

CFL f 2
B

)
fB = 0, (3.7)

with the boundary conditions fB(0) = 0 and fB(∞)→ 1. The tension of the string logarithmically
diverges as

TU (1)B = 6π�2
CFLK3k2 log

L

ξ
+ · · · , (3.8)

where · · · stands for a finite contribution to the tension, L is an IR cutoff scale representing the
system size and ξ ∼ m−1

1 is a UV cutoff representing the size of the vortex core.
Asymptotic solutions of a minimally winding vortex are given by

fB = c1(r/
√

K3)+ · · · , r → 0, (3.9)

fB = 1− 2

−α(r/√K3)2
+ · · · , r →∞. (3.10)

Here the constant c1 is known to be c1 = 0.58 · · · [355].
Note that if one takes quantum anomalies into account, an axial U (1)A current runs inside the

U (1)B vortex [337]. This phenomenon is explained in Sect. 10.6.

3.1.2. U (1)A axial vortices. There exists another vortex string in the CFL phase that is associ-
ated with the broken U (1)A symmetry at the high density limit. It is topologically stable because of
nontrivial homotopy [128,183]

π1[U (1)A] � Z. (3.11)

Note that the instanton-induced potential given in Eq. (2.92) explicitly breaks U (1)A, so that a
U (1)A vortex cannot exist alone but is always accompanied by sine-Gordon domain walls at an
intermediate density. This is explained in Sect. 10.

3.2. Non-topological color-magnetic fluxes

Here, we discuss color-magnetic flux tubes [180] that are non-topological because of a trivial
homotopy group5

π1[SU (3)C] = 0 (3.12)

and consequently are unstable. A color magnetic flux is generated by one generator of the SU (3)C

color group. Among all possible generators, T8 gives the lightest fluxes, because it can be mixed with
the electromagnetic U (1)EM acting on � from its right. The corresponding massive gauge field is
given in Eq. (2.48).

5 More precisely, gauge symmetry is spontaneously broken as SU (3)C ×U (1)EM → U (1)0, and the order
parameter for gauge symmetry is [SU (3)C ×U (1)EM]/U (1)0 � SU (3). The first homotopy group is trivial
for this SU (3).
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To construct the vortex, we make the ansatz that all the off-diagonal elements of � are zero and
denote

�(x) = diag

(
φ1(x),

φ2(x)√
2

,
φ2(x)√

2

)
. (3.13)

Then, the Hamiltonian density is reduced as

H̃ = 1

4
(FM

i j )
2 + |Diφ1|2 + |Diφ2|2 + Ṽ , (3.14)

Ṽ = α
(
|φ1|2 + |φ2|2

)
+ β

(
|φ1|2 + |φ2|2

)2 + β

(
|φ1|4 + |φ2|4

2

)
, (3.15)

with

Diφ1 = ∂iφ1 + i
2gM

3
AM

i φ1, (3.16)

Diφ2 = ∂iφ2 − i
gM

3
AM

i φ2, (3.17)

FM
i j = ∂iAM

j − ∂ jAM
i , (3.18)

and gM =
√

e2 + 3λ3g2
s /2λ0 as defined in Eq. (2.46). In the ground state, the fields develop the VEV

as 〈φ1〉 = �CFL and 〈φ2〉 =
√

2�CFL, so that the AM
μ in Eq. (2.48) is massive and A0

μ in Eq. (2.49)
remains massless, as discussed before.

Now, we are ready to construct the magnetic flux tube by making the axially symmetric ansatz by

φ1(r, θ) = f1(r)e
−2iθ , φ2(r, θ) = f2(r)e

iθ ,

AM
i (r, θ) = −3εi j

g̃

x j

r2 χ(r), (3.19)

with the boundary condition

f1(0) = f2(0) = χ(0) = 0, f1(∞) = f2(∞) = χ(∞) = 1. (3.20)

The magnetic flux that this vortex carries can be calculated as∫
d2x FM

12 =
3

gM

∫
d2x

χ ′

r
= 6π

gM
. (3.21)

This solution was studied in Ref. [180]. The flux in Eq. (3.21) is quantized but the solution is unstable
and decays by turning on the other components of gauge fields.

For later convenience, let us set λ0 = λ3 = 1 and decompose the flux in Eq. (3.21) into gluon
SU (3)C and electromagnetic U (1)EM parts as

F8
12 = FM

12 sin ζ, FEM
12 = FM

12 cos ζ, (3.22)

and take the limit ζ = π/2, namely the limit where the electromagnetic interaction is ignored. Then
we find that this flux tube has the pure color-magnetic flux

�8
A =

∫
d2x F8

12 =
4
√

3π

gs
. (3.23)

Note that F8
12 is not a gauge invariant quantity but Tr [(F12)

2] = (F8
12)

2 is gauge invariant.
We should mention the stability of this flux tube. Since we chose one U (1) gauge orbit inside the

SU (3) group by hand, this flux tube is a kind of a trivial embedding of the U (1) local vortex in a
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non-Abelian gauge theory. Of course, there are no reasons for such vortices to be stable, because
they are not protected by topology. In order to clarify the stability, one should work out the small
fluctuation analysis expanded around this solution.

Unstable color-flux tubes were also studied in the 2SC phase [14,308]. Color-magnetic flux tubes
in quark–gluon plasma were studied in Ref. [219], where they are claimed to be metastable.

3.3. Non-Abelian vortices: stable color-magnetic flux tubes

In this section, we study non-Abelian vortices in the CFL phase in the GL theory. While the use of
the GL theory is limited near the transition temperature where the gap �CFL is sufficiently small,
the existence of non-Abelian vortices is not restricted to that region. One can also construct these
vortices by using the chiral Lagrangian (2.94) before integrating out the gluons, although the chiral
Lagrangian cannot describe the short distance structure at the center of the vortex, and the vortex
configurations are singular at their core since we restricted | det�L| = | det�R| = 1. We also study
vortices in the BdG equation in Sect. 8, which is not restricted to any region.

3.3.1. Minimal (M1) non-Abelian vortices. In this subsection, we explain the so-called non-
Abelian vortices, which are the most stable vortices in the CFL phase [35]. For simplicity, here
we omit the mixing of the color and electric charges by simply setting e = 0, which we take into
account in Sect. 5.3. We consider only static configurations. Therefore, we study solutions to the
Euler–Lagrange equations associated with the Lagrangian

L = Tr

[
−K3Di�

†Di�−
F2

i j

4λ3

]
− α Tr

(
�†�

)

− β

([
Tr(�†�)

]2 − Tr
[
(�†�)2

])
+ 3α2

16β
, (3.24)

where we discarded the terms irrelevant for the discussions below. In the rest of this section, we will
set λ3 = 1. In order to get a static straight vortex string along the x3-axis, we make the following
ansatz:

�(r, θ) = �CFL

⎛
⎜⎝eiθ f (r) 0 0

0 g(r) 0
0 0 g(r)

⎞
⎟⎠ , (3.25)

Ai (r, θ) = εi j x j

gsr2 (1− h(r))

⎛
⎜⎝−

2
3 0 0

0 1
3 0

0 0 1
3

⎞
⎟⎠ . (3.26)

Similarly, we can take

�(r, θ) = �CFL

⎛
⎜⎝g(r) 0 0

0 eiθ f (r) 0
0 0 g(r)

⎞
⎟⎠ , (3.27)

Ai (r, θ) = εi j x j

gsr2 (1− h(r))

⎛
⎜⎝

1
3 0 0
0 −2

3 0
0 0 1

3

⎞
⎟⎠ , (3.28)
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or

�(r, θ) = �CFL

⎛
⎜⎝g(r) 0 0

0 g(r) 0
0 0 eiθ f (r)

⎞
⎟⎠ , (3.29)

Ai (r, θ) = εi j x j

gsr2 (1− h(r))

⎛
⎜⎝

1
3 0 0
0 1

3 0
0 0 −2

3

⎞
⎟⎠ . (3.30)

These vortices were first found by Balachandran, Digal, and Matsuuta in Ref. [35]. They call them
semi-superfluid non-Abelian vortices. For either case, the boundary conditions for the profile func-
tions f, g, h at spatial infinity should be determined in such a way that the configurations reach the
ground state. Therefore, we impose the boundary condition

f (∞) = 1, g(∞) = 1, h(∞) = 0, (3.31)

where the last condition implies that we are in the pure gauge at infinity. We also need to fix the
values of the fields at the origin, which ensures that the solutions are regular there:

f (0) = 0, g′(0) = 0, h(0) = 1. (3.32)

The decomposition of the U (3) action in Eq. (3.25) to the U (1)B and SU (3)C actions can be found
as

� = �CFL

⎛
⎜⎝eiθ f (r)

g(r)
g(r)

⎞
⎟⎠ = �CFLe

iθ
3

⎛
⎜⎝

e
2iθ
3 f (r)

e−
iθ
3 g(r)

e−
iθ
3 g(r)

⎞
⎟⎠ . (3.33)

At the end θ = 2π of the closed loop in the order parameter space, the U (1)B contribution becomes
ω = exp(2π i/3). This factor is canceled by the SU (3)C part diag(ω2, ω−1, ω−1) = ω−113. Only
the U (1)B part with fractional winding cannot make a closed loop, while a contribution from the
SU (3)C part makes it possible to have a closed loop. One observes that the presence of the center
group Z3 of the SU (3)C group is essential. This is the same for the other two configurations.

Let us discuss the shape of the profile functions f, g, h. The corresponding Euler–Lagrange
equations are given by[

�− (2h + 1)2

9r2 − m2
1

6

(
f 2 + 2g2 − 3

)
− m2

8

3
( f 2 − g2)

]
f = 0, (3.34)

[
�− (h − 1)2

9r2 − m2
1

6

(
f 2 + 2g2 − 3

)
− m2

8

6
( f 2 − g2)

]
g = 0, (3.35)

h′′ − h′

r
− m2

g

3

(
g2(h − 1)+ f 2(2h + 1)

)
= 0. (3.36)

Here the masses m1, m8, and mg are given in Eq. (2.28).
To get the vortex configurations, we should solve the above coupled three ordinary differential

equations. Although it is impossible to solve them analytically, we can solve them numerically.
Before demonstrating the numerical solutions, let us examine the asymptotic behavior of the profile

functions that can be analytically solvable. From these asymptotics, we find several peculiar proper-
ties of the non-Abelian vortices in the CFL phase. To this end, we consider small fluctuations around
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the asymptotic values ( f, g, h) = (1, 1, 0) and define

δF(r) = ( f (r)+ 2g(r))− 3, δG(r) = f (r)− g(r)− 0, δh(r) = h(r)− 0. (3.37)

δF(r) is the fluctuation of the trace part of � and δG(r) is that for the traceless part proportional to
T8 as

� = �CFL13 +�CFL

⎛
⎜⎝

1
3

1
3

1
3

⎞
⎟⎠ δF(x)+�CFL

⎛
⎜⎝

2
3
−1

3
−1

3

⎞
⎟⎠ δG(r)+ · · · . (3.38)

The linearized field equations for the fluctuations are given by(
�− m2

1 −
1

9r2

)
δF = 1

3r2 , (3.39)

(
�− m2

8 −
1

9r2

)
δG = 2

3r2 δh, (3.40)

δh′′ − δh′

r
− m2

gδh = 2

3
m2

gδG. (3.41)

An approximate solution of the first equation is [112]

δF = q1

√
π

2m1r
e−m1r − 1

3m2
1r2
+ O

(
(m1r)−4

)
. (3.42)

The first term is much smaller than the others, and is usually neglected, as in the case of the U (1)
global vortex. The dominant terms decrease polynomially, which is a common feature of global
vortices. At high baryon density where mg � m1,8, the solutions of Eqs. (3.40) and (3.41) are
given by

δG = q8

√
π

2m8r
e−m8r , δh = −2

3

m2
g

m2
g − m2

8

δG. (3.43)

Here q1,8 are some constants that should be determined numerically. This behavior of δh is counter-
intuitive because the gluon has the magnetic mass mg by the Higgs mechanism in the CFL phase,
so naively one expects δh ∼ e−mgr . Since the asymptotic behaviors of the vortex string are deeply
related to the intervortex forces, we expect that the intervortex forces of the non-Abelian vortices in
CFL are quite different from those in conventional metallic superconductors.6 In the opposite case
mg  m8, the asymptotic behaviors are changed from Eq. (3.43) as

δG = −2qg

3

1

(m2
8 − m2

g)r
2

√
π

2m8r
e−m8r , δh = qg

√
πmgr

2
e−mgr . (3.44)

In this case the asymptotic behaviors are governed by mg, which is smaller than m8. The coefficients
q8 and qg depend on the masses m1, m8, and mg and can be determined numerically [112].

The full numerical solutions for Eqs. (3.34), (3.35), and (3.36) were obtained in Ref. [112]. It was
found there that the shapes of the profile functions depend on the mass parameters m1,8,g. In par-
ticular, the value of g(0) at the origin is quite sensitive to the ratio m1/m8. Roughly speaking, g(0)

6 The exponential tails of the famous Abrikosov–Nielsen–Olesen vortices [3,251] in a conventional Abelian–
Higgs model are like exp(−m Hr) for the massive Higgs field H with mass m H and exp(−mer) for the massive
Abelian gauge boson with mass me. The layer structures are exchanged for me > m H (type II) and me < m H

(type I). However, for the strong type II region (me > 2m H ), the tail of the gauge boson becomes exp(−2m Hr)
[95,271,275]. The width of the gauge field cannot become smaller than half of that 1/m H of the scalar field.
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Fig. 3. The non-Abelian vortex profile functions { f (r), g(r), h(r)} = {green, blue, red}. The mass parameters
are set to be {mg,m1,m8} = {5, 1, 1}, {1, 5, 1}, {1, 1, 5}. g(r) is almost flat when m1 � m8.
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Fig. 4. Distributions of the energy density (red) and the non-Abelian magnetic flux (blue) for the minimally
winding non-Abelian vortex. The parameters are chosen to be (mg,m1,m8) = (10, 2, 1). While the energy
density has a long tail, the magnetic flux whose transverse size is of order m−1

8 exponentially converges to 0.

becomes larger than 1 for m1 > m8, and is smaller than 1 for m1 < m8; see Fig. 3. Since f (r)− g(r)
plays the role of an order parameter for the breaking of SU (3)C+F, information on the profile func-
tions f (r) and g(r) is important. For the high baryon density region, we have m1 = 2m8  mg.
Therefore, the non-Abelian vortex in the CFL phase has g(0) greater than 1, as shown in the right
panel of Fig. 3. The profile functions f (r), g(r), h(r), the energy, and the color-magnetic flux den-
sities for a particular choice of parameters (m1,m8,mg) = (2, 1, 10) are shown in Fig. 4. Note that
mg is much greater than m1,8; nevertheless, the color-magnetic flux has almost the same width as
the scalar density distribution. One way to explain this counterintuitive behavior is the asymptotic
behavior of the profile functions that we explained above. The asymptotic tail of the gluon is∼ e−m8r ,
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which depends only on m8 when m8 < mg. Therefore, the width of the flux density is not of order
m−1

g ∼ 10 but is of order m−1
8 ∼ 1.

Let us compare the non-Abelian vortex explained in this section with the Abelian vortices in
Sect. 3.1. The U (1)B vortex is characterized by the first homotopy group π1[U (1)B]. As can be seen
from Eq. (3.4), the U (1)B vortex has an integer winding number. Therefore, this vortex is called an
integer vortex. The non-Abelian vortex is also characterized by π1[U (1)B], but its winding number
takes the value of a fractional number. The minimal winding number is quantized by 1/3. The vor-
tices with fractional winding numbers are the so-called fractional vortices. To understand this, let us
write the asymptotic behavior of � given in Eq. (3.33) at r →∞ as

� ∼ �CFLe
iθ
3 13. (3.45)

Here “∼” stands for the equivalence under the SU (3)C gauge transformation. This explicitly shows
that the minimally winding non-Abelian vortex has only 1/3 winding number in the U (1)B space.
Consequently, the circulation of the superfluid velocity in Eq. (2.63) obeys a fractional Onsager–
Feynman quantization

cB =
∮

dxi J B
i =

2π

3

4K3

γ K0
k (3.46)

with the vortex number k ∈ π1[U (3)C−F+B]. This is 1/3 of the circulation (3.5) of a U (1)B vortex.7

Finding the minimally winding solution is very important to find which configuration is the most
stable in the CFL phase. Since the non-Abelian vortex is a global vortex, its tension consists of two
parts: a logarithmically divergent part and a finite part.

TM1 = Tdiv;M1 + Tfin;M1 . (3.47)

A dominant contribution to the tension (logarithmically divergent) comes from the kinetic term as

Tdiv;M1 � K3

∫
d2x TrDi�(Di�)† = 1

9
× 6π�2

CFLK3 log
L

ξ
. (3.48)

This should be compared with the tension of the U (1)B integer vortex given in Eq. (3.8). Since the
minimal winding number of the non-Abelian vortex is 1/3, the tension of the non-Abelian vortex
is 1/32 = 1/9 times as large as that of the U (1)B integer vortex. Thus, we conclude that the non-
Abelian vortex is the most stable string configuration in the CFL phase. In Sect. 4.3, we discuss how
a U (1)B integer vortex decays into non-Abelian vortices.

Let us next consider the finite contribution to the vortex tension. We discuss the dependence of the
energy on the coupling constant gs. As shown in Eq. (3.48), the logarithmically divergent contribu-
tion to the tension does not depend on the gauge coupling. However, finite corrections to the energy
do depend in general on the gauge coupling and on the various coefficients in the potential energy.
These finite contributions have been numerically calculated as the behavior during a change in gs

in Ref. [356]. Figure 5 shows that the tension decreases monotonically with increasing gauge cou-
pling. This behavior is generic and independent of the values of scalar masses. It can be intuitively
understood by noticing the 1/g2

s dependence in the kinetic terms for the gauge potentials.

7 The rational Onsager–Feynman quantizations are known for superfluid 3He [290,291,361], chiral p-wave
superconductors [185,192,290,291,361], and spinor BECs [173,206,264,312], while irrational Onsager–
Feynman quantizations are known for multi-gap or multi-component superconductors [27–29,152,258,329,
343,344] and multi-component (non-spinor) BECs [74,75,108,113,114,200,241,257].
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gm

1Mfin;T

Fig. 5. The monotonic decreasing of the finite contribution to the tension of the vortex as a function of
the gauge coupling gs. The plot is against the mass of the gauge bosons mg. The blue line corresponds
to the “realistic” parameters: μ ∼ 500 MeV, � ∼ 200 MeV, Tc ∼ 10 MeV, T ∼ 0.9Tc, which correspond to
�cfl =7 MeV, K1 = 9, m1 = 34 MeV, m8 = 17 MeV. The red and green lines correspond respectively to
(m1,m8) = (50 MeV, 10 MeV) and (m1,m8) = (10 MeV, 50 MeV). The logarithmically divergent tension has
been cut off at a distance L = 0.4 MeV−1. Notice that the choice of L is arbitrary. A different value would
correspond to a logarithmic shift in the total tension, but the monotonic decrease of the tension would be the
same, since it is only given by the dependence on gs of the finite term Tfin;M1 .

Let us next compare the color-magnetic fluxes of the non-Abelian vortices and non-topological
color fluxes discussed in Sect. 3.2. As shown in Eq. (3.23), the flux of the 8th direction in the SU (3)c

space of the Abelian vortex (in the limit of ζ = π/2) is 4
√

3π/gs. With the ansatz (3.26), the amount
of flux of the non-Abelian vortex can be easily obtained as

Ai = −
√

2

3

εi j x j

gsr2 (1− h)T8 → �8
NA =

∫
d2x F8

12 =
1

3
×�8

A. (3.49)

Thus, with respect to the color-magnetic flux, the non-Abelian vortex is the minimal configuration
in the CFL phase.

3.3.2. Non-minimal (M2) non-Abelian vortices. A similar but slightly different vortex configura-
tion from the minimal (M1) vortices, called M2 vortices, was also found in Ref. [35]. The ansatz for
the M2 vortex is quite similar to that in Eqs. (3.25) and (3.26) as

�(r, θ) = �CFL

⎛
⎜⎝q(r) 0 0

0 eiθ p(r) 0
0 0 eiθ p(r)

⎞
⎟⎠ , (3.50)

Ai (r, θ) = −εi j x j

gsr2 (1− h(r))

⎛
⎜⎝−

2
3 0 0

0 1
3 0

0 0 1
3

⎞
⎟⎠ . (3.51)

The ansatz for � can be rewritten as

�(r, θ) = �CFLei 2θ
3

⎛
⎜⎝

e−i 2θ
3 0 0

0 ei θ
3 0

0 0 ei θ
3

⎞
⎟⎠
⎛
⎜⎝q(r) 0 0

0 p(r) 0
0 0 p(r)

⎞
⎟⎠ . (3.52)
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This shows that an M2 vortex has 2/3 winding in the U (1)B space, which is twice as large as that
of an M1 vortex. For the rest, the ansatz goes into the SU (3)C orbit; more explicitly, S1 ⊂ SU (3)C,
which is generated by T8. In comparison with the M1 vortex given in Eqs. (3.25) and (3.26), one finds
that the circulation of the M2 vortex goes in the opposite direction in the SU (3)C orbit. Namely, the
color of the M1 vortex in Eq. (3.25) is r̄ = gb, while that of the M2 vortex in Eq. (3.52) is r = gb.
Like the M1 vortex, the tension of the M2 vortex consists of a divergent part and a finite part. The
divergent part is given by

Tdiv;M2 =
4

9
× 6π2�2

CFLK3 log
L

ξ
. (3.53)

This is four times as large as the divergent part of the tension of the M1 vortex. This implies that
an M2 vortex with a red flux decays into two M1 vortices with green and blue colors with opposite
directions, as illustrated in Fig. 11(b).

On the other hand, the color-magnetic flux contributions to the tension are almost the same as those
of the M1 vortex. This is because the differences are just r̄ or r .

Notice that an M1 vortex with winding number 2 has the same divergent tension as Tdiv;M2

because of

�(r, θ) = �CFLei 2θ
3

⎛
⎜⎝

ei 4θ
3 0 0

0 e−i 2θ
3 0

0 0 e−i 2θ
3

⎞
⎟⎠
⎛
⎜⎝ f2(r) 0 0

0 g2(r) 0
0 0 g2(r)

⎞
⎟⎠ . (3.54)

For the finite contribution of the color-magnetic flux to the energy, the M2 vortex has lower cost
since the M1 vortex with winding number 2 has a color-magnetic flux twice as great as that of an
M2 vortex.

3.3.3. Orientational zero modes of non-Abelian vortices. Minimal (M1) non-Abelian vortices
The vortices in the CFL phase are called non-Abelian vortices because they carry color magnetic

fluxes, or equivalently the color gauge SU (3)C transformation participate in the loop in the order
parameter space. The three configurations in Eqs. (3.25)–(3.28) carry corresponding color magnetic
fluxes. Since these configurations cannot be transformed into each other by the gauge transformation,
these are all physically different vortices. However, note that the above three vortices do not exhaust
all possible configurations. Indeed, there exists a continuous family of an infinite number of vortex
configurations. To see it, let us decompose the ansatz Eqs. (3.25) and (3.26) as

� = �CFLdiag( f eiθ , g, g) ∼ �CFLe
iθ
3

(
F

3
13 +

√
2

3
GT8

)
, (3.55)

where we have introduced

F ≡ f + 2g, G ≡ f − g (3.56)

and have transformed the configuration by a certain SU (3)C gauge symmetry. Continuously degen-
erate configurations can be obtained by the color–flavor rotation as

�→ �CFLe
iθ
3

(
F

3
13 +

√
2

3
GU T8U †

)
, U ∈ SU (3)C+L+R. (3.57)

The three configurations in Eqs. (3.25)–(3.28) are particular diagonal configurations. It is now
obvious that the color–flavor SU (3)C+L+R symmetry of the ground state in the CFL phase is spon-

taneously broken in the presence of a non-Abelian vortex because of the term proportional to T8 in
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Eq. (3.55). In the vortex core, there remains the unbroken symmetry

K = U (1)C+L+R × SU (2)C+L+R (3.58)

where U (1)C+L+R is the Abelian subgroup generated by T8 and SU (2)C+L+R is a SU (2) sub-
group that commutes with U (1)C+L+R. Therefore, there appear, in the vicinity of the vortex,
Nambu–Goldstone (NG) modes associated with this spontaneous symmetry breaking:

HCFL

K
= SU (3)C+L+R

U (1)C+L+R × SU (2)C+L+R
� CP2. (3.59)

This space is known as the 2D complex projective space. These modes are called the orientational
moduli (collective coordinates) of the non-Abelian vortex. The existence of these modes was first
pointed out in Ref. [242] in the context of dense QCD, but it was known before in the context of
supersymmetric QCD, as summarized in Appendix A. Points on the CP2 manifold correspond to
the different fluxes. One can move from point to point by SU (3)C+L+R.

The order parameter of the breaking of SU (3)C+L+R is |G| = | f − g|. Since both f and g asymp-
totically reach 1 at the boundary, the color–flavor-locked symmetry is not broken far from the
non-Abelian vortex. On the other hand, as can be seen in Fig. 4, |G| takes a maximum value at the
center of the non-Abelian vortex. Hence, we expect that the orientational NG modes are localized on
the non-Abelian vortex. In Sect. 5, we prove that the orientational modes are in fact normalized and
propagate along the non-Abelian vortex as gapless excitations. We construct the low-energy effective
theory of these modes on the vortex world-volume.

Non-minimal (M2) non-Abelian vortices
Let us next consider the orientation of the M2 vortex. Going away from the M2 vortex, one asymp-

totically reaches the ground state where the SU (3)C+L+R color–flavor symmetry holds. On the other
hand, since the condensation field � at the center of the M2 vortex is

� ∝ diag(1, 0, 0), (3.60)

the color–flavor symmetry that does not change this is the same as that for the M1 vortex. Namely,
U (1)C+L+R × SU (2)C+L+R. There the M2 vortex also has the orientational zero modes

HCFL

K
= SU (3)C+L+R

U (1)C+L+R × SU (2)C+L+R
� CP2. (3.61)

However, the symmetry restored at the center of an M2 vortex is not U (1)C+L+R × SU (2)C+L+R

but is enlarged to U (1)C+L+R × SU (2)L+R × SU (2)C. The restoration of the gauge symmetry
SU (2)C is in sharp contrast to the M1 vortex, for which no gauge symmetries are recovered.

4. Dynamics of vortices

The dynamics of non-Abelian semi-superfluid vortices are generally similar to those of vortices in
superfluids and atomic BEC, which have been studied extensively [125,126,199]. (From a field the-
oretical point of view, see Refs. [231,265].) In Sect. 4.1, we construct the effective field theory of
translational zero modes, known as Kelvin modes, and study the dynamics of a single vortex string
in terms of the low-energy effective theory. In Sect. 4.2, the intervortex force between two non-
Abelian vortices is derived and the dynamics of two vortices and a vortex ring is summarized. In
Sect. 4.3, we discuss the decaying process of a U (1)B Abelian superfluid vortex (M2 vortex) into a
set of three (two) non-Abelian vortices. The creation of vortices and formation of a colorful lattice
of non-Abelian vortices under rotation are discussed in Sect. 4.4. In Sect. 4.5, we discuss the relation
between relativistic strings in relativistic scalar field theories and superfluid vortices.
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4.1. The translational zero modes (Kelvin modes)

4.1.1. The effective theory of translational zero modes. In this subsection, we study the dynamics
of vortices in terms of the effective field theory. Here, we concentrate on translational zero modes,
which are common for U (1) Abelian vortices and non-Abelian vortices, so that we calculate in U (1)
Abelian vortices. The dynamics of orientational zero modes is studied in the next section.

The existence of a vortex spontaneously breaks the translational symmetry. When a vortex is placed
along the z-axis, it breaks two translational symmetries in the x–y plane. When the vortex string
fluctuates, the configuration can be written as

� = f (r̄)ei(θ̄+α), r̄ =
√
(x − X)2 + (y − Y )2,

θ̄ = tan−1
(

y − Y

x − X

)
, (4.1)

where X = X (t, z) and Y = Y (t, z) denote the position of the vortex in the x–y plane, which is a
field in the vortex world-sheet, and (r̄ , θ̄ ) are the polar coordinates from the vortex center. Inserting
Eq. (4.1) into Eq. (2.56), and integrating the Lagrangian density over the x–y plane, we obtain the
effective theory [207]

Leff = −T + 4πγ K0(Y ∂t X − X∂t Y )− T
2

[(∂z X)2 + (∂zY )2], (4.2)

up to the quadratic order of X and Y and the leading order in derivatives. Here, T is the tension of the
vortex, given in Eq. (3.8) for a U (1)B vortex and Eq. (3.48) for a non-Abelian vortex. For a vortex
in d = 2+ 1, the second term can be found in Refs. [231,265]. The first and third terms in Eq. (4.2)
are consistent with the spatial part of the Nambu–Goto action [153,245] at this order:

LNG = −T
√

1− (∂z X)2 − (∂zY )2. (4.3)

Let us remark on the effective Lagrangian in Eq. (4.2). Because the time derivative is at the first
order in the Lagrangian, X and Y are not independent fields; rather, they are momentum conjugate
to each other:

PX = ∂L
∂(∂t X)

∼ Y, PY = ∂L
∂(∂t Y )

∼ X. (4.4)

Therefore, although two translational symmetries are broken, there appears only one independent
gapless Nambu–Goldstone mode, known a Kelvin mode or Kelvon if quantized. There are two typical
solutions of the effective Lagrangian (4.2):

X1 = A cos(kzz − ωt + δ1), Y1 = A sin(kzz − ωt + δ1), (4.5)

X2 = A sin(kzz + ωt + δ2), Y2 = A cos(kzz + ωt + δ2), (4.6)

where δ1 and δ2 are arbitrary constants. The first and second solutions show the clockwise and
counterclockwise spiral Kelvin waves propagating along the vortex string in opposite directions, as
illustrated in Fig. 6. The Kelvin waves have “chirality”: the (counter)clockwise waves can propagate
only in one (the other) direction, which is well known in superfluids.
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Fig. 6. Kelvin waves. The Kelvin waves in Eqs. (4.5) and (4.6) propagate in definite directions indicated by
the arrows.

Since X and Y are not independent but are momentum conjugate to each other, there is only one
dispersion relation

ω = T
4πγ K0

k2
z , (4.7)

which is quadratic. The Kelvon is an example of type-II Nambu–Goldstone modes.8

Defining ψ ≡ X + iY , the effective Lagrangian in Eq. (4.2) can be rewritten as

Leff = −T + 2π iγ K0(ψ
∗∂tψ − ψ∂tψ

∗)− T
2
|∂zψ |2. (4.8)

The two comments are addressed here. The translational modes are exact Nambu–Goldstone modes
only for an infinite system size. For a finite system, a gap as a correction is present in the effective
theory [207]:

Lgap = π

R2 (X2 + Y 2), (4.9)

which is “tachyonic.” However, this does not imply instability in non-relativistic cases. Instead, the
chirality is broken because of this term: Kelvin waves with wavelengths longer than some critical
length propagate in a direction opposite to that of modes with shorter lengths, which is contrary to
conventional understanding.

When one includes higher order terms as the next-leading order, one obtains the nonlinear term
V ∼ |ψ |4 as the potential in the effective Lagrangian. The Euler–Lagrange equation of the total
Lagrangian is a nonlinear Schrödinger equation, which is integrable and and admits soliton solutions.
These solitons describe nonlinear waves propagating along the vortex string, known as Hasimoto
solitons [162].

8 When a continuous symmetry is spontaneously broken in relativistic field theories, there appear as many
Nambu–Goldstone modes as the number of broken generators (for internal symmetries), but this is not the case
for non-relativistic field theories. The type-I and II Nambu–Goldstone modes are defined as gapless modes with
linear and quadratic dispersion relations, respectively. For spontaneously broken internal symmetries, it has
been proved in Refs. [168,363] that one type-I Nambu–Goldstone mode corresponds to one broken generator
and one type-II Nambu–Goldstone mode corresponds to two broken generators, showing the saturation of the
equality of the Nielsen–Chadha inequality [250], NI + 2NII ≥ NBG, where NI, NII, and NBG are the numbers
of type-I and type-II Nambu–Goldstone modes and spontaneously broken generators, respectively. However,
there is no general statement for space-time symmetries for either relativistic or non-relativistic theories. The
presence of a vortex breaks the rotational and translational symmetries but the former do not give independent
Nambu–Goldstone modes [186] (see also Ref. [77]), since a rotation can be reproduced by infinitesimal local
translations [222]. Then, the equality of the Nielsen–Chadha inequality is saturated for both the relativistic
and non-relativistic cases if one counts only translational modes [207]. See also Ref. [260] for a discussion of
Nambu–Goldstone modes for space-time symmetry in the presence of a vortex.
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4.1.2. Magnus and inertial forces. Here, we restrict ourselves to 2+ 1 dimensions. The trans-
lational zero modes X and Y are free fields in the leading order. Let us consider multiple vortices
with the position (Xi , Yi ) of the i th vortex. The effective Lagrangian of interacting vortices can be
written as

Leff =
∑

i

[−T + 4πγ K0(Yi∂t Xi − Xi∂t Yi )]− Eint(Xi , Yi ) (4.10)

where Eint is the interaction energy among vortices, which is calculated in the next subsection.
The interaction of vortices with an external superfluid velocity can be introduced by the Galilei
transformation

(X ′, Y ′) = (X, Y )− (J B,ext
x , J B,ext

y )t (4.11)

with an external superfluid velocity J B,ext
x,y :

Leff =
∑

i

[−T + 4πγ K0(Yi∂t Xi − Xi∂t Yi )]

− Eint(Xi , Yi )− 4πγ K0

∑
i

(Yi J B,ext
x − Xi J B,ext

y ). (4.12)

The equations of motion in the presence of contributions from other vortices and an external flow
can be written as

4πγ K0
∂Xi

∂t
= +∂Eint

∂Y i
+ 4πγ K0 J B,ext

x

4πγ K0
∂Y i

∂t
= −∂Eint

∂Xi
+ 4πγ K0 J B,ext

y . (4.13)

The first terms on the right-hand sides are called the inertial force.
The dissipation is present at finite temperature as the term proportional to KD in Eq. (2.58). It

is known that the contributions from the dissipation can be taken into account in the equations of
motion in Eq. (4.13) as [125,126,199]

4πγ K0
∂Xi

∂t
= +∂Eint

∂Y i
+ 4πγ K0 J B,ext

x − KD
∂Eint

∂Xi
− KD J B,ext

y ,

4πγ K0
∂Y i

∂t
= −∂Eint

∂Xi
+ 4πγ K0 J B,ext

y − KD
∂Eint

∂Y i
+ KD J B,ext

x . (4.14)

The third and fourth terms on the right-hand sides are called the Magnus forces, both proportional
to the coefficient KD of the dissipation term in Eq. (2.58). In particular, the third term is a contribu-
tion from the other vortices and the fourth term is a contribution from the external flow. Note that
the Magnus forces exist only when the dissipation KD is present at finite temperature. When a vor-
tex moves with velocity v, there is an external flow in the rest frame of the vortex. Therefore, the
vortex feels the Magnus force from the external flow as illustrated in Fig. 7. The trajectories of the
vortex and anti-vortex are bent into the directions of fMagnus, as a curve ball in fluid dynamics.

4.2. Interaction between non-Abelian vortices

In this subsection, we study the interaction between two vortices with general orientation in the
internal space at large distance [242,243].
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Fig. 7. Magnus force. v is the velocity of a moving vortex or anti-vortex. fMagnus is the Magnus force. The
trajectories of the vortex and anti-vortex are bent into the direction of fMagnus, as a curve ball.

4.2.1. Intervortex force. We first take one vortex as a reference �0,

�0 = diag(eiθ f, g, g). (4.15)

Then, the other vortex � with general orientation in CP2 relative to the reference vortex should
be obtained by SU (3)C+F transformation to �0. When we consider two vortices only, only an
SU (2)C+F (⊂ SU (3)C+F) rotation is enough to be considered for relative orientation to �0 without
loss of generality:

� = �0UF =

⎛
⎜⎝
(

eiθ f 0
0 g

)
u−1

F 0

0 g

⎞
⎟⎠ =

⎛
⎜⎝
(

eiθa f eiθb f
−b∗g a∗g

)
0

0 g

⎞
⎟⎠ , (4.16)

where uF ≡
(

a∗ −b
b∗ a

)
(with |a|2 + |b|2 = 1) is an element of SU (2)F. This corresponds to a

CP1 submanifold in the whole CP2. Any color gauge transformation keeps the physical situation
unchanged if they are regular. Here we implement a twisted color transformation of SU (2)C, given by

uC(θ, r) =
(

a∗ −beiθF(r)

b∗e−iθF(r) a

)
(4.17)

with F(r) being an arbitrary regular function with boundary conditions F(0) = 0 and F(∞) = 1.
The former condition has been imposed to make the transformation regular at the center of the string.
This is possible because π1[SU (2)C] = 0. The upper left 2× 2 minor matrix of � in Eq. (4.16) is
transformed to

uC(r, θ)

(
eiθa f eiθb f
−b∗g a∗g

)
=
(
|a|2 f eiθ + |b|2geiθF a∗b

[−eiθF + f eiθ
]

ab∗
[−1+ f ei(1−F)θ

] |a|2g + |b|2 f ei(1−F)θ

)

�
(

eiθ 0
0 1

)
for r � m−1

1 ,m−1
8 ,m−1

g . (4.18)

This result means that � � �0 for the large distance r � m−1
1 ,m−1

8 ,m−1
g . Also, the fully opposite

orientation can be obtained by another color gauge transformation,(
e−iθF(r) 0

0 eiθF(r)

)
uC

(
f eiθ 0
0 g

)
u−1

F

�
(

1 0
0 eiθ

)
for r � m−1

1 ,m−1
8 ,m−1

g . (4.19)
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Fig. 8. A configuration of two semi-superfluid non-Abelian vortices with interval 2R in the polar coordinates
(r, θ). r1,2 is the distance from the vortices �1,2, and θ1,2 is the angle around them.

Note that one cannot change the topological number by use of this kind of regular gauge transfor-
mation. We have thus seen that spatial infinity of the string configurations is the same and does not
depend on the orientational zero modes. This is just a consequence of the fact that the orientational
zero modes are normalizable.

All semi-superfluid vortices with general orientation are equivalent to each other away from the
core. In other words, vortices rotated by the flavor SU (2)F revert to the reference vortex given by
Eq. (4.15) via the color gauge transformation at much longer distances than the coherence length.
This fact simplifies the problem of the static long range force between two strings significantly.

Here, we consider the interaction between arbitrary two vortices �1 and �2 placed at (r, θ) =
(R, π) and (R, 0) in parallel along the z-axis; see Fig. 8. We eventually decide on the expression of a
long range static force between two strings, which is valid if the strings are sufficiently separated. The
interval between strings is much larger than both the coherence length and the penetration depth: R �
m−1

1 ,m−1
8 ,m−1

g . The first vortex �1 is approximated everywhere by the asymptotic profile (4.15):
�1 = diag

(
eiθ1, 1, 1

)
. The second string �2 has the profile (4.16) with general orientation relative

to �1. At the large distance of interest, however, it is equivalent to the reference string configuration
(4.15): �2 � diag

(
eiθ2, 1, 1

)
. �1,2 becomes an anti-string by changing the signs of θ1,2.

The total profile of the two string system is given by the Abrikosov ansatz:

�tot = �1�2, Aθ
tot = Aθ

1 + Aθ
2. (4.20)

The first ansatz does not depend on the ordering of the matrices because the second vortex transforms
to diagonal at large distances, as shown in Sect. 3. Aθ

1,2 is the gauge field configuration accompanied
with the single string system of �1,2. For an anti-vortex, Aθ

1,2 changes the signs.
In order to obtain the static force between them, we first calculate the interaction energy density of

the two string system, which is obtained by subtracting two individual string energy densities from
the total configuration energy density;

Eint(r, θ, R) � Tr
(
|D�tot|2 − |D�1|2 − |D�2|2

)

= ±2

3

[ −R2 + r2

R4 + r4 − 2R2r2 cos(2θ)

]
, (4.21)

where we have neglected the potentials V (�tot) = V (�1) = V (�2) = 0 and the field strength
Fa

i j Fai j = 0 at large distance [270]. Here and below, the upper (lower) sign indicates the quantity
for the vortex–vortex (vortex–anti-vortex) configuration.
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The tension, the energy of the string per unit length, is obtained for R  L by integrating the
energy density over the x–y plane as

Eint(R, L) = ±
∫ L

0
dr
∫ 2π

0
dθrEint(r, θ, R)

= ±2π

3

[
− log 4− 2 log R + log

(
R2 + L2

)]
, (4.22)

where the system size L has been introduced as the IR cutoff. The force between the two vortices is
obtained by differentiating E by the interval:

f (a, L) = ∓∂Eint

2∂R
= ±2π

3

(
1

R
− R

R2 + L2

)
� ±2π

3R
, (4.23)

where the last expression is for L →∞. We can see that the force is repulsive (attractive) for the
vortex–vortex (vortex–anti-vortex) configuration. The overall factors 1/3 in Eqs. (4.21)–(4.23) are
attributed to the fact that the tension of the fundamental non-Abelian vortex is reduced by 1/3
compared to the usual Abelian vortex, then leading to 1/3 erosion in the magnitude of the force.

Note that the result does not depend on whether the superconductivity is of type I or II. This
has an important meaning in the case of color superconductivity since, although the perturbation
theory indicates the color superconductivity is of type I for the whole density regime [144], the most
fundamental strings, semi-superfluid strings, can be stable at any density regime where the CFL
phase is realized. This result also implies that the global U (1)B superfluid vortices [128,183] � �
diag(eiθ , eiθ , eiθ ), studied in Sect. 3.1.1, as well as the M2 vortices [35] � � diag(1, e−iθ , e−iθ ) �
(e2iθ , 1, 1), studied in Sect. 3.3.2, are both unstable to decay into 3 or 2 semi-superfluid vortices,
respectively, as discussed in Sect. 4.3.

This contrasts with the case of global non-Abelian vortices [244], discussed in Sect. 10, where the
U (1) Abelian string is marginally unstable, i.e., no force exists between two strings with opposite
orientations.

The force between two vortices at a short distance remains an important problem. In this regard,
the intervortex force at arbitrary distance was calculated in a related model in which U (1)B is
gauged [26].

4.2.2. Dynamics of two vortices and a vortex ring. We denote the positions of two vortices by
(X1, Y1) and (X2, Y2). In the absence of the dissipation (KD = 0) at zero temperature, the equations
of motion contain only the inertial force terms on the right-hand sides of Eq. (4.14). Then, the two
vortices separated by the interval 2R rotate around each other, as in Fig. 9(a):

X1 + iY1 = −X2 − iY2 = R exp(i t/R2), (4.24)

where we set the coefficients at one. On the other hand, a vortex and an anti-vortex move parallel to
each other due to the inertial force, as in Fig. 9(b):

X1 + iY1 = −X2 + iY2 = R + i(1/R)t, (4.25)

where we set the coefficients at one. The velocity of the pair is faster when the distance between them
is smaller.
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Fig. 9. Dynamics of two vortices. (a) Two vortices repelling each other rotate around each other by the inertial
force represented by f in Eq. (4.23). The velocity is faster as the radius of the circular orbit is smaller. (b) A
vortex and an anti-vortex attracting each other move parallel by the inertial force. The velocity is faster as the
distance between them is shorter.

v
BJ BJ

ω

ω

Fig. 10. A vortex ring. It moves in the direction perpendicular to the ring. The velocity is faster as the size of
the ring is smaller. The red, black, and white arrows denote the velocity, vorticity, and flow, respectively.

Let us mention what happens when the dissipation term is present (KD �= 0) at finite temperature.
For a pair of vortices, the radius of the circle orbit gradually increases because of the Magnus force
from each other, the second terms of Eq. (4.14). For a vortex and an anti-vortex, the distance between
them gradually decreases due to the Magnus force from each other, and eventually they collide and
annihilate each other.

The situation of a vortex and anti-vortex pair in d = 2+ 1 dimensions can be extended to a vortex
ring in 3+ 1 dimensions, as illustrated in Fig. 10. The vortex ring moves by the inertial force and
is stable in the absence of the dissipation at zero temperature. In the presence of the dissipation at
finite temperature, the radius of the ring decreases in time due to the Magnus force and eventually it
decays. As the radius becomes smaller, the velocity becomes faster according to Eq. (4.25).

4.3. Decays of U (1)B vortices and non-minimal M2 non-Abelian vortices

The logarithmically divergent part of the tension of non-Abelian vortices is given in Eq. (3.48), while
the tension of a U (1)B integer vortex is given in Eq. (3.8). Therefore, the tension of a non-Abelian
vortex is 1/32 = 1/9 times as large as the tension of a U (1)B vortex. Since the total energy of the
constituent three non-Abelian vortices is 3× 1/9 = 1/3 of that of the U (1)B vortex when they are
infinitely separated, we conclude that the U (1)B vortex breaks up into three non-Abelian vortices
with three different color fluxes, say red, blue, and green color fluxes, with total fluxes canceled out,
as illustrated in Fig. 11(a):

� = �CFLdiag (eiθ , eiθ , eiθ )

→ �CFLdiag (eiθ1, 1, 1)× diag (1, eiθ2, 1)× diag (1, 1, eiθ3), (4.26)
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Fig. 11. Decays of a U (1)B superfluid vortex and an M2 vortex. (a) A global U (1)B superfluid vortex decays
into a set of three non-Abelian vortices with the total magnetic flux canceled out. (b) An M2 vortex with a
red magnetic flux decays into two M1 vortices with green and blue magnetic fluxes directed in the opposite
direction. The numbers represent the energy ratio when all of them are infinitely separated.
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Fig. 12. Detailed configurations of decays of a U (1)B superfluid vortex. The U (1)B vortex initially located at
the origin O decays into three non-Abelian vortices, denoted by the red, green, and blue dots. b1, b2, and b3 are
paths with angles 2π/3 at the boundary at spatial infinity, and r1, r2, r3 denote the paths from the origin O to
spatial infinities. For b1, b2, and b3, the U (1)A phase is rotated by exp[iθdiag(1, 1, 1)] with the angle θ of the
polar coordinates.

where θ1,2,3 is the angle of polar coordinates at each vortex. In fact, in Sect. 4.2, we have seen that
the interaction between two non-Abelian vortices is repulsive at large separation. There remains the
possibility of metastability of the U (1)B vortices, since each vortex in Eq. (4.26) must carry a color
magnetic flux that contributes finite energy corrections to the tension. However, they decay with
perturbations. After the decay, these three vortices rotate as in Fig. 9, because of the inertial force.
Without dissipation at zero temperature, they rotate forever, while the radius increases in the presence
of the dissipation at a finite temperature.

In the same way, a non-minimal M2 vortex also decays into two non-Abelian vortices, as in
Fig. 11(b). Let us suppose that an M2 vortex carries a red magnetic flux; it then decays into two
M1 vortices with green and blue magnetic fluxes directed in the opposite direction.

Next, let us show a detailed configuration of the decay process of a U (1)B Abelian vortex in Fig. 12.
The Abelian vortex initially located at the origin O decays into three non-Abelian vortices, denoted
by the red, green, and blue dots, carrying corresponding color fluxes. The red, blue, and green non-
Abelian vortices are encircled by the paths

b1 − r3 + r2, b2 − r1 + r3, b3 − r2 + r1 (4.27)

respectively. At the boundary of spatial infinity, the U (1)B phase is rotated by exp[iθdiag(1, 1, 1)]
with the angle θ of the polar coordinates from the origin O. Therefore, the U (1)B phase is rotated by
2π/3 along each of the paths b1, b2, and b3. Let us suppose that the three paths in Eq. (4.27) enclose
the three configurations in Eqs. (3.25), (3.27), and (3.29), respectively. Then, we find that the color
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gauge transformations g(r) ∈ SU (3)C occur along the paths r1, r2, and r3 as

r1 : g(r) = exp[iu(r)diag(0,−1, 1)] =
{

diag(1, 1, 1), r = 0

diag(1, ω−1, ω), r = ∞
,

r2 : g(r) = exp[iu(r)diag(1, 0,−1)] =
{

diag(1, 1, 1), r = 0

diag(ω, 1, ω−1), r = ∞
, (4.28)

r3 : g(r) = exp[iu(r)diag(−1, 1, 0)] =
{

diag(1, 1, 1), r = 0

diag(ω−1, ω, 1), r = ∞
,

respectively, with a monotonically increasing function u(r) with the boundary conditions u(r = 0) =
0 and u(r = ∞) = 2π/3.9 We find that the origin O is consistently given by

� = �CFLdiag(ω−1, 1, ω). (4.29)

From a symmetry, permutations of each component are equally possible. The configuration of
Fig. 12) is a U (1)B vortex encircled by the path b1 + b2 + b3 corresponding to unit circulation at
large distance. However, at short distance, it is separated into a set of three non-Abelian vortices,
each of which is encircled by the paths in Eq. (4.27). The paths ri contribute to color magnetic fluxes
and each bi corresponds to 1/3 quantized circulation.

4.4. Colorful vortex lattices under rotation

4.4.1. Vortex formation and vortex lattices as a response to rotation in conventional superfluids.

Here we consider the response of the CFL matter to rotation. Let us first recall what happens if
one rotates an ordinary superfluid. Suppose that one has a superfluid in a vessel; let us rotate the
vessel with angular velocity �. The ground state of the system can be determined by minimizing
the free energy. In a rotating system, the free energy is modified as F ′ = F −� · L, where L is the
angular momentum vector. At low temperatures, the entropy term can be neglected and we just have
to minimize H ′ = H −� · L, where H and H ′ are the Hamiltonian in the rest and rotating frames.

The time evolution of a rotating system is generated by H ′. Let us first recall the reason for this
using a simple example, a non-relativistic point particle in a rotating frame. The Lagrangian of a
point particle with mass m is written as L = mv2/2, where v is the velocity in the rest frame. The
conjugate momentum and the Hamiltonian are given by

p = ∂L

∂v
= mv, H = p · v− L = mv2

2
. (4.30)

Now let us move to the description in the rotating frame at an angular velocity �. Let v′ be the
velocity of the particle in the rotating system. The two velocities are related by

v = v′ +�× r. (4.31)

Since the Lagrangian mechanics is covariant under general coordinate transformation, we can switch
to the rotating frame just by substituting v′ into v,

L = m

2

(
v′ +�× r

)2
. (4.32)

9 This route for the decomposition of an integer vortex into three fractional vortices is exactly the same as
that of three-gap superconductors [258] and three-component Bose–Einstein condensates [75,113,257].
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The conjugate momentum and Hamiltonian in the rotating system are given by

p′ = ∂L

∂v′
= m(v′ +�× r) (= p) , H ′ = p′ · v′ − L = p′2

2m
−� · (r × p′

)
, (4.33)

where we have used the cyclic property of the cross product, p′ · (�× r) = � · (r × p′). Noting that
p′ = p, we can rewrite the Hamiltonian in the rotating frame as

H ′ = p′2

2m
−� · (r × p′

)
= p2

2m
−� · (r × p)

= H −� · L,

(4.34)

which connects the Hamiltonians in the rest and rotating frames. The discussion above can be
straightforwardly extended to many-body systems, as long as the interaction potential is invariant
under rotation.

Now let us discuss the response of a superfluid to rotation. We consider the situation where a
cylinder with radius R is filled with a superfluid and there is one vortex in the center of the vessel.
Then the superfluid velocity is given by v = n

2πr eθ with n the winding number. The energy of a
vortex per unit length is

E =
∫

d2x
1

2
ρ v2 = ρn2

4π
log

(
R

a

)
, (4.35)

where ρ is the superfluid density and a is the core radius (R � a). The angular velocity per unit
length is written as

L =
∫

d2x (r × (ρv))z =
∫ R

a
2πr · rρ|v| � 1

2
nρR2, (4.36)

where the term proportional to a2 is neglected. Thus, the energy in the rotating system is given by

E ′ = ρn2

4π
log

(
R

a

)
− 1

2
�nρR2. (4.37)

If this energy is less than 0, one vortex state is favored compared to the state without a vortex. We
can define the critical angular velocity �c,

�c ≡ n

2π R
log

(
R

a

)
. (4.38)

Thus, if � > �c, the state with the vortex is more favorable than the trivial state.
If one further increases the rotational speed, multiple vortices are generated along the rotational

axis. They all have the same winding number, so the intervortex force is repulsive. All the vortices
repel each other, resulting in the formation of a vortex lattice. In the end, the vortex lattice co-rotates
with the vessel, which means that the superfluid velocity at the edge coincides with the speed of the
wall. Then the circulation � can be calculated as 2π R · R�. This should be equal to the sum of the
circulations of all the vortices inside the vessel, � = nN , where N is the total number of vortices.
Therefore, the total number of vortices

N = 2S�

n
, (4.39)

where S is the cross section of the vessel. In the case of an ordinary superfluid, the circulation of
each vortex is equal to one, n = 1.
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Let us see the creation of vortices from another point of view. We here consider a BEC and denote
the condensate by a complex scalar field �(x). In a rotating frame, the gradient term of the energy
functional can be written as (see Eq. (4.34))

Egrad = �∗
(

p̂2

2m
−� · L̂

)
� = 1

2m
|[∂i − im(r×�)i ]�|2 − 1

2
mr2�2|�|2 (4.40)

where L̂i = iεi jkr j∂k and p̂i = ∂i , and the equality is meant up to a total derivative. The combination
Di = ∂i − im(r×�)i can be seen as a covariant derivative on the field �. Then Ai ≡ mr×� can
be seen as a gauge field and this system looks like a charged field under a constant magnetic field
2�. Therefore, just like a type II superconductor under an external magnetic field, vortices come into
a rotating superfluid. Let us make a comment on the trapping potential. One should add an external
potential to trap the condensate, such as Vtrap = 1

2ω
2r2 for BECs. This term and the last term in

Eq. (4.40) can be combined as −1
2r2�2|�|2 + Vtrap = 1

2(ω
2 −�2)r2|�|2. When the rotation speed

� is less than ω, the condensates can be trapped.

4.4.2. Colorful vortex lattices. Then, what happens if one rotates CFL matter? We can repeat the
energetical argument. When the vessel is large enough, the energy of a vortex is dominated by the
superfluid velocity part and the contribution from the color flux is negligible, Thus, what is modified
in the argument above is that n should be equal to one third, n = 1/3. For realistic neutron stars, the
number of vortices can be estimated as

Nv � 1.9× 1019
(

1 ms

Prot

)(
μ/3

300 MeV

)(
R

10 km

)2

, (4.41)

where Prot is the rotational period, μ is the baryon chemical potential, and the parameters are
normalized by typical values. The corresponding intervortex spacing is given by

� ≡
(
π R2

Nv

)1/2

� 4.0× 10−6m

(
Prot

1 ms

)1/2 (300 MeV

μ/3

)1/2

. (4.42)

Since the intervortex spacing is far larger than the size of a vortex core, which is given by inverse
gluon/meson masses, gluons and mesons would not affect the force between two vortices. The inter-
vortex force is dominated by the exchange of U (1)B phonons. This justifies the treatment above, in
which we have only considered the contribution of U (1)B circulations.

In the discussion using the free energy, we can only determine the ground state of the system.
The dynamical process of vortex generation can be nontrivial, especially for non-Abelian vortices.
Basically, as one gradually increases the speed of rotation, vortices enter one by one from the edge
of the superfluid. However, in the case of the non-Abelian vortices, it has a color flux and one vortex
cannot be created because of the color conservation. A vortex with unit U (1)B winding number does
not have a color flux, but it is energetically unstable. So, one plausible idea is that a U (1)B vortex
is created first; it then decays into three non-Abelian vortices, as discussed in Sect. 4.3. Such two-
fold vortex generation is seen in the simulation of a rotating three-component BEC [75], in which
integer-quantized vortices are created first and then decay into fractional vortices.

Another feature of rotating CFL matter is that the lattice is “colorful” in the sense that each vortex
carries a color flux. There can be various patterns of the configurations of the colored vortices, with
vanishing total color fluxes. In Fig. 13(a), we show a possibility for an “ordered” colorful vortex
lattice. In this case, the color magnetic fluxes of each color constitute an Abrikosov lattice, and the
total configuration itself neglecting colors is also in the form of an Abrikosov lattice. In general, even
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(a)

(b)

Fig. 13. Colorful vortex lattices in a rotating frame. Colors are (a) ordered and (b) disordered. In both cases,
vortices ignoring color constitute an Abrikosov lattice, and total color fluxes are canceled out. (a) The color
magnetic fluxes of each color constitute an Abrikosov lattice. (b) The color magnetic fluxes of each color do
not constitute an Abrikosov lattice.

when the total configuration neglecting colors is in the form of an Abrikosov lattice, there may exist
a vortex lattice that is “disordered” as in Fig. 13(b), in the sense that each color is placed at random
with total colors canceled out. Even ordered, there can be a defect of color orderings.

In the simulation of a three-component BEC, ordered lattices have always been obtained, as men-
tioned above [75]. However, in this simulation, one has introduced a very small perturbation to split
one integer vortex into three fractional vortices after the integer vortex lattice is formed. In this sense,
there could be a defect of color ordering in general if several perturbations were introduced.

Gravitational waves from vortex lattices in the CFL phase (and the 2SC phase) were studied in
Ref. [145] and compared with neutron star observations. However, vortex lattices of unstable color
magnetic fluxes were assumed, so the calculation should be revised by considering colorful vortex
lattices.

4.4.3. Tkachenko modes. A Tkachenko mode is a gapless excitation with a quadratic dispersion
in the presence of a vortex lattice in a rotating system. This mode corresponds to deformation of the
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lattice and the phonon does not appear independently; see Ref. [338] for a review of the Tkachenko
modes. If one ignores the centrifugal force, there are approximate translational symmetries in the
system, which are spontaneously broken by the lattice, resulting in an approximate type-II Nambu–
Goldstone mode identified with the Tkachenko mode [364].

The Tkachenko mode should also exist in a vortex lattice of non-Abelian vortices, if the CFL
phase is realized inside neutron stars. The characteristic timescale of this oscillation is consistent
with the quasiperiodic oscillation, which is of the order of 100–1000 days, observed in the pulsars
PSR B0531+ 21 and PSR B1828-11 [263,315]. It is an open question whether there is a color effect
for the Tkachenko mode of a colorful vortex lattice.

4.5. Superfluid vortices from relativistic strings

A direct relation between a relativistic global vortex in a medium and a non-relativistic superfluid
vortex was discussed in Refs. [85,223] and later also in the CFL phase [128]. When a relativistic
global vortex is put into an uniform medium that violates the Lorentz invariance, it acquires a non-
zero angular momentum and behaves as if it is a non-relativistic superfluid vortex [85]. To see this,
let us consider the low energy effective theory for the U (1)B Nambu–Goldstone mode at high density
and zero temperature in Sect. 2.2.1,

L = f 2
B

[
(∂0ϕB + 2μ)2 − v2

B(∂iϕB)
2
]
. (4.43)

Note that the time derivative ∂0ϕB is replaced by ∂0ϕB + 2μ in order for the effective theory to have
the same symmetry as the microscopic theory, QCD. Because of this peculiar dependence of μ, the
order parameter gets the following time rotation:

eiϕB ∼ e−2iμt . (4.44)

As a result, a global U (1)B vortex acquires a non-zero angular momentum [128]. From the time
dependence in Eq. (4.44), one can easily see that a relativistic global string in a medium has non-zero
angular momentum [128]:

M12 = K0

∫
d2x

(
x1∂2φ

∗∂0φ − x2∂1φ
∗∂0φ

)+ c.c. ∼ kμK0. (4.45)

Furthermore, by interpreting a dual of the Kalb–Ramond field strength H νλρ (completely antisym-
metric tensor) as the superfluid velocity ∂μϕB [85,223],

2μδ0κ = ∂κθB ∼ εκνρλH νλρ, (4.46)

one can reproduce interaction similar to the inertial force of superfluid vortices, which is one of
the peculiar properties of superfluid vortices; see Sect. 4.2.2. For instance, the stability of a moving
vortex ring was shown in Refs. [83,85].

5. Dynamics of orientational zero modes

In this section, we review the dynamics of the orientational zero modes of non-Abelian vortices.
In Sect. 5.1 we explain the low-energy effective theory for the orientational zero modes on a non-
Abelian vortex world-sheet, which is a basis throughout this section. We include the effects of the
strange quark mass in Sect. 5.2 and discuss the instability of non-Abelian vortices. The effects of
electromagnetic interaction are taken into account in Sect. 5.3. In Sect. 5.4, we discuss quantum
monopoles on a non-Abelian vortex. The monopoles form a bound state, which can be thought of as
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bounded kinks that appear on the vortex world-sheet CP2 theory when we take quantum effects into
account. Application to the quark–hadron duality is also discussed. Yang–Mills instantons trapped
inside a non-Abelian vortex are discussed in Sect. 5.5.

5.1. Low-energy effective theory of orientational zero modes

As is shown in Sect. 3.3.3, the non-Abelian vortex has the internal orientational moduli CP2

associated with the spontaneous symmetry breaking of the color–flavor-locking symmetry. The ori-
entational moduli are massless modes that propagate along the host non-Abelian vortex. In this
subsection, we study the propagation of the massless orientational modes on a straight non-Abelian
vortex. We assume that the vortex is on the z-axis.

In the rest of this subsection, we omit all the massive modes and concentrate on the orientational
zero modes of CP2. Let us first identify the orientational zero modes in the background fields � and
Aμ. We start with a particular non-Abelian vortex solution,

��(x, y) = �CFLe
iθ
3

(
F(r)

3
13 + G(r)

√
2

3
T8

)
,

A�
i (x, y) = − 1

gs

εi j x j

r2 h(r)

√
2

3
T8. (5.1)

Then the general solution can be obtained by acting the color–flavor-locked symmetry on them as

�(x, y) = U��U † = �CFLe
iθ
3

(
F(r)

3
13 − G(r)〈φφ†〉

)
, (5.2)

Ai (x, y) = U A�
i U † = 1

gs

εi j x j

r2 h(r)〈φφ†〉. (5.3)

Here 〈O〉 is the traceless part of a square matrix O and we introduced a complex 3-component vector
φ that satisfies the following relation:

−
√

2

3
U T8U † = φφ† − 1

3
13 ≡ 〈φφ†〉. (5.4)

Taking the trace of this definition gives a constraint

φ†φ = 1. (5.5)

Furthermore, the phase of φ is redundant by definition. Thus, we find that φ represents the
homogeneous coordinates of CP2.

Now we promote the moduli parameters φ to the fields depending on the coordinates t, z of the
vortex world-sheet by using the so-called moduli space approximation (first introduced by Manton for
BPS monopoles [231,232]). Since we are interested in the low-energy dynamics of the orientational
moduli fields, we restrict ourself to the study of the dynamics with a typical energy scale that is much
lower than the mass scales of the original theory, namely m1, m8, and mg. Namely, we consider the
situation where

|∂αφ(z, t)|  min
{
m1,m8,mg

}
, (α = z, t). (5.6)

Omitting the higher derivative terms (massive modes) with respect to z and t , the low-energy effec-
tive theory for the orientational moduli field can be obtained by plugging �(x, y;φ(z, t)) and
Ai (x, y;φ(z, t)) into the full Lagrangian (2.7). Note that �(x, y;φ(z, t)) and Ai (x, y;φ(z, t))
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depend on the full spacetime coordinates, which are obtained by replacing the moduli parameter
φ with the moduli field φ(z, t) in Eq. (5.3). In order to construct the Lagrangian of the effective
theory, we also have to determine the xα dependence of the gauge fields Aα , which are exactly zeros
in the background solution. For this purpose, following Ref. [318], we make an ansatz

Aα = iρα(r)

gs

[
〈φφ†〉, ∂α〈φφ†〉

]
, (5.7)

where ρα(r) (α = z, t) are unknown functions of the radial coordinate r at this stage.
Substituting all the fields � and Aμ into Eq. (2.7), we are led to the effective Lagrangian that

consists of two parts,

Leff = L(0)
eff + L(3)

eff , (5.8)

with

L(0)
eff =

∫
dxdy Tr

[
−ε3

2
F0i F0i + K0D0�

†D0�
]
, (5.9)

L(3)
eff =

∫
dxdy Tr

[
− 1

2λ3
F3i F3i + K3D3�

†D3�

]
. (5.10)

The Lagrangian of the CP2 model can be uniquely written up to the overall factors of the decay
constants as

L(α)

eff = CαL(α)

CP2, (5.11)

L(α)

CP2 = ∂αφ†∂αφ +
(
φ†∂αφ

) (
φ†∂αφ

)
, (5.12)

where no summation is taken for α. What we have to determine is the coefficient Cα in Eq. (5.11).
After manipulating straightforward but complicated calculations given in Appendix C, we find that
the coefficients are expressed as

C0 = 4πα3

λ3g2
s

∫
dr

r

2

[
ρ′0

2 + h2

r2 (1− ρ0)
2 + β3m2

g

α3

(
(1− ρ0)( f − g)2 + f 2 + g2

2
ρ2

0

)]
, (5.13)

C3 = 4π

λ3g2
s

∫
dr

r

2

[
ρ′3

2 + h2

r2 (1− ρ3)
2 + m2

g

(
(1− ρ0)( f − g)2 + f 2 + g2

2
ρ2

3

)]
, (5.14)

with α3 ≡ ε3λ3 and β3 ≡ K0/K3. The coefficients C0,3 should be determined in such a way that the
energy is minimized. To this end, we regard the coefficients as “Lagrangian” for the undetermined
scalar fields ρα . Namely, we should solve the Euler–Lagrange equations

ρ′′0 +
ρ′0
r
+ (1− ρ0)

h2

r2 −
β3m2

g

2α3

[
( f 2 + g2)ρ0 − ( f − g)2

]
= 0, (5.15)

ρ′′3 +
ρ′3
r
+ (1− ρ3)

h2

r2 −
m2

g

2

[
( f 2 + g2)ρ3 − ( f − g)2

]
= 0, (5.16)

with the boundary conditions

ρ0,3(0) = 1, ρ0,3(∞) = 0. (5.17)
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Fig. 14. The numerical solutions of ρ0(r) (blue) and ρ3(r) (purple) for {mg,m1,m8} = {1, 5, 1}, {5, 1, 1},
{1, 1, 5}. The Kähler class densities c0(r) (blue) and c3(r) (purple) are also shown in the 2nd line.

Numerical solutions of ρ0(r), ρ3(r), and the Kähler class densities c0(r) and c3(r) (Ci =
(4π/g2

s )
∫

dr rci (r)) with λi = εi = 1 (i = 0, 3) for the mass choices {m1,m8,mg} = {1, 5, 1},
{5, 1, 1}, {1, 1, 5} are shown in Fig. 14. The corresponding background solutions are shown in Fig. 3.

Let us roughly estimate C0,3. To this end, we first recall the boundary condition f (∞) = g(∞) = 1
and h(∞) = 0. The profile functions f (r), g(r), and h(r) approach the above boundary values at
r ∼ �−1

CFL, which is the typical inverse mass of the background solution; see Eqs. (3.42) and (3.43).
Reflecting this property, the function ρ0,3 also approaches its boundary values ρ0,3(∞) = 0 around
r ∼ �−1

CFL. Because of ρ0,3(0) = 1, the values of the square brackets of the integrands of C0,3 at the
origin are ( f (0)2 + g(0)2)β3m2

g/2α3 ∼ β3m2
g/2α3 and ( f (0)2 + g(0)2)m2

g/2 ∼ m2
g/2, respectively.

Therefore, one can estimate C0,3 as

C0 ∼ β3m2
g

λ3g2
s �

2
CFL

∼ β3μ
2

�2
CFL

, C3 ∼ m2
g

λ3g2
s �

2
CFL

∼ μ2

�2
CFL

. (5.18)

Note that λ3 dependence disappears in the above expression. From this result, we can also estimate
the velocity of the CP2 modes propagating along the vortex string as

v2 = C3

C0 ∼ β−1
3 = 1

3
. (5.19)

This should be taken with some care due to the uncertainty of the numerical solution; it is just a
rough parametrical estimation. Indeed, since C0,3 depends on the chemical potential μ, v2 should
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depend on μ as well. The precise μ dependence of the velocity of the CP2 mode has not yet been
determined in the literature.

Let us make a comment on the types of Nambu–Goldstone modes; see footnote 8. While the Kelvin
mode associated with translational symmetries is a type II Nambu–Goldstone mode with a quadratic
dispersion, the CP2 orientational zero modes found in this section are type I Nambu–Goldstone
modes with a linear dissipation. Both of them are localized Nambu–Goldstone modes in the presence
of the vortex background, unlike conventional Nambu–Goldstone modes in the ground state.

5.2. Effects of strange quark mass

Here we consider effects of strange quark mass on the non-Abelian vortices. As addressed in
Sect. 2.1.2, we can treat the effects as a perturbation in the high density region μ� ms. After absorb-
ing the small term ε ∝ m2

s given in Eq. (2.35) into α as Eq. (2.37), the background non-Abelian vortex
solution, then, is given by just solving the same equations as Eqs. (3.34)–(3.36) with α→ α′. Fur-
thermore, the leading order terms in the low-energy effective Lagrangian for the orientational moduli
fields are the same as those given in Eqs. (5.8), (5.11), and (5.12) with the replacement α→ α′.

Let us now turn to find a contribution of the second term in Eq. (2.34) in the low-energy effec-
tive Lagrangian. By substituting Eq. (5.3) into the second term in Eq. (2.34), we get the following
potential term in the CP2 nonlinear sigma model:

VCP2 = D
(
|φ3|2 − |φ2|2

)
, (5.20)

D ≡ πε�2
ε

∫ ∞
0

dr r
(

g2 − f 2
)
, (5.21)

where (φ1, φ2, φ3) is the homogeneous coordinate of CP2, which satisfies the constraint |φ1|2 +
|φ2|2 + |φ3|2 = 1. Note that �ε, f , and g should be obtained after replacing α with α′, as in
Eq. (2.38). Note also that D is positive and finite because g − f is positive for everything over r
and gets exponentially smaller on going away from the vortex; see Eq. (3.43). In the limit ε→ 0,
the low-energy effective theory is the massless CP2 nonlinear sigma model where all the points on
CP2 are degenerate. This is because non-Abelian vortices with different orientations have the same
tensions. Once non-zero ε is turned on, almost all the points of CP2 are lifted and only one special
point (φ1, φ2, φ3) = (0, 1, 0) remains as the global minimum of the effective potential; see Fig. 15.
This means that the non-Abelian vortex with the specific orientation with color “blue–red” and flavor
“s–u” is energetically favored,

�su → diag(�ds, �sueiθ , �ud), as r →∞. (5.22)

This matches the fact that the pairing gap �su is smaller than �ds,�ud as in Eq. (2.33) so that
the vortex whose string tension is proportional to �su is more easily created than others. As shown
below, the details of the dynamics suggest that all configurations except for the (0, 1, 0) vortex are
no longer stable, including the (1, 0, 0) and (0, 0, 1) vortices.

Let us estimate the lifetime of unstable vortices. For simplicity, we consider the decay from the
(1, 0, 0) vortex to the (0, 1, 0) vortex (from the bottom-left vertex to the bottom-right vertex of the
triangle in Fig. 15). Since the effective potential is lifted for |φ3| �= 0 direction, it is reasonable to
set φ3 = 0 from the beginning. Then we are left inside the CP1 submanifold in CP2. It is useful to
introduce an inhomogeneous coordinate u(t) ∈ C by

φ1 = 1√
1+ |u|2

, φ2 = u√
1+ |u|2

. (5.23)
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Fig. 15. Contour plot of the effective potential for the CP2 modes in the |φ1|2–|φ2|2–|φ3|2 space. The colors
represent the values of the potential.

Then the low-energy effective Lagrangian can be rewritten as

LCP1 = C0 |u̇|2
(1+ |u|2)2 + D

|u|2
(1+ |u|2) . (5.24)

The typical timescale appearing with this Lagrangian is

τ =
√

C0K0

D
. (5.25)

In principle, we can numerically calculate τ for each μ. Instead, here, we provide a simple analyt-
ical estimation. Since the profile function f (r) for the winding pairing gap (g, h, and ρ) increases
(decreases) with a typical scale r ∼ �−1

ε for mg � m1,8 as shown in Eqs. (3.42) and (3.43), we find
from Eq. (5.13)

C0 ∼ m2
g

g2
s �

2
ελ3
∼
(

μ

�ε

)2 1

λ3
. (5.26)

Furthermore, D is estimated from Eq. (5.21) as

D ∼ ε ∼ m2
s log

μ

�ε

. (5.27)

Thus, the typical timescale of the rollover from the (1, 0, 0) vortex to the (0, 1, 0) vortex is
estimated by

τ ∼ 1

ms
√
λ3

(
μ

�ε

)2 (
log

μ

�ε

) 1
2

. (5.28)

In the limit ms → 0, τ →∞ as anticipated.
It is interesting to investigate the possible astrophysical implications of the above results. When the

core of a neutron star cools down below the critical temperature of the CFL phase, a network of non-
Abelian vortices will be formed by the Kibble-Zurek mechanism. Remarkably, the extrapolation of
our formula (5.28) to the intermediate density regime relevant to the cores of neutron stars (μ ∼ 500
MeV) with �ε ∼ 10 MeV and ms � 150 MeV suggests that all the vortices decay radically with a
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lifetime of order τ ∼ 10−21 s (assuming λ3 ∼ 1). Although this result should be taken with some
care due to the uncertainty of the numerical factor in Eq. (5.28), it is reasonable to expect that only
one type of non-Abelian vortex, which corresponds to the point (0, 1, 0) in the CP2 space, survives
as a response to the rotation of neutron stars in reality. The other decaying non-Abelian vortices will
emit NG bosons, quarks, gluons, or photons during thermal evolution of neutron stars.

Note that, since we are interested in a realistic situation like that inside the core of a neutron star, we
have imposed β-equilibrium and electric charge neutrality conditions for deriving the ms-correction
to the effective potential in Eq. (2.34). Let us see how the effective Lagrangian changes when we
remove the conditions. The direct ms correction was obtained in Refs. [178,179] as

δV = 2

3
ε Tr

[
�†�

]
+ ε Tr

[
�† X8�

]
, (5.29)

X8 = diag

(
1

3
,

1

3
,−2

3

)
. (5.30)

This leads to the effective potential on the CP2 manifold

V ′
CP2 = 2

3
D
(

2|φ3|2 − |φ1|2 − |φ2|2
)
= 2

3
D
(

3|φ3|2 − 1
)
. (5.31)

In this case the ground state of the potential is the CP1 submanifold defined by |φ1|2 + |φ2|2 = 1.

5.3. Effects of electromagnetic fields

5.3.1. The effects on the electromagnetic coupling on non-Abelian vortices. We have neglected
the effects on the coupling of the CFL matter to the electromagnetic fields AEM

μ thus far. As dis-
cussed in Sect. 2.1.3, the electromagnetic symmetry is embedded into the flavor SU (3)F symmetry,
and it mixes with one of the color gauge fields in the CFL ground state. In this subsection, we dis-
cuss the electromagnetic coupling to non-Abelian vortices following Ref. [356]. There are two main
consequences of the electromagnetic coupling to non-Abelian vortices. One is a gauging of U (1)
symmetry in the CP2 zero modes, i.e., the low energy theory becomes a U (1) gauged CP2 model.
The other is explicit breaking of SU (3)F flavor symmetry, which induces the effective potential in the
low energy effective theory. A physical consequence of the former is discussed later in Sect. 6.3.3.
Here, we concentrate on the latter effect.

The SU (3)F flavor symmetry is explicitly broken as in Eq. (2.53) by the electromagnetic cou-
pling. Consequently, all non-Abelian vortices are not transformed by the SU (3)C+F action once the
electromagnetic coupling is taken into account. Only the SU (2)C+F ×U (1)EM subgroup remains
exact as in Eq. (2.55). In order to classify all possible configurations, we consider a closed loop in
the order parameter space generated by the gauge/baryon group, which is given by the following
transformation on the order parameter,

〈�(∞, θ)〉 = eiθB(θ)eiγ a(θ)T a 〈�(∞, 0)〉 eiα(θ)T EM
(5.32)

where θ (0 ≤ θ < 2π ) is the angle coordinate of the space and θB, γ a , and α are monotonically
increasing functions. Since � must be single valued, one obtains a relation at θ = 2π :

eiγ a(2π)T a = e−iθB(2π)e−iα(2π)T EM
. (5.33)

This is an equation for the possible symmetry transformations giving a closed loop, or, equivalently,
a possible vortex configuration. Notice that the existence and stability of vortices related to various
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solutions of the above equation can in principle only be inferred by a direct study of equations of
motion. It is possible to determine all the solutions of Eq. (5.33), e.g. using an explicit parametriza-
tion of the elements of SU (3). In what follows we will analyze three types of solutions that cannot
be related by SU (2) color–flavor transformations: 1) “Balachandran–Digal–Matsuura (BDM)” case
[35], 2) “CP1” case, and 3) “Pure color” case.

1) “BDM” case
The first possibility is a closed loop generated by T 8 in SU (3) and the electromagnetic T EM alone:

eiγ 8(θ)T 8 = e−iθB(θ)e−i α(θ)T EM
. (5.34)

By putting θ = 2π , we obtain the relation

γ 8(2π)√
6
+ α(2π)

3
= −2π

3
, θB(2π) = 2π

3
. (5.35)

The equation above determines the phases γ 8 and α only up to a linear combination. This is a conse-
quence of the fact that the two generators T 8 and T EM are proportional and indistinguishable from
each other on diagonal configurations. The configuration above is invariant under SU (2) color–flavor
transformations (singlet). Balachandran, Digal, and Matsuura considered this case only [35].

2) “CP1” case
The second possibility is a closed loop generated by winding in the SU (3) group around the T 3

direction too, in addition to T 8 and T EM:

ei(γ 3(θ)T 3+γ 8(θ)T 8) = e−iθB(θ)e−i α(θ)T EM
. (5.36)

By putting θ = 2π , we obtain the relation

γ 8(2π)√
6
+ α(2π)

3
= π

3
, γ 3(2π) = ±

√
2π, θB(2π) = π

3
. (5.37)

The configuration is not preserved by color–flavor transformations, and we can generate a orien-
tational moduli space using SU (2) color–flavor transformations. In fact, we have the most general
configuration of this type in the form:

γ 3(2π)T 3 → γ b(2π)T b, |γ b| =
√

2π, b = 1, 2, 3, (5.38)

where→ denotes a replacement; the T a above are the generators of SU (3) that commute with T 8 and
form an SU (2) subgroup. Since the continuous family generated by the SU (2) group is characterized
by a CP1 submanifold inside the whole CP2 space, we call them “CP1” vortices.

3) “Pure color” case
In terms of the vector |γ a| introduced above, the two previous cases correspond to |γ a| = 0 and
|γ a| = √2π . These are the only two cases for which a nontrivial electromagnetic phase is allowed.
In all the other cases, we must have:

eiγ a(θ)T a = e−iθB(θ). (5.39)

By putting θ = 2π , we obtain the relation

θB(2π) = 2π

3
, α(2π) = 0. (5.40)

We call this the “pure color” case because it does not involve electromagnetic transformations,
and is thus equivalent to the case of pure color vortices studied in the previous subsections with-
out electromagnetic coupling. Notice that this case spans a whole CP2, while SU (2) color–flavor
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transformations generate only CP1 orbits (apart from the case where only γ 8 is non-zero, which is
invariant).

We stress again that the cases listed above are just a consequence of boundary conditions when we
search for closed loops at spatial infinity. Moreover, all the cases are topologically equivalent in the
absence of electromagnetic coupling.

5.3.2. BDM vortex. The “BDM case” corresponds to the vortex studied by Balachandran, Digal,
and Matsuura in Ref. [35]. Since we only need T 8 to generate the correct winding for this vortex,
the idea is to restrict the action (2.7) to include only the gauge fields A8 and AEM, by keeping all the
other gauge fields to zero. Formally the action reduces to that of a U (1)×U (1) gauge theory, which
we can then express in terms of the massless and massive combinations in Eqs. (2.48) and (2.49):

SU (3)C ×U (1)EM → U (1)8 ×U (1)EM � U (1)0 ×U (1)M, (5.41)

where the arrow means that we truncate the model to its Abelian subalgebra. The Lagrangian reads

L = Tr

[
−1

4

3

2
F0

i j F0i j
]
− Tr

[
1

4

3

2
FM

i j FMi j + K1Di�
†Di�− β2(�

†�)2 + m2�†�

]

− β1(Tr[�†�])2 − 3m4

4(3β1 + β2)
, (5.42)

with

Di = ∂i − igM AM
i T M, (5.43)

and gM and T M in Eqs. (2.46) and (2.47), respectively. This form of the Lagrangian is applicable
only for diagonal configurations for the order parameter �. In the action above, the massless field
decouples completely, as expected, while the massive field AM

i couples to � in the standard way. The
BDM vortex is constructed analogously to Sect. 3.3 with the only difference from the uncoupled case
being the new coupling constant gM instead of gs:

�(r, θ)bdm = �cfl

⎛
⎜⎝eiθ f (r) 0 0

0 g(r) 0
0 0 g(r)

⎞
⎟⎠ ,

AM
i T M = 1

gM

εi j x j

r2 [1− h(r)] T M, A0
i = 0. (5.44)

As shown in Fig. 5, the tension of the vortex decreases monotonically with the gauge coupling. Since
we have gM > gs, the BDM vortex has a smaller tension as compared to the corresponding vortex
in the uncoupled case.

5.3.3. CP1 vortex. The CP1 case was considered for the first time in Ref. [356]. We have identi-
fied a vortex configuration that is a solution of the equations of motion that correspond to these new
boundary conditions. To see this, we notice that, similarly to the previous case, we can consistently
restrict the action to include only the gauge fields corresponding to generators commuting with T 8.
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This corresponds to formally reduce to the case

SU (3)C ×U (1)EM → SU (2)C ×U (1)8 ×U (1)EM

� SU (2)C ×U (1)0 ×U (1)M, (5.45)

similarly to what we have done for the BDM case. The truncated Lagrangian now is as follows:

L = Tr

[
−1

4

3

2
F0

i j F0i j
]
− Tr

[
1

4

3

2
FM

i j FMi j − 1

4
Fb

i j Fbi j + K1Di�
†Di�− β2(�

†�)2 + m2�†�

]

− β1(Tr[�†�])2 − 3m4

4(3β1 + β2)
, (5.46)

where

Di = ∂i − igM AMT M − igs AbT b, b = 1, 2, 3; [T b, T 8] = 0. (5.47)

Here, the index b is relative to the SU (2)C factor. As before, the massless combination decouples
completely, and we can set it to zero. Among CP1 vortices, diagonal configurations are CP1+ and
CP1− vortices given in the second and third configurations in Eqs. (3.27)–(3.30). One of the simplest
vortex configurations of the type considered here has the following diagonal form:

�(r, θ)
CP1+ = �cfl

⎛
⎜⎝g1(r) 0 0

0 eiθ f (r) 0
0 0 g2(r)

⎞
⎟⎠ ,

AM
i T M = −1

2

1

gM

εi j x j

r2 [1− h(r)]T M,

A3
i T 3 = 1√

2

1

gs

εi j x j

r2 [1− l(r)] T 3. (5.48)

As explained in Eq. (5.38), we can generate a full CP1 of solutions by applying SU (2)C+F rotations
to the configuration above. Once the ansatz (5.48) is inserted into the equations of motion, we obtain
the equations given in the Appendix of Ref. [356]. We have numerically solved these equations, and
determined the energy of the vortex configuration. The tension, as schematically shown in Fig. 16,
is higher for the CP1 vortices than for the BDM vortex. This result can be intuitively understood
if we recall the observation of the previous section, where we noticed that the tension of a color
vortex decreases monotonically with the gauge coupling. The CP1 vortex is built with both gs and
gM couplings; thus, the interactions depending on gs < gM contribute to increase the tension with
respect to a vortex built exclusively from gM.

Since the CP1 vortex is a solution of the equations of motion, it is a critical configuration for the
energy density functional. It must be a local minimum, and thus a metastable configuration.

5.3.4. Pure color vortex. Let us now come to the third case, the “pure color” case. This situation
is realized when the boundary conditions are the same as the case without electromagnetic coupling.
This means that, at infinity, only the non-Abelian gauge fields give nontrivial winding, and thus non-
vanishing fluxes, while the electromagnetic gauge field is zero everywhere. However, this situation
is generically not compatible with the coupled equations of motion. An easy way to see this is the
fact that boundary conditions in the pure color case imply a non-zero flux for the massless field A0

i .
Since A0

i is massless and unbroken, there is no topology, compatible with the equations of motion,
stabilizing and confining the flux. We thus expect that no solutions exist in general for the pure case.
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Fig. 16. The three different special vortex solutions. The BDM vortex sits in the bottom-left corner of the toric
diagram and has the lowest tension. The other two diagonal vortices are located at the remaining corners and
are connected by color–flavor transformations. All of the upper right edge of the diagram represents the whole
family of vortex configurations related by this SU (2)C+F transformations, namely a CP1 moduli space. These
vortices have a slightly larger tension compared to the BDM configuration. The dashed line in the middle of
the diagram corresponds to vortices not winding along the T 8 direction in the color group. These vortices have
the largest tension and do not involve the electromagnetic gauge field.

However, a special configuration that we call the “pure color vortex” is an exception to this statement.
This configuration is defined as that corresponding to the following boundary conditions:

eiγ a(2π)T a = e−iθB(2π); γ 8 ≡ 0. (5.49)

Notice that the conditions above are perfectly consistent. We can take any configuration of γ a phases
and set γ 8 to zero using a gauge(-flavor) transformation. This means that we can consistently set:

A8
i = AEM

i = 0, ⇒ AM
i = A0

i = 0. (5.50)

In fact, AEM
i = 0 means that for the pure color vortex we can consistently restrict the action by simply

dropping all the terms involving AEM
i . As a consequence, the pure color vortex is exactly the same

configuration as we get in the uncoupled case. Moreover, it satisfies the full equations of motion of the
coupled case, because of the consistent restriction. Notice that the dependence of the electromagnetic
gauge coupling also disappears completely from the restricted action. This means that the tension of
the pure color vortex is also the same as the tension of the uncoupled vortices, involving only gs. As
represented in Fig. 16, the tension of this vortex is larger than both the BDM and the CP1 vortices.

Because of this very fact we are led to conclude that the pure vortex is in fact a stationary point
for the energy functional, but it corresponds to the global maximum. Both the BDM and the CP1

vortices are, on the other hand, local minima, with the BDM vortex being the absolute minimum.
The CP1 vortices are, however, metastable, and if long-lived can play a crucial role in the physics of
the CFL superconducting phase together with the BDM vortex. The whole situation is schematically
summarized in Fig. 16. The numerical values of the tensions are compared as

Tpure − Tbdm = 0.0176 MeV2, Tpure − TCP1 = 0.0044 MeV2, (5.51)
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for the same “realistic” choice of parameters made in Fig. 5, where in addition we have chosen
mg = 92 MeV and a value for the electromagnetic coupling constant of e2 = 1/137. Notice that
the expressions shown above do not depend on the infrared regulator L . The diverging parts of the
tensions in Eq. (3.48) are equal and cancel out in the differences.

5.3.5. Magnetic fluxes. There are two main differences between color magnetic flux tubes with
and without electromagnetic coupling. The first one, as we have already examined, is the lifting of
the moduli space CP2 to leave the stable BDM vortex and the family of metastable degenerate CP1

vortices. The second is the fact that coupled vortices now carry a nontrivial electromagnetic flux.
This is given by the fact that coupled vortices are made of the massive field AM

i , which is in turn a
linear combination of color and electromagnetic gauge fields.

The BDM vortex carries a quantized AM
i flux:

�M
bdm =

∮
�AM · d�l = 2π

gM
. (5.52)

Because of the mixing in the ground state, this gives the following non-quantized fluxes for the color
and electromagnetic fields:

�8
bdm =

√
2

3

1

1+ δ2

2π

gs
, �EM

bdm =
δ2

1+ δ2

2π

e
, δ2 ≡ 2

3

e2

g2
s
. (5.53)

The fluxes of the CP1 vortices can be similarly determined; see Fig. 17:

�M
CP1 = −1

2
�M

bdm ⇒ �8
CP1 = −

1

2
�8

bdm, �EM
CP1 = −1

2
�EM

bdm,

�3
CP1+
=
∮
�A3 · d�l = 1√

2

2π

gs
, �3

CP1−
= −�3

CP1+
. (5.54)

Moreover, the quantized circulations of the BDM and CP1 vortices are the same as that of the usual
uncoupled vortices, and are equal to cB ∼ 1/3 in Eq. (3.46).

Notice that the expressions determined above imply that a color-neutral bound state of vortices
necessarily also carries no electromagnetic flux, and vice versa. In particular, in the uncoupled case
we need at least a bound state of three vortices, (r̄ , ḡ, b̄) to obtain a colorless state, which is nothing
but the U (1)B vortex. In the coupled case, this “minimal” colorless bound state is obtained with the
combination (BDM,CP1+, CP1−). The bound state carries an integer circulation cB ∼ 1 in Eq. (3.5).

5.3.6. Quantum mechanical decay of the CP1 vortices. As we have seen, the CP1 vortices are
classically metastable because of the potential barrier provided by the presence of the pure color
vortex. However, here we show that the CP1 vortices are quantum mechanically unstable, and they
can decay to the BDM vortex by quantum tunneling. We estimate this decay probability.

As discussed in the previous subsections, we do not expect static solutions of the equations of
motion apart from the BDM, the CP1, and the pure color vortices. However, we can try to define
an effective potential interpolating between the three types of solutions. At generic orientations,
the boundary conditions are the same as those for the uncoupled vortices. In fact, the uncoupled
vortex evaluated on the coupled action Eq. (2.7) gives exactly the same tension as that of uncoupled
vortices. This value for the tension is an upper bound for vortex configurations that have a fixed
boundary condition corresponding to a generic point in CP2. The tension of the configuration that
really minimizes the energy, for that fixed boundary condition, defines an “effective” potential on
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Fig. 17. The three different types of vortices we consider. The BDM vortex is labeled as the anti-red r̄ vortex,
as explained in the text, and carries twice the electromagnetic flux of the other solutions, the anti-blue b̄ and
anti-green ḡ vortices.

the CP2 moduli space induced by the electromagnetic interactions. Moreover, since the tension of
vortices is mainly modified by the contribution of the mixed AM

i , which couples with a larger gauge
coupling, we expect the qualitative behavior of the effective potential to be of the form represented
in Fig. 16.

This qualitative picture is enough to address some important features of coupled color-magnetic
flux tubes. The fact that the potential has more than one local minimum allows for the existence
of kinks interpolating between the two vortices corresponding to the various (meta)stable config-
urations; these kinks are interpreted as confined monopoles. Moreover, the presence of kinks, and
the higher tension of CP1 vortices with respect to the BDM vortex, implies a decay rate of the for-
mer vortices into the latter through quantum tunneling. This tunneling proceeds by enucleation of
kink/anti-kink pairs along the vortex [277,321,358] and it is similar to the quantum decay of a false
vacuum in 1+1 dimensions [358]. An analogous situation arises for pure color vortices [116,150],
where the potential is generated by quantum non-perturbative effects of the CP2 nonlinear sigma
model.

The decay rate can be roughly estimated in our case by following the arguments of Refs. [277,358].
The enucleation of a couple of kinks costs an energy of order Mkink. Moreover, they are created at
a critical distance Lcrit such that the energy cost for the pair production is balanced by the energy
gain due to the presence of an intermediate vortex with smaller tension: Lcrit�T ∼ Mkink. The decay
probability rate per unit length is thus:

P ∼ e−M2
kink/�T . (5.55)

We now apply the formula above to our specific case. The mass of the kinks can be estimated as
being of the order of the square root of the height of the potential times the “size” β of the moduli
space:

Mkink ∼ β

√
Tpure − TCP1 . (5.56)

The quantity β has been evaluated analytically and numerically in Refs. [116,150]:

β ∼ K 2
1/β1 ∼ μ2/T 2

c , (5.57)

and it turns out to be large for our “realistic” regime, β ∼ 2500. The tension difference is given
by �T = Tpure − Tbdm. We have already reported numerical estimates of the quantities above in
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Fig. 18. The numerical value of the ratio R of Eq. (5.56). In the left panel, we plot it as a function of the mass
mg, fixing the value of the electromagnetic gauge coupling to its realistic value e2 = 1/137. In the right panel,
we plot the same quantity as a function of e, fixing the value of the mass mg to a typical value: mg = 92 MeV.
Notice that the value of the ratio R is always of order 1 for the wide range of physical parameter values chosen.

Eq. (5.51), for a special value of the couplings. The decay probability is then:

P ∼ e−β R, R ≡ Tpure − TCP1

Tpure − Tbdm
. (5.58)

Substituting the numerical values of Eq. (5.51), we obtain R ∼ 0.25. We have also studied the
dependence of this decay probability in terms of a more general set of values of the gauge couplings.
The numerical results are shown in Fig. 18. In the left panel we have plotted the quantity R as a
function of the mass mg, which depends on the gauge coupling gs, where we have set e2 = 1/137.
In the right panel, we show the same quantity as a function of the electromagnetic coupling e, where
we have set mg = 92 MeV. We see that R has a very mild dependence on the value of both mg and
e. As shown in Fig. 18, R is always a quantity of order 1. We have limited ourselves to considering
large values of the gauge bosons (mg � 10 MeV) and small values of the electromagnetic gauge
coupling (e � 1), as expected in realistic settings in the CFL phase. We thus see that, for the range
of values of the couplings considered, the ratio R is never small enough to compensate the large
“moduli space” factor β. We thus estimate the probability of decay of CP1 vortices in BDM vortices
to be exponentially small in realistic settings.

Notice that the estimate made above is fully justified only in the case in which the size of the kink
is negligible as compared to the critical length Lcrit, while in our case the two sizes are comparable.
This estimate is very rough, and has to be corrected including possible Coulomb interactions between
the kink/anti-kink pair. However, it should correctly capture the order of magnitude of the decay
probability. It is an open problem to give a more precise estimate of the decay probability of CP1

vortices in the CFL with electromagnetic coupling and vanishing quark masses. However, as we shall
see in the next section, the effects of a non-vanishing strange quark mass overshadow the effects of
the potential induced by electromagnetic interactions in more realistic settings.

5.3.7. Comparison with other potential terms. In this subsection, we compare the potential gen-
erated semiclassically by the electromagnetic interactions with the other potentials, i.e., the quantum
mechanically induced potential and the potential induced by the strange quark mass.

First, the quantum potentials in Eqs. (5.76) and (5.64) are exponentially small and negligible as
compared to the semiclassical potential induced by electromagnetic interactions.

Second, the potential induced by electromagnetic interactions is comparable with the effects of the
strange quark mass discussed in Sect. 5.2 only when the strange quark mass is very negligible as
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compared to the chemical potential (ε  m2). These densities are not realistic in, e.g., neutron star
cores. We then conclude that CP1+ is the most relevant in realistic densities, for instance in the inner
core of neutron stars. This is interesting because Balachandran, Digal, and Matsuura concluded that
the BDM vortex is the most stable [35].

5.4. Quantum monopoles and the quark–hadron duality

Understanding the confinement of quarks and gluons is one of the most important questions in
QCD. One plausible scenario is the dual superconducting picture of the QCD vacuum [227,245,387]:
Assuming the condensation of putative magnetic monopoles, the color electric flux is squeezed and
the quarks would be confined. Although this dual picture can explain a number of properties in the
QCD vacuum (see, e.g., [208,340]) and is shown to be realized in N = 2 supersymmetric QCD
[310,311], the condensation or even the existence of magnetic monopoles have not been justified in
real QCD without dramatic assumptions [154]. If the magnetic monopoles indeed exist in real QCD,
it is natural to expect that they would also appear in QCD at finite temperature T and finite quark
chemical potential μ. In the quark–gluon plasma phase at high T , a number of instances for evidence
of the existence of monopoles were suggested in the model calculation in conjunction with the lattice
QCD simulations (for reviews, see Refs. [73,324]).

In this subsection, we ask whether the monopole exists or not in QCD at large μ. It is indeed an
ideal situation to investigate this question because of the following two reasons: Firstly, the physics
is under theoretical control in this regime because the QCD coupling constant gs is weak according
to the asymptotic freedom. Secondly, the ground state is the most symmetric three-flavor CFL phase
in the color superconductivity. By making use of these two advantages, we will show that mesonic
bound states of confined monopoles appear inside the non-Abelian vortices in the CFL phase.

We start with solving CP NC−1 model in 1+ 1 dimensions, taking the quantum effects into account.
The case with NC = 3 corresponds to the low energy effective theory on the non-Abelian vortex.
Unfortunately, the solution to the CP2 nonlinear sigma model is not known so far. Thus, we solve
the model to leading order of 1/NC expansion following [81,370]. Owing to the qualitative similarity
of the solutions to the CP1 and CP NC−1 models, the solution to the CP2 model should be well
approximated by taking NC = 3 at the end.

Let us first rescale the variables as

t →
√

C0t, z →
√

C3z, φ→
√

C0C3φ. (5.59)

Then the low energy effective Lagrangian given in Eqs. (5.8)–(5.12) can be rewritten in the following
form:

S =
∫

d2x

[
|(∂α − i Aα)φ|2 − σ

(
|φ|2 − NC

3

√
C0C3

)]
. (5.60)

Here we have performed the Hubbard–Stratonovich transformation by introducing the auxiliary
gauge field Aα and also the Lagrange multiplier σ . After the rescaling, the partition function has
the standard normalization as

Z =
∫ [

dφdφ†dσd Aα

]
ei S. (5.61)

Integrating out φ and φ†, one obtains

Z =
∫

[dσ Aα] exp

{
−NCTr log

[
− (∂α + i Aα)

2 − σ
]
+ i NC

3

√
C0C3

∫
d2x σ

}
. (5.62)
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Following [370], we solve this in a stationary phase approximation. From the “Lorentz” symmetry,
the saddle point should be a point with Aα = 0 and σ = constant. Then, we vary the partition function
in terms of σ leading to the following gap equation:

i

√
C0C3

3
+
∫ �=�CFL d2k

(2π)2

1

k2 − σ + iε
= 0. (5.63)

Note here that we have introduced the cutoff scale � = �CFL, which is not a dynamical cutoff of the
CP2 model but is a physical cutoff �CFL below which the description in the low energy effective
theory does make sense. After integration, we get

M2 ≡ σ = �2
CFLe−4π

√
C0C3

3 ∼ �2
CFLe

−γ
(

μ
�CFL

)2

> 0, (5.64)

where γ is a certain positive constant and we have used C0 ∼ C3 ∼ (μ/�CFL)
2 under the assumption

λ3 ∼ ε3 ∼ 1. Looking back to the original action Eq. (5.60), one sees that a positive expectation value
of σ is a mass of φ and φ†.

Let us next consider fluctuations of σ and Aα around the saddle point. It was shown [370] that
higher order terms in σ and Aα are suppressed in the large-NC limit; only the quadratic terms are
relevant. It turns out that the relevant Feynman diagrams are the propagator of Aα at the one-loop
level [370]. Thus the effective world-sheet theory including the quantum effects to leading order of
1/NC is

Lquant
eff = |(∂α − i Aα)φ|2 − M2|φ|2 − NC

48πM2 F2
αβ. (5.65)

By rescaling Aα so that the kinetic terms of Aα are canonically normalized,

Aα →
√

12πM2

NC
Aα, (5.66)

the final form of the quantum effective theory reads

Lquant
eff = |(∂α − ieAα)φ|2 − M2|φ|2 − 1

4
F2
αβ, e ≡

√
12π

NC
M. (5.67)

In summary, taking the quantum effects into account, the auxiliary gauge fields become dynamical
and φ acquires the U (1) charge e and a non-zero mass, which is consistent with the Coleman–
Mermin–Wagner theorem in 1+ 1 dimensions [78,239].

We are now ready to understand the above quantum phenomena in 1+ 1 dimensions from the 3+ 1
dimensional viewpoint. A clue is that the particles φ and φ† in 1+ 1 dimensions can be interpreted
as topological solitons, namely a kink and an anti-kink, as was found by Witten [370]. This might
be best seen in a supersymmetric CP NC−1 model, which has NC degenerate quantum vacua with
ZNC symmetry. The kinks interpolate two adjacent vacua among the NC vacua. Remember that, for
us, the CP NC−1 fields φ and φ† are the internal orientational moduli of the non-Abelian vortex in
the CFL phase. Therefore, the kink on the vortex is a particle soliton in 3+ 1 dimensions and is a
junction of two different non-Abelian vortices. Thereby, it is nothing but a magnetic monopole in the
Higgs phase; see Fig. 19. The mass of the monopole can be read from Eq. (5.65) as

Mmonopole = M ∼ �CFLe
− γ

2

(
μ

�CFL

)2

. (5.68)

This is much smaller than the mass ∼ �CFL log(L/ξ) of the non-Abelian vortex of the unit length.
Dealing with the monopole as the soliton in the low energy world-sheet theory is justified by this
hierarchy in the mass scales.
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Fig. 19. A monopole as a kink of the orientational moduli φ in supersymmetric models.

Fig. 20. A confined monopole and anti-monopole in non-supersymmetric models.

Though the kinks on the vortex string are deconfined in the supersymmetric CP NC−1 model [149,
160], they are confined in the non-supersymmetric case. This is because the particles φ and φ† have
charges±e for the dynamical U (1) gauge field as in Eq. (5.67). In one space dimension the Coulomb
potential is linear, so that, even if the charges are small, they are confined. This is the reason why
Witten referred to φ and φ† as “quarks” (for us they are magnetic monopoles). The linear potential
between a monopole at z = z1 and an anti-monopole at z = z2 is given by

Vconf = e2|z1 − z2|. (5.69)

We illustrate the situation where the monopole and the anti-monopole are confined on the non-
Abelian vortex in Fig. 20. The monopole and the anti-monopole are accompanied by semi-infinite
long strings (vortex 1 in Fig. 20). The tension of vortex 1 is given by

T1 = Tclassical − NC

3
M2 ∼ Tclassical − NC

3
�2

CFLe
−γ

(
μ

�CFL

)2

. (5.70)

From Eq. (5.69) we see that the vortex string (vortex 2 in Fig. 20) has a tension T2 bigger than that
of vortex 1 by

T2 − T1 = e2 = 12π

NC
M2 ∼ 12π

NC
�2

CFLe
−γ

(
μ

�CFL

)2

. (5.71)

There is another perspective for understanding this phenomenon [149]. The vacuum structure of
the non-supersymmetric CP NC−1 model can be realized by looking at the ϑ dependence of the theory
[149,322,373] by adding the ϑ term

Lϑ = ϑ

2π
εαβ∂β Aα, (5.72)

where Aα is that before rescaling (5.66). Recalling that the vacuum energy E(ϑ) is of order NC in
the large NC limit, E(ϑ) is expressed as [149,373]

E(ϑ) = NC M2 f

(
ϑ

NC

)
. (5.73)

Here f (ϑ) is an even function of ϑ due to the CP symmetry under which ϑ transforms as ϑ →−ϑ .
Furthermore, E(ϑ) is a periodic function as

E(ϑ + 2π) = E(ϑ). (5.74)

One might suspect that these two conditions are incompatible at first sight. However, there is a way
out: both of them can be satisfied when E(ϑ) is a multibranched function as

E(ϑ) = NC M2 min
k

{
f

(
ϑ + 2π(k − 1)

NC

)}
, k = 1, 2, · · · , NC. (5.75)
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Expanding f (ϑ) = f0 + f2ϑ
2 + · · · and considering that higher order terms in ϑ are suppressed at

large NC, the vacuum energy at ϑ = 0 is given by

Ek(0) = −NC

3
M2 + 12π

NC
M2(k − 1)2, k = 1, 2, · · · , NC, (5.76)

where we have set f0 = −1/3 and f2 = 12π in such a way that Eqs. (5.70) and (5.71) are reproduced.
Therefore, there exist NC local minima among which only one (k = 1) is a genuine ground state while
the others are quasi vacua. Each local minimum corresponds to a quantum vortex state. Namely, the
genuine ground state (k = 1) is the stable vortex with T1 = Tclassical + E1(0), and the quasi vacua
with k ≥ 2 are the metastable string with the tension Tk = Tclassical + Ek(0).

It is now natural to interpret φ and φ† as a kink and an anti-kink interpolating the adjacent local
minima on a vortex, respectively [149]; taking into account the codimension, this bound state neutral
to the U (1) charge can be identified as the bound state of a monopole and an anti-monopole in terms
of the original 3+1 dimensions, as illustrated in Fig. 21: a monopole and an anti-monopole with the
mass M are confined into the mesonic bound state by the linear potential. A similar understanding
has been demonstrated in Ref. [234] based on a comparison with SUSY QCD.

Let us discuss the representations of the bound state of the monopole and anti-monopole. The
physical degrees of freedom of φ are 2(NC − 1) after fixing U (1) gauge symmetry. For example, the
inhomogeneous coordinates are

φ = 1√
1+ |b1|2

(
1
b1

)
, φ = 1√

1+ |b1|2 + |b2|2

⎛
⎜⎝ 1

b1

b2

⎞
⎟⎠ , (5.77)

for NC = 2 and NC = 3, respectively. For NC = 2, φ (φ†) represents one (anti-)kink, as can be seen
in Fig. 21(a). Each of them corresponds to one (anti-)monopole. For the case of the CFL phase with
NC = 3, one (anti-)monopole is a composite state of NC − 1 = 2 (anti-)kinks, each of which has
one complex moduli (position and phase), as seen in Fig. 21(b). Since the fields φ and φ† transform
as (anti-)fundamental representations under SU (NC), respectively, these (anti-)monopoles belong to
NC (N∗C) fundamental representations of SU (NC). The (anti-)monopoles are not free particles but
appear as a mesonic bound state that belongs to the NC ⊗ N∗C = 1⊕ N2

C − 1 representation. Note
that it was shown in Refs. [384,385] that the singlet in this decomposition does not appear in the
spectrum in the CP1 model (NC = 2). This was interpreted in Ref. [234] as indicating that the singlet

(a) (b)

Fig. 21. A schematic illustration of the non-perturbative potential and kinks interpolating between the ground
state and the metastable states, in the cases of (a) NC = 2 and (b) NC = 3. Kinks (φ and φ†) can be identified
with monopoles (M and M̄) from the bulk 3+ 1 dimensional point of view. The total configuration is a bound
state of a monopole and an anti-monopole.
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Table 2. Comparisons of the physics between the hadron phase and the CFL phase in massless three-flavor
QCD: symmetry breaking patterns [the U (1)A and discrete symmetries are suppressed here] and the elementary
excitations. There is still one missing piece in the table: the properties of monopoles in the hadron phase, for
which we speculate that the condensation of monopoles corresponds to the condensation of quarks in the CFL
phase. See text for further explanations.

Phases Hadron phase Color–flavor-locked phase

Confinement Higgs
Quarks Confined Condensed
Monopoles Condensed? Confined
Coupling constant Strong Weak
Order parameters Chiral condensate 〈q̄q〉 Diquark condensate 〈qq〉
Symmetry SU (3)L × SU (3)R ×U (1)B SU (3)C × SU (3)L × SU (3)R ×U (1)B

→ SU (3)L+R → SU (3)C+L+R

Fermions 8 baryons 8+ 1 quarks
Vectors 8+ 1 vector mesons 8 gluons
NG modes 8 pions (q̄q) 8 + 1 pions (q̄q̄qq)

H boson H boson

corresponds to a set of a monopole and an anti-monopole with opposite charges, which is unstable
to decay. Although there is no such calculation for NC ≥ 3, we expect that the same holds.

Next, we would like to discuss the implications of the color-octet of the magnetic-mesonic bound
states. Because they live in the CFL phase, they are also flavor-octet under SU (3)C+L+R. Clearly,
these bound states resemble the flavor-octet mesons formed by quark–antiquark pairs in the hadron
phase. Thus we are naturally led to speculation on the idea of the “quark–monopole duality”: the roles
played by quarks and monopoles are interchanged between the hadron phase (at low density) and the
CFL phase (at high density). If this is indeed the case, our results in the CFL phase would imply
the condensation of monopoles in the hadron phase; namely, it embodies the dual superconducting
scenario for the quark confinement in the hadron phase [227,245,387].

The possible quark–monopole duality may have some relevance to “hadron–quark continuity,”
which is the one-to-one correspondence without any phase transitions between the hadron phase
and the CFL phase conjectured by Schäfer and Wilczek [305]. The hadron–quark continuity may be
realized in the QCD phase structure in the three-flavor limit, as explicitly shown in Refs. [165,376].
In Table 2 we summarize the correspondence in the quark–monopole duality and the hadron–quark
continuity. A number of pieces of nontrivial evidence that support the hadron–quark continuity have
been identified: the same symmetry breaking patterns; the fact that the confinement phase is indistin-
guishable from the Higgs phase [37,129]; the one-to-one correspondence of elementary excitations
such as baryons, vector mesons [164], and pions [376]; and the equivalence of the form of the parti-
tion functions in a finite volume called the ε-regime [375], between the hadron phase and the CFL
phase.

So far, we have considered mesonic bound sates. What is the counterpart of baryonic states in
the CFL phase? It has been found in Ref. [36] by lattice QCD simulations that three quarks are
connected by a Y-shaped junction of color electric flux tubes. It is a natural expectation that a junction
of three non-Abelian vortices with total color fluxes canceled out at the junction point forms; see
Fig. 22. We note that they carry the correct baryon number; each non-Abelian vortex carries the
U (1)B winding number 1/3, and all of them join together to constitute one U (1)B vortex with a
U (1)B winding number one. However, we have not specified the electromagnetic charges of fluxes
at this stage because we have ignored the electromagnetic coupling of vortices in this section.
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M

M

M

Fig. 22. Baryonic bound state of three monopoles (dark discs M indicate the monopoles). They are connected
by a junction of color magnetic flux tubes. The total color is canceled out and a U (1)B vortex represented by
⊗ forms at the junction point.

Finally, some comments are in order. The first is on the relation between classical treatments of the
orientational zero modes in other sections and the quantum treatment explained in this subsection.
First of all, in order for the CP2 nonlinear sigma model to work as a low energy effective field theory,
the energy scale of the orientational modes must be sufficiently smaller than the cutoff scale �CFL.
Furthermore, since the 1+ 1 dimensional CP N nonlinear sigma model is asymptotic-free, the low
energy physics of the low energy effective theory is highly quantum mechanical. The typical quantum
mass scale is of the quantum monopole mass M given in Eq. (5.68). Therefore, the orientational
modes can be dealt with classically within an energy scale smaller than �CFL and larger than M ,
which is very small at the high density limit.

Next, let us make a comment on the effect of the strange quark mass ms with electric charge neu-
trality and β-equilibrium conditions, as is expected in the physical dense matter like inside neutron
stars. This situation was considered previously without the quantum effects in Sect. 5.2. Firstly, note
that without the quantum effects there are no monopoles in the CFL phase [115]. This is because
the effective potential without the quantum effect does not have any local minima but has only one
global minima, as was obtained in Eq. (5.20), so that no metastable kinks can form. Even if we
take into account the quantum effects, they are negligibly small: the scale of the effective potential
∼ m2

s/gs is much larger than that induced by the quantum effects ∼ �2
CFLe−γμ2/�2

CFL for realistic
values of the parameters, ms ∼ 100 MeV, μ ∼ 500 MeV, and �CFL ∼ 50 MeV. Hence, the confined
monopoles will be washed out by ms. We expect that the notion of quark–monopole duality works
well close to the three-flavor limit. It is also a dynamical question whether the hadron–quark continu-
ity survives when one turns on ms; there are other candidates for the ground state at intermediate μ

other than the CFL phase under the stress of ms, such as the meson condensed phase, the crystalline
Fulde–Ferrell–Larkin–Ovchinikov phase [140,214], the gluon condensed phase, etc [13].

5.5. Yang–Mills instantons trapped inside a non-Abelian vortex

In this subsection, we discuss Yang–Mills instantons [48], classified by the third homotopy group of
the gauge symmetry

π3[SU (3)C] � Z. (5.78)

The instanton number is k = (8π2/g2
s )
∫

F ∧ F ∈ π3[SU (3)C].
At asymptotic large μ, bulk instanton effects with the energy ∼ 1/g2

s � 1 are highly suppressed
due to the asymptotic freedom of QCD and the screening of Yang–Mills instantons [302,374]. As
classical solutions, Yang–Mills instantons are unstable against shrinkage in the CFL ground state,
which can be understood from Derrick’s scaling argument [88]. Instead, Yang–Mills instantons can
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exist stably inside a non-Abelian vortex [104,107,133]. They are lumps or sigma model instantons
[276] supported by the second homotopy group

π2(CP2) � Z (5.79)

in the CP2 model as the low-energy effective theory of a non-Abelian vortex.
Lump solutions exist inside a CP1 submanifold of the whole CP2. Let z ∈ C be the complex

coordinate made of Wick-rotated coordinates of the vortex world-sheet. By using the projective
coordinate w of CP1, the lump solution can be written as

w(z) =
k∑

a=1

λa

z − za
(5.80)

with the size and phase moduli λa ∈ C
∗ and the position moduli za ∈ C of the ath instanton among

k instantons where k ∈ π2(CP2) � Z. The instanton energy in the vortex world-sheet is C0,3 ∼
(μ/�CFL)

2 � 1/g2
s [see Eq. (5.18)], which is further suppressed more than the bulk instantons,

consistent with the result in the last subsection. The fact that the instanton energy C0,3 ∼ (μ/�CFL)
2

inside the vortex is larger than the one 1/g2
s in the bulk implies that instantons are repulsive from

vortices.
In the case of SUSY QCD, quantum effects in the d = 1+ 1 dimensional vortex world-sheet can

be explained by instanton effects in the original d = 3+ 1 dimensional theory [160,318,319]. As
in SUSY QCD, the quantum effects inside the vortex may be explained by instantons trapped in it,
which remains a problem for the future.

6. Interactions of non-Abelian vortices with quasiparticles

In this section, we discuss the interaction of non-Abelian vortices with quasiparticles in the color-
superconducting medium. It is necessary to determine the interaction to discuss physical phenomena
such as scattering or radiation of quasiparticles by vortices. We can also investigate the interaction
between vortices using vortex–quasiparticle interaction, since the intervortex force is mediated by
quasiparticles.

In the first subsection, we discuss the interaction of vortices with phonons, which are the Nambu–
Goldstone mode associated with the breaking of the U (1)B symmetry, and gluons. In particular, the
interaction with gluons is dependent on the orientation of a vortex. This gives rise to an orientation-
dependent interaction energy between two vortices.

In the second subsection, we discuss the interaction of vortices with CFL mesons. The CFL mesons
are the Nambu–Goldstone bosons for the breaking of chiral symmetry.

In the third subsection, we investigate the interaction of vortices with photons and its phenomeno-
logical consequences. The orientational zero modes localized on vortices are charged with respect to
U (1)EM symmetry. The interaction Lagrangian is determined by the symmetry consideration. Based
on the interaction, we discuss the scattering of photons off a vortex. We also discuss the optical prop-
erty of a vortex lattice (see Sect. 4.4), which is expected to be formed if CFL matter exists inside the
core of a rotating dense star. We show that a lattice of vortices serves as a polarizer of photons.

6.1. Interaction with phonons and gluons

Here we discuss the interaction of vortices with gluons and phonons. For this purpose, we use
a method called dual transformation. Dual transformation relates theories that have different

66/149



PTEP 2014, 012D01 M. Eto et al.

Lagrangians and variables but possess equivalent equations of motion. This method is useful in deal-
ing with topological defects, since topological defects in an original theory are described as particles
in its dual theory. After a dual transformation, we can deal with the interaction of topological defects
by the methods of the ordinary field theory. The action of the dual theory is derived by using the
method of path integration. For example, let us take phonons in three spatial dimensions, which are
described by a massless scalar field. In the dual action, phonons are described by a massless anti-
symmetric tensor field Bμν [130,193]. Antisymmetric tensor fields have been utilized in describing
vortices in superfluids or perfect fluids [163,216,297]. In a dual formulation, the field Bμν is intro-
duced via the method of path integration. On the other hand, the gluons, which are massive because
of the Higgs mechanism, are described by massive antisymmetric tensor fields in the dual theory
[314].

6.1.1. Dual action and vortex–quasiparticle interaction. Starting from the time-dependent
Ginzburg–Landau effective Lagrangian in the CFL phase (2.56), a dual Lagrangian can be derived
via the method of path integration. The derivation is given in Appendix (D). In the dual theory, glu-
ons and phonons are described by antisymmetric tensors, Ba

μν and B0
μν , respectively. The low-energy

action for phonons and gluons interacting with vortices is given by [170]

S = S0 + Sint, (6.1)

where the free part S0 is defined as

S0 =
∫

d4x

[
− 1

12K̃μνσ

(
Ha

μνσ Ha,μνσ + H0
μνσ H0,μνσ

)
− 1

4
mg

2 (Ba
μν

)2]
. (6.2)

In the above equation, Ha
μνσ ≡ ∂μBa

νσ + ∂ν Ba
σμ + ∂σ Ba

μν and H0
μνσ ≡ ∂μB0

νσ + ∂ν B0
σμ + ∂σ B0

μν

are field strength tensors of gluons and phonons, and mg is the mass of the gluons. The
factor K̃μνσ ≡ ερμνσ K ρ comes from the lack of Lorentz invariance, where we have defined
Kμ = (K0, K3, K3, K3)

T . The first (second) terms are kinetic term for gluons (phonons). The third
one is the mass term for gluon fields, which is induced via the Higgs mechanism. In the presence of
a vortex, the mass of gluons is dependent on the distance from the center of the vortex according to
the change of the values of diquark condensates.

The interaction part Sint is written as

Sint = −
∫

d4x

[
2πm0 B0

μνω
0,μν + mg

gs
Ba
μνω

a,μν

]
, (6.3)

where ω0
μν and ωa

μν are vorticity tensors, which depend on the vortex configuration, and m0 is a
space-dependent function given by the vortex profile functions. Their specific forms are discussed
later. The vorticity tensors have finite values only around the core of a vortex. Thus, although gluons
and phonons propagate in the four-dimensional spacetime the interaction is localized around the
vortex.

Now we discuss the properties of the interaction (6.3). First, let us look at the interaction of vortices
with U (1)B phonons. This part is essentially the same as a vortex in a superfluid. For a general vortex
configuration we can write the Abelian component of the vorticity tensor as(

ω0
)
ρσ

(x) ≡ 1

2π
εμνρσ ∂

ν∂μπMV(x), (6.4)

where πMV(x) is the multivalued part of the phase of the order parameter fields. The multivalued part
is in general allowed, since it is a phase. Equation (6.4) appears to automatically vanish, but in fact it
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does not, since the two derivatives do not commute, which reflects the multivaluedness of πMV(x).
For a general vortex configuration, the vorticity tensor can be written as

(ω0)μν(x) = 1

NC

∫
dτdσ

∂(Xμ, Xν)

∂(τ, σ )
δ(4)(x − Xμ(τ, σ )), (6.5)

where NC is the number of colors (NC = 3) and Xμ(τ, σ ) is the the space-time position of the vortex
parametrized by world-sheet coordinates τ and σ . The interaction of vortices with U (1)B phonons
is rewritten as

SPh
int = −

2πm0

NC

∫
dσμν B0

μν, (6.6)

where dσμν ≡ ∂(Xμ,Xν)
∂(τ,σ )

dτdσ is an area element of the vortex world-sheet. The interaction (6.6) is
a natural generalization of the gauge interaction of a point particle,

S =
∫

dxμAμ. (6.7)

The factor 1/NC, which is equal to the U (1)B winding number of vortices with the lowest energy,
reflects the fact that the strength of the interaction is proportional to the winding number with respect
to U (1)B symmetry. We also note that U (1)B phonons B0

μν do not couple to the orientational zero
modes. Phonons are blind to the orientation of a vortex.

Next, let us look at the interaction of vortices with gluons. The non-Abelian vorticity tensor ωa
μν

is written as

ωa
λσ = ελσμν

{
∂ν

{
− 16

NC
γ (r)

(
∂μθ + 2NCγ δμ0

)
φ†T aφ

+ iα(r)(1+ β(r))
(
φ†T a∂μφ − ∂μφ

†T aφ + 2φ†T aφ∂μφ
†φ
)}

− 4

NC
α(r)γ (r)(1+ β(r))

(
∂[μφ

†T aφ + φ†T a∂[μφ
)(

∂ν]θ +
NCK ′0
2K0

δν]0

)

− i

2
α(r)2(1+ β(r)2)

×
[
φ†T aφ∂[μφ

†∂ν]φ + ∂[μφ
†T a∂ν]φ + φ†T a∂[μφ∂ν]φ

†φ + ∂[μφ
†T aφ∂ν]φ

†φ
]}

, (6.8)

where α(r), β(r), and γ (r) are functions of the distance from the vortex core and are written in
terms of vortex solutions, and the parameter γ is the coefficient of the term with one time derivative
in Eq. (2.56). The leading-order part in the deviation of the order parameter from the ground-state
value is given by

ωa
λσ = ελσμν∂

ν

[
− 16

NC
γ (r)

{
∂μθ + 2NCγ δμ0

}
φ†T aφ

]
. (6.9)

As can be seen in Eq. (6.8), gluons actually couple to the orientational zero modes on the vortex.
As a result, gluons are emitted through the interaction (6.8) when a wave of the CP2 orientational
modes propagates along a vortex-line. By using the interaction derived above (6.8), we can estimate
the amount of radiated gluons from a propagating wave in CP2 orientational space.

6.1.2. Orientation dependence of the vortex–vortex interaction. As an application of the dual
Lagrangian obtained above, let us discuss the orientation dependence of the interaction energy of
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Fig. 23. The value of G(φ1, φ2) as a function of |(φ2)2|2 and |(φ2)3|2. If the orientation φ2 is in the red zone
the interaction is repulsive, while in the blue zone the interaction is attractive.

two vortices placed in parallel. We assume that the orientation of each vortex is constant along the
vortex. The interaction energy due to the gluon exchange is proportional to

G(φ1, φ2) ≡ φ
†
1 T aφ1φ

†
2 T aφ2, (6.10)

where φ1 and φ2 denote the orientations of the first and second vortices, respectively. We have shown
in Fig. 23 the value of G(φ1, φ2) as a function of φ2. We have taken φ1 as φ1 = (1, 0, 0)T without
loss of generality. Figure 23 indicates that, if the two orientations are close in the CP2 space, the
interaction through gluon exchanges is repulsive, while if the orientations are far apart, the interaction
is attractive. This orientation-dependent interaction is expected to be important when the distance
between two vortices is small, e.g. when two vortices cross.

6.2. Interaction with mesons

The interactions with phonons and gluons are topological, in the sense that the interaction term does
not involve the metric. In contrast, the interaction with photons is not topological. Here, we discuss
the interaction with mesons studied in Sect. 2.2.2, which is also non-topological. In this case, one
cannot use a dual transformation to obtain the interaction Lagrangian.

First, let us remind ourselves of the effective action of mesons discussed in Sect. 2.2.2.
The gauge invariant � = �

†
L�R defined in Eq. (2.82) transforms under the flavor symmetry

U (1)A × SU (3)L × SU (3)R as

�→ eiαg†
L�gR, eiα ∈ U (1)A, gL ∈ SU (3)L, gR ∈ SU (3)R. (6.11)

The chiral symmetry is broken to the vector symmetry SU (3)L+R with gL = gR in the CFL
ground state � = �CFL13. The mesons are � = �2

CFLg†
LgR = �2

CFLg2(x) = �2
CFLU (x) with

g†
L = gR = g(x).
In a non-Abelian vortex background, �L = −�R = diag( f (r)eiθ , g(r), g(r)), the gauge invariant

� takes the form

�v = diag( f 2(r), g2(r), g2(r)) [→ diag(0, g2
0, g2

0) at r = 0], (6.12)

with a constant g0 = g(r = 0). In the presence of the vortex, the gauge invariant � becomes

� =
√

U
†
�v

√
U . (6.13)
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Then, the chiral Lagrangian can be written as

L =
∑
μ

fμTr (∂μ�
†∂μ�) =

∑
μ

fμTr [2αL�vαR�v − (α2
L + α2

R)�
2
v ] (6.14)

with the decay constants fμ = (1/2)( fπ , fπvπ) in Eq. (2.86), and the left and right Maurer–Cartan
forms

αR ≡
√

U
†
∂μ
√

U , αL ≡
√

U∂μ
√

U
†
. (6.15)

Far away from the vortex core, it reduces to

L = −�2
CFL

∑
μ

KμTr (U †∂μU )2 (6.16)

as expected. The Lagrangian in Eq. (6.14) describes the mesons in the vortex background.

6.3. Interaction with electromagnetic fields

Here we discuss the electromagnetic properties of non-Abelian vortices in the CFL phase, and their
phenomenological consequences. Although the bulk CFL matter is electromagnetically neutral, the
orientational zero modes are charged, as discussed later. Thus the vortices interact with photons. For
this purpose we consider the low-energy effective action of orientational zero modes interacting with
photons. Using the action, we discuss the scattering of photons by a vortex.

In the following analysis, we neglect the mixing of photons and gluons. The gauge field, A′μ, which
remains massless in the CFL phase, is a mixture of the photon Aμ and a gluon part A8

μ, A′μ =
− sin ζ Aμ + cos ζ A8

μ. Here, the mixing angle ζ is given by tan ζ = √3gs/2e [12], where gs and
e are the strong and electromagnetic coupling constants. At accessible densities (μ ∼ 1 GeV), the
fraction of the photon is given by sin ζ ∼ 0.999, and so the massless field A′μ consists mostly of the
ordinary photon and includes a small amount of the gluon. As a first approximation, we neglect the
mixing of the gluon to the massless field.

We denote the orientational zero modes by a complex three-component vector φ ∈ CP2, which
satisfies φ†φ = 1. When we neglect the electromagnetic interaction, the low-energy effective theory
on the vortex that is placed along the z axis is described by the following CP2 nonlinear sigma model
[110]:

LCP2 =
∑
α=0,3

Cα

[
∂αφ†∂αφ + (φ†∂αφ)(φ†∂αφ)

]
, (6.17)

where the orientational moduli φ are promoted to dynamical fields, and Cα are numerical constants.
Under the color–flavor-locked transformation, the CP2 fields φ transform as

φ→ Uφ, (6.18)

with U ∈ SU (3)C+F.

6.3.1. Coupling of orientation modes with electromagnetic fields. Now, let us consider the electro-
magnetic interactions. The electromagnetic U (1)EM group is a subgroup of the flavor group SU (3)F.
The generator of U (1)EM is T8 = 1√

6
diag(−2, 1, 1) in our choice of basis. The effect of the elec-

tromagnetic interaction is incorporated by gauging the corresponding symmetry. The low-energy
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effective action on the vortex should be modified to the following gauged CP2 model:

LgCP2 =
∑
α=0,3

Cα

[
Dαφ†Dαφ + (φ†Dαφ)(φ†Dαφ)

]
, (6.19)

where the covariant derivative is defined by

Dαφ =
(
∂α − ie

√
6AαT8

)
φ. (6.20)

Thus the low-energy behavior is described by the CP2 modes localized on the vortex and photons
propagating in three-dimensional space. Hence, the effective action is given by

S =
∫ (

ε0

2
E2 − 1

2λ0
B2
)

d4x +
∫

LgCP2dzdt, (6.21)

where ε0 and λ0 are the dielectric constant and permeability of the CFL matter, respectively. We can
formally recover the Lorentz invariance in the kinetic terms of the photons by the following rescaling:

A′0 =
√
ε0 A0, A′i =

1√
λ0

Ai , t ′ = vt, (6.22)

where v ≡ 1/
√
ε0λ0. By further rescaling the parameters as

e′ =
√
λ0e, C ′0 = C0v, C ′3 =

C3

v
, (6.23)

we can write the Lagrangian in the following form:

vS = −1

4

∫
Fμν Fμνd4x +

∫
L′gCP2dzdt, (6.24)

where

L′gCP2 =
∑
α=0,3

C ′α
[
D′αφ†D′αφ + (φ†D′αφ)(φ†D′αφ)

]
,

D′αφ =
(
∂α − ie′

√
6AαT8

)
φ. (6.25)

In the discussions below, primes are omitted for notational simplicity.

6.3.2. Scattering of photons off a vortex. We can discuss the consequences of the charged degrees
of freedom on the vortex using the low-energy action (6.24). For example, let us consider the photon
scattering off a vortex. The equation of motion of the photon field derived from the effective action
is given by

∂μFμν = −Cνie
√

6 δ(x⊥)(δ0ν + δ3ν)

× {φ†T8Dνφ − (Dνφ)
†T8φ − 2φ†Dνφφ

†T8φ
}
,

(6.26)

where δ(x⊥) ≡ δ(x)δ(y) is the delta function in the transverse plane. We consider a situation where
a linearly polarized photon is normally incident on the vortex. We assume that the electric field of
the photon is parallel to the vortex. Then, the problem is z-independent and we can set θ = θ(t),
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Fig. 24. Schematic figure of two linearly polarized photons entering a vortex lattice. Photons propagate in the
direction of the big arrow. The small arrows indicate the electric field vector. The waves whose electric fields
are parallel to the vortices are attenuated inside the lattice, while those with perpendicular electric fields pass
through it.

At = Ax = Ay = 0, and Az = Az(t, x, y). The equation of motion is rewritten as

(∂2
t − ∂2

x − ∂2
y )Az(t, x, y)

= 12C3e2
{
φ†(T8)

2φ + (φ†T8φ)
2
}

Az(t, x, y) δ(x⊥)

≡ 12C3e2 f (φ)Az(t, x, y) δ(x⊥),

(6.27)

where we have defined

f (φ) ≡ φ†(T8)
2φ + (φ†T8φ)

2. (6.28)

Equation (6.27) is the same as the one discussed by Witten in the context of superconducting strings
[371], except for the orientation-dependent factor, f (φ). The cross section per unit length of a vortex,
dσ/dz, is calculated as

dσ

dz
=
(
12C3e2 f (φ)

)2
η2

8π
λ = 288π (C3αη f (φ))2 λ, (6.29)

where λ is the wavelength of the incident photon, η is a numerical factor of order unity, and α is
the fine structure constant. On the other hand, if the electric field of the wave is perpendicular to the
vortex, the photon is not scattered, since current can flow only along the vortex.

6.3.3. Vortex lattice as cosmic polarizer. The electromagnetic property of vortices can be phe-
nomenologically important as it may lead to some observable effects. As an illustration of such an
effect, we show that a lattice of vortices works as a polarizer of photons. The rotating CFL matter is
expected to be threaded with quantum vortices along the axis of rotation, resulting in the formation
of a vortex lattice, as discussed in Sect. 4.4 [242,309,315]. This is basically the same phenomenon as
when one rotates atomic superfluids. Suppose that a linearly polarized photon is incident on a vortex
lattice, as shown in Fig. 24. If the electric field of the photon is parallel to the vortices, it induces
currents along the vortices, which results in the attenuation of the photon. On the other hand, waves
with electric fields perpendicular to the vortices are not affected. This is exactly what a polarizer
does. A lattice passes electromagnetic waves of a specific polarization and blocks waves of other
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polarizations. This phenomenon, resulting from the electromagnetic interaction of vortices, may be
useful for finding observational evidence of the existence of CFL matter.

We consider a situation where electromagnetic waves of some intensity normally enter the vortex
lattice. We first assume that the electric fields of the waves are parallel to the vortices. The fraction
of the loss of intensity when the wave passes through the lattice for distance dx is〈

dσ

dz

〉
nvdx ≡ dx

L
, (6.30)

where nv is the number of vortices per unit area. We defined the length L by

L ≡ 1/

(
nv

〈
dσ

dz

〉)
= �2/

〈
dσ

dz

〉
, (6.31)

with the intervortex spacing �. As the cross section depends on the internal state (value of φ) of the
vortex, we have introduced the averaged scattering cross section 〈dσ/dz〉 over the ensemble of the
vortices. Let us denote the intensity of waves at a distance x from the surface of the lattice as I (x).
I (x) satisfies

I (x + dx)

I (x)
= 1− dx

L
. (6.32)

Therefore, the x dependence of I (x) is characterized by the following equation:

I ′(x)
I (x)

= − 1

L
. (6.33)

This equation is immediately solved as I (x) = I0e−x/L , where I0 is the initial intensity. Hence, the
waves are attenuated with the characteristic length L .

Let us make a rough estimate of the attenuation length. The total number of vortices can be
estimated, as in Ref. [183], as

Nv � 1.9× 1019
(

1 ms

Prot

)(
μ/3

300 MeV

)(
R

10 km

)2

, (6.34)

where Prot is the rotation period, μ is the baryon chemical potential, and R is the radius of the CFL
matter inside dense stars. We have normalized these quantities by typical values. The intervortex
spacing is then written as

� ≡
(
π R2

Nv

)1/2

� 4.0× 10−6 m

(
Prot

1 ms

)1/2 (300 MeV

μ/3

)1/2

. (6.35)

Therefore, the characteristic decay length of the electromagnetic waves is estimated as

L = �2

288π (C3αη)
2 〈 f (φ)2〉λ �

1.2× 10−11 m2

λ
. (6.36)

Here we have determined the value of f (φ) by considering the effect of a finite strange quark mass
ms. The finite strange quark mass breaks the flavor SU (3) symmetry and gives rise to a potential
in the CP2 space, as discussed in Ref. [115]. When ms is larger than the typical kinetic energy of
the CP2 modes, which is given by the temperature T ≤ Tc ∼ 101 MeV, and is small enough that
the description by the Ginzburg–Landau theory based on chiral symmetry is valid, the orientation of
vortices falls into φT

0 = (0, 1, 0). This assumption is valid for the realistic value of ms ∼ 102 MeV.
The orientation dependence of the cross section is encapsulated in the function f (φ) defined in
Eq. (6.28). Since f (φ0) = 1/3 �= 0, photons interact with a vortex with this orientation. Therefore,
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we have taken 〈 f (φ)2〉 = f (φ0)
2 = 1/9. We have also taken η = 1, μ = 900 MeV, and �CFL =

100 MeV, from which the values of C3 are determined [115].
If we adopt R ∼ 1 km for the radius of the CFL core, the condition that the intensity is significantly

decreased within the core is written as L ≤ 1 km. The condition can also be stated in terms of the
wavelength of the photon as

λ ≥ 1.2× 10−14 m ≡ λc. (6.37)

Hence, a lattice of vortices serves as a wavelength-dependent filter of photons. It filters out the waves
with electric fields parallel to the vortices, if the wavelength λ is larger than λc. The waves that pass
through the lattice are linearly polarized ones with the direction of their electric fields perpendicular
to the vortices, as shown schematically in Fig. 24.

One may wonder why a vortex lattice with a mean vortex distance � can block photons with wave-
lengths many orders smaller than �. It is true that the probability that a photon is scattered during its
propagation for a small distance (e.g. ∼ �) is small. However, while the photon travels through the
lattice, the scattering probability is accumulated and the probability that a photon remains unscat-
tered decreases exponentially. Namely, the small scattering probability is compensated by the large
number of vortices through which a photon passes. This is why the vortex mean distance and the
wavelength of the attenuated photons can be different.

7. Colorful boojums at a CFL interface

7.1. What are boojums?

When vortices cross or end on an interface between two distinct superfluid phases or on a boundary,
they may form interesting structures called “boojums” [238,361]. Boojums are composite topological
objects consisting of vortices, an interface, and possibly monopoles at endpoints of vortices, and are
topologically characterized in terms of the relative homotopy group [361]. Various types of boojums
have been studied in nematic liquids [360], superfluids at the edge of a container filled with 4He, at the
A–B phase boundary of 3He [53,161], and in multi-component or spinor Bose–Einstein condensates
[56,57,196–198,259,342] in condensed matter physics. Such boojums are also considered in field
theories such as nonlinear sigma models [142], Abelian gauge theories [317], and non-Abelian gauge
theories [24,94,103,184]; see Refs. [107,319,320] for reviews.

Here we discuss “colorful boojums” [76] appearing at the interface [8,10,144] of a color super-
conductor. It is most likely that the npe phase exists in the core of neutron stars, where neutrons
and protons are superfluid and superconducting, respectively. In the high density region of nuclear
matter, a spin triplet (p-wave) pairing of neutrons is energetically favored compared to an s-wave
pairing [341]. The inner region may be characterized by the presence of hyperons or of the CFL
phase. We consider the interface of a hadron phase and a color superconductor [8,10,144].10 Since
neutron stars are rotating rapidly and are accompanied by large magnetic fields, both superfluid and
superconducting vortices exist in the npe phase [42]. Such vortices are expected to explain the pulsar
glitch phenomenon [19]. On the other hand, when the matter in the CFL phase is rotating, such as

10 The system we describe is the simplest configuration in the pure CFL phase, which is realized at very
high densities μ� m2

s/�cfl. However, in a more realistic setting, the strange quark mass stresses the CFL
phase and other phases have to be considered. For example, when the chemical potential is low enough that
ms � m1/3

u,d�
2/3
cfl, kaons can condense, leading to the so-called CFL-K0 phase [44,47,195,300], where other

kinds of vortices arise [62,194]. However, in the high density regime, the boojum can be modified only in the
vicinity of the interface, while the overall structure of the junction is kept unchanged.
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in the cores of neutron stars, superfluid vortices [128,183] are inevitably created and are expected
to constitute a vortex lattice. However, the simplest superfluid vortex carrying integer circulation is
unstable and decays [128,183,242] into a set of three non-Abelian vortices, each of which carries a
color-magnetic flux and 1/3 quantized circulation [35,112], as discussed in Sect. 4.3. Non-Abelian
vortices constitute a colorful vortex lattice in the CFL phase side, as discussed in Sect. 4.4.

It was discussed in Ref. [76] that boojum structures are created when superfluid and superconduct-
ing vortices of the npe phase penetrate into the CFL core. The shape of the neutron boojum was
shown to split into three color magnetic vortices. The colorful boojum is accompanied by confined
color-magnetic monopoles of two different kinds, Dirac monopoles and surface superconducting
currents.

We first study the structure of a colorful boojum in the CFL phase side in Sect. 7.2 followed by the
structure in the npe phase in Sect. 7.3.

7.2. Colorful boojums at the CFL phase side

7.2.1. The shape of boojums. When a non-Abelian vortex hits the boundary of the CFL phase,
it cannot go out from the CFL phase since it carries a color magnetic flux. Since U (1)B vortices
do not have fluxes, they can go out. One U (1)B vortex decays into three non-Abelian vortices with
total color fluxes canceled out, as discussed in Sect. 4.3. In other words, non-Abelian vortices can
go out only when three of them meet to cancel the total color fluxes as imposed by color neutrality.
Such connected points form “colorful boojums.” Including the electromagnetic interactions, the only
possibility is the formation of a BDM, a CP1+, and a CP1− vortex. In fact, as explained in Eq. (5.53),

the BDM vortex carries a U (1)EM magnetic flux �EM
bdm = δ2

1+δ2
2π
e with δ2 = 2

3
e2

g2
s
, while the CP1±

vortex flux is �EM
CP1±
= −1

2�
bdm
EM . Then, U (1)EM magnetic fluxes are canceled out.

In order to present a structure of the boojum in the CFL phase side, one can model the system as
a regular lattices of boojums where the relative separation between vortices in a single boojum is
denoted by y(z) as a function of the distance z from the interface. The center of the i th boojum at
the interface is indicated by �xi . We use the Nambu–Goto action and approximate the interaction of
vortices with that of global parallel vortices, given in Eq. (4.22). The energy, per unit length, of the
lattice is then:

Etot(y) = 3NT
√

1+ (dy/dz)2 + Vint(y),

Vint(y) = −3NT log |y| − 9T
∑
i> j

log |�xi − �x j |, (7.1)

where N is the number of boojums and T is the tension of a color-magnetic vortex. The first term in
the potential above is the interaction energy between vortices in the same boojum, while the second
term represents the one between boojums, where the shape of the boojum has been neglected. Notice
that the first term in the potential has to be regularized in the limit y → 0.

The numerical shape of the boojum is shown in Fig. 25, where we have evaluated the interaction
potential for a one dimensional lattice for simplicity. The most important property of the boojum
that can be inferred from this very simplified numerical analysis is that the longitudinal size scales
proportionally to the transverse lattice spacing. We have also checked that this property and the
shape of the boojum also do not depend on the choice of regularization of the interaction potential
for coincident vortices.
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(a)

(b)

Fig. 25. (a) Transverse shape and (b) three dimensional shape of a colorful boojum. The npe–CFL interface
is on the left, where three color vortices originate from the boojum. We have used typical values of the GL
parameters as done, e.g., in Ref. [356]. In (b), we have ignored the effect of the strange quark mass.

7.2.2. Formation of colorful monopoles with strange quark mass. At a typical distance ξ from
the interface, though, the BDM and the CP1− solutions will “decay” to the CP1+ vortex, due to their
instability. We can estimate the length scale ξ by referring to the low-energy effective Lagrangian
(5.11) with (5.12). Following the steps of Eq. (5.24), we obtain

ξ ∼ m−1
s

(
μ

�ε

)2

log

(
μ

�ε

)−1/2

∼ 131 GeV−1, (7.2)

with the physical quantities being μ ∼ 1 GeV,�ε ∼ 100 MeV, K3 = 9. This length has to be com-
pared with the thickness d of the interface, which can be seen as a domain wall between the two
different phases [144]. Using the same values for physical parameters, we get

d � 0.1ξ. (7.3)

Then the vortices decay at large distances from the interface.
Since vortices decay into others with different fluxes, each junction corresponds in fact to a

monopole. Unlike the Dirac monopole at the endpoint of a proton vortex, this is a confined color mag-

netic monopole attached by vortices from both sides. The monopole connecting the CP1− and CP1+
vortices is a pure color magnetic monopole, because the two vortices have the same U (1)EM mag-
netic flux but different color-magnetic fluxes; the junction between BDM and CP1+ is instead realized
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Fig. 26. Colorful boojum. Three neutron vortices and three proton vortices end on a boojum at the interface in
the npe phase side, and the three BDM (r̄ ), CP1

+ (ḡ), and CP1
+ (b̄) vortices end on it in the CFL phase side. The

black arrows along the three vortices represent U (1)EM magnetic flux. The two colorful monopole junctions
that exist in the presence of the strange quark mass are also depicted. The pure magnetic fluxes split into a
massive �BM component, which is screened by a surface current and bent along the interface, and a massless
�B0 component emanating from the boojum, which looks like a Dirac monopole.

by a color-magnetic and U (1)EM magnetic monopole, because for these vortices both the U (1)EM

magnetic and color-magnetic fluxes are different. The colorful boojum is qualitatively depicted in
Fig. 26.

7.3. Colorful boojums at the npe phase side

7.3.1. Matching condition. The question of what are formed at a boojum point outside the CFL
phase now arises. The CFL phase may be connected with the kaon condensed (CFL+ K) phase,
2SC phase, or hyperon phase. However, in a realistic situation for the cores of neutron stars, there is
the npe phase. Here, we discuss what are connected to the colorful boojums in the npe phase. Note
that, in the following discussion, we do not assume that the CFL phase is directly connected to the
npe phase, but that the other phases mentioned above can be sandwiched between the CFL and npe
phases.

When quarks travel around a vortex, they acquire an Aharonov–Bohm phase in general. Such
phases have to match across the interface. In the CFL phase, the order parameter is 〈qq〉, which
behaves as

〈qq〉 ∼ eiθ : U (1)B vortex (7.4)

for the endpoint of a U (1)B vortex or a triplet of non-Abelian semi-superfluid vortices, indicating
that the quark fields obtain a phase

�θ |U (1)B =
2π

2
= π (7.5)

corresponding to 1/2 U (1)B winding, when they travel around a U (1)B vortex or a triplet of semi-
superfluid vortices. In particular, all quark fields including u and d quarks relevant in hadronic matter
obtain a phase in Eq. (7.5) around the U (1)B vortex.
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The order parameters in the npe phase are 〈nn〉 ∼ 〈(udd)(udd)〉 for neutron condensation and
〈pp〉 ∼ 〈(uud)(uud)〉 for proton condensation.11 We label the winding numbers of the order param-
eters 〈nn〉 and 〈pp〉 in the presence of a vortex by (p, q). In the presence of a neutron vortex (1, 0),
these order parameters behave as

(1, 0) : 〈nn〉 ∼ 〈(udd)(udd)〉 ∼ eiθ , 〈pp〉 ∼ 〈(uud)(uud)〉 ∼ 1. (7.6)

From these behaviors, we find that the u and d quark wave functions are of the form

(1, 0) : (u, d) ∼ (e−i(1/6)θ , ei(2/6)θ ) (7.7)

in the presence of a neutron vortex. In the same way, the winding of the order parameters in the
presence of a proton vortex (0, 1),

(0, 1) : 〈nn〉 ∼ 〈(udd)(udd)〉 ∼ 1, 〈pp〉 ∼ 〈(uud)(uud)〉 ∼ eiθ , (7.8)

leads the wave functions of u and d quarks to be

(0, 1) : (u, d) ∼ (ei(2/6)θ , e−i(1/6)θ ). (7.9)

From Eqs. (7.7) and (7.9), a composite of neutron and proton vortices has the winding numbers of
the order parameters and quarks

(1, 1) : 〈nn〉 ∼ 〈(udd)(udd)〉 ∼ eiθ , 〈pp〉 ∼ 〈(uud)(uud)〉 ∼ eiθ , (7.10)

(1, 1) : (u, d) ∼ (ei(1/6)θ , ei(1/6)θ ), (7.11)

respectively. From this, we see that u and d quarks get a phase

�θ |(1,1) = 2π

6
= π

3
, (7.12)

corresponding to 1/6 U (1)B winding, when they encircle a composite (1, 1) of neutron and proton
vortices in the npe phase.

From Eqs. (7.5) and (7.12), we have a relation

�θ |(3,3)(= 3�θ |(1,1)) = �θ |U (1)B . (7.13)

This implies that u and d quarks have continuous wave functions only when three neutron vortices
and three proton vortices join at a colorful boojum point in the npe phase.

7.3.2. Magnetic fluxes. The proton condensation is electrically charged. Therefore, the lowest
energy configuration of a proton vortex is accompanied by a magnetic flux, which must be quantized

�0 = π/e (7.14)

as Abrikosov–Nielsen–Olesen (ANO) vortices in metallic superconductors. When this flux pene-
trates into the CFL phase, the U (1)EM magnetic flux is converted into both the fluxes corresponding
to the massive and massless combinations AM and A0. This is due to conservation of flux and to the
mixing in Eqs. (2.48) and (2.49), respectively. The massive combination AM is screened by a surface

11 At high density, a spin triplet (p-wave) pairing is favored for neutron condensation more than s-wave
pairing [341]. In this case, half-quantized vortices are possible, but here we count neutron vortices as integer
vortices for simplicity.
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color-magnetic current circulating around the contact point. Unlike metallic superconductors, this
is completely screened and cannot enter the CFL phase, even if the flux is larger than the quantized
flux of the non-Abelian vortex, because the non-Abelian vortex also has to carry the 1/3 quantized
circulation. A rough estimate of the behavior of the current in the proximity of the vortex endpoint
can be obtained by using the London equation valid for an ordinary superconductor. Then we obtain

Jθ � �0

2πr
, (7.15)

where θ and r are the planar polar coordinates centered at the contact point. On the other hand,
the massless combination A0 can spread freely into the CFL phase, there being no superconducting
currents that can screen it. This object looks like a Dirac monopole, as is common in boojums in
other systems, such as helium superfluids. This boojum is qualitatively depicted in Fig. 26.

One may wonder whether the formation of vortices under rotation would lead to the generation of
magnetic fields inside neutron stars. However, it turns out that the magnetic fields induced at colorful
boojums are in fact quite small, and are estimated as

B ∼ Nv ×�0

(10 km)2 = 1019 × 10−7G cm2 × 10−8 m2 � 1G = 10−4T, (7.16)

where Nv is the total number of vortices Eq. (4.41), and parameters like the rotational period, baryon
chemical potential, and the core radius are set to typical values.

8. Fermions in vortices

We here discuss fermionic structures inside non-Abelian vortices. Inside a vortex, fermions are
important degrees of freedom at low energies, since some of the superconducting gaps vanish in
the core and fermions become massless. We can investigate the fermion states by the Bogoliubov–
de Gennes (BdG) equation. In Sect. 8.1, we introduce the BdG equation for an Abelian vortex, and
find the solution of a zero-mode fermion, which is called a Majorana fermion. In Sect. 8.2, we dis-
cuss the BdG equation for a non-Abelian vortex in the CFL phase, and find Majorana fermions that
belong to the triplet or singlet representation of the SU (2)C+F ×U (1)C+F symmetry. In Sect. 8.3,
we discuss the 1+1 dimensional effective theory for Majorana fermions propagating along a vortex
axis. In Sect. 8.4, as a new result in this paper, we show the absence of supercurrent by fermions
along a vortex, unlike the case of Witten’s superconducting string. In Sect. 8.5, we discuss the index
theorem to count the number of zero-mode fermions, and show that the result from the index theorem
is consistent with that obtained by directly solving the BdG equation.

8.1. The Bogoliubov–de Gennes equations and Majorana fermions for Abelian vortices

Here we analyze the internal fermionic structures of vortices in terms of the BdG equations. So
far we have discussed the structures of non-Abelian vortices based on the GL equation, where the
diquarks are dynamical degrees of freedom. Such a description is valid only at distances larger than
the coherence length. At short-distance scales, fermionic degrees of freedom become important. The
Bogoliubov–de Gennes (BdG) equation describes the dynamics of the fermions as well as the gap
functions. The BdG equation gives a self-consistent solution for the wave functions of the fermion
and the gap profile function. Note that the BdG equation is different from the Bogoliubov equation
or the Bardeen–Cooper–Schrieffer (BCS) equation. The Bogoliubov or BCS equations describe only
the plane wave for the fermion, while the BdG equation allows more general wave functions, unlike
the plane wave. This property is quite important for the analysis of vortices. Inside vortices, the gap
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profile function �(r) is zero at the center of the vortex (�(0) = 0), while it becomes the bulk gap
(the gap in the bulk space) at a position infinitely far from the vortex core (�(∞) = �bulk). Namely,
the gap profile function for a vortex is position-dependent. So we need to use the BdG equation in
order to take the position dependence of the gap of a vortex into account and to analyze the fermion
structure inside a vortex.

Let us comment on the previous studies on vortices in superconductors using the BdG equations.
The BdG equation was first applied to a vortex inside an s-wave superconductor in Refs. [69,86] in
which fermions are non-relativistic. In these first studies, the order parameter (the superconducting
gap) was treated as a background field. Successive studies were devoted to finding self-consistent
solutions of the BdG equation [157,323]. A complete self-consistent description was achieved
by considering both quasibound and scattering fermions in the vortex [158,225]. The descrip-
tion reviewed here is very similar to that of the vortex–(relativistic) fermion system discussed in
Refs. [189,365,371]. The difference from these studies is that we here consider a fermionic mat-
ter at finite densities (otherwise color superconductivity does not take place). The previous studies
[189,365,371] were formulated only in the vacuum. The analysis of vortices in condensed matter sys-
tems via the BdG equation predicted an enhanced local density of fermion states at the Fermi level
around the vortex core, which is experimentally observed in various metals [155,288]. Recently, the
analysis of vortices in terms of the BdG equation has also been applied to the BEC–BCS crossover
in fermionic cold atom systems [226,313]. For the application of the BdG equation in condensed
matter systems, see also Refs. [16,51,166,167,217,220,278,284,296,298,345,359].

We discuss the BdG equation for a superconductor with a vortex. Since a non-Abelian vortex has
a complex structure because of the internal degrees of freedom, we first review the results for an
Abelian vortex, in which a single component massless fermion is trapped. The fermionic structure
of a non-Abelian vortex is discussed in Sect. 8.2.

We here consider a superconducting system made of a single species of fermion. The fermions
make pairs and form a Bose condensate. The BdG equation in the Nambu–Gor’kov representation
# = (ϕ, η)T (particle in the upper component and hole in the lower component) is given by

H# = E#, (8.1)

where E is the energy measured from the chemical potential μ and H is the Hamiltonian in the
mean-field approximation,

H ≡
(
−iγ0 �γ · �∇ − μ �(�x)γ0γ5

−�∗(�x)γ0γ5 −iγ0 �γ · �∇ + μ

)
. (8.2)

The gap profile function �(�x) (three dimensional coordinate �x = (x, y, z)) is given as �(�x) ∝
〈#T#〉, where the expectation value is given by the sum over all the fermion states in the ground
state. This Hamiltonian has the particle–hole symmetry

U−1HU = −H∗, U =
(

0 γ2

γ2 0

)
. (8.3)

Thus, H# = E# implies H(U#) = −E(U#) and the spectrum is symmetric above and below the
Fermi sea.

If one considers a vortex solution, because of the translational invariance along the vortex (z) axis,
the gap is a function of the distance r =

√
x2 + y2 from the center of the vortex and θ an angle

around the vortex; �(�x) = |�(r)|eiθ . The gap profile function also satisfies the following boundary
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conditions: |�(r = 0)| = 0 at the center of the vortex and |�(r = ∞)| = |�bulk| at a position far
from the vortex with a bulk gap �bulk. Since the system is translationally invariant along the vortex
axis, we can always take the fermion states to be eigenstates of the momentum in the z-direction kz ,

#
kz
±,m(r, θ, z) = #±,m(r, θ) eikz z, (8.4)

where #±,m(r, θ) is the wave function on the x–y plane. Here± is for the chirality, left and right, of
the fermion and an integer m is related to the z component of the total angular momentum Jz . In the
Nambu–Gor’kov formalism, the wave function #±,m(r, θ) is given as

#±,m(r, θ) =
(

ϕ±,m(r, θ)
η∓,m−1(r, θ)

)
, (8.5)

with the particle component ϕ±,m(r, θ) and the hole component η∓,m−1(r, θ). The z component of
Jz is m + 1/2 for the particle and (m − 1)+ 1/2 for the hole, respectively. Note that the chirality±
of the particle is assigned opposite to that of the hole.

The solution of the BdG equation (8.1) gives all the fermion modes in the vortex. They include the
scattering states with energies |E | > |�bulk| as well as the bound states with energies |E | < |�bulk|. It
is a nontrivial problem to obtain all the fermion solutions. In the present discussion, we concentrate on
the fermion states with the lowest energy inside the vortex, which are the most important degrees of
freedom at low energies. Furthermore, we here regard the gap profile function |�(r)| as a background
field and do not analyze the self-consistent solution for the gap profile function and the fermion wave
functions. Such study will be left for future work.

As a result of the particle–hole symmetry, we find that the state with E = 0 is a “Majorana fermion”,
which has the special property that a particle and a hole are equivalent. The explicit solution of the
wave function of the Majorana fermion is given as, for the right mode (+ for a particle,− for a hole),

ϕ+,0(r, θ) = C e−
∫ r

0 |�(r ′)| dr ′
(

J0(μr)
i J1(μr) eiθ

)
, (8.6)

η−,−1(r, θ) = C e−
∫ r

0 |�(r ′)| dr ′
(
−J1(μr) e−iθ

i J0(μr)

)
, (8.7)

and, for the left mode (− for a particle, + for a hole),

ϕ−,0(r, θ) = C ′ e−
∫ r

0 |�(r ′)| dr ′
(

J0(μr)
−i J1(μr) eiθ

)
, (8.8)

η+,−1(r, θ) = C ′ e−
∫ r

0 |�(r ′)| dr ′
(

J1(μr) e−iθ

i J0(μr)

)
, (8.9)

where C and C ′ are normalization constants, and Jn(x) is the Bessel function. We have represented
the solutions in the Weyl (2-component) spinors. The derivation is described in detail in Appendix E.

The solutions above satisfy a “Majorana-like” condition (κ = ±1)12

# = κU#∗, (8.10)

which physically implies the equivalence between a particle and a hole. We note that the Majorana
fermion is localized around the center of the vortex. This can be seen by setting |�(r)| as a con-
stant |�bulk|, because the exponential functions in Eqs. (8.6) and (8.7) or Eqs. (8.8) and (8.9) exhibit

12 κ = 1 is for the right mode and κ = −1 is for the left mode.
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behavior like e−|�bulk|r . Fermion zero modes (Majorana fermions) in relativistic theories were found
in the (Abelian) vortex in the vacuum [189], where the number of zero modes is determined by the
index theorem to be 2n for vortices with winding number n [365]. The Majorana-fermion solution in
a vortex in a p-wave superconductor was first found by Fukui [136] for non-relativistic fermions, and
later in Refs. [253,378] for relativistic fermions. Although there exist Majorana-like solutions in vor-
tices in p-wave superconductors both for non-relativistic and relativistic fermions, they are absent for
non-relativistic fermions in vortices in s-wave superconductors [69]. We comment that the fermions
bound in the vortex are also intuitively understood in view of the Andreev reflection. When the
fermions meet the interface between the normal phase (inside of the vortex) and the superconduct-
ing phase (outside of the vortex), there appear Cooper pairs created in the superconducting phase and
holes reflected in the normal phase. This is called the Andreev reflection [21]. The Andreev reflec-
tion was also considered in the CFL phase [289]. The multiple number of reflections of the fermions
(particle and holes) at the interface causes the bound state inside the vortex.

8.2. Bogoliubov–de Gennes formalism and Majorana fermions for non-Abelian vortices

Now let us investigate the fermion structure of a non-Abelian vortex in the CFL phase. Because of the
internal symmetry, the BdG equation is a multi-component equation with 3(color)× 3(flavor) = 9
degrees of freedom whose subspaces belong to multiplets of U (1)C+F × SU (2)C+F symmetry. The
gap structure of a non-Abelian vortex is given as [378]

�(r, θ) =

⎛
⎜⎝�0(r) 0 0

0 �0(r) 0
0 0 �1(r, θ)

⎞
⎟⎠ , (8.11)

with the basis spanned by ū(r̄) = ds(gb), d̄(ḡ) = su(br) and s̄(b̄) = ud(rg), where �1(r, θ) =
|�1(r)| eiθ corresponds to the vortex configuration with winding number one, and �0(r) does not
have a winding number (though it is not necessarily spatially constant). We remember that �1(r)
satisfies the boundary conditions, �1(r = 0) = 0 and �1(r = ∞) = |�CFL|, with the gap �CFL in
bulk space, while �0(r) satisfies only �0(r = ∞) = |�CFL|. The value of �0(r = 0) depends the
details of the equation of the gap profile function. In the configuration in Eq. (8.11), the ud diquark
pair with green and blue has a nontrivial winding number, while the other pairs, i.e. the ds diquark
pair with blue and red and the su diquark pair with red and green, have no winding. Correspondingly,
the explicit form of the BdG equation is (for a similar representation in the homogeneous CFL phase,
see Refs. [7,289])

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ĥ0 �̂1 �̂0 0 0 0 0 0 0
�̂1 Ĥ0 �̂0 0 0 0 0 0 0
�̂0 �̂0 Ĥ0 0 0 0 0 0 0
0 0 0 Ĥ0 −�̂1 0 0 0 0
0 0 0 −�̂1 Ĥ0 0 0 0 0
0 0 0 0 0 Ĥ0 −�̂0 0 0
0 0 0 0 0 −�̂0 Ĥ0 0 0
0 0 0 0 0 0 0 Ĥ0 −�̂0

0 0 0 0 0 0 0 −�̂0 Ĥ0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ur

dg

sb

dr

ug

sr

ub

sg

db

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ur

dg

sb

dr

ug

sr

ub

sg

db

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8.12)
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where we introduce the notation, e.g., ur for a quark with flavor “up” and color “red” in the Nambu–
Gor’kov representation. The matrices Ĥ0 and �̂i (i = 0 and 1) are given as follows:

Ĥ0 =
(
−iγ0 �γ · �∇ − μ 0

0 −iγ0 �γ · �∇ + μ

)
, (8.13)

�̂i =
(

0 �iγ0γ5

−�†
i γ0γ5 0

)
. (8.14)

To find the solutions in the BdG equation (8.12), it is useful to express the quark state as

⎛
⎜⎝ur ug ub

dr dg db

sr sg sb

⎞
⎟⎠ = 9∑

A=1

#(A) λA√
2
, (8.15)

where λA (A = 1, · · · , 8) are Gell-Mann matrices normalized as Tr (λAλB) = 2δAB and λ9 =√
2/3 · 1. We note that, because the non-Abelian vortex has SU (2)C+R+L symmetry only, the quark

state should belong to the representation of SU (2)C+R+L symmetry. To clarify this, we define

#t ≡ #(1)λ1 +#(2)λ2 +#(3)λ3, (8.16)

#s ≡ #(8)λ8 +#(9)λ9 (8.17)

for triplet and singlet states, respectively. Explicitly, #(i) (i = 1, 2, 3, 8, 9) are given as

#(1) = (dr + ug)/
√

2, (8.18)

#(2) = (dr − ug)/(
√

2i), (8.19)

#(3) = (ur − dg)/
√

2, (8.20)

for triplet, and

#(8) = (ur + dg − 2sb)/
√

6, (8.21)

#(9) = (ur + dg + sb)/
√

3, (8.22)

for singlet. The doublet states (ub, db) and (sr , sg)
T do not couple to �̂1, so they are irrelevant modes

for the Majorana fermion.
Let us consider the transformation properties of the quark state #(i) (i = 1, 2, 3, 8, 9). Under the

SU (2)C+R+L rotation, the quark state is transformed as

# → # ′ = UF # U T
C (8.23)

where UF = ei �θ ·�λ/2 and UC = ei �φ·�λ/2 are the SU (2)L+R and SU (2)C rotations, respectively. Since
we used the vector �λ = (λ1, · · · , λ8), the parameters �θ and �φ are defined only for the first three com-
ponents �θ = (θ1, θ2, θ3, 0, 0, 0, 0, 0) and �φ = (φ1, φ2, φ3, 0, 0, 0, 0, 0). For the locking for rotation
in color and flavor space under SU (2)C+R+L symmetry, the color and flavor rotations may be locked
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as φ1 = −θ1, φ2 = θ2, and φ3 = −θ3 as the simplest choice. We define

θ1 = θ̃1

(
1 0
0 −1

)
, θ2 = θ̃2

(
1 0
0 1

)
, θ3 = θ̃3

(
1 0
0 −1

)
, (8.24)

with θ̃i (i = 1, 2, 3) being real numbers. For infinitesimal θ̃i , we find that the quark state #t is
transformed as a triplet,

δ#(1) = θ3#
(2) − θ2#

(3),

δ#(2) = θ1#
(3) − θ3#

(1), (8.25)

δ#(3) = θ2#
(1) − θ1#

(2),

and the singlet #s is invariant,

δ#(8) = δ#(9) = 0. (8.26)

With the setup for the BdG equation for a non-Abelian vortex with SU (2)C+R+L, we can find a
fermion solution with E = 0. Among several representations of the quark state in SU (2)C+R+L sym-
metry, the Majorana fermion is found only in the triplet sector. The wave functions of the Majorana
fermion (for right-handed ones) is given in an analytic form as

#(1)(r, θ) = C1

(
ϕ(r, θ)
η(r, θ)

)
, #(2)(r, θ) = C2

(
ϕ(r, θ)
−η(r, θ)

)
, #(3)(r, θ) = C3

(
ϕ(r, θ)
η(r, θ)

)
, (8.27)

where Ci are normalization constants and the particle (ϕ) and hole (η) components are

ϕ(r, θ) = e−
∫ r

0 |�1(r ′)|dr ′
(

J0(μr)
i J1(μr) eiθ

)
, η(r, θ) = e−

∫ r
0 |�1(r ′)|dr ′

(
−J1(μr) e−iθ

i J0(μr)

)
, (8.28)

for the vortex profile |�1(r)|. The wave function is well localized around the center of the vortex,
because the wave function damps exponentially by e−|�CFL|r at large distances from the center of
the vortex. The wave functions for the triplet Majorana fermion are exactly the same as that for the
single component Majorana fermion displayed in Eqs. (8.6) and (8.7), except for the minus sign in
the hole in #(2).

Concerning the singlet quark state, we also obtain a solution for E = 0, as the asymptotic form
for r →∞ was found in Ref. [378]. We show the explicit form of the wave functions of the singlet
solution for the right mode (γ5 = +1) in the Weyl representation

ûr =
(
ϕ1(r, θ)
η1(r, θ)

)
, d̂g =

(
ϕ2(r, θ)
η2(r, θ)

)
, ŝb =

(
ϕ3(r, θ)
η3(r, θ)

)
, (8.29)

where

ϕi (r, θ) =

⎛
⎜⎜⎜⎝

fi (r)
igi (r)eiθ

0
0

⎞
⎟⎟⎟⎠ , ηi (r, θ) =

⎛
⎜⎜⎜⎝

0
0

f̄i (r)e−iθ

i ḡi (r)

⎞
⎟⎟⎟⎠ , (8.30)

for ûr (i = 1) and d̂g (i = 2), and

ϕ3(r, θ) =

⎛
⎜⎜⎜⎝

f3(r)e−iθ

ig3(r)
0
0

⎞
⎟⎟⎟⎠ , η3(r, θ) =

⎛
⎜⎜⎜⎝

0
0

f̄3(r)
i ḡ3(r)eiθ

⎞
⎟⎟⎟⎠ , (8.31)
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for ŝb. At large r , both |�0| and |�1| become a common constant |�CFL| given in the bulk state.
Then, with an approximation of small |�CFL| and large μ, we find asymptotic forms of the wave
functions with a condition of the convergence at large r . The first solution is

fi (r) = N e−|�CFL|r/2 J0(μr), (8.32)

gi (r) = N e−|�CFL|r/2 J1(μr), (8.33)

(i = 1, 2) and

f3(r) = −N
2

e−|�CFL|r/2 J0(μr), (8.34)

g3(r) = −N
2

e−|�CFL|r/2 J1(μr), (8.35)

with a normalization constant N . This is the solution given in Ref. [378].
As the second solution, we find a new asymptotic solution, which is very different from the solution

in the triplet sector

f ′i (r) = N ′e−|�CFL|r/2π

4
(μr)2 J1(μr)

(
J1(μr)N0(μr)− J0(μr)N1(μr)

)
, (8.36)

g′i (r) = N ′e−|�CFL|r/2 1

4

(− μr J0(μr)+ J1(μr)
)
, (8.37)

(i = 1, 2) and

f ′3(r) = N ′e−|�CFL|r/2 μ

8|�|
{

4 (μr J0(μr)− J1(μr))− π(μr)2

×
(

2J0(μr)+ |�CFL|
μ

J1(μr)

) (
J1(μr)N0(μr)− J0(μr)N1(μr)

)}
, (8.38)

g′3(r) = N ′e−|�CFL|r/2 μ

4|�CFL|
{
(2+ |�CFL|r) J0(μr)−

( |�CFL|
μ
+ 2μr

)
J1(μr)

+ π(μr)2 J1(μr)
(
J1(μr)N0(μr)− J0(μr)N1(μr)

)}
, (8.39)

with a normalization constantN ′. It should be emphasized that these asymptotic solutions are correct
only at large r , at which |�0| and |�1| are constant. However, these solutions may be divergent at
small r in general, because |�1| becomes zero at r = 0, and we find that this is the case. The result
that there is no normalizable zero mode fermion in the singlet is consistent with that of the index
theorem, as discussed in Sect. 8.5. Although non-normalizable modes having a singular peak at the
vortex core are usually considered to be unphysical, there is also a discussion in the context of cosmic
strings that they may play some interesting roles, such as in baryogenesis [9].

8.3. Effective theory in 1+ 1 dimensions along a vortex string

In the previous subsection, we considered the transverse motion of the quark on the plane perpen-
dicular to the vortex axis. Now we discuss the longitudinal motion of the quark along the vortex. Let
us consider the case of a single flavor for an illustration. The Hamiltonian is written as a sum of the
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perpendicular part (with subscript ⊥) and the longitudinal part (with subscript z):

H =
(
−i �α⊥ · �∇⊥ − μ |�|eiθγ0γ5

−|�|e−iθγ0γ5 −i �α⊥ · �∇⊥ + μ

)
+
(
−iαz

∂
∂z 0

0 −iαz
∂
∂z

)

≡ H⊥ +Hz. (8.40)

Because the Hamiltonian is a sum of the contributions from the transverse and longitudinal directions,
we separate the wave function as

#(t, z, r, θ) = a(t, z)#0(r, θ), (8.41)

where a(t, z) is a function with variables of time t and the coordinate z in the longitudinal direction,
and #0(r, θ) is a function with variables of (r, θ) on the transverse plane. Concerning the transverse
plane, we have found the solution of the Majorana fermion as the lowest mode in the Hamiltonian
H⊥, as shown in Eqs. (8.6)–(8.9). Since we are interested in the low-energy dynamics, we can take
#0(r, θ) to be the state of the transverse zero mode. We can identify the field a(t, z) with the low-
energy degree of freedom on the vortex. The equation of motion for a(t, z) can be derived in the
following way. We start with the original equation of motion, i∂/∂t# = H#. By integrating the
transverse degree of freedom, namely by multiplying #

†
0 from the left in the equation of motion

i∂/∂t# = H# and integrating over the transverse coordinates r and θ , we obtain the equation of
motion for a(t, z) as

i
∂

∂t
a(t, z) =

∫
#

†
0 (r, θ)Hz#0(r, θ)rdrdθa(t, z), (8.42)

where we have used the normalization
∫
#

†
0#0rdrdθ = 1. On the right-hand side,

∫
#

†
0 (r, θ)Hz

#0(r, θ)rdrdθ may be regarded as an effective Hamiltonian for a(t, z). We can rewrite this
equation as

i

{
∂

∂t
+ v+(μ, |�|) ∂

∂z

}
a(t, z) = 0, (8.43)

with the “velocity” v+(μ, |�|) defined by

v+(μ, |�|) ≡
∫

#
†
0 (r, θ)

(
αz 0
0 αz

)
#0(r, θ) rdrdθ. (8.44)

The solution to Eq. (8.43) is given by a(t, z) ∝ eiE t−ikz z with a linear (gapless) dispersion with
respect to kz:

E = v+(μ, |�|) kz, (8.45)

where

v+(μ, |�|) = μ2

|�|2 + μ2

E
(
− μ2

|�|2
)

E
(
− μ2

|�|2
)
− K

(
− μ2

|�|2
) − 1, (8.46)

where K (x) and E(x) are the complete elliptic integrals of the first and second kinds, respectively;

K (x) =
∫ π/2

0

1√
1− x2 sin2 θ

dθ, (8.47)

E(x) =
∫ π/2

0

√
1− x2 sin2 θdθ. (8.48)

We plot v+(μ, |�|) as a function of μ/|�| in Fig. 27 (v+ = 1 is the speed of light). As a consequence,
low-energy excitations inside the vortex are gapless (massless) fermions described by Eqs. (8.43) and
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Fig. 27. Velocity of a zero mode fermion propagating along the vortex axis (Ref. [378].)

(8.44). One can indeed express these fermions in terms of spinors in 1+ 1 dimensions, and write
down an equation similar to the Dirac equation.

The effective theory is obtained also for the triplet Majorana fermion in the CFL phase. The effec-
tive field with t and z has three components, each of which follows Eq. (8.44). The only change is to
replace |�| with |�CFL|. The dispersion relation is not modified from Eq. (8.45).

8.4. The absence of supercurrent along a vortex

We here comment on the absence of electromagnetic supercurrents induced by fermions along vor-
tices, even if we start from charged fermions in 3+ 1 dimensions. This is anticipated from the
“Majorana” nature of the zero-mode fermions. We start with a single-component charged fermion
described by the following Hamiltonian:

H =
(
−i �α⊥ · �∇⊥ − μ |�|eiθγ0γ5

−|�|e−iθγ0γ5 −i �α⊥ · �∇⊥ + μ

)

+
⎛
⎝−iαz

(
∂
∂z − ieAz

)
0

0 −i
(
αz

∂
∂z + ieAz

)
⎞
⎠

≡ H⊥ +HAz
z , (8.49)

where the fermion is coupled to an electromagnetic gauge field Aμ(t, z) = (0, 0, 0, Az(t, z)). As we
are interested in the low-energy dynamics, we can take the wave function as

#(t, �x) = a(t, z)#0(r, θ), (8.50)

where #0(r, θ) is the transverse zero-mode wave function that satisfies

H⊥#0(r, θ) = 0. (8.51)

Then, the dynamical equation for the effective dynamics along the vortex axis is derived in exactly
the same way as Eq. (8.43),

∂

∂t
a(t, z) = −i

∫
rdrdθ#†

0 (r, θ)H
Az
z (t, z)#0(r, θ)

= ∓ [v±a(t, z)− ie′Az(t, z)a(t, z)
]
, (8.52)

where we have defined the “effective velocity” as

v = ϕ
†
±σ3ϕ± − η

†
∓σ3η∓, (8.53)

87/149



PTEP 2014, 012D01 M. Eto et al.

and the “effective charge” as

e′ = e
(
ϕ

†
±σ3ϕ± + η

†
∓σ3η∓

)
= 0. (8.54)

The final equation is obtained by substituting the wave function of the transverse zero mode. Because
the effective charge is zero, the Majorana fermion propagating along the vortex axis is neutral and
does not couple to electromagnetic fields. Therefore, there is no electromagnetic current induced
by the Majorana fermions in vortices. The same is true for the triplet Majorana fermions in non-
Abelian vortices, where the SU (2)C+F non-Abelian gauge field is switched on along the vortex axis
as Ai,μ(t, z) = (0, 0, 0, Ai

z(t, z)) with i = 1, 2, 3 for indices of the adjoint representation (triplet) in
SU (2)C+F symmetry.

8.5. Index theorem

So far we have discussed zero mode fermions by explicitly solving the BdG equation based on the
mean-field Hamiltonian with a gap profile function. In fact, the existence of zero modes is robust
and does not depend on the details of the system, since the massless modes on the edge of a super-
conductor are closely related to the “topology” of the bulk matter. A manifestation of this fact is
the index theorem [67,134,136,365], which relates the number of zero modes and a topological
invariant. (A detailed description is given in Refs. [134,136].) The index theorem has a long history
and has elucidated topological characteristics of anomalies in gauge fields [91]. The index theorem
has also been applied to condensed matter systems by many researchers [135–137,176,285,292,
293,299]. We here review the application of the index theorem to the non-Abelian vortices in the
CFL phase.

Let us first review the index theorem in the case of Euclidean Dirac operators, H = i �D. We consider
normalized eigenstates of this operator {ui (x)}, which satisfy

�Dui (x) = λi ui (x). (8.55)

Suppose we have an operator γ5 that anticommutes with �D:

γ5 �D + �Dγ5 = 0, (γ5)
2 = 1. (8.56)

The zero modes, which are the eigenfunctions of λi = 0, can always be taken as the eigenstates of
chirality,

γ5ui (x) = ui (x) or γ5ui (x) = −ui (x). (8.57)

Let us consider the analytical index of the operator H , which is defined as the difference between
the dimensions of the kernel and co-kernel of the operator. The analytical index can be written as the
difference of the number of zero mode solutions for positive and negative chiralities,

ind H ≡ N+ − N−, (8.58)

where N+ and N− are the numbers of zero modes for positive and negative chiralities. The index
theorem relates the analytical index to the topological index. To see this, we rewrite ind H as

ind H = lim
m→0

Tr γ5
m2

H2 + m2 . (8.59)

As m tends to zero, only the contribution of the zero eigenvalues survives, and + (−) states
are accounted with plus (minus) signs due to γ5. Furthermore, we introduce the current
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defined by

J k = lim
y→x

Tr γ5γ
k
(

1

�D + m
− 1

�D + M

)
δ(x − y), (8.60)

where k indicates the spatial component and the second term is a regulator with large mass M , which
is eventually taken to infinity. By taking the divergence of the current, one can show the following
relation [365]:

ind H = −1

2

∫
d Sk J k + cd , (8.61)

where d Sk is the infinitesimal surface element on the boundary of the space. It can be shown that the
constant cd is the Chern number for even d,

cd ≡ lim
M→∞

Tr γ5
M2

H2 + M2 . (8.62)

Thus, the analytical index is related to the topological index defined on the right-hand side of
Eq. (8.61).

We apply the index theorem to count the number of zero mode Majorana fermions in non-Abelian
vortices. In non-Abelian vortices, the analytical index of the operator H⊥ is defined by

indH⊥ = N+(H⊥)− N−(H⊥), (8.63)

where N±(H⊥) are the numbers of zero-energy states of H⊥ with definite �3 chiralities, �3 = ±1
(corresponding to γ5 = ±1 in Eq. (8.57)). Here �3 is defined as

�3 =
(
αz 0
0 αz

)
. (8.64)

Let us review the derivation of the index theorem. We note that the index is rewritten as

indH⊥ = lim
m→0

Tr�3 m2

H 2
⊥ + m2

, (8.65)

where Tr stands for the trace over two-dimensional space as well as the Dirac indices. For μ = 0,
indH⊥ is equal to the number of Majorana fermions. For μ �= 0, the relation does not hold, since the
chiral symmetry is broken ({�3,H⊥} �= 0). When μ is small, we can naturally assume that the states
at finite μ are smoothly connected to the states in vacuum (see Fig. 28). Note that the particle–hole
symmetry is intact even at finite densities, μ �= 0. Then we can expect that the zero modes can always
appear or disappear in pairs, as one increases the chemical potential μ. Thus, in the case of μ �= 0,
indH⊥ gives the number of zero mode fermions modulo 2. Here we introduce the axial current

J j (x,m, M) = lim
y→x

Tr�3� j
(

1

−iH⊥ + m
− 1

−iH⊥ + M

)
δ(2)(x − y)

= lim
y→x

Tr�3� j iH⊥

(
1

H2
⊥ + m2

− 1

H2
⊥ + M2

)
δ(2)(x − y), (8.66)

with j = 1, 2 for the coordinate on the two dimensional plane, where M is a large mass parameter
for the Pauli–Villars regulator. Then, the divergence of the current is written as

∂ j J j (x,m, M) = 2 lim
y→x

Tr�3� j iH⊥

(
m2

H2
⊥ + m2

− M2

H2
⊥ + M2

)
δ(2)(x − y). (8.67)
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(a)

(b)

Fig. 28. A schematic picture of energy levels of fermions in vacuum (μ = 0) and in matter (μ �= 0). (a) When
the index is odd, the zero mode fermions in vacuum still exist in matter. (b) When the index is even, however,
the zero mode fermions do not exist in either vacuum or matter.

Therefore, we obtain

indH⊥ = c + lim
m→0, M→∞

1

2

∮
|�x |→∞

εi j J i (x,m, M)dx j , (8.68)

where we have defined

c = lim
M→∞

Tr�3 M2

H2
⊥ + M2

. (8.69)

It is known that c is the Chern number associated with the gauge field. In the present discussion,
we do not consider the gauge field and hence we neglect c. We note that the second term in the
above equation is a topological invariant. Thus, we have shown the index theorem; the index indH⊥
is related to the topologically invariant quantity. We can know whether the number of zero mode
fermions is even or odd when the index is even or odd, respectively. In most cases, the number of
zero mode fermions is 0 or 1, and other numbers can happen by chance.

The calculation of Eq. (8.65) is performed by supplying the basis of the plane wave, as explicitly
given in Ref. [134]. We use the basis of the plane wave and give the axial current as

J j (x,m, M) =
∫

d2k

(2π)2 e−ik·x Tr�3� j iH⊥
1

H2
⊥ + m2

eik·x , (8.70)

where the regularization of the current is neglected, because the above current is well defined in the
present discussion. Indeed, the index theorem needs the current only at |�x | → ∞, where |�| → �CFL

and ∂ j� ∼ O(r−1). The result is

indH⊥ = 1

2π

∮
dθ∂θ$k(θ) =

⎧⎪⎪⎨
⎪⎪⎩

2Q (singlet)

Q (doublet)

q (triplet)

(8.71)

for the generalized gap profile �(r, θ) = diag(�Q,�Q,�q) with �k(r, θ) = |�k(r)|ei$k(θ) and
the condition $k(2π) = $k(0)+ 2πk. The case of Q = 0 and q = 1 corresponds to the vortex
configuration in Eq. (8.11). Therefore, the zero mode exists only in the triplet sector.

From the result of the index theorem, we find that the doublet zero-mode does not exist, and the
singlet zero-mode does not exist either. Although an asymptotic form of the wave function can be
found at large r →∞, as shown in Eqs. (8.32)–(8.39), it turns out that the wave function is divergent
at the origin (r = 0). Because the index theorem counts the number of the zero mode (precisely, the
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difference between N+ and N−), which is normalizable over the space, the result does not contradict
that from the analysis of the BdG equation.

The index of the Hamiltonian H⊥ is also calculated by the analytical method [188,189], as
presented in Refs. [134,136]. We consider the equation of motion

H⊥(r, θ)#(r, θ) = 0 (8.72)

and analyze the eigenwave function #(r, θ). The advantage of this method is that it gives us the
number of zero-energy states for each �3-chirality (�3 = ±1), namely N+ and N−.

Let us see the doublet and triplet states. We rewrite the Hamiltonian as(
0 H⊥,−

H⊥,+ 0

)(
#+
#−

)
= 0, (8.73)

where ± denotes �3-chirality, and

H⊥,± =
(

−i∂± −|�q(r)|eiqθ

−|�q(r)|eiqθ i∂∓

)
, (8.74)

with ∂± = e±iθ (∂r ± i∂θ/r). This is the equation for the triplet. If q is replaced with Q, then we
obtain the equation for the doublet. We set the wave function with the variables r and θ as

#m,±(r, θ) =
(

αm(r)e±imθ

iβm(r)ei(±m−q±1)θ

)
, (8.75)

where m is the quantum number associated with the angular momentum, and αm(r) and βm(r) are
radial components. The equation for the radial components is given as(

d

dr
− M±

r
+�

)
ψm(r) = 0, (8.76)

for ψm(r) = (αm(r), βm(r))T, M± = diag(m,−m − 1± q), and

� =
(

0 |�q |
|�q | 0

)
. (8.77)

The solutions of this equation were studied in Ref. [189]. Following their analysis, we naturally
assume the asymptotic behavior of the gap profile function; |�q | ∼ r |q| at r → 0. We also assume
generically that � is expanded as

� =
∞∑

n=0

�nrn, (8.78)

where �0 = 0 if q �= 0. From a mathematical point of view, we can assume that |�q | ∼ r at r →
0. However, it turns out that this behavior gives a logarithmic term (log r ) in the wave function.
Therefore, we neglect the case of |�q | ∼ r and consider the case of |�q | ∼ r |q| only.

With this setup, we expand the wave function as

ψ(i)
m (r) = ψ(i)

m,ni
rni + ψ

(i)
m,ni+1rni+1 + · · · , (8.79)

for i = 1, 2. The leading power ni is one of the diagonal elements of M; n1 = m and n2 = −m −
1+ q for �3 = +1, and n1 = m and n2 = −m − 1− q for �3 = −1. The normalizability of ψ(i)

m (r)
at r → 0 is guaranteed by ni ≥ 0. It means that 0 ≤ m ≤ q − 1 for �3 = +1, and 0 ≤ m ≤ −q − 1
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for �3 = −1. Then, we obtain (1) N+ = q and N− = 0 for 1 ≤ q, (2) N+ = N− = 0 for q = 0, and
(3) N+ = 0 and N− = −q for q ≤ −1. We finally conclude that indH⊥ = N+ − N− = q in any
case. This result is consistent with that from the topological discussion.

As a final remark, we notice that another gap configuration �(r, θ) = diag(�1,�1,�0) (Q = 1
and q = 0) corresponds to the M2 vortex. As discussed in Sect. 5, this is an unstable configuration,
decaying to two M1 vortices. Nevertheless, it will be interesting to consider the zero mode fermions
(two zero modes in singlet and one zero mode in doublet), if the M2 vortex could exist as a quasi-
stable state. In particular, zero mode fermions in a doublet form a Dirac fermion, which is still zero
mode, inside the single vortex. As the Majorana fermion in the M1 vortex contributes to the non-
Abelian statistics, the Dirac fermion in the M2 vortex provides us with non-Abelian statistics, as
discussed in Sect. 9.

8.6. Topological superconductor

Topological phases have recently been attracting much attention in condensed matter physics. Topo-
logical superconductors are characterized by a full pairing gap in the bulk, and gapless surface states
that consist of Majorana fermions. A state with a nontrivial topological number is called a topological
state. When there is a boundary between two states with different topological numbers, the energy
gap should be closed on the boundary so that the topological number can change. This assures the
existence of gapless surface states.

We now come to the question: is a color superconductor topological? This question is addressed
and discussed by Nishida [253]. Whether a superconductor is topological or not is determined only by
discrete symmetries of the Hamiltonian and spatial dimensionality according to the periodic table of
topological superconductors [307], at least for non-interacting Hamiltonians. As already discussed,
the mean-field Hamiltonian of a color superconductor has a charge-conjugation symmetry. We can
also define a time-reversal symmetry for this Hamiltonian. Then the Hamiltonian belongs to the
symmetry class DIII, which is topological in three spatial dimensions.

We can define topological charges NR and NL for right-handed and left-handed sectors indepen-
dently in the chiral limit, in which the two sectors are independent. For an even (odd)-parity pairing13,
NR = ∓NL. Because of these non-zero topological charges, surface states exist. For example, a vor-
tex in the superconductor supports right-handed and left-handed massless fermions propagating in
opposite directions14

At finite quark masses, right-handed and left-handed sectors mix and only the total topological
charge N = NR + NL is well defined. What becomes of the surface states at finite quark masses?
The results are qualitatively different depending on the parity of the pairing. For the even-parity
pairing case, the total topological charge is zero, N = 0. In this case, the presence of the fermion
mass immediately opens up a gap for localized fermions on a vortex. When the pairing gap is parity
odd, the topological charge is unchanged for small fermion masses, since the system remains gapped
as long as m2 < μ2 + |�|2. If the fermion mass is increased further, there will be a topological phase
transition at m2 = μ2 + |�|2 and the fermions would acquire a mass gap.

13 For an even-parity pairing, the order parameter is given by � ∼ 〈qT Cγ5q〉, and by � ∼ 〈qT Cq〉 for an
odd-parity pairing.

14 The vortex state discussed in Ref. [253] is not the lowest-energy vortex solution, so it would be unstable
against decay.
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9. Non-Abelian exchange statistics of non-Abelian vortices

The exchange statistics in the system of multiple numbers of quantum vortices with zero mode Majo-
rana fermions provides a novel statistics, which is different from the conventional statistics, such as
the Fermi–Dirac statistics for fermions, the Bose–Einstein statistics for bosons and the (Abelian)
anyon statistics for anyons. The exchange statistics of vortices with Majorana fermions obeys the
non-Abelian statistics. This is the subject of this section. In Sect. 9.1, we discuss general proper-
ties of exchanging vortices. In Sect. 9.2, we review the non-Abelian statistics for Abelian vortices
with Majorana fermions. In Sect. 9.3, we discuss the non-Abelian statistics for non-Abelian vortices
with Majorana fermions. In Sect. 9.4, we comment on the case of (non-)Abelian vortices with Dirac
fermions.

9.1. Exchange of vortices

Let us suppose that there are multiple numbers of non-Abelian vortices. The motion of the parallel
vortices in d = 3+ 1 dimensional space is regarded as the motion of the particles on a d = 2+ 1
dimensional space, because the vortex has translational invariance along the vortex axis. Generally
speaking, the exchange of two particles on a plane obeys the braid group. We introduce an operation
Tk that exchanges the kth and (k + 1)th vortices, where the former vortex rotates around the latter
vortex in a counterclockwise direction. The braid group is given by two rules:

(i) Tk Tk+1Tk = Tk+1Tk Tk+1, (9.1)

(ii) Tk T� = T�Tk (|k − �| > 1). (9.2)

It should be noted that the inverse of Tk is not necessarily identical to Tk ((Tk)
−1 �= Tk) because the

operation is directed. This property of the braid group leads to the non-Abelian statistics [82,156,
185,281,339,348].

We consider that the vortices are exchanged adiabatically as shown in Fig. 9.1. Then, the Majorana
fermion plays an important role because it is the most stable state protected topologically by pertur-
bation from outside. The wave function of the Majorana fermion is a double-valued function for the
angle around the vortex axis. This can be inferred from the form of the BdG equations (8.12); when
we shift the phase winding of a vortex as θ → θ + α, it can be canceled if the phases of the particle
and hole wave functions are shifted by α/2 and−α/2, respectively. This implies that, when quasipar-
ticles travel around a vortex at α = 2π , both particle and hole wave functions receive a minus sign.
In order to regard the wave function as a single-valued function, we need to introduce a cut from the
center of the vortex to infinitely far from the vortex. The directions of cuts are arbitrary and gauge
dependent. This means that the wave function acquires a minus sign when the Majorana fermion goes
across the cut. Let us pick up the kth and (k + 1)th vortices among the multiple numbers of vortices,
and consider the exchange operation Tk for these two vortices as in Fig. 29. By the operation Tk ,
the positions of the kth and (k + 1)th vortices are exchanged, where the kth vortex goes across the
cut from the (k + 1)th vortex. Then, the wave function of the Majorana fermion in the (k + 1)th
vortex acquires a minus sign, while that in the kth vortex does not change. The resulting exchange is
expressed by the Majorana fermion operators γ a

k and γ a
k+1 for the kth and (k + 1)th vortices. Here

a indicates the component of the Majorana fermion with internal symmetry. The fermion operators
γ a
� satisfy the anticommutation relation

{γ a
k , γ b

� } = 2δk�δ
ab. (9.3)
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Fig. 29. Exchange of two vortices k and k + 1 with Majorana fermions described by γ a
k and γ a

k+1 (a = 1, 2, 3),
respectively. The dashed lines are cut from the vortex to an infinitely distant point. (Ref. [379].)

We note the relation

(γ a
� )

† = γ a
� (9.4)

because the particle state is equal to the hole state as the property of the Majorana fermion.
We find that the operation Tk gives the following exchange rule:

Tk :

{
γ a

k → γ a
k+1

γ a
k+1 →−γ a

k
. (9.5)

Here a = 1, 2, 3 denote the components in the triplet state, because the Majorana fermions belong
to the triplet of SU (2)C+F � O(3)C+F. In the present discussion, we do not consider the singlet
component.

From Eq. (9.5), we find that the operation by two-time exchanges does not give the initial state;
T 2

k �= 1. This means that the exchange of vortices is different from neither the Fermi–Dirac statistics
nor the Bose–Einstein statistics.

9.2. Abelian vortices with Majorana fermions

The explicit expression of the operation Tk in terms of Majorana fermions was first found by Ivanov
in the case of “Abelian” vortices with single component Majorana fermions (a = 1 only) [185] in
chiral p-wave superconductors. See also the early discussions on other systems in Ref. [295]. The
non-Abelian statistics by Majorana fermions in (Abelian) vortices, explicit forms of which will be
shown below, is attracting many researchers as devices for quantum computing [204,205,246,369].
They can be realized not only in the core of half-quantized vortices in chiral p-wave superconductors
or p-wave superfluids [361], but also in the edge of topological superconductors and insulators [131],
and even in the three dimensional systems in which Majorana fermions are trapped on monopole-
like objects [347]. Before moving on to the detailed discussion about the exchange in Eq. (9.5) for a
multiple number of Majorana fermions, in this subsection, let us study the case of the single fermion
component found by Ivanov [185]. In this case, we have the Majorana fermion operators γk and γk+1

at the vortex k and k + 1, respectively. Under the exchange of vortices, γk and γk+1 are transformed as

Tk :

{
γk → γk+1

γk+1 →−γk
. (9.6)

If we define the operator

τ̂k = 1√
2
(1+ γk+1γk), (9.7)
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up to an overall phase, it is easy to confirm that the transformation in Eq. (9.6) can be reproduced by

γ�→ τ̂kγ�τ̂
−1
k . (9.8)

Hence, the operator τ̂k represents the operation Tk .
Next, let us define the Hilbert (Fock) space. It should be noted that the annihilation of the Majorana

fermion is identical to the creation of the Majorana fermion (γk = γ
†
k ). Hence it is not possible to

construct the Hilbert space on a single vortex. When preparing a pair of vortices, we define the Dirac
operator by

#̂k ≡ 1

2
(γ2k−1 + iγ2k) . (9.9)

The Dirac operator satisfies the usual anticommutation relations for the creation (#†
k ) and annihila-

tion (#k) operators: {
#̂k, #̂

†
�

}
= δkl,

{
#̂k, #̂�

}
=
{
#̂

†
k , #̂

†
�

}
= 0. (9.10)

We then define the Fock vacuum |0〉 as #k |0〉 = 0 for all k. We can build the Hilbert space by
acting the creation operators on the Fock vacuum.

In the case of n = 2 vortices, the Hilbert space can be constructed as {|0〉, #†
1 |0〉}. With these bases,

the operator τ̂1 can be expressed by a matrix form as

τ1 =
(

e−iπ/4 0
0 eiπ/4

)
. (9.11)

Because of a nontrivial phase factor, this gives rise to an Abelian anyon statistics.
The non-Abelian statistics can be found in the case of n ≥ 4 vortices. For the case of n = 4 vortices,

we define the Hilbert space {|0〉, i#†
2#

†
1 |0〉, #†

1 |0〉, i#†
2 |0〉}. With these bases, τ̂k (k = 1, 2, 3) can

be expressed by matrix forms

τ1 =

⎛
⎜⎜⎜⎝
ω∗ 0 0 0
0 ω 0 0
0 0 ω 0
0 0 0 ω∗

⎞
⎟⎟⎟⎠ , τ2 = 1√

2

⎛
⎜⎜⎜⎝

1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

⎞
⎟⎟⎟⎠ , τ3 =

⎛
⎜⎜⎜⎝
ω∗ 0 0 0
0 ω 0 0
0 0 ω∗ 0
0 0 0 ω

⎞
⎟⎟⎟⎠ , (9.12)

with ω = eiπ/4 and ω∗ = e−iπ/4. In these bases, τ1, τ3 are diagonal but τ2 is non-diagonal. One
cannot diagonalize all of these at the same time. We find the non-Abelian nature; τ1τ2 �= τ2τ1

and τ2τ3 �= τ3τ2. This implies that the order of exchanging the kth and k + 1th vortices is not
commutative. It is straightforward to show the non-Abelian property

τkτk+1 �= τk+1τk (9.13)

for any even number n. This is very different from conventional statistics, such as the Fermi–Dirac
statistics, the Bose–Einstein statistics, and even the (Abelian) anyon statistics. In these conventional
statistics, the state after the exchange does not depend on the choice of which particles are exchanged.
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9.3. Non-Abelian vortices with Majorana fermions

Now, let us discuss the property of the exchange of non-Abelian vortices. For this purpose, we
introduce an operator τ̂k that represents the operation Tk by

τ̂k ≡
∏

a=1,2,3

τ̂ a
k , with τ̂ a

k ≡
1√
2
(1+ γ a

k+1γ
a
k ). (9.14)

This is invariant under the SO(3) symmetry. The operator τ̂k represents the operation Tk , because
τ̂kγ

a
� τ̂
−1
k reproduces the exchange rule in Eq. (9.5). We also introduce the non-local Dirac opera-

tors by

#̂a
k ≡

1

2

(
γ a

2k−1 + iγ a
2k

)
, (9.15)

satisfying the anticommutation relations

{
#̂a

k , #̂
b †
�

}
= δklδ

ab,
{
#̂a

k , #̂
b
�

}
=
{
#̂

a †
k , #̂

b †
�

}
= 0. (9.16)

Then, we can define the Hilbert (Fock) space. The Fock vacuum state |0〉 is defined by #̂a
k |0〉 = 0

for all k and a = 1, 2, 3, and multiparticle states are defined by operating successively #̂
a †
k to the

vacuum state.
As an example, we consider the four non-Abelian vortices (n = 4). Noting that the Dirac fermion

is a triplet state, we obtain the Hilbert space with M-plet (M = 1, 3, 5). Furthermore, each M-plet
is classified by even or odd numbers of the Dirac fermions (P = E , O). Thus, the basis of the Hilbert
space can be classified according to the representations (M,P). Their explicit forms are given as

|100〉 = |0〉, (9.17)

|133〉 = i
1

3!
εabc 1

3!
εde f #̂

a†
1 #̂

b†
1 #̂

c†
1 #̂

d†
2 #̂

e†
2 #̂

f †
2 |0〉, (9.18)

|111〉 = i
1√
3
#̂

a†
1 #̂

a†
2 |0〉, (9.19)

|122〉 = 1√
3

1

2!
εabc 1

2!
εade#̂

b†
1 #̂

c†
1 #̂

d†
2 #̂

e†
2 |0〉, (9.20)

for the singlet-even (1, E) states and

|103〉 = 1

3!
εabc#̂

a†
2 #̂

b†
2 #̂

c†
2 |0〉, (9.21)

|130〉 = −i
1

3!
εabc#̂

a†
1 #̂

b†
1 #̂

c†
1 |0〉, (9.22)

|121〉 = − 1√
3

1

2!
εabc#̂

a†
1 #̂

b†
1 #̂

c†
2 |0〉, (9.23)

|112〉 = i
1√
3

1

2!
εabc#̂

a†
1 #̂

b†
2 #̂

c†
2 |0〉, (9.24)

for the singlet-odd (1, O) states.
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There are six bases,

|302〉 = 1

2!
εabc#̂

b†
2 #̂

c†
2 |0〉, (9.25)

|331〉 = −i
1

3!
εbcd#̂

b†
1 #̂

c†
1 #̂

d†
1 #̂

a†
2 |0〉, (9.26)

|322〉 = 1√
2
εabc 1

2!
εbde 1

2!
εc f g#̂

d†
1 #̂

e†
1 #̂

f †
2 #̂

g†
2 |0〉, (9.27)

|311〉 = i
1√
2
εabc#̂

b†
1 #̂

c†
2 |0〉, (9.28)

|320〉 = − 1

2!
εabc#̂

b†
1 #̂

c†
1 |0〉, (9.29)

|313〉 = i
1

3!
εbcd#̂

a†
1 #̂

b†
2 #̂

c†
2 #̂

d†
2 |0〉, (9.30)

for the triplet-even (3, E) states and

|301〉 = #̂
a†
2 |0〉, (9.31)

|332〉 = i
1

3!
εbcd#̂

b†
1 #̂

c†
1 #̂

d†
1

1

2!
εae f #̂

e†
2 #̂

f †
2 |0〉, (9.32)

|321〉 = 1√
2
εabc 1

2!
εbde#̂

d†
1 #̂

e†
1 #̂

c†
2 |0〉, (9.33)

|312〉 = −i
1√
3
εabc 1

2!
εcde#̂

b†
1 #̂

d†
2 #̂

e†
2 |0〉, (9.34)

|323〉 = 1

2!
εabc#̂

b†
1 #̂

c†
1

1

3!
εde f #̂

d†
2 #̂

e†
2 #̂

f †
2 |0〉, (9.35)

|310〉 = i#̂a†
1 |0〉, (9.36)

for the triplet-odd (3, O) states. There are two bases,

|522〉 = iN
{

1

2

(
1

2!
εacd#̂

c†
1 #̂

d†
1

1

2!
εbe f #̂

e†
2 #̂

f †
2

+ 1

2!
εbcd#̂

c†
1 #̂

d†
1

1

2!
εae f #̂

e†
2 #̂

f †
2

)

−δab

3

1

2!
εcde#̂

d†
1 #̂

e†
1

1

2!
εc f g#̂

f †
2 #̂

g†
2

}
|0〉, (9.37)

|511〉 = −N
{

1

2

(
#̂

a†
1 #̂

b†
2 + #̂

b†
1 #̂

a†
2

)
− δab

3
#̂

c†
1 #̂

c†
2

}
|0〉, (9.38)

for the quintet-even (5, E) states and

|521〉 = −iN
{

1

2

(
1

2!
εacd#̂

c†
1 #̂

d†
1 #̂

b†
2 +

1

2!
εbcd#̂

c†
1 #̂

d†
1 #̂

a†
2

)

− δab

3

1

2!
εcde#̂

c†
1 #̂

d†
1 #̂

e†
2

}
|0〉, (9.39)

|512〉 = −N
{

1

2

(
#̂

a†
1

1

2!
εbcd#̂

c†
2 #̂

d†
2 + #̂

b†
1

1

2!
εacd#̂

c†
2 #̂

d†
2

)

− δab

3

1

2!
εcde#̂

c†
1 #̂

d†
2 #̂

e†
2

}
|0〉, (9.40)
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for the quintet-odd (5, O) states with N = √3/2 for a = b and N = √2 for a �= b.
According to the classification by (M,P), the operator τ̂k is given as matrices with the bases of

the Hilbert space. We find that the matrix representations of the operators τ̂k are

τ
M,P
k = σM

k ⊗ hP
k , (9.41)

i.e. a tensor product of the M-dependent term σM
k and the P-dependent term hP

k . Their matrix forms
are

σ 1
1 =

(
−1 0
0 1

)
, σ 1

2 =
1

2

(
1
√

3√
3 −1

)
, σ 1

3 = σ 1
1 , (9.42)

for M = 1,

σ 3
1 =

⎛
⎜⎝−1 0 0

0 1 0
0 0 1

⎞
⎟⎠ , σ 3

2 =
1

2

⎛
⎜⎝ 1

√
2 1√

2 0 −√2
1 −√2 1

⎞
⎟⎠ , σ 3

3 =

⎛
⎜⎝1 0 0

0 1 0
0 0 −1

⎞
⎟⎠ , (9.43)

for M = 3, and

σ 5
1 = σ 5

2 = σ 5
3 = 1, (9.44)

for M = 5. On the other hand, hP
k are common to all the M-plets, and are given as

hE
1 = hO

1 =
(

ei π
4 0

0 e−i π
4

)
, hE

2 = hO
2 =

1√
2

(
1 −1
1 1

)
, hE

3 = hO†
3 = hE

1 . (9.45)

Those matrices give the mixing of the wave functions of the Dirac fermions in exchanging the
vortices. We note that they are non-Abelian matrices;

τ̂
M,P
� τ̂

M,P
�+1 �= τ̂

M,P
�+1 τ̂

M,P
� . (9.46)

This is confirmed by σ̂M
� σ̂M

�+1 �= σ̂M
�+1σ̂

M
� and ĥP

� ĥP
�+1 �= ĥP

�+1ĥP
� . This means that simultaneous

diagonalization is not possible. In other words, different exchanges of neighboring vortices can lead
to different states. Therefore, it obeys the non-Abelian statistics.

An important remark is in order. We note that hP
k is nothing but the matrices in the non-Abelian

statistics for “Abelian” vortices that contain a single component Majorana fermion found by Ivanov.
What is new for “non-Abelian” vortices is the existence of the multiple component Majorana
fermions with SO(3) symmetry. Then, the non-Abelian statistics of the non-Abelian vortices have
been obtained as a tensor product of σM

k and hP
k , where σM

k is a new ingredient from the SO(3)
symmetry. Interestingly, it is found that σM

k obeys the Coxeter group [80,177]. The Coxeter group
gives a symmetry of the polytopes in high-dimensional space. The Coxeter group was studied by
Harold Scott MacDonald (“Donald”) Coxeter, one of the great mathematicians of the 20th century.
The generators si (i = 1, 2, ...) of the Coxeter group are given by two conditions;

(a) s2
i = 1, (9.47)

(b) (si s j )
mi j = 1, (9.48)

with positive integers mi j ≥ 2. The conditions (a) and (b) represent the mirror reflection and the
rotation of the polytopes, respectively. In our present case, it is confirmed that σM

k satisfies these two
relations; (a) σ 2

i = 1 and (b) (σiσ j )
mi j = 1 with mi j = 3 for |i − j | = 1 and mi j = 2 for |i − j | > 1.

The matrices σ 1
k for M = 1 in Eq. (9.42) represent the symmetry for a triangle, and the matrices σ 3

k

98/149



PTEP 2014, 012D01 M. Eto et al.

Fig. 30. The triangle for M = 1 and the tetrahedron for M = 3 are shown. (Ref. [379].)

for M = 3 in Eq. (9.43) represent the symmetry for a tetrahedron in Fig. 30. As a result, it is found
that the structure of high dimensional polytopes exists in the Hilbert space for non-Abelian vortices.

Finally, we comment that the decomposition in Eq. (9.41) can be obtained for the operator τ̂k itself.
The operator τ̂k is expressed as a product of two SO(3) invariant unitary operators,

τ̂k = σ̂k ĥk, (9.49)

where

σ̂k = 1

2

(
1− γ 1

k+1γ
2
k+1γ

1
k γ

2
k − γ 2

k+1γ
3
k+1γ

2
k γ

3
k − γ 3

k+1γ
1
k+1γ

3
k γ

1
k

)
(9.50)

and

ĥk = 1√
2

(
1− γ 1

k+1γ
2
k+1γ

3
k+1γ

1
k γ

2
k γ

3
k

)
. (9.51)

It is easily verified that operators σ̂k satisfy relations (a) and (b) of the Coxeter group, such that

σ̂ 2
k = 1,

(σ̂k σ̂l)
3 = 1 for |k − l| = 1,

(σ̂k σ̂l)
2 = 1 for |k − l| > 1. (9.52)

We confirm that σ̂k obeys the Coxeter group for an arbitrary number of non-Abelian vortices. There-
fore, for an arbitrary large number of non-Abelian vortices, the non-Abelian statistics contains the
polytope structures in high dimensional space. This is a useful method, because it can be applied to
vortices with SO(N ) symmetry (N : odd number), as demonstrated in Ref. [172].

9.4. Abelian/non-Abelian vortices with Dirac fermions

So far we have discussed the exchange statistics of vortices, where either a single Majorana fermion or
three Majorana fermions are contained. They are called Majorana vortices. There, the Dirac fermion
is defined by picking up two Majorana fermions that are located in different vortices. In this sense,
the Dirac fermions are defined non-locally.

However, the situation is very different when there is an even number of Majorana fermions [377,
380]. In this case, we can construct the Dirac operators by picking up two Majorana fermions at the
same vortex. Namely, the Dirac fermions are defined locally at the single vortex. Vortices containing
the Dirac fermions can be called Dirac vortices.

In the CFL phase, an M1 vortex contains three Majorana fermions and can be regarded as a Majo-
rana vortex as discussed above, while an M2 vortex contains two Dirac fermions [134] and can be
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regarded as a Dirac vortex. Although M2 vortices are energetically unstable against decay into two
M1, as illustrated in Fig. 11, there is a possibility that the M2 vortices might be metastable when
gluons are much heavier than other scalar fields. As shown for the Majorana vortex, we can consider
the exchange of Dirac vortices. The Dirac fermions in the M2 vortices can have internal degrees of
freedom from U (2) symmetry [377]. It was found that, while exchanges of vortices with a single
Dirac fermion do not give non-Abelian statistics [380], exchanges of vortices with multiple Dirac
fermions such as the M2 vortices do give non-Abelian statistics [377]. We also note that non-Abelian
vortices in supersymmetric U (N ) QCD contain N − 1 Dirac fermions in their cores, as summarized
in Appendix A.

10. Topological objects associated with chiral symmetry breaking

In the previous sections, we have studied the (non-)topological solitons in the order parameter man-
ifold U (3)C−(L+R)+B � [SU (3)C × SU (3)L+R ×U (1)B]/[SU (3)C+L+R × Z3]. In this section,
we study topological objects in the chiral symmetry breaking sector U (3)L−R+A � [SU (3)L ×
SU (3)R ×U (1)A]/[SU (3)L+R × Z3]. The U (1)A symmetry is explicitly broken by the instanton
effect (the chiral anomaly) and the corresponding U (1)A Nambu–Goldstone mode, the η′ meson,
acquires a potential term. In Sect. 10.1, we first discuss U (1)A axial domain walls interpolating
ground states of the instanton-induced potential, with massless and massive quarks. After giving a
linear sigma model in Sect. 10.2, we discuss U (1)A Abelian axial vortices and non-Abelian axial
vortices in the absence of the instanton-induced potentials in Sect. 10.3. In Sect. 10.4, we discuss
composite states of axial domain walls and axial vortices in the presence of the instanton-induced
potentials. In Sect. 10.5, we discuss the quantum decay of axial domain walls. Skyrmions as qualitons
are briefly discussed in Sect. 10.7.

10.1. Axial domain walls

10.1.1. Fractional axial domain walls in the chiral limit. Instantons flip the chiralities of quarks
and thus break the U (1)A symmetry (the chiral anomaly). Instanton effects in the CFL phase are
parametrically small at asymptotically high densities and controlled calculations are possible. In the
chiral limit with massless quarks, the leading contribution to the mass of the η′ meson arises from
two-instanton diagrams [302]. As shown in Eq. (2.92), the instanton-induced potential takes the form

V2-inst = −2C cos 3ϕA. (10.1)

Here the U (1)A phase mode ϕA is arg(det�) in terms of the gauge invariant field � in Eq. (2.72).
Thus, the effective Lagrangian for the η′ meson is given by

L =
3 f 2

η′

4

(
(∂0ϕA)2 − v2

η′(∂iϕA)2
)
+ 2C cos 3ϕA, (10.2)

where the elementary meson field is defined as ϕA = 2η′/
√

6 fη′ . The decay constant fη′ and the
velocity vη′ were found as [333]

fη′ = 3μ2

2π2 , vη′ = 1√
3
. (10.3)

The above Lagrangian is the sine-Gordon model with a period ϕA ∼ ϕA + 2π/3, which allows
sine-Gordon domain wall solutions [327]. Since the potential is periodic in ϕA with the period 2π/3,
there are three different minima ϕA = 0, 2π/3, 4π/3 in the period ϕA ∈ [0, 2π). One of the minimal
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configurations is a domain wall, which interpolates between ϕA = 0 at x = −∞ and ϕA = 2π/3 at
x = ∞. Assuming that the field depends only on one space direction, say x , an exact solution of a
single static domain wall can be available:

ϕA(x) = 4

3
arctan e

m
η′

v
η′

(x−x0)
, (10.4)

where

mη′ = 2
√

3C

fη′
(10.5)

is the mass of the η′meson, and x0 denotes the position of the domain wall. The tension of the domain
wall is given by

T = 8
√

C fη′vη′√
3

. (10.6)

The other two domain walls interpolating between ϕA = 2π/3 and ϕA = 4π/3, and between ϕA =
4π/3 and 2π are simply obtained by phase shifts. All three domain walls wind the U (1)A phase
1/3 times, unlike the unit winding for the usual sine-Gordon domain walls. Therefore, these domain
walls can be called fractional axial (sine-Gordon) domain walls.

Two fractional sine-Gordon domain walls repel each other (the repulsion ∼ e−2R with distance
2R) [272]. If one considers an integer sine-Gordon domain wall winding U (1)A once, it splits into
three fractional sine-Gordon domain walls.

Note that, if we include the amplitude mode | det�| in addition to the effective theory for ϕA

in Eq. (10.1), it is similar to the so-called N = 3 axion model [89,268,269], which is an elegant
extension of the standard model for solving the strong CP problem [268,269,366,368]. The domain
walls in the axion models were first studied in Ref. [325]. Domain walls in the N > 1 axion models
are stable because they connect two vacua with different phases ϕA. Consequently, the domain wall
energy dominates the energy density of the universe, causing the cosmological domain wall problem.
Only the N = 1 case is known to be cosmologically viable, in which the domain wall can decay,
as is explained in Sect. 10.5.1, and the domain wall energy does not dominate the energy density
of the universe. In our case of dense QCD, one might think that the axial domain walls would be
stable because they interpolate between two disconnected points among ϕA = 0, 2π/3, 4π/3. This
is, however, not the case. The axial domain walls in dense QCD are metastable as we discuss in
Sect. 10.5.2.

10.1.2. Integer axial domain walls with massive quarks. Let us next consider an axial domain
wall in the case that the quark masses are not all zero [335]. Here, we assume mu = md = ms = m
for simplicity, so that the mixing in the neutral mesons (π0, η, η′) simply vanishes [47,233,302,303].
As shown in Eq. (2.92), the potential for the η′ meson receives two additional contributions to the one
in Eq. (10.1). One is from the quark mass term [333] and the other is the one-instanton contribution
[302,335],

V = −6m A cosϕA − 12Bm2 cosϕA − 2C cos 3ϕA, (10.7)

where the first term stands for the one-instanton contribution, which is a contribution from the chiral
condensates. The coefficients A, B were obtained in Ref. [302].

In the limit where the chemical potential is infinite while keeping the quark masses fixed, we have
m2 B � m A � C . So we can omit the terms whose coefficients are A and C , then the effective
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Fig. 31. A composite of fractional axial domain walls. An example of a numerical solution for a generic
sine-Gordon potential V = −α cosϕA − β cos 3ϕA is shown in the left panel. We set α = 1, β = 5, and f ′η = 1
to show a typical configuration. The domain wall solution is shown in the right panel. The integer axial domain
wall consists of three fractional axial domain walls.

theory becomes

L =
3 f 2

η′

4

(
(∂0ϕA)2 − v2

η′(∂iϕA)2
)
+ 12Bm2 cosϕA. (10.8)

This is the conventional sine-Gordon model. A single static domain wall solution is known to be
[325,335]

ϕA(x) = 4 arctan e

m̃
η′

v
η′

(x−x0)
, (10.9)

with m̃η′ = 2m
√

2B/ fη′ . The tension of the domain wall is given by

T = 24
√

2B fη′vη′m. (10.10)

The difference between the axial domain walls in Eqs. (10.2) and (10.9) is only the coefficients;
In contrast to the fractional axial domain wall in Eq. (10.2), the domain wall in Eq. (10.9) winds
the U (1)A once; therefore it can be referred to as an integer axial (sine-Gordon) domain wall
characterized by the first homotopy group15

π1[U (1)A] � Z. (10.11)

The classical stability of the integer axial domain walls was studied in Ref. [60].
Finally, let us consider the most generic potential in Eq. (10.7). If we include the two-instanton

contributions, the potential includes cosϕA and cos 3ϕA as in Eq. (10.7). This potential is known as
that of the triple sine-Gordon model. For generic parameter choices, the minimum of the potential is
unique, ϕA = 0, and only an integer axial domain wall winding the U (1)A phase once is allowed. A
numerical solution is shown in Fig. 31. The figure shows substructures of three peaks, and this integer
axial domain wall can be interpreted as a composite of three fractional axial domain walls with 1/3
U (1)A windings in Eq. (10.9). Without the two-instanton contribution cosϕA, these three fractional
axial domain walls repel each other and the integer axial domain wall decays completely into three
fractional axial domain walls, as mentioned above. On the other hand, the two-instanton-induced

15 Sine-Gordon kinks should be regarded as textures more like defects. So they are classified by an approx-
imate order parameter manifold in the absence of the potential, while the exact order parameter is lifted by
the potential. When the spatial infinities are identified as a point, topological textures in R

d are classified by
a map from Sd to the (approximate) order parameter manifold M , and the corresponding homotopy group is
πd(M). Fractional sine-Gordon domain walls discussed in the last subsection cannot be characterized by the
first homotopy group.
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potential cosϕA introduces the energy between domain walls, resulting in a constant attractive force
between them. Therefore, the linear confinement of domain walls occurs.

10.2. Linear sigma model

As discussed above, instanton effects are parametrically small in the asymptotically high density
limit. Then the U (1)A symmetry becomes an exact symmetry of the system. In the CFL phase,
the diquarks are condensed and the U (1)A is spontaneously broken. As explained in Sect. 3.1.2,
therefore, there exist topologically stable global vortices, U (1)A global vortices. However, this is
not the whole story. One should be careful that not only the U (1)A symmetry, but also the full axial
symmetry [SU (3)L−R ×U (1)A]/Z3 of QCD is spontaneously broken completely in the CFL phase.
As we have seen, this kind of spontaneously broken non-Abelian symmetry gives rise to non-Abelian
vortices. One crucial difference from the previous sections is that no local symmetries take part in
here. Thus, the U (1)A vortices that we study in this section are global non-Abelian vortices.

We start with a generic linear sigma model in the chiral limit:

L = Tr
[
∂0�

†∂0� + u2∂i�
†∂ i� − λ2(�

†�)2 + η2�†�
]
− λ1

(
Tr
[
�†�

])2

− κ(det� + c.c.)− 3η4

4 (3λ1 + λ2)
, (10.12)

where � is a 3× 3 complex matrix scalar field without any constraints, as is defined in Eq. (2.72).
The speed of the modes is taken to be u ∼ vπ ∼ vη′ . The coefficient κ of the anomaly term is related
to the C of the chiral Lagrangian as κ〈�〉3 = C . The field � is invariant under SU (3)C and U (1)B,
while it transforms under SU (3)L × SU (3)R ×U (1)A as

�→ eiθA g†
L�gR,

(
eiθA, gL, gR

)
∈ U (1)A × SU (3)L × SU (3)R. (10.13)

Here, we have used different notation for θA from Eq. (2.73). Since we are interested in topological
vortices in this model, we do not specify values of the coupling constants λ1,2, η but leave them as
the parameters of the model. By taking the heavy mass limit, one can relate this linear sigma model
with the chiral Lagrangian of the light fields in Eq. (2.83) with the anomaly term in Eq. (2.92). We
also ignore the electromagnetic interaction here.

Taking into account discrete symmetries, the full chiral symmetry of the Lagrangian in Eq. (10.12)
is GF, given in Eq. (2.74). Let us consider the case in which the anomaly effect is absent, κ = 0. The
ground states are stable when the coupling constants in Eq. (10.12) satisfy

η2 > 0, 3λ1 + λ2 > 0. (10.14)

Up to the flavor rotation, one can choose the ground state value as

〈�〉 = v13, v =
√

η2

2(3λ1 + λ2)
. (10.15)

The vacuum expectation value v should be identified with v ∼ fπ ∼ fη′ . In the ground state, the
chiral symmetry GF breaks down to its diagonal subgroup HF = SU (3)V/Z3V, given in Eq. (2.79).
Then, the order parameter manifold is GF/HF � U (3)L−R+A, given in Eq. (2.80).
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The mass spectra are as follows: there are 8+ 1 NG bosons associated with the spontaneously
broken U (3)L−R+A and the same number of massive bosons, whose masses are

m2
1 = 2η2, m2

8 = 4λ2v
2. (10.16)

Note that the linear sigma model (10.12) can be regarded as that for the chiral symmetry breaking
in the low density hadronic phase. There are a number of works studying various topological solitons
in the hadronic phase. For example, η′ strings, which are the U (1)A global vortices, were studied in
Refs. [34,386]. Non-topological vortices called pion strings with a trivial topology π1[SU (2)] = 0
were studied in Refs. [59,386].

Non-Abelian global vortices in the hadronic phase were first found by Balachandran and Digal in
Ref. [33]. Various aspects of the non-Abelian global vortices were studied in the subsequent papers
[111,244,261]. Since the linear sigma model for the chiral symmetry breaking in the CFL phase
shares many similar properties with that for the hadronic phase, there should exist the same kind of
non-Abelian global vortices in dense QCD.

10.3. Abelian and non-Abelian axial vortices

10.3.1. Abelian axial vortices. Since the order parameter manifold GF/HF � U (3)L−R+A is not
simply connected, the first homotopy group is nontrivial:

π1[U (1)A] � Z. (10.17)

Therefore, there exist topologically stable vortices. In order to generate a nontrivial loop in the order
parameter manifold, one may use only a T0 generator. Such a loop corresponds to the η′ string [34,
386] for which the order parameter � behaves as

�(r, θ) = v f (r)eiθ13. (10.18)

The equation of motion for the amplitude function f (r) is of the form

u2
(

f ′′ + f ′

r
− f

r2

)
− m2

1

2
f ( f 2 − 1) = 0. (10.19)

This is exactly the same equation as the equation of motion for the familiar U (1) global vortices.
Solutions can be numerically obtained with the suitable boundary condition f (0) = 0 and f (∞) =
1; see e.g. Ref. [355]. The tension of the Abelian global string is [261]

TU (1)A = 3× 2πv2u2 log
L

ξ
+ const. (10.20)

with the size of the system L and the size of the axial vortex ξ = m−1
1 .

10.3.2. Non-Abelian axial vortices. One can construct a smaller loop inside the order param-
eter manifold by combining the U (1)A generator T0 ∼ 13 and non-Abelian generators Ta (a =
1, 2, · · · , 8) of SU (3) [33]. They correspond to non-Abelian axial vortices characterized by the
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homotopy group

π1[U (3)L−R+A] � Z. (10.21)

The three typical configurations are given by

� = v diag
(

eiθ f (r), g(r), g(r)
)

r→∞−−−→ v diag
(

eiθ , 1, 1
)

= v ei θ
3 diag

(
ei 2θ

3 , e−i θ
3 , e−i θ

3

)
,

� = v diag
(

g(r), eiθ f (r), g(r)
)

r→∞−−−→ v diag
(

1, eiθ , 1
)

= v ei θ
3 diag

(
e−i θ

3 , ei 2θ
3 , e−i θ

3

)
,

� = v diag
(

g(r), g(r), eiθ f (r)
)

r→∞−−−→ v diag
(

1, 1, eiθ
)

= v ei θ
3 diag

(
e−i θ

3 , e−i θ
3 , ei 2θ

3

)
, (10.22)

with the profile functions f (r) and g(r) satisfying the boundary conditions

f (r →∞) = g(r →∞) = 1, f (0) = g′(0) = 0. (10.23)

The boundary condition at spatial infinities in Eqs. (10.22) clearly shows that the corresponding
loops wind 1/3 of the U (1)A phase, and are generated by non-Abelian generators of SU (3)L−R at
the same time. They are called fractional vortices because of the fractional winding of the U (1)A

phase and non-Abelian vortices because of the contribution of the non-Abelian generators. Because
of the fractionality of the U (1)A winding, the tension of a single non-Abelian axial vortex is one-third
of that for an Abelian axial vortex [261]:

TU (3)L−R+A = 2πv2u2 log
L

ξ
+ const., (10.24)

with ξ ∼ max(m−1
8 ,m−1

1 ).
The equations of motion for the amplitudes f (r) and g(r) are

u2
(

f ′′ + f ′

r
− f

r2

)
− m1

6
f ( f 2 + 2g2 − 3)− m2

8

3
f ( f 2 − g2) = 0, (10.25)

u2
(

g′′ + g′

r

)
− m2

1

6
g( f 2 + 2g2 − 3)+ m2

8

6
g( f 2 − g2) = 0, (10.26)

where τ ≡ m8/m1. These should be solved with the boundary conditions f (0) = g′(0) = 0. The
asymptotic behavior of a profile function of a U (1) global vortex is established; see e.g. Ref. [355].
On the other hand, the profile functions for a non-Abelian axial vortex were studied in Refs. [111,261]
in detail. Typical profile functions for the cases with m1 < m8 and m1 > m8 are shown in Fig. 32.

The asymptotic behaviors depend on the two mass scales m1 and m8. For instance, the profile
functions near the center of the vortex and far from the vortex were found [111,261] to be

f (r) = c1r + c3r3 + · · · , g(r) = d0 + d2r2 + · · · ,
(

r  min{m−1
1 ,m−1

8 }
)
, (10.27)

and

f (r) = 1+ a2

r2 +
a4

r4 + · · · , g(r) = 1+ b2

r2 +
b4

r4 + · · · ,
(

r � min{m−1
1 ,m−1

8 }
)
. (10.28)
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Fig. 32. Typical profile functions of f (r) (solid line) and g(r) (broken line). The parameters are set to m1 = 1
and m8 = 2 for the left panel and m1 = 2 and m8 = 1 for the right panel.

While numerical study is needed to determine the coefficients ci and di , the coefficients ai and bi

are analytically determined [111] as

a2 = −1

3

(
1

m2
1

+ 2

m2
8

)
, b2 = −1

3

(
1

m2
1

− 1

m2
8

)
. (10.29)

Full numerical profile functions were also obtained in Refs. [111,261].
The configurations in Eq. (10.22) are connected by the flavor rotation SU (3)L+R and all of them

form an infinitely degenerate family [261]. Since the configurations in Eq. (10.22) are invariant under
the little group U (2)L+R, the physically independent solutions are labeled by

SU (3)L+R

U (1)L+R × SU (2)L+R
� CP2. (10.30)

Therefore, CP2 Nambu–Goldstone modes appear as semi-superfluid non-Abelian vortices. However,
these CP2 Nambu–Goldstone modes are not localized around a vortex. Instead, the wave functions
of the CP2 modes extend to spatial infinity, because SU (3)L+R transformations change the boundary
conditions at spatial infinities, as can be seen in Eq. (10.22). They are non-normalizable and should
be regarded as more like bulk modes.16

The intervortex force between two well separated non-Abelian axial vortices was obtained in
Ref. [244]. The details of the calculations are quite similar to those in Sect. 4.2. As explained in
Sect. 4.2, as far as two string interaction is concerned, only an SU (2)L+R rotation is enough to set
up two strings whose relative orientation is generic. In the following, we fix the amplitudes f (r) and
g(r) at one, which is valid for a vortex distance 2R much larger than the mass scales m−1

1 ,m−1
8 .

Thus, we take two well separated strings parallel to the z-axis separated with the distance 2R into
the x-axis as in Fig. 8:

�1 = vdiag(eiθ1, 1, 1), (10.31)

and

�2 = v

⎛
⎜⎝g

(
eiθ2

1

)
g−1 0

0 1

⎞
⎟⎠ , (10.32)

where g is an element of SU (2)L+R:

g = cos
α

2
+ i �n · �σ sin

α

2
. (10.33)

16 If gL were the gauge transformation, as is the case in Sect. 3 (gL → gC ∈ SU (3)C), the boundary condi-
tions are physically identical, because they can be transformed to each other by a suitable gauge transformation
in Eq. (4.19). Consequently, the CP2 modes would become normalizable.
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The interaction energy density of the two strings is obtained by subtracting two individual string
energies from the total configuration energy for the Abrikosov ansatz �tot = �1�2 as

F(r, θ, R, α) = Tr
(
|∂�tot|2 − |∂�1|2 − |∂�2|2

)

= ±(1+ cosα)

( −R2 + r2

R4 + r4 − 2R2r2 cos 2θ

)
, (10.34)

where the sign ± is for the vortex–vortex and vortex–anti-vortex pairs. Integrating this over the x–y
plane, one gets the interaction energy

E(a, α, L) = ±π(1+ cosα)
[
− ln 4− 2 ln R + ln(R2 + L2)

]
. (10.35)

Finally, the intervortex force can be obtained by differentiating E by the interval 2R as

f (R, α, L) = ±π(1+ cosα)

(
1

R
− R

R2 + L2

)
� ±(1+ cosα)

π

R
. (10.36)

Although the calculations here are quite similar to those in Sect. 4.2, there is a sharp contrast in
comparison with the intervortex forces. While the intervortex force of the semi-superfluid vortices is
independent of the orientation at the leading order, one of the non-Abelian axial vortices depends on
the relative orientation α at the leading order. This difference reflects the fact that the orientational
modes CP2 are normalizable or non-normalizable for semi-superfluid vortices or non-Abelian axial
vortices, respectively.

The intervortex force at the leading order in Eq. (10.36) vanishes at α = π/2. For instance, the
three configurations in Eq. (10.22) do not interact at this order. A U (1)A vortex can be marginally
separated to three non-Abelian axial vortices as

diag (eiθ , eiθ , eiθ )→ diag (eiθ1, 1, 1)× diag (1, eiθ2, 1)× diag (1, 1, eiθ3) (10.37)

at this order, where θ1,2,3 denotes an angle coordinate at each vortex center.
However, when the leading order term vanishes in general, one needs to consider the next-leading

order. The next-leading order of interaction between two vortices winding around different com-
ponents was obtained in the context of two-component Bose–Einstein condensates in Ref. [108]. In
terms of the parameters in Eq. (10.12), the interaction energy and force between vortices at a distance
2R much larger than m−1

1 ,m−1
8 are

Enext ∼ λ2
log(2R/ξ)

(2R)2 ,

fnext ∼ λ2
1

(2R)3

(
log

2R

ξ
− 1

2

)
, (10.38)

respectively, which is repulsive.

10.4. Composites of axial domain walls and axial vortices

Let us next take into account the instanton effects in the presence of vortices. We first consider
the chiral limit with massless quarks in Sect. 10.4.1, followed by the case with massive quarks in
Sect. 10.4.2.
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Fig. 33. A three-pronged fractional axial domain wall junction is formed in the presence of an Abelian axial
vortex in the chiral limit. The effective potential is Vη′ = −C cos 3ϕA, which is generated by the two-instanton
effect. The energy density is shown in the left panel and the U (1)A phase (cosϕA, sinϕA) is shown in the right
panel.

10.4.1. Abelian and non-Abelian axial vortices attached by fractional axial domain walls in the chi-

ral limit. In the chiral limit, the instanton-induced potential for the η′-boson is given in Eq. (10.1).
While we have studied domain walls in the chiral Lagrangian in Sect. 10.1, they remain almost the
same with slight modifications in the linear sigma model introduced in Sect. 10.2. Similarly to axion
strings, Abelian axial vortices are attached by axial domain walls in the presence of the instanton-
induced potential ∼ cos 3ϕA. Since the phase changes from ϕA = 0 to ϕA = 2π around a single
Abelian axial vortex, three different domain walls forming a three-pronged junction attach to it, as
illustrated in Fig. 33. Since the domain walls repel each other, the configuration becomes a Z3 sym-
metric domain wall junction. A numerical solution for this configuration was first obtained in the
chiral phase transition in the low baryon density region in Ref. [34].

Next, let us consider non-Abelian axial vortices in the presence of the instanton-induced potential
∼ cos 3ϕA [102]. The U (1)A phase changes by 2π/3 around a non-Abelian axial vortex. Therefore,
one fractional axial wall attaches to one non-Abelian axial vortex, as illustrated in Fig. 34. Let us
consider it in more detail, focusing on the configuration of the type diag(eiθ , 1, 1). In the vicinity of
the vortex, let us divide a closed loop encircling the vortex to the paths b1 and b2, as in Fig. 34. Then,
along the path b1 and b2, the order parameter receives the transformation by the group elements

g(θ) =
{

exp
[2i

3

(
θ + π

2

)
diag(1, 1, 1)

] ∈ U (1)A, b1 : −π
2 ≤ θ ≤ π

2

exp
[2i

3

(
θ − π

2

)
diag(2,−1,−1)

]
ω ∈ SU (3)L−R, b2 : π

2 ≤ θ ≤ 3
2π.

(10.39)

Only the U (1)A phase is rotated in the path b1 while only the SU (3)L−R transformation acts along
the path b2. This configuration was discussed in the chiral phase transition in the low baryon density
region in Ref. [33]. This is of course unstable because it is pulled by the domain wall tension to
spatial infinity [102].

As for non-Abelian semi-superfluid vortices, there is an M2 non-Abelian vortex, which is

� = v diag
(

g(r), eiθ f (r), eiθ f (r)
)

r→∞−−−→ v diag
(

1, eiθ , eiθ
)
= v ei 2θ

3 diag
(

e−i 2θ
3 , ei θ

3 , ei θ
3

)
, (10.40)
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Fig. 34. A non-Abelian axial vortex attached by a fractional axial domain wall with the instanton-in-
duced potential Vη′ = −C cos 3ϕA. Along the path b1, only the U (1)A phase is rotated by 2π/3. Then,
the SU (3)L−R transformation exp[(i/3)(θ − π/2)diag(2,−1,−1)] is performed along the path b2, where θ

(π/2 ≤ θ ≤ 3π/2) is the angle of the polar coordinates at the black point.

Fig. 35. An M2 non-Abelian axial vortex attached by two fractional axial domain walls with the instanton-in-
duced potential Vη′ = −C cos 3ϕA.

in the absence of the instanton-induced potential. In the presence of the instanton-induced potential,
the U (1)A phase rotates by −2π/3. Therefore, two axial domain walls are attached, as illustrated in
Fig. 35. A numerical solution was constructed in Ref. [33] with an approximation.

Let us point out that an axial vortex attached by three fractional axial domain walls decays into
a set of three non-Abelian axial vortices, each of which is attached by a fractional axial domain
wall [102]. Let us remember that, in the absence of the instanton-induced potential, an axial vortex
can be separated into three non-Abelian axial vortices without binding force at the leading order
as in Eq. (10.37), since the force in Eq. (10.36) vanishes at α = π . Therefore, the configuration of
the single Abelian axial vortex attached by three domain walls is unstable to decay, as illustrated
in the right of Fig. 36, because each non-Abelian axial vortex is pulled by the tension of a semi-
infinitely long domain wall. The U (1)A phase changes by 2π/3 around each of the non-Abelian
axial vortices attached by fractional axial domain walls. We show a detailed configuration of this
decaying configuration in Fig. 37. The Abelian axial vortex initially located at the origin O decays
into three non-Abelian axial vortices, denoted by the red, green, and blue dots. The three fractional
axial domain walls denoted by the red, blue, and green dotted lines initially separate � ∼ 13 and
ω13, ω13 and ω−113, and ω−113 and 13, respectively. The red, blue, and green non-Abelian axial
vortices are encircled by the paths

b1 − r3 + r2, b2 − r1 + r3, b3 − r2 + r1 (10.41)

respectively, as in Eq. (4.27) for non-Abelian semi-superfluid vortices. At the boundary of the spatial
infinity, the U (1)A phase is rotated by exp[iθdiag(1, 1, 1)] with the angle θ of the polar coordinates
from the origin O. Therefore, the U (1)A phase is rotated by 2π/3 along each of the paths b1, b2, and
b3. Let us suppose that the three paths in Eq. (10.41) enclose the three configurations in Eq. (10.22),
respectively. Then, we find that the transformations g(r) ∈ SU (3)L−R occur along the paths r1, r2,
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Fig. 36. Decay of a three-prolonged fractional axial domain wall junction in the chiral limit. The junction is
three unstable to decay non-Abelian axial vortices that are pulled by three semi-infinitely long fractional axial
domain walls. The figures (the potential energy density in the left panel and the total energy density in the right
panel) in the second line are snapshots taken at an instant. These figures clearly show three domain walls torn
off from the junction point. An initial configuration is the junction solution given in Fig. 33.

and r3 as

r1 : g(r) = exp[iu(r)diag(0,−1, 1)] =
{

diag(1, 1, 1), r = 0

diag(1, ω−1, ω), r = ∞
,

r2 : g(r) = exp[iu(r)diag(1, 0,−1)] =
{

diag(1, 1, 1), r = 0

diag(ω, 1, ω−1), r = ∞
, (10.42)

r3 : g(r) = exp[iu(r)diag(−1, 1, 0)] =
{

diag(1, 1, 1), r = 0

diag(ω−1, ω, 1), r = ∞
,

respectively, as in Eq. (4.28) for non-Abelian semi-superfluid vortices, where u(r) is a monotonically
increasing function with the boundary conditions u(r = 0) = 0 and u(r = ∞) = 2π/3. We find that
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Fig. 37. Classical decay of an axial domain wall junction. The three ground states are � = 13, ω13, and
ω−113 = ω213, and the origin O is � = diag(ω−1, 1, ω). The Abelian axial vortex initially located at the
origin O decays into three non-Abelian axial vortices, denoted by the red, green, and blue dots. The three
fractional axial domain walls denoted by the red, blue, and green dotted lines initially separate 13 and ω13,
ω13 and ω−113, and ω−113 and 13, respectively. b1, b2, and b3 are the paths with angles 2π/3 at the bound-
ary at spatial infinity, and r1, r2, r3 denote the paths from the origin O to spatial infinities. For b1, b2, and b3,
the U (1)A phase is rotated by exp[iθdiag(1, 1, 1)] with the angle θ of the polar coordinates. Along the paths
r1, r2, and r3, SU (3)L−R group transformations occur: exp[iu(r)diag(0,−1, 1)], exp[iu(r)diag(1, 0,−1)],
and exp[iu(r)diag(−1, 1, 0)], respectively, with a monotonically increasing function u(r) with the boundary
conditions u(r = 0) = 0 and u(r = ∞) = 2π/3.

the origin O is consistently given by

� = vdiag(ω−1, 1, ω). (10.43)

From a symmetry, permutations of each component are equally possible as the case of decay of a
U (1)B vortex.

The M2 non-Abelian axial vortex in Fig. 35 also decays into two non-Abelian axial vortices for
the same reason.

Note that there is a sharp contrast to the axion string. Though an axion string in the N = 3 axion
model also gets attached by three domain walls, the domain walls cannot tear off the axion string
into three fractional strings [355].

10.4.2. Abelian axial vortices attached by a composite axial domain wall with massive quarks.

What happens when we include an effect caused by the quark masses? The dominant contribution to
the potential for the η′ meson in the high density limit is ∼ cosϕA, as in Eq. (10.8). One interesting
consequence is that this potential does not allow the existence of a non-Abelian axial vortex alone.
For the single-valuedness of ϕA, a set of three non-Abelian axial vortices must appear at the same
time as an integer Abelian axial vortex, and a single integer axial domain wall attaches to it, as
illustrated in the left panel of Fig. 38.

When both cosϕA and cos 3ϕA exist, there appears an integer axial domain wall as a composite of
three fractional axial domain walls, as discussed in Sect. 10.1.2. Again, only an Abelian axial vortex
can exist, which is attached by an integer axial domain wall as a composite of three fractional axial
domain walls, as illustrated in the right panel of Fig. 38.

10.5. Quantum decays of axial domain walls

10.5.1. Decay of integer axial domain walls. In the U (1)A model with the potential V ∼ cosϕA,
the minimum domain wall is an integer axial domain wall interpolating between ϕA = 0 and ϕA =
2π , given in Eq. (10.9). While this domain wall is classically stable [60], it is metastable if one takes
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Fig. 38. An Abelian axial vortex attached by axial domain walls for the effective potential
Vη′ = −α cosϕA − C cos 3ϕA with α ≡ 6Am + 12Bm2. When C = 0, a fat single axial domain wall attaches
to an axial vortex. When neither α nor C are zero, three thin domain walls are bounded as in Fig. 31 and attach
to a vortex. The case with α = 0 and C �= 0 is shown in Fig. 33.

Fig. 39. Unwinding an integer axial domain wall. The potential is composed of a Mexican hat potential plus
a linear potential. A metastable axial domain wall is represented by a red loop. This can be unwound through
the blue and green loops by quantum tunneling.

(a) (b)

Fig. 40. Quantum decay of an integer axial domain wall. (a) A hole bounded by a pair of an Abelian axial
vortex and an Abelian axial anti-vortex is created in d = 2+ 1. The numbers denote the phase of ϕA. (b) A
two-dimensional hole bounded by a closed Abelian axial vortex is created in d = 3+ 1.

into account the quantum tunneling effect, and it can decay into the ground state quantum mechan-
ically (or thermally), as illustrated in Fig. 39. This is also discussed in Ref. [30], where it is called
a ribbon soliton. Since the axial domain wall separates ϕA = 0 and ϕA = 2π , which are equivalent,
a hole can be created as in Fig. 40(a), where the order parameter remains the same along the path c
through the hole. The U (1)A phase is rotated counterclockwise along the closed counterclockwise
loop b1 + c; it encloses an Abelian axial vortex, denoted by the black point in Fig. 40(a). On the
other hand, the U (1)A phase is rotated clockwise along the counterclockwise loop −c − b2, which
encloses a U (1) anti-vortex, denoted by the white point in Fig. 40(a). Therefore, the hole is bounded
by a pair of a vortex and an anti-vortex. In d = 3+ 1 dimensions, a two dimensional hole bounded
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by a closed Abelian axial vortex loop is created, as illustrated in Fig. 40(b). The energy of the axial
domain wall turns to the radiation of the η′ mesons.

Let us calculate the decay probability of axial domain walls. Similar calculations were done for the
U (1)A axial domain wall in the 2SC phase in Ref. [335] and an application of their calculations to
the CFL phase was also pointed out there. Once the hole is created on the integer axial wall, it will
expand if the size of this hole is larger than a critical value, and the axial domain wall decays. The
quantum tunneling probability of this process can be calculated following Ref. [277]. Let R be the
initial radius of the hole created on the axial domain wall. Then, the bounce action of this tunneling
process is

B = 4π R2Tv − 4

3
π R3Tw, (10.44)

where Tv and Tw stand for the tensions of the vortex and the axial domain wall, respectively. The
critical radius Rc is the one that minimizes this bounce action, given by

Rc = 2Tv

Tw
. (10.45)

Thus, the decay probability is

P ∼ e−B
∣∣

R=Rc
= exp

(
−16π

3

T 3
v

vη′T 2
w

)
. (10.46)

The factor 1/vη′ in the exponent reflects the fact that vη′ is the speed of the modes in this system
[335]. Since we have Tv ∼ f 2

η′ log L/�CFL ∼ μ2 log L/�CFL and Tw ∼
√

B fη′m ∼ �CFLμm, the

decay probability is roughly estimated as P ∼ exp[−(μ log L/�CFL)
4/(�CFLμ)2]. Here, L is an IR

cutoff scale and we choose �CFL as a UV cutoff. Thus, at the high baryon density limit, the decay
probability becomes parametrically small and the integer axial domain walls have a long lifetime.

10.5.2. Decay of fractional axial domain walls. The U (1)A model with the potential V ∼ cos 3ϕA

allows the ground states ϕA = 0, ϕA = 2π/3, and ϕA = 4π/3, and the minimum domain wall is a
fractional axial domain wall interpolating between two of them, say ϕA = 0 and ϕA = 2π/3, as given
in Eq. (10.4). As described in Sect. 10.1.1, minimum axion domain walls in the N = 3 axion models
are stable because they connect the vacua with different phases ϕA.

On the other hand, fractional axial domain walls in the CFL phase also interpolate between two
different ground states, say ϕA = 0 and ϕA = 2π/3, separated by the potential term V ∼ cos 3ϕA for
the phase ϕA. However, they are not stable, unlike the case of the N = 3 axion model, but they are
metastable and can decay quantum mechanically or thermally [102]. The point is that these ground
states can be connected by a path in the SU (3)L−R group without a potential inside the whole order
parameter space U (3)L−R+A = [SU (3)L−R ×U (1)A]/Z3. To see this, we note that the ground states
ϕA = 0, 2π/3, and 4π/3 are � ∼ 13, ω13, and ω213 = ω−113, respectively, with ω = e2π i/3. Let
us first consider d = 2+ 1 dimensions for simplicity. For example, let us consider an axial domain
wall interpolating between � ∼ 13 and � ∼ ω13, as in the left panel of Fig. 41. This wall can decay
by creating the path c in the right panel of Fig. 41, along which the two ground states 1 and ω are
connected by

exp

[
i

3

(
θ − π

2

)
diag(2,−1,−1)

]
ω =

⎧⎪⎪⎨
⎪⎪⎩
ω, θ = π

2

1, θ = 3

2
π

(
π

2
≤ θ ≤ 3

2
π

)
(10.47)
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Fig. 41. Quantum decay of a fractional axial domain wall. A pair of a non-Abelian axial vortex and a
non-Abelian axial anti-vortex is created.

in the SU (3)L−R group. Here θ represents the angle from the black point. Then, one finds that the
counterclockwise loop b1 + c encloses a non-Abelian axial vortex of the type diag (eiθ , 1, 1) (rep-
resented by the black point). This is nothing but the configuration in Fig. 34. The clockwise closed
loop −b2 + c also encloses a non-Abelian axial vortex (denoted by the white point), which implies
that it is a non-Abelian axial anti-vortex. Therefore, a hole bounded by a pair of a non-Abelian axial
vortex and a non-Abelian axial anti-vortex is created.

In d = 3+ 1 dimensions, a two dimensional hole bounded by a closed non-Abelian axial vortex
loop is created as the Abelian case. When one deforms the path b1 to−c in Fig. 41, one must create a
non-Abelian vortex, implying an energy barrier between these two paths. Therefore, the calculation
of the decaying probability is the same as Eqs. (10.44)–(10.46) in the case of an integer axial domain
wall, replacing the tension of vortices and domain walls with non-Abelian ones. Through this decay-
ing process, the domain wall energy turns to radiation of the U (3)L−R+A Nambu–Goldstone modes
(the η′ meson and the CFL pions).

We conclude this subsection by noting that, while integer axial domain walls can decay without
SU (3)L−R degrees of freedom, fractional axial domain walls can decay once SU (3)L−R degrees of
freedom are taken into account, unlike the case of the N = 3 axion model, in which domain walls
are stable.

10.6. Quantum anomalies and transport effects on topological defects

It is well known that the axial U (1)A symmetry is explicitly broken by the quantum anomaly in the
QCD vacuum. Even at finite density, it was found that the anomaly plays important roles, especially
in the presence of topological solitons [332,337]. Because the effective theory has to reproduce the
anomaly relation of QCD, the effective theory given in Sect. 2.2.2 should be corrected. The additional
terms were found in Ref. [337] as

Lanom = 1

16π2 ∂μϕA

[
e2CAγ γ Aν F̃μν − 2eCABγ

(
μnν − 1

2
∂νϕB

)
F̃μν

− 1

2
CABBε

μναβ

(
μnν − 1

2
∂νϕB

)
∂α∂βϕB

]
, (10.48)

with nν = (μ, 0, 0, 0). The first term describes two-photon decay like η′ → 2γ . For the CFL phase,
the coefficients were found as

CAγ γ = 4

3
, CABγ = 2

3
, CABB = 1

3
. (10.49)

Although the anomalous terms do not contribute to the equations of motion since they are total
derivatives, they give extraordinary effects if a topological soliton exists. According to Ref. [337],
here we review two phenomena below. The first anomalous phenomenon is axial current on a U (1)B
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Fig. 42. Schematic pictures of the anomaly effects on a U (1)B superfluid vortex, an axial domain wall, and an
axial vortex (drum vorton) [337].

superfluid vortex. Let us consider a straight U (1)B superfluid vortex extending along the z-axis.
Then, rotation of the U (1)B phase is j3

B = (∂x∂y − ∂y∂x )ϕB = 2πδ(x)δ(y); see Eqs. (2.63) and (3.5).
Therefore, in the presence of a U (1)B superfluid vortex, the anomaly term reduces to

Lanom = μ

12π

∫
dt dz ∂zϕA. (10.50)

From Noether’s theorem, this anomalous term gives the non-zero axial current

jA
μ =

μ

12π
(0, 0, 0, 1). (10.51)

Thus, there is an axial current running on the superfluid vortex; see Fig. 42.
The second anomalous phenomenon is magnetization of axial domain walls under a background

magnetic field �B. Let us consider an axial domain wall perpendicular to the z-axis. Since the U (1)A

phase ϕA changes from 0 to 2π along the z-axis, we have non-zero ∂zϕA. Then the anomaly term
reduces to

Lanom = eμ

12π2
�B · �∇ϕA. (10.52)

This equation implies that the axial domain wall is magnetized with a finite magnetic moment per
unit area equal to

M = eμ

6π
. (10.53)

The magnetic moment is oriented perpendicular to the axial domain wall.
This phenomenon can be understood in a different way. Since an axial domain wall is metastable,

it is bounded by an axial vortex; see Fig. 42. It is called a drum vorton [70], which was first found
in a nonlinear sigma model at finite temperature. Since εi jk∂ j∂kϕA = 2πδ2(x⊥) on the axial vortex,
the anomalous action can be written as a line integral along the vortex as

Sanom = eμ

3π

∫
d �� · �A. (10.54)

This means that an electric current runs along the core of the axial vortex equal to

jEM = eμ

3π
. (10.55)

When the axial vortex surrounds an axial domain wall, it gives rise to a magnetic moment per unit
area equal to jEM/2 = eμ/(6π), which is exactly the same as Eq. (10.53).
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These anomalous effects were further investigated in Ref. [332], in which it was found that a strong
magnetic field of order 1017–1018 [G] transforms the CFL phase into a new phase containing multi-
ple η (or η′) domain walls, which are magnetized due to the anomalous effects. It was also proposed
in Ref. [332] that enormously strong magnetic fields of magnetars (1014–15 [G]) are due to ferromag-
netism (spontaneous magnetization) by the non-zero gradient of the chiral field in the meson current
(Goldstone boson current) phase [213,304]. There are also a number of works studying anomalous
phenomena. The so-called chiral magnetic effects [139,201] are similar phenomena that occur when
a system with a non-zero chiral chemical potential is under a strong magnetic field. Electric charge
separation of Q-balls by the chiral magnetic effect was studied in Ref. [100], and seemingly anomaly
induced electric charges on a baryon as a Skyrmion under a strong background magnetic field were
discussed in Refs. [99,202,362]. It was found in Ref. [151] that fermions escape during the decay
process of metastable defects through the anomaly term. It was found for low-density nuclear matter
that a stack of magnetized pionic domain walls is energetically more favorable than nuclear matter
[332]. The relation between the ferromagnetism of neutron stars and a stack of magnetized pionic
walls was also discussed in Ref. [98]. It has also been proposed that an anomalous global vortex may
generate primordial magnetic fields in galaxies [59].

10.7. Skyrmions as qualitons

As discussed in Sect. 2.2.2, there are Nambu–Goldstone boson modes (CFL mesons), namely
SU (3)C+L+R octet and singlet modes, in the ground state of the CFL phase. The nonlinear real-
ization of the Nambu–Goldstone bosons gives the effective Lagrangian whose forms are restricted
by SU (3)C+L+R symmetry. The simplest form of the effective Lagrangian for the pion field is consti-
tuted by the kinetic term, the four-derivative term (the Skyrme term), and the Wess–Zumino–Witten
term from the chiral anomaly:

Leff = F2

4
Tr
(
D0�LD0�

†
L

)
− F ′2

4
Tr
(
Di�LDi�

†
L

)
+ LSkyrme + nLLWZW

+ (L↔ R)+ · · · , (10.56)

where �L,R is restricted by | det�L,R| = 1, nL = 1, and the ellipsis denotes the terms with the higher
order derivative.17 F is the “pion decay constant” in the CFL phase. Because of the nontrivial third
homotopy group of the order parameter manifold,

π3[U (3)L−R+A] � Z, (10.57)

one expects the existence of Skrmions [326,328] as three-dimensional textures, as explained in foot-
note 15. As the solution, there is a “hedgehog” configuration as the most stable (soliton) state from
the energy balance between the kinetic term and the Skyrme term [175]. The Wess–Zumino–Witten
term guarantees the correct quantization of the soliton as a spin 1/2 object. The winding number in
Eq. (10.57) carries the baryon charge (1 mod 2)/3. We note that U (1)B symmetry for baryon num-
ber conservation in the QCD Lagrangian is broken to Z2 symmetry in the CFL phase, because the
transformation q →−q for the quark field q leaves the condensate invariant. This stable object is
called a “qualiton” (or “superqualiton”) [175]. Since the low-energy constants as the coefficients in
the effective Lagrangian in the CFL phase are calculable by matching with QCD in high density

17 The Skyrme term that stabilizes the hedgehog solution was given in Ref. [190].
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limit, we obtain the hedgehog configuration and hence the mass of the qualiton. They were given as
α 4πF [174,175], with α = O(0.1− 1) and the pion decay constant F in the CFL phase. We note
that the mass α 4πF is proportional to the chemical potential μ because F ∼ μ (see Eq. (2.86)).
However, this is different from the quark mass (2.29) in the CFL phase. This discrepancy will be an
interesting problem. The mass of the qualiton is important, because the qualiton can be produced
easily in the ground state and can cause the rearrangement of the ground state, if the mass is smaller
than the gap [175].

We make a comment that the word “qualiton” was originally used in the quark soliton model to ana-
lyze the properties of hadrons in vacuum at zero chemical potential. We have to be careful to strictly
distinguish the “qualiton” in the CFL phase from that in vacuum. The qualiton in the CFL phase cor-
responds rather to the Skyrmion in vacuum. Thus we observe that the state of “qualiton” in the CFL
phase corresponds to the baryon state in vacuum. In fact, there is a discussion that the qualiton is
identical to the quark [175]. This may support the idea of the “quark–hadron duality”, which indicates
the correspondence of the low-energy modes in the CFL phase and those in vacuum [190,215].

11. Topological objects in other phases

We review topological solitons in phases other than the CFL phase in this section. The CFL phase
discussed so far is the ground state at high densities where masses of the three flavors are small
compared to the baryon chemical potential. If one lowers the density gradually, the effect of finite
strange quark mass comes in. Then it is expected that kaons form a condensate in addition to the
CFL condensates. This is called the CFL+K phase [47]. If the density is further decreased, only the
light flavors (u and d) contribute to the condensate, which is called the 2SC phase [32]. In Sect. 11.1,
we discuss the domain walls and color magnetic fluxes in the 2SC phase. In Sect. 11.2, we review
the strings, vortons, domain walls, and drum vortons in the CFL+K phase.

11.1. 2SC phase

11.1.1. U (1)A domain walls. The CFL phase changes into the so-called 2SC phase at a lower
density [11,31,32,280]. Due to asymmetry among the strange quark mass and the masses of the up
and down quarks, only up and down quarks form Cooper pairs in the 2SC phase. The 2SC pairing
pattern is thus given by

(�L,R)
A
a ∼ δA

3 δ3
a, (11.1)

where the symmetry breaking pattern is

SU (3)C × SU (2)L × SU (2)R ×U (1)B ×U (1)S ×U (1)A

→ SU (2)C × SU (2)L × SU (2)R × Ũ (1)B ×U (1)S. (11.2)

Here we assume that the up and down quarks are massless. The axial U (1)A symmetry is not an
exact symmetry but it is explicitly broken by instanton effects. Ũ (1)B is a linear combination of the
original U (1)B and the broken U (1)8 ∈ SU (3)C generated by T8. The U (1)S is the phase rotation of
the strange quark. The order parameter space is of the form

M2SC = SU (3)C ×U (1)B

SU (2)C × Ũ (1)B
×U (1)A. (11.3)

It was observed that metastable U (1)A domain walls [335] also exist in the 2SC phase. Although
domain walls are very familiar in field theory, it is widely believed that the standard model has no
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domain walls. It was pointed out that metastable domain walls could exist in QCD at zero temperature
and density [127], but no definite statement can be made because the theory is not under theoretical
control. In contrast, QCD at high density is a weakly coupled theory due to asymptotic freedom, so
that the relevant physics are under theoretical control. In Ref. [335], it was found that QCD at high
density, especially in the 2SC phase, must have domain walls.

The domain walls in the 2SC phase are similar to those explained in Sect. 10.1.2. In the 2SC phase,
the chiral symmetry is not broken but the U (1)A is spontaneously broken by the diquark conden-
sate. Then the relevant order parameter manifold is U (1)A. The corresponding mode ϕA is a pseudo
Nambu–Goldstone field, which gets a finite mass by instanton effects. The effective Lagrangian is

L = f 2
[
(∂0ϕA)2 − v2(∂iϕA)2

]
− Vinst, (11.4)

where the constants f and v were determined [43] as f 2 = μ2/8π2 and v2 = 1/3. Vinst stands for
an instanton-induced effective potential that was calculated [335] as

Vinst = −aμ2�2
CFL cosϕA. (11.5)

The dimensionless coefficient a that vanishes at μ→∞ is given by

a = 5× 104
(

log
μ

�QCD

)7 (�QCD

μ

) 29
3

. (11.6)

The Lagrangian (11.4) is in the same form as Eq. (10.8), so that integer sine-Gordon domain walls
exist. The domain wall tension was found to be

T 2SC
w = 8

√
2av f μ�CFL. (11.7)

Its decay probability was also calculated [335] as

� ∼ exp

{
−π4

3

v3

a

μ2

�2
CFL

(
log

1√
a

)3
}
. (11.8)

Since a decreases with increasing μ, the decay rate is suppressed and the domain walls are long-lived
[335].

11.1.2. Color magnetic flux tubes. The interesting problem of the color Aharonov–Bohm scatter-
ing of fermions off the color magnetic flux tubes18 in the 2SC phase and forces exerted on vortices
are studied in Ref. [14]. The authors calculated the cross section for Aharonov–Bohm scattering of
gapless fermions off the flux tubes, and the associated collision time and frictional force on a moving
flux tube. Since the CFL phase has no gapless quarks, a color magnetic flux tube in the 2SC phase
is considered where several massless fermions are present and the effect would be more significant
than in the CFL phase.

The Aharonov–Bohm effect turns out to lead to a strong interaction between a charged particle and
a magnetic flux tube. In the case of a single U (1) gauge group, the cross section per unit length is

18 Since they are non-topological solitons and their stability is not ensured by the symmetry, they would be
unstable against decay.
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given by [15]

dσ

dθ
= sin2(πβ̃)

2πk sin2(θ/2)
, β̃ = qp

qc
, (11.9)

where qp and qc are the charges of the scattering particle and condensed field respectively, k is the
momentum in the plane perpendicular to the vortex, and θ is the scattering angle. The Aharonov–
Bohm interaction has several important characteristics:

◦ The cross section vanishes if β̃ is an integer.
◦ The cross section is independent of the thickness of the flux tube. The scattering occurs even at

energies much smaller than the symmetry breaking scale.
◦ The cross section diverges for small k and forward scattering θ ∼ 0.

Thus, it is important to determine the values of β̃ for gapless fermions in the 2SC phase, which is
done in Ref. [14].

The authors also calculated the characteristic timescale for a perturbation from equilibrium to relax,
due to scattering of the fermions off the color magnetic flux tubes. The timescale is roughly the mean
free time of collisions of fermions off fluxes, which is evaluated for a fermion species i as

τ−1
i f =

nv

pFi
sin2(πβ̃i ), (11.10)

where nv is the vortex area density and pFi is the Fermi momentum of the fermion denoted by i .
The timescale are compared with the relaxation time due to Coulomb interactions,

τ−1
qq =

6ζ(3)

π2 α̃T, (11.11)

where ζ(3) = 1.202, T is the temperature, and α̃ is the fine structure constant for the rotated electro-
magnetism. The temperature T f below which flux tubes dominate the relaxation of deviations from
thermal equilibrium is determined as

T f = π2

6ζ(3)

sin2(πβbu)

α̃

nv

μq
, (11.12)

where βbu is the β for the up blue quark (which is the most abundant) and μq is the quark chemi-
cal potential. Below the temperature (11.12), the Aharonov–Bohm scattering plays the main role in
thermal relaxation.

11.2. CFL+ K

In this section, we will review solitons in the CFL+K phase. We will ignore instanton effects in
Sect. 11.2.1 and take them into account in Sect. 11.2.2.

11.2.1. Superconducting strings and vortons. The CFL phase is the ground state in the massless
three-flavor limit in high-density QCD. If one considers a finite strange quark mass, it puts a stress
on the ground state to reduce the strange quark density compared to up and down quarks. As long as
the strange quark mass is small, it cannot overcome the diquark pairing energy and the ground state
is in the CFL phase. At sufficiently large strange quark masses, a kaon condensate would be formed
[44,47,300], since kaons K 0 (ds̄) and K+ (us̄) are the lightest mesons [333] that can reduce the strange
quark content of the ground state. Kaon condensation is characterized by the spontaneous breaking
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of U (1)Y symmetry or U (1)EM symmetry, or both. Let us denote the kaon field as K = (K+, K 0)T .
The field K is transformed under U (1)Y and U (1)EM symmetry as(

K+

K 0

)
→ eiα

(
K+

K 0

)
,

(
K+

K 0

)
→
(

eiβ(x)K+

K 0

)
, (11.13)

respectively, where α and β(x) are parameters characterizing U (1)Y and U (1)EM transformations.
We here consider the phase in which U (1)Y symmetry is broken in the bulk. The diquark condensate
takes the form

�K 0 =

⎛
⎜⎝1 0 0

0 cos θ0 e−iψ sin θ0

0 −eiψ sin θ0 cos θ0

⎞
⎟⎠ , (11.14)

where θ0 represents the strength of the K 0 condensation and the phase ψ corresponds to the Nambu–
Goldstone mode associated with the spontaneous breaking of the hypercharge symmetry U (1)Y. The
strength of condensation was found [47] as

cos θ0 =
m2

0

μ2
eff

, m2
0 =

3�2
CFL

π2 f 2
π

mu(md + ms), μeff = m2
s

2pF
. (11.15)

We can expect the appearance of topological vortices that are characterized by U (1)Y winding
numbers [128,330]. Furthermore, a particularly interesting possibility is pointed out: the cores of
U (1)Y vortices can be electromagnetically charged and superconducting [194]. Namely, U (1)EM

symmetry is broken only inside vortices. We here briefly review these topological vortices following
the argument given in Ref. [61]: Firstly, we expand the chiral Lagrangian (2.83) to the fourth order
in the lightest fields K = (K+, K 0) as

LK = |∂0K |2 − v2|∂i K |2 − λ

(
|K |2 − η2

2

)2

− δm2K †σ3K , (11.16)

with

λ � 4μ2
eff − m2

0

6 f 2
π

, λη2 = μeff −
m2

0 + m2+
2

, δm2 = m2+ − m2
0

2
, (11.17)

m2
0 =

3�2
CFL

π2 f 2
π

mu(md + ms), m2
+ =

3�2
CFL

π2 f 2
π

md(ms + mu). (11.18)

The reduced theory (11.16) has a stable topological vortex solution whose profile is described by the
standard ansatz [61]

K 0(r, θ) =
√

μ2
eff − m2

0

2λ
f (r)eiθ , K+(r, θ) = σg(r), (11.19)

where the profile functions f (r) and g(r) satisfy the boundary conditions f (∞) = 1, f (0) = 0,
g(∞) = 0 and g′(0) = 0. At the center of the vortex core, there is a non-zero K+ condensate. Since
K+ is charged, the vortex is a superconducting string: A persistent electromagnetic current can flow
on a U (1)Y vortex. In contrast, U (1)Y symmetry is restored inside vortices since the K 0 condensate
vanishes. Such vortices are dense-QCD realizations of the superconducting cosmic strings, that have
been studied for a long time [372].
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Vortex loops that carry persistent currents are called “vortons” in the context of cosmic strings
[84]. The vortons may exist in the CFL+K0 phase [45,46,61,62,194]. For the vortons, we should add
a time and z dependence in the phase of K+ as

K 0 = K 0
string(r, θ), K+ = K+cond(r, θ)e

−iωt+ikz, (11.20)

where z is the coordinate along the vortex loop. Substituting this into the original Lagrangian (2.83)
and picking up all the terms to fourth order in the fields, one finds [61]

L̃K = −v2
π |∂i K 0|2 − v2

π |∂i K+|2

+ M2
0 |K 0|2 + M2

+|K+|2 − λ|K 0|4 − λ+|K+|4 − ζ |K 0|2|K+|2, (11.21)

with the parameters defined by

ωeff = ω + μeff, M2
0 = μ2

eff − m2
0, M2

+ = ω2
eff − v2

πk2 − m2
+, (11.22)

λ+ =
4(ω2

eff − v2
πk2)− m2+

6 f 2
π

, ζ = (ωeff + μeff)
2 + 4ωeffμeff − v2

πk2 − m2+ − m2
0

6 f 2
π

. (11.23)

The vorton is characterized by two additional conserved changes; a topological charge and a Noether
charge

N =
∮

C

dz

2π
arg log K+ = k R, (11.24)

Q =
∫

d3x j0
+ ∼ RωeffS, (11.25)

with R being the radius of the vorton and S ≡ ∫ d2x |K+|2. The stability of the vorton can be seen
by finding the R dependence of the energy of the vorton

Evorton(R) �
{

2π2(μ2
eff − m2

0)

λ
v2 log

L

ξ

}
R +

(
1

2π S
+ 2πv2

π N 2S

)
1

R
. (11.26)

The existence of a global minimum implies that the vorton is stable and its size is given by

2π R =
√

Q2 + (2π)2v2
π N 2S2

π Sv2(log L/ξ)(μ2
eff − m2

0)/λ
. (11.27)

Note that there are no constraints on the size of vortons. The vortons can be any size as can cosmic
string vortons.

11.2.2. Domain walls and drum vortons. It was pointed out in Ref. [330] that the CFL+K phase
may have metastable domain walls. When weak interactions are taken into account, U (1)Y symmetry
is explicitly broken. So the U (1)Y Nambu–Goldstone mode ψ gets a small mass. This is seen in the
effective theory in Eq. (11.16) by adding an effective potential [330]

V (ψ) = f 2
πm2 cosψ, (11.28)

m2 = 162
√

2π

21− 8 log 2

GF

gs
cos θC sin θCmums�

2
CFL, (11.29)

where GF is the Fermi constant and θC is the Cabbibo angle. Thus the effective theory for the quasi
Nambu–Goldstone particle ψ is the sine-Gordon model, and there exists a metastable domain wall
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solution that we call the kaon domain wall

ψ(z) = 4 arctan emz/vπ , (11.30)

where z is a coordinate perpendicular to the domain wall. The tension of the domain wall was
calculated [330] as

T K
dw = 8vπ f 2

πm. (11.31)

It was also found that the decay rate of the kaon domain wall with respect to hole nucleation is
parametrically small at high density and zero temperature:

� ∼ exp

(
−π4v3

π

12

f 2
π

m2 log
mK

m

)
, (11.32)

with f 2
π/m2 ∼ μ2/m2.

Let us next consider the superconducting vortices explained in Sect. 11.2.2 in the presence of the
instanton-induced potential. As we have seen in Sect. 10, a kaon domain wall must be attached to a
kaon superconducting string due to the potential in Eq. (11.28). When a kaon domain wall decays
with a hole nucleation, a kaon superconducting string attaches to the edge of the hole.

Let us next turn to kaon vortons in the presence of the potential (11.28). Since any kaon super-
conducting strings are attached by the kaon domain walls, the kaon vortons also have domain walls
stretched across their surfaces as drums [61]. They are called drum vortons [70], and were first found
in a nonlinear sigma model at finite temperature. It has been argued that the domain wall gives an
upper bound on the size of vortons, in contrast to the vortons without domain walls [61].

12. Summary and discussions

Quark matter at extremely high density becomes a color superconductor due to the formation of
diquark pairings. It exhibits superfluidity as well as color superconductivity because of the sponta-
neously broken baryon symmetry as well as color symmetry. When a color superconductor is rotating,
as is the case if it is realized in the core of a neutron star, non-Abelian vortices are created along the
rotation axis. Non-Abelian vortices are superfluid vortices carrying 1/3 quantized circulation and
a color magnetic flux. Corresponding to the color of the magnetic flux, a non-Abelian vortex car-
ries orientational zero modes CP2. The properties of non-Abelian vortices have been studied in
the time-dependent GL effective theory for high density QCD and the BdG equation. A superfluid
U (1)B vortex decays into a set of three non-Abelian vortices, because the interaction between two
non-Abelian vortices at large distance is repulsive, independent of orientational modes. Two kinds of
bosonic gapless modes propagate along a non-Abelian vortex string. One is a translational or Kelvin
mode with a quadratic dissipation (of the type II Nambu–Goldstone mode), and the other is an ori-
entational CP2 zero mode with a linear dissipation (of the type I Nambu–Goldstone mode). The
dynamics of these modes can be described by the low-energy effective theories on the 1+ 1 dimen-
sional vortex world-sheet, a free complex scalar field with the first derivative with respect to time
and a CP2 model, respectively in d = 1+ 1 dimensions. The SU (3) isometry of the CP2 space is
exact, neglecting quark masses and electromagnetic interactions. The effect of strange quark mass
can be taken into account as an effective potential in the CP2 vortex effective theory, which shows
that all vortices decay into one kind immediately. On the other hand, the electromagnetic interaction
contributes a finite correction to the tension of the non-Abelian vortex, which also induces an effec-
tive potential in the CP2 vortex effective theory. As stationary solutions of the effective potential,
there exist the BDM vortex as the ground state in the absence of strange quark masses, metastable
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CP1 vortices, and unstable pure color vortices. Metastable CP1 vortices decay into the BDM vor-
tex through quantum tunneling. Another effect of the electromagnetic interactions is that the vortex
effective theory becomes a U (1) gauged CP2 model.

Neutron vortices and proton vortices exist in the npe phase because of neutron superfluidity and
proton superconductivity under rotation and magnetic field, respectively. The existence of colorful
boojums has been predicted in the interface between the CFL phase and the npe phase, between
which there may be other phases, such as the CFL+ K, 2SC phases, and so on. At a colorful boojum,
three non-Abelian vortices with the total color flux canceled out join in the CFL phase, and three
neutron vortices and three proton vortices meet in the npe phase. There appear a Dirac monopole
of the massless gauge field and a surface current of the massive gauge field. Two kinds of colored
monopoles appear at non-Abelian vortices when strange quark mass is taken into account.

At the extremely high density limit in which the strange quark mass can be neglected, there appears
a quantum mechanically induced potential in the low-energy CP2 vortex effective theory through
non-perturbative effects. Consequently, there appear quantum monopoles confined by non-Abelian
vortices as kinks on the vortex, which are relevant to show a duality between the confining phase,
where quarks are confined and monopoles are condensed, and the CFL phase, where monopoles are
confined and quarks are condensed. Yang–Mills instantons are trapped inside a non-Abelian vortex
and stably exist as lumps or sigma model instantons in the d = 1+ 1 dimensional CP2 model in the
vortex world-sheet.

The interactions between a non-Abelian vortex and phonons and gluons have been obtained by
a dual transformation in which the phonon field and the gluon field are dualized into an Abelian
two-form field and a non-Abelian massive two-form field, respectively. On the other hand, the inter-
action between the mesons and a non-Abelian vortex can be described in the chiral Lagrangian.
The interaction between a non-Abelian vortex and photons can be described by a U (1) gauged
CP2 model. One interesting consequence of the electromagnetic interactions is that a lattice of
non-Abelian vortices behaves as a polarizer.

It has been shown in the BdG equations that there exist localized and normalizable triplet Majorana
fermion zero modes and a localized but non-normalizable singlet Majorana fermion zero mode in
the core of a non-Abelian vortex. The low-energy effective theory of the localized gapless fermions
propagating along the vortex string has been constructed and the chemical potential dependence of
the velocity of gapless modes has been obtained. The index theorem for the fermion zero modes in
the background of a non-Abelian vortex ensures the existence of such fermion zero modes. As a
result of the Majorana property, localized fermions do not carry a current along a vortex string. A
characterization of color superconductors as topological superconductors has also been discussed.
As a novel application of Majorana fermion zero modes trapped inside a non-Abelian vortex, the
exchange statistics of non-Abelian vortices in d = 2+ 1 dimensions has been studied and a new
non-Abelian statistics has been found.

In the CFL phase, the chiral symmetry is also spontaneously broken, and there appear various
kinds of topological objects, such as axial domain walls, Abelian and non-Abelian axial strings, and
Skyrmions. In the chiral limit with massless quarks, the instanton-induced potential shows that a non-
Abelian axial string is attached by an axial domain wall. An Abelian axial string is attached by three
axial domain walls and decays into three non-Abelian axial vortices, each of which is attached by an
axial domain wall. In the presence of quark masses, three axial domain walls attract each other to be
combined as a composite wall. Consequently, three axial domain walls attached to an Abelian axial
string are also combined. While integer and fractional axial domain walls are metastable classically,
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they decay by quantum tunnelings. The quantum anomaly induces an axial current along U (1)B

superfluid vortices, and an electric current along U (1)A axial strings and magnetic field perpendicular
to axial domain walls in the presence of a background magnetic field.

Finally, we have reviewed topological solitons in phases other than the CFL phase. The CFL phase
is the ground state at high densities where the masses of the three flavors are small compared to
the baryon chemical potential. If one lowers the density gradually, the effect of finite strange quark
mass comes in. Then it is expected that kaons form a condensate in addition to the CFL condensates
(CFL+K phase). If the density is further decreased, only the light flavors (u and d) contribute to the
condensate, which is called the 2SC phase. We have discussed the domain walls and color magnetic
fluxes in the 2SC phase, and the K-strings, vortons, domain walls, and drum vortons in the CFL+K
phase.

Here we make comments on the other phases that we did not discuss in the last section. The mag-
netic CFL (MCFL) phase was proposed as the CFL phase under a strong magnetic field [117,121,
122]; it may be relevant in the cores of neutron stars. At moderate densities, charged gluons are con-
densed due to the chromomagnetic instability in the ground state, known as the Nielsen–Olesen insta-
bility [252]. Gluon vortices can be formed inducing a magnetic field of a rotated magnetic field inside
a superconductor [118]. The gluon vortices are different from the non-Abelian vortices discussed in
this paper. When gluon vortices are generated in dense quark matter under a strong magnetic field,
anti-screening occurs, boosting the magnetic field to values higher than the applied one [118], a phe-
nomenon similar to that in magnetized electroweak theory [17,18]. See also Refs. [119,120,123,124].

The different type of vortices for the gluonic phase in dense two-flavor QCD was discussed in
Ref. [147].

The gap function of metallic superconductors is proposed to have a spatial modulation under
strong magnetic field [224], i.e., in the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) states [140,214].
Recently, exact self-consistent solutions of the FFLO states have been found [39–41] (see also
Ref. [383]). A similar modulation was discussed in color superconductors of dense QCD [248].
The crystalline superconducting phase has been proposed in dense QCD matter; see Refs. [22,72]
for a review. In this case, the modulation is not only along one spatial direction but also along three
dimensions, forming a crystal. If this is realized, for instance in dense stars, it should significantly
affect various dynamics. For instance, vortices created by a rotation should be trapped in nodes of the
modulations. It is an interesting problem whether the coexistence of a vortex lattice and a crystalline
structure is possible.

Before closing this review paper, let us summarize future problems. We first make a list of problems
and explain each of them subsequently.

(1) Dynamics of vortices.
(a) What does the U (1)A anomaly do for non-Abelian semi-superfluid vortices?
(b) The stability of vortex rings.
(c) Nonlinear/higher order effects on the low-energy effective theory.
(d) The vortex–vortex interaction at short distances.
(e) The metastability of U (1)B (and M2) vortices.
(f) The reconnection of non-Abelian semi-superfluid vortices.

(2) Generation of vortices.
(a) Rotation of the CFL matter.
(b) The Kibble–Zurek mechanism at phase transitions.
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(3) Vortex lattices, vortex phase diagram, and vortex states.
(a) Transitions from a colorful vortex lattice to a colorless U (1)B vortex lattice.
(b) Disordered colorful vortex lattices.
(c) Vortex matter/vortex phase diagram.
(d) Quantum turbulence. Kolmogorov’s law.

(4) Dynamics of orientational modes.
(a) Quantum monopoles, instantons, and the quark–hadron duality.

(5) Interaction between vortices and quasiparticles.
(a) Effects on the transportation properties of various quasiparticles.

(6) Fermions.
(a) Coupling between bosonic and fermionic zero modes.
(b) Fermions scattering off vortices. The Callan–Rubakov effect.
(c) The use of the non-normalizable singlet Majorana fermion.
(d) Self-consistent solutions of vortices.
(e) Vortex core structures in the BEC/BCS crossover.
(f) Do the non-Abelian statistics affect the state of matter?
(g) Topological quantum computation.

(7) Chiral symmetry breaking.
(a) The interaction between non-Abelian axial vortices and CFL pions.
(b) The interaction between Skyrmions and non-Abelian axial vortices and axial domain walls.
(c) The interaction between non-Abelian axial vortices and non-Abelian semi-superfluid

vortices.
(8) How do we detect the CFL phase? Hadron colliders and neutron stars.

(a) Heavy-ion collisions.
(b) Physics of neutron stars such as pulsar glitch phenomena, strong magnetic fields (magne-

tars), cooling of neutron stars, and gravitational waves from neutron stars.

(1a) A production of magnetic field by axial domain walls was studied in Sect. 10.6. However, the
anomaly effects on non-Abelian semi-superfluid vortices have not been studied. The U (1)A axial
current should exist along non-Abelian semi-superfluid vortices as for U (1)B superfluid vortices.
There should be a significant role of such a current in a colorful vortex lattice in rotating CFL matter
in Sect. 4.4.

(1b) In the absence of dissipation at zero temperature, a superfluid vortex ring moving at constant
velocity is stable because of the inertial force. A non-Abelian semi-superfluid vortex ring is also
stable. In the presence of dissipation, the size of the ring decreases in time because of the Magnus
force. However, due to (1a), the U (1)A current is present along the vortex ring and would make it
stable. The stability of vortex rings should be important for states of superfluids such as quantum
turbulence. In the case of a superfluid vortex ring, the dynamics can be described by the sine-Gordon
model [223]. This may be extended to the case of non-Abelian vortex rings.

(1c) For translational zero (Kelvin) modes X and Y of a vortex, a higher order term for X and Y
in the low-energy effective Lagrangian was studied in the context of fluid mechanics [162], and a
nonlinear Schrödinger equation was found. Nonlinear soliton waves, called Hasimoto solitons, were
studied extensively. While higher derivative correction terms should be in the form of the Nambu–
Goto action in the case of relativistic field theories, it is not clear whether such action is relevant
for non-relativistic cases. On the other hand, higher derivative corrections were found for the CP2
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orientational zero modes in the context of supersymmetric theories [97]. A more general form of
the possible higher derivative correction was given in Ref. [221] by using nonlinear realizations. A
similar term should be present for non-Abelian semi-superfluid vortices in the CFL phase.

(1d) The interaction between two non-Abelian semi-superfluid vortices is essentially the same
as that between Abelian superfluid vortices, at large distances much larger than the core size. The
interaction is mediated by the massless U (1)B Nambu–Goldstone boson (phonon), giving a long-
range force. At short distances, two vortices begin to exchange massive modes such as gluons and
massive scalar (Higgs) fields. In Sect. 6.1.2, the contribution from gluons was found to depend on
relative CP2 orientations, or color fluxes. It is attractive when the two vortices have different colors.
There remains an open question of what is the contribution from the Higgs fields. Full numerical
calculations or an analytic estimation from asymptotic forms are needed, as was done for a related
model [26].

(1e) A U (1)B vortex has been suggested to decay into three non-Abelian vortices because of being
energetic at large distances and repulsion between non-Abelian vortices. However, the interaction
at short distances is not known thus far, as explained in (1d). In fact, U (1)B vortices do not carry
fluxes while non-Abelian vortices do. Therefore, the gauge field gives an attraction among non-
Abelian vortices with different colors and a binding energy among them so that there is a possibility
of metastability of U (1)B vortices. Metastability was found for vortices in a three component BEC,
which is the same as the diagonal configuration of dense QCD except for the absence of gauge
fields [75].

(1f) When two vortices collide in superfluids such as helium superfluids or atomic BECs, they
reconnect with each other [211,247], as was confirmed numerically by the Gross–Pitaevskii equation
[68] and experimentally by direct observations in helium superfluids [52]. The reconnection pro-
cess is very important in quantum turbulence [267,351,353,357] where vortices reduce their length
through the reconnection. In the case of CFL matter, it is quite nontrivial whether two non-Abelian
semi-superfluid vortices reconnect when they collide because they have internal orientations in the
CP2 space; when two vortices have different CP2 modes, they may pass through without reconnec-
tion because the two different orientations could not be connected if they reconnected. This question
was addressed in the context of cosmic strings; whether two cosmic strings produced at a phase tran-
sition in the early universe can reconnect or not is important for how many strings remain in our
universe. This problem was solved for relativistic non-Abelian strings [101]; even when two non-
Abelian vortices have two different orientations (color fluxes) in the internal space, they always
reconnect at least when the colliding speed is not large, in which two different orientations are
smoothly connected at the collision point, as in Fig. 43. Although this result was shown for rel-
ativistic strings, we expect that the same holds for semi-superfluid vortices in the non-relativistic
case, because the CP2 effective theory is relativistic (of the type I NG modes). After a reconnection,
Kelvin modes are induced and propagate along the two strings as in the case of the usual superfluid
vortices. In addition, the CP2 modes are also induced and propagate along the two strings. Strings
would emit phonons and gluons through the interactions studied in Sect. 6.1.

(2a) As for creation vortices, one mechanism is rotation. Since dense stars rotate rapidly, this is
the more plausible scenario if CFL matter is realized in their core. However, the minimum vortices
in the CFL phase are non-Abelian semi-superfluid vortices carrying color magnetic fluxes. Since it
is unlikely to be the case that color fluxes are created from nothing, one plausible scenario is that
U (1)B superfluid vortices are created at first as usual and they decay into non-Abelian vortices with
total fluxes canceled out (however, see (1e)). A simulation for the formation of non-Abelian vortices
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Fig. 43. Reconnection of two non-Abelian vortices.

in rotation is one important future problem. As a similar simulation, creation of superfluid vortices
with formation of Abrikosov lattices and splitting into fractional vortices with formation of colorful
vortex lattices was simulated in a three-component BEC [75].

(2b) The other scenario of a creation of vortices is the Kibble–Zurek mechanism at the phase tran-
sition [169,203,388,389]. In cosmology, this is an almost unique mechanism of a creation of cosmic
strings and other defects [169]. The Kibble–Zurek mechanism has been experimentally confirmed in
various condensed matter systems. An estimation of the number of non-Abelian vortices produced
at phase transitions should be made.

(3a) We have introduced colorful vortex lattices in Sect. 4.4. As the rotation speed is larger, the
distance between the vortices becomes shorter. At some point, there may be a transition to a U (1)B

vortex lattice because there should be attraction between vortices with different colors, as discussed
in (1d), and U (1)B vortices may be metastable (1e).

(3b) Another interesting topic is what happens when a colorful vortex lattice is not ordered in color
as in Fig. 13(b). If the colors of a vortex lattice are ordered as in Fig. 13(a), it is easily transformed
into a U (1)B vortex lattice and connected to superfluid vortices in the confining phase, as supposed
in Sect. 7. However, if the colors of a vortex lattice are disordered as in Fig. 13(b), there should
appear an unpaired triplet when the lattice is transformed to a U (1)B vortex lattice or connected to
superfluid vortices in the confining phase. There may be characterization of the disordered lattice by
frustration or entropy.

(3c) Vortex matter, like vortex-solid or vortex-liquid, is expected to exist in high Tc superconductors
[55]. Such kinds of vortex matter could also exist in the CFL phase and it is important to determine
what kind of vortex state is realized at finite rotation speeds and temperatures. In particular, at finite
temperatures, vortices fluctuate and Kelvin modes are induced. When the temperature is further
increased, a vortex lattice would eventually melt into a vortex liquid. At even higher temperatures,
vortices start to reconnect with each other frequently as in (1f). In this state the CFL condensates
vanish and the matter is no longer in the CFL phase. This is a view of the quark-gluon-plasma phase
from the vortex point of view.

(3d) The quantum turbulence is a state of superfluids governed by quantized vortices. The energy
flows from a larger scale to a smaller scale and Kolmogorov’s power law E ∼ k−5/3 holds. This
energy transfer is carried by reconnection of vortices and emission of phonons from Kelvin waves
[267,351,353,357]. It is interesting whether such a law holds for CFL matter and whether there is a
state that can be called “non-Abelian” quantum turbulence.

(4a) In Sect. 5.4, we constructed quantum monopoles on an infinitely long non-Abelian vortex
string. However, we do not want to have a monopole–anti-monopole meson with an infinite string.
Therefore, we may consider monopole–anti-monopole mesons in a vortex ring, which may be stable,
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as discussed in (1b). Such monopole mesons with finite mass may be more relevant for the quark–
hadron duality. It is still unclear whether the quantum potential can be explained by an effect of
Yang–Mills instantons trapped in the vortex world-sheet discussed in Sect. 5.5.

(5a) The transportation of phonons was studied in Ref. [228]. Bulk viscosity was studied in
Ref. [229]. We may take into account the presence of colorful vortices. Phonons are scattered by
vortices through the vortex–phonon interaction studied in Sect. 6.1. In particular, a vortex reconnec-
tion (1f) induces Kelvin modes and enhances the dissipation through the phonon–vortex interaction.
Interactions of vortices with other quasiparticles such as the CFL mesons and gluons studied in
Sect. 6 would also affect the transportation of these quasiparticles.

(6a) Thus far, bosonic zero modes and fermionic zero modes have been studied independently
in the GL theory and the BdG equations, respectively. However, we have not discussed a relation
between them or if they are coupled to each other. In this regard, fermions cannot be dealt with in
the GL theory because fermions are integrated out. Therefore, we should use the BdG equation to
study both fermions and bosons in a unified way. It is, however, not easy to deal with bosons in
the BdG equation not only technically but also practically. As a compromise, we can use nonlinear
realizations [66,79] to construct coupling between the triplet Majorana fermion zero modes and the
CP2 zero modes, since the CFL symmetry SU (3)C+F is spontaneously broken into SU (2)×U (1)
and fermions belong to the triplet of the unbroken symmetry. The CP2 zero modes are frozen in the
presence of strange quark mass, and therefore this coupling is not relevant for the study of fermions
in the energy scale below strange quark mass.

(6b) The Callan–Rubakov effect was first proposed for the scattering of fermions off magnetic
monopoles in Refs. [63–65,286], where the s-wave component of the fermion wave function is greatly
enhanced, and it was later extended to the fermion scattering off cosmic strings and domain walls [58].
The idea is that when fermions in the bulk interact with topological solitons only fermion zero modes
can reach the cores of solitons. The solitons give the boundary condition for scattering fermions and,
for instance, enforce the condensates of fermions close to the core. This mechanism was applied for
instance to proton decays in grand unified theories and baryogenesis by cosmic strings. The fermion
zero modes found in this paper may give a similar effect.

(6c) The singlet fermion zero mode was found to be non-normalizable and cannot be counted by
the index theorem as shown in Sect. 8.1. Although non-normalizable modes having a singular peak
at the vortex core are usually considered to be unphysical, there is also a discussion in the context of
cosmic strings that they may play some interesting roles such as in baryogenesis [9].

(6d) We have constructed only fermion zero modes that are expressed in terms of the gap func-
tion. To know the precise form, we need the profiles of the gap function. For this, one needs to
construct the gap function and fermion solutions self-consistently. Self-consistent vortex solutions
were constructed numerically for s-wave superconductors [157,158]. One also obtains all massive
modes trapped inside the core of a vortex. Self-consistent vortex solutions in the CFL phase remain
as a future problem.

(6e) Superfluidity of ultracold Fermi gases was established in all the regions of the BEC/BCS
crossover by experimentally observing a vortex lattice [390]. Theoretically, for instance, the pres-
ence (absence) of fermion modes in the vortex cores in the BCS (BEC) region [226] is one of the
interesting phenomena in the BEC/BEC crossover. Crossover of BCS (weak coupling) at high density
and BEC (strong coupling) at low density in QCD was also studied in Refs. [5,237,254]. As in ultra-
cold atomic gases, the vortex core structure of the BEC/BCS crossover in dense QCD is an interesting
problem.
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(6f) Non-Abelian statistics of non-Abelian vortices have been studied [172,379], as reviewed in
Sect. 9. This makes vortices non-Abelian anyons when restricted to d = 2+ 1 dimensions. When
promoted to d = 3+ 1 dimensions, vortices are strings. The statistics still remains when one con-
siders adiabatic exchanges of parallel vortices. Another possibility is vortex rings. As discussed in
(1b), non-Abelian vortex rings are stable in the absence of dissipations at zero temperature, or they
may be stable even at finite temperature once axial anomaly is taken into account. In this case, one
may consider exchange of two vortex rings where a smaller one passes through inside a larger one.
It is an open question whether such a statistics affects the dynamics of CFL matter.

(6g) Apart from QCD matter, non-Abelian exchange statistics can be used for topological quantum
computations [246], which were proposed as a quantum computation robust against perturbations. It
is an open question whether triplet Majorana fermions can be useful for it.

(7a) The interaction between a non-Abelian semi-superfluid vortex and gluons was achieved [170]
by dualizing gluons to massive two-form fields [314] in Sect. 6.1. In this case, the order parame-
ter space, U (3)C−F+B, around which semi-superfluid vortices wind, is gauged by the SU (3)C color
gauge symmetry, and so we have massive two-form fields. On the other hand, the order parameter
space U (3)L−R+A is not gauged. Accordingly, the interaction between a non-Abelian axial vortex
and the U (3) fields, i.e. the CFL pions and the η′ meson, should be described by dualizing the
U (3) fields to massless two-form fields, known as the Freedman–Townsend model [130] (see also
Ref. [141]).

(7b) Skyrmions can interact with axial domain walls and axial vortices. Presumably the interaction
is attractive. After a Skyrmion is absorbed into an axial domain wall, it may be stable as a lump
(2+ 1-dimensional Skyrmion) or unstable depending on the models [255,256]. On the other hand,
if a Skyrmion is absorbed into an axial vortex, it may become a kink on the vortex.

(7c) In the CFL phase, two kinds of non-Abelian vortices are present as discussed in this review,
non-Abelian semi-superfluid vortices and non-Abelian axial vortices. While the order parameter
spaces around which these vortices wind are different, it is an open question whether these two kinds
of vortices interact nontrivially.

(8a) In heavy-ion collision experiments, where two relativistically accelerated nuclei are collided, it
might be possible that some kinds of superfluid phases are realized, like the neutron superfluid or the
CFL matter, especially at low-energy collisions. If a superfluid is produced in heavy-ion collisions,
quantum vortices would appear since the created matter would have finite angular momentum at off-
central collisions. It is an interesting problem to find the experimental signatures of such phenomena.

(8b) A more plausible candidate for dense QCD matter in nature may be the cores of dense stars
such as neutron stars (or quark stars) [146,316]. It has been argued that the recent discovery of a
massive neutron star [87] tends to deny the existence of exotic matter such as hyperon or quark
matter in their cores because of the equation of state for neutron stars, but there is also an argument
that exotic matter is still possible (see e.g. Refs. [235,294,346,367] and Refs. [54,381] for recent and
earlier works) and the situation is not conclusive. Although the evidence for the presence of such
quark matter is elusive, we may give observation limits to the existence from rotating QCD matter in
particular vortices. For reviews of dense matter in compact stars, see Refs. [266,306,382]. Here we
make brief comments on this issue.

Pulsar glitch phenomena may be explained by unpinning of pinned vortices, as suggested by Ander-
son and Itoh [19]. While some unpinning mechanisms were suggested, there has been no agreement
thus far. Non-Abelian vortices in the CFL phase may play some role in explaining this mechanism,
in particular colorful vortex lattices and boojums.
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Strong magnetic fields of neutron stars are still a very important unsolved problem, in particular
magnetars. As discussed in Sect. 10.6, magnetic fields are produced from axial domain walls and axial
vortices by the axial anomaly. This mechanism may explain the strong magnetic fields of neutron
stars.

The emission of neutrinos is the main process of the cooling of compact stars [146,316]. Neutrino
emission in the CFL phase was studied in Refs. [191,282]. It turns out that the decays of phonons into
neutrinos are the dominant process of cooling (phonons couple to Z0 weak bosons). The astrophysical
implication of the cooling of compact stars in the presence of color superconducting phases was
studied; for instance, see Ref. [262]. One should take into account the presence of a colorful vortex
lattice, since the phonons interact with vortices. Reheating in the presence of vortices was also studied
in Ref. [249], without specifying the kinds of vortices.

Gravitational wave detectors are now one of the hottest topics in astrophysics. Gravitational waves
in the presence of vortex lattices in the CFL phase (and the 2SC phase) were studied, assuming
vortex lattices of unstable color magnetic fluxes, and compared with neutron star observations in
Ref. [145]. The calculation should be revised by considering colorful vortex lattices. Apart from
vortices, the r-mode instability of neutron stars and gravitational waves related to this mode were
studied assuming the CFL phase [20,230]. This calculation should be modified in the presence of a
colorful vortex lattice.

Sole observations of gravitational waves will tell us only the stiffness of the equation of state of
neutron stars, while these observations combined with observations of neutrinos, gamma rays, and
X rays will give us more detailed information on the cooling process of neutron stars, which should
contain information on the presence or absence of exotic matter and vortices in such matter.

We believe that the problems listed above are important and should be investigated in the future.
We hope that this list is useful for those who are interested in this field.
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Appendix A. Non-Abelian vortices in supersymmetric QCD

In the context of supersymmetric (SUSY) QCD, non-Abelian vortices were discovered independently
in Refs. [25,159] as a generalization of Abrikosov–Nielsen–Olesen (ANO) vortices [3,251] in the
Abelian–Higgs model. Since then, much progress has been made in recent years; see Refs. [103,
107,209,210,319,320,349,350] for a review. They are topologically the same objects as non-Abelian
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vortices in dense QCD, discussed in this review paper. It is interesting that such similar objects
were found in different contexts, dense QCD and SUSY QCD, almost at the same time. Here, we
summarize the differences and similarities of non-Abelian vortices in dense QCD and SUSY QCD,
and summarize the properties of non-Abelian vortices in SUSY QCD, which may be useful in the
study of those in dense QCD. One of the most important common features is the existence of bosonic
orientational gapless modes CP2 and CP N−1 in the core of a non-Abelian vortex in dense QCD and
SUSY U (N ) QCD, respectively.

Three crucial differences are present between non-Abelian vortices in dense QCD and SUSY QCD,
as summarized in the following:

(1) The overall U (1) symmetry is global U (1)B symmetry in dense QCD, while it is gauged in
SUSY QCD. Consequently,
(a) vortices are global vortices in dense QCD, while they are local vortices in SUSY QCD,
(b) the energy of vortices in dense QCD is logarithmically divergent with the infinite system

size, while that of local vortices in SUSY QCD is finite,
(c) the interaction between two vortices at a distance R is 1/R for dense QCD, while it is zero

for two local BPS vortices in SUSY QCD, and±e−cR for two local vortices in non-SUSY
QCD.

(2) Dense QCD matter is non-relativistic while SUSY QCD is relativistic. Consequently,
(a) Two translational zero modes are not independent of each other, one is the momentum

conjugate to the other, and there exists only one Kelvin mode (Kelvon) for vortices in dense
QCD, as shown in Sect. 4. On the other hand, two translational zero modes are independent
in vortices in SUSY QCD. The former are so-called type II Nambu–Goldstone modes and
the latter are so-called type I Nambu–Goldstone modes [168,260,363], as summarized in
footnote 8.

(3) The bosons are not independent degrees of freedom, and fermions couple to bosons (with
the order parameter �) in the BdG equation in dense QCD, while bosons and fermions are
degrees of freedom independent of each other in SUSY QCD, and they are related by SUSY
transformations. Consequently,
(a) Majorana fermions belonging to triplet (the adjoint representation) of the unbroken SU (2)

symmetry in the vortex core are localized in a non-Abelian vortex in dense QCD, while
Dirac fermions in the fundamental representation of the unbroken SU (N − 1) symmetry
in the vortex core are localized in a non-Abelian vortex in SUSY QCD.

(b) Fermion zero modes and bosonic zero modes are not related to each other in dense QCD,
while fermion zero modes are “tangent bundle” to bosonic zero modes. On the other hand,
in SUSY QCD, linearized equations of motion of the bosonic fields coincide with the
equation of motion of the fermions, and therefore the index theorems for fermions and
bosons coincide [159].

Although these are major differences, both vortices have many common features.
Unlike ANO vortices in the Abelian–Higgs model, non-Abelian vortices have non-Abelian inter-

nal orientations and associated conserved charges. In the case of U (N ) gauge theory with N flavors
of Higgs fields in the fundamental representation, the internal orientation is the complex projec-
tive space CP N−1, which corresponds to Nambu–Goldstone modes associated with the SU (N )C+F

color–flavor-locked global symmetry spontaneously broken in the presence of vortices. Because of
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non-Abelian internal orientations, we can expect that the dynamics of the non-Abelian vortices is
much richer and more interesting compared to the ANO vortices.

Since there exists no net force between multiple BPS vortices, a space of the whole solutions is
characterized by multiple collective coordinates called moduli. The number of the moduli parameters
was determined to be 2k N for k vortices in U (N ) gauge theory [159]. The moduli space of multiple
vortices with full moduli parameters was completely determined without metric by partially solv-
ing the BPS vortex equations [106,107,109,184]. The moduli space for k separated vortices is a
k-symmetric product

Msep
k � (C× CP N−1)k/Sk ⊂Mk (A1)

of the single vortex moduli space [106], while the whole space Mk is regular.
First, let us consider vortex particles in d = 2+ 1 dimensions or parallel vortices in d = 3+ 1

dimensions. Although there is no force between BPS vortices at rest, vortices scatter nontrivially
when they are moving. The low-energy dynamics of BPS solitons can be described as geodesics of
a proper metric on the moduli space [232]. By using a general formula for the moduli space metric
given in Ref. [105], the explicit moduli space metric was obtained for the moduli subspace Msep

k
of k well separated vortices, which is valid when the separation of vortices is much larger than the
length scale of the vortices, i.e., the Compton wavelength of massive vector bosons [132]. This metric
describes low-energy scattering of two slowly moving vortices [96]. The moduli space metric of the
moduli subspace for two coincident vortices [92,93,101], which is supplementary to Msep

k=2 inside
the whole space Mk=2, was also found, which shows that two non-Abelian vortices scatter at 90
degrees in head-on collisions, even though they have different internal orientations CP N−1 as the
initial conditions [101].

Going back to d = 3+ 1 dimensions, one nontrivial and important dynamics is the reconnection
of two vortex strings colliding at an angle. It was shown in Ref. [101] that when two vortex strings
collide at an angle, they always reconnect each other.

There exists a static force between non-BPS vortices. Static force between two non-BPS non-
Abelian local vortices was shown to depend on internal orientations [26]. The dynamics of non-BPS
vortices can be described by the moduli space approximation plus the potential term corresponding
to the static force. Therefore, the dynamics of non-Abelian vortices in dense QCD is also expected
to be described by the moduli approximation and the potential term of the static interaction 1/r
studied in Sect. 4.2. In particular, the reconnection dynamics should hold for non-Abelian vortices
in dense QCD, because its possibility depends only on topology. Since the reconnection dynamics is
an essential process, for instance in quantum turbulence in superfluids and ultracold atomic gases, it
should be important if the CFL phase is realized in the cores of dense stars.

Non-BPS non-Abelian vortices were studied for instance in Refs. [26,148,149]. It was also claimed
that vortices in Ref. [148] describe those in dense QCD but this is not the case because the U (1)B

symmetry is gauged there.

Appendix B. Toric diagram

Here we would like to explain a geometrical aspect of the complex projective space CP N−1, which
is a complex manifold of the complex dimension N − 1. The CP N−1 manifold is known as a toric
geometry, on which there is a U (1)N−1 action allowing several fixed points. One can find a good
explanation of the toric geometry in Ref. [218].
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The simplest example of toric geometry is the complex plane C. Let z be a coordinate on C. There
exists a U (1) action

z → eiθ z. (B1)

A fixed point of U (1) is the origin z = 0. The complex plane can be seen as a half-line with a circle
on top. The circle shrinks at the fixed point; see Fig. B1.

The next example is CP1. As is well known, CP1 is the space of two complex numbers (φ1, φ2),
which are not all zero. The two complex numbers are themselves identified up to multiplying by a
non-zero complex number

(φ1, φ2) ∼ λ(φ1, φ2), λ ∈ C
∗. (B2)

One can fix the equivalence relation by setting

(φ1, φ2)→ (1, z) for φ1 �= 0, (B3)

(φ1, φ2)→ (z′, 1) for φ2 �= 0. (B4)

z and z′ are complex numbers, which are related by zz′ = 1, except for the z = 0 and z′ = 0 cases.
There is again a U (1) action

(1, z)→ (1, eiθ z), (z′, 1)→ (e−iθ z′, 1). (B5)

The fixed points are z = 0 and z′ = 0. Let us take a real basis that is invariant under the U (1) action

X = |z|2
1+ |z|2 =

1

1+ |z′|2 . (B6)

This X takes values in the segment [0, 1]: X = 0 and X = 1 correspond to z = 0 and z′ = 0,
respectively. Thus, CP1 can be viewed as the interval with a circle on top, as shown in Fig. B2.

Fig. B1. A toric diagram for the complex plane C.

Fig. B2. A toric diagram for the complex plane CP1.
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Fig. B3. A toric diagram for the complex plane CP2.

CP2 is a straightforward extension of CP1. It is defined as the space of three complex numbers
(φ1, φ2, φ3), not all zeros, with the following identification:

(φ1, φ2, φ3) ∼ λ(φ1, φ2, φ3), λ ∈ C
∗. (B7)

One can fix this equivalence relation by setting the first component φ1 = 1 when φ1 �= 0 as

(φ1, φ2, φ3)→ (1, z, w). (B8)

There is a U (1)2 action except for the trivial U (1). Without loss of generality, one can take the basis
of U (1)2 as

(1, z, w)→ (1, eiθ z, eiφw). (B9)

As in the case of CP1, let us take a real basis that is invariant under U (1)2. It is of the form

X = |z|2
1+ |z|2 + |w|2 , Y = |w|2

1+ |z|2 + |w|2 . (B10)

Both X and Y take their value in the segment [0, 1] and X + Y ≤ 1 holds. Therefore, CP2 is
expressed as a rectangular equilateral triangle, as shown in Fig. B3. At a generic point, we have
a T 2 fiber (θ, φ) since the action of U (1)2 is not free. The T 2 fiber shrinks to a T 2 at the edges of
the triangle. For instance, Y = 0 (w = 0) is the fixed point of φ. Therefore, the T 1 fiber of φ shrinks
there. Note that the submanifold at Y = 0 is CP1, which can be easily understood by setting φ3 = 0
in Eq. (B7). The other edges correspond to the other CP1s. At the vertices of the triangle, the U (1)2

action becomes completely free. Therefore, the T 2 fiber shrinks.

Appendix C. Derivation of the low-energy effective theory of orientational zero
modes

Here we explain how to derive the low-energy effective field theory (5.8) of the unit wind-
ing non-Abelian vortex. The effective action consists of a linear combination of Tr[Fαi Fαi ] and
Tr[Dα�Dα�†] (α = 0, 3). Therefore, we only need to calculate these terms one by one in terms of
the orientational moduli field φ(t, x3), which appears via the gauge field Aα given in Eq. (5.7). To
this end, it will turn out that it is convenient to introduce a 3× 3 matrix valued function Fα(a, b) of
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two complex variables (a, b) by

Fα(a, b) ≡ aφ∂αφ
† + b∂αφφ

† + (a − b)φ†φ∂αφφ
†. (C1)

One finds that this function Fα(a, b) satisfies the following relations:

Fα(a, b)† = F(b∗, a∗), (C2)

TrFα(a, b) = 0, (C3)

αFα(a, b) = Fα(αa, αb), (C4)

Fα(a, b)+ Fα(a
′, b′) = Fα(a + a′, b + b′). (C5)

Then the gauge field given in Eq. (5.7) can be expressed as

Aα = iρα

gs
Fα(1,−1). (C6)

One can easily check the following equation by making use of the constraint φ†φ = 1

Tr[Fα(a, b)†Fα(a, b)] = (|a|2 + |b|2)L(α)

CP2, (C7)

where no summation is taken over α and L(α)

CP2 is given in Eq. (5.12). In terms of the function Fα ,
the covariant derivative and the field strength are expressed by

Dα� = e
iθ
3 �CFLFα( f − g + ραg, f − g − ρα f ), (C8)

Fαi = 1

gs
εi j

x j

r2 (1− ρα)Fα(1, 1)− i

gs

x j

r
ρ′αFα(1,−1). (C9)

With these expressions at hand, we can now calculate the effective Lagrangian. Let us first calculate
the F2 term

Tr[Fiα Fiα] = 1

g2
s

xi xi

r4 h2g(1− ρα)
2Gα(1, 1|1, 1)− 1

g2
s

xi xi

r2 (ρ′α)
2Gα(1,−1|1,−1)

= − 2

g2
s

[
ρ′α

2 + h2(1− ρα)
2

r2

]
L(α)

CP2, (C10)

where we have defined

Gα(k, l|m, n) ≡ Tr[Fα(k, l)†Fα(m, n)], (C11)

with no summation for α. Note that we have eliminated the term proportional to Gα(1, 1|1,−1) in
Eq. (C10) because Gα(1, 1|1,−1) is zero. Let us next calculate the |Dα�|2 term. To this end, let us
rewrite Dα� as

Dα� = −Fα

(
( f − g)ρα

2
,
( f − g)ρα

2

)

+ Fα

(
f − g + ραg + ( f − g)ρα

2
, f − g − ρα f + ( f − g)ρα

2

)

= −Fα

(
( f − g)ρα

2
,
( f − g)ρα

2

)
+ Fα

(
f − g + ( f + g)ρα

2
, f − g − ( f + g)ρα

2

)

= −( f − g)ρα

2
Fα(1, 1)+ Fα( f − g, f − g)+ Fα

(
( f + g)ρα

2
,−( f + g)ρα

2

)

=
(

1− ρα

2

)
( f − g)Fα(1, 1)+ ( f + g)ρα

2
Fα(1,−1). (C12)
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Then we have

Tr[Dα�
†Dα�] =

(
1− ρα

2

)2
( f − g)2Gα(1, 1|1, 1)+ ( f + g)2ρ2

α

4
Gα(1, 1|1,−1)

= 2�2
CFL

[
(1− ρα)( f − g)2 + ρ2

α

2
( f 2 + g2)

]
L(α)

CP2 . (C13)

Plugging Eqs. (C10) and (C13) into Eqs. (5.9) and (5.10), it is straightforward to find the Kähler
classes C0,3 given in Eqs. (5.13) and (5.14).

Appendix D. Derivation of the dual Lagrangians for phonons and gluons

In this appendix, we derive the dual Lagrangians for phonons and gluons. After a dual transfor-
mation, massive gluons are described by massive non-Abelian antisymmetric tensor fields [314]
and U (1)B phonons are described by massless antisymmetric tensor fields. In the dual description,
vortices appear as sources that can absorb or emit these particles.

Appendix D.1 Low-energy effective theory of the CFL phase

We start with a time-dependent Ginzburg–Landau (GL) effective Lagrangian for the CFL phase,
which is given in Eq. (2.56):

L(x) = ε3

2

(
Ea)2 − 1

2λ3

(
Ba)2 + K0Tr

[
(D0�)† D0�

]
+ K3Tr

[
(Di�)† Di�

]
− 4iγTr

[
�† D0�

]
− V (�), (D1)

where Ea
i = Fa

0i , Ba
i = 1

2εi jk Fa
jk . The effect of U (1)EM electromagnetism is neglected here. The

parameters ε3 and λ3 are the color dielectric constant and the color magnetic permeability. The
Lorentz symmetry does not have to be maintained in general since superconducting matter exists.
However, the kinetic term of the gluons has a modified Lorentz symmetry in which the speed of
light is replaced by 1/

√
ε3λ3. It is always possible to restore the Lorentz invariance of the kinetic

term of the gauge fields by rescaling x0, Aa
0 , K0, γ , and K3. Therefore, we can start with the

Lagrangian in which ε and λ are taken to be unity. For notational convenience, we introduce a vector
Kμ ≡ (K0, K3, K3, K3). Thus our starting point is the following GL Lagrangian:

L(x) = −1

4

(
Fa
μν

)2 + KμTr
[(

Dμ�
)†

Dμ�
]
− 4iγTr

[
�† D0�

]
− V (�). (D2)

Appendix D.2 The dual transformation

Here we perform dual transformations within the path integral formalism to derive a dual Lagrangian
for the CFL phase. After the transformation, massive gluons are described by massive non-Abelian
antisymmetric tensor fields [314] and U (1)B phonons are described by massless antisymmetric tensor
fields. We show that in the dual description vortices appear as sources that can absorb or emit these
particles.

Appendix D.2.1 The dual transformation of massive gluons The partition function of the CFL phase
can be written as

Z =
∫

DAa
μ(x)D�(x) exp

{
i
∫

d4xL(x)

}
, (D3)
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with the Lagrangian defined in Eq. (D2). We shall impose the gauge fixing condition on the field �

rather than on the gauge fields since they are integrated out in the end. The gauge fixing condition is
taken care of when we consider a concrete vortex solution.

We introduce non-Abelian antisymmetric tensor fields Ba
μν by a Hubbard–Stratonovich transfor-

mation,

exp

[
i
∫

d4x

{
−1

4
(Fa

μν)
2
}]

∝
∫

DBa
μν exp

[
i
∫

d4x

{
−1

4

[
m2(Ba

μν)
2 − 2m B̃a

μν Fa,μν)
]}]

, (D4)

where B̃a
μν ≡ 1

2εμνρσ Ba,ρσ . The parameter m introduced above is a free parameter at this stage. We
will choose m later so that the kinetic term of Ba

μν is canonically normalized.
Substituting (D4) into (D3), we can now perform the integration over the gauge fields Aa

μ. The
degrees of freedom of gluons are expressed by Ba

μν after this transformation. Each term in the
Lagrangian is transformed as follows:

KμTr{(Dμ�)†(Dμ�)} − 4iγTr
[
�† D0�

]
= KμTr

{
�†(
←−
∂ μ + igs Aa

μT a)(
−→
∂ μ − igs Ab,μT b)�

}
− 4iγTr

[
�†(∂0 − igs Aa

μT a)�
]

= KμTr{(∂μ�)†(∂μ�)} − 4iγTr
[
�†∂0�

]
+ gs Aa

μ J a,μ

+ g2
s gμν

√
KμKν Aa,μAb,νTr

[
�†T aT b�

]
, (D5)

with J a
μ ≡ −i KμTr

[
�†(
←−
∂ μ −−→∂ μ)T a�

]
+ 4γTr

[
�†T a�

]
, and

−1

2
m B̃a

μν Fa,μν = −1

2
m B̃a

μν(2∂ν Aa
μ + gs f abc Ab

μAc
ν)

= m Aa
μ∂ν B̃a

μν +
1

2
mgs f abc Aa

μ Ab
ν B̃c

μν.

(D6)

Performing the integration over Aa
μ, the following part of the partition function is rewritten as∫

DAa
μ exp

{
i
∫

d4x

[
1

2
g2

s Aa,μK ab
μν Ab,ν − m

(
∂ν B̃a

μν −
gs

m
J a
μ

)
Aa,μ

]}

∝ (det K ab
μν)
−1/2

exp

{
i
∫

d4x

[
−1

2

(
m

gs

)2 (
∂ρ B̃a,μρ − gs

m
J a,μ

) (
K−1

)ab

μν

(
∂σ B̃b,νσ − gs

m
J b,ν

)]}
, (D7)

where K ab
μν is defined by

K ab
μν =

1

2
gμν

√
KμKνTr

[
�†T aT b�

]
− m

gs
f abc B̃c

μν

≡ �ab
μν −

m

gs
B̂ab
μν,

(D8)

with �ab
μν ≡ 1

2 gμν

√
KμKνTr

[
�†T aT b�

]
and B̂ab

μν ≡ f abc B̃c
μν . We define the inverse of K ab

μν by the
power-series expansion in 1/g:

K−1 =
(

�− m

gs
B̂

)−1

= �−1
∞∑

n=0

(
m

gs
B̂�−1

)n

. (D9)
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As a result, we obtain the following partition function:

Z ∝
∫

DBa
μν(det K ab

μν)
−1/2 exp

{
i
∫

d4xL∗G(x)

}
, (D10)

where L∗G denotes the gluonic part of the dual Lagrangian:

L∗G = −
1

2

(
m

gs

)2 (
∂ρ B̃a,μρ − gs

m
J a,μ

) (
K−1

)ab

μν

(
∂σ B̃b,νσ − gs

m
J b,ν

)
− 1

4
m2(Ba

μν)
2. (D11)

Now we define the non-Abelian vorticity tensor ωa
μν as the coefficient of the term linearly propor-

tional to Ba
μν . Collecting the relevant terms in the above Lagrangian, the coupling between massive

gluons and the vorticity is given by

L∗G ⊃
1

2

m

gs

[
∂ρ B̃a,μρ(�−1)ab

μν J b,ν + J a,μ(�−1)ab
μν∂ρ B̃b,νρ

]

− 1

2

(
m

gs

)
J a,μ[�−1 B̂�−1]ab

μν J b,ν

≡ −1

2

(
m

gs

)
Ba
λσω

a,λσ , (D12)

where we have defined the vorticity tensor ωa
μν as

ωa,λσ ≡ ελσμν
[
∂ν

{
(�−1)(ab

μρ)J b,ρ
}
+ J e,α(�−1)ec

αμ f cda(�−1)db
νβ J b,β

]
. (D13)

Here A(ab
μν) is a symmetrized summation defined by A(ab

μν) ≡ Aab
μν + Aba

νμ. This expression for
the non-Abelian vorticity is valid for general vortex configurations. The information on vortex
configuration is included in � and J a

μ .

Appendix D.2.2 The dual transformation of U (1)B phonons In the following, we perform a dual
transformation of the NG boson associated with the breaking of U (1)B symmetry. This mode corre-
sponds to the fluctuation of the overall phase of �, which can be parametrized as �(x) = eiπ(x)ψ(x),
where π(x) is a real scalar field. Substituting this into the following part in the Lagrangian (D2)
leads to19

KμTr{(∂μ�)†(∂μ�)} − 4iγTr{�†∂0�}
= Kμ

(
∂μπ

)2
M2 − ∂μπ J 0

μ + KμTr(∂μψ)2 − 4iγTr{ψ†∂0ψ}, (D14)

with J 0
μ ≡ −4δμ0γ M2 and M2 ≡ Tr

[
ψ†ψ

]
. We will transform the U (1)B phonon field π(x) into a

massless two-form field B0
μν . Note that the field π(x) has a multivalued part in general; since π(x)

is the phase degree of freedom, π(x) can be multivalued without violating the single-valuedness of
�(x). In fact the multivalued part of π(x) corresponds to a vortex. Let us denote the multivalued
part of π(x) as πMV(x).

The dual transformation of this U (1)B phonon field is essentially the same as the case of a super-
fluid. We basically follow the argument of Ref. [216]. Let us introduce an auxiliary field Cμ by

19 The term Tr
[
∂μψ

†ψ − ψ†∂μψ
]

automatically vanishes since ψ can be decomposed as ψ = (�+
ρ)1N + (χa + iζ a)T a and the modes ζ a are absorbed by gluons.
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linearizing the kinetic term of π(x) in the partition function as follows:

Z ∝
∫

DπDπMV exp i

[∫
d4x

(
M2Kμ

{
∂μ(π + πMV)

}2 − ∂μ(π + πMV)J 0
μ

)]

∝
∫

DπDπMVDCμ exp i

[∫
d4x

(
−C2

μ

M2 − 2Cμ

√
Kμ∂

μ(π + πMV)− ∂μ(π + πMV)J 0
μ

)]
.

(D15)

Integration over π(x) gives a delta function

∫
Dπ exp i

[∫
d4x

(
−2Cμ

√
Kμ∂

μπ + π∂μ J 0
μ

)]
= δ

{
∂μ
(

2Cμ

√
Kμ + J 0

μ

)}
. (D16)

Then let us introduce the dual antisymmetric tensor field B0
μν by

∫
DCμδ

{
∂μ
(

2Cμ

√
Kμ + J 0

μ

)}
· · · =

∫
DCμDB0

μνδ
(

2Cμ

√
Kμ + J 0

μ − m0∂ν B̃0
μν

)
· · · ,

(D17)
where the dots denote the rest of the integrand and m0 is a parameter. By this change of variables
we have introduced an infinite gauge volume, corresponding to the transformation δB0

μν = ∂μ�ν −
∂ν�μ with a massless vector field �μ. This can be taken care of by fixing the gauge later. There is no
nontrivial Jacobian factor as the change of variables is linear. We integrating over Cμ, and transform
a resultant term in the Lagrangian as

m0∂ν B̃0
μν∂

μπMV = −m0 B0,ρσ εμνρσ ∂
ν∂μπMV

≡ −2πm0 B0,ρσω0
ρσ ,

(D18)

where the first equality holds up to a total derivative and we have defined

ω0
ρσ ≡

1

2π
εμνρσ ∂

ν∂μπMV. (D19)

We thus obtain the dual Lagrangian for the U (1)B phonon part

L∗Ph = −
(

1

2M

)2

Kμ(m
0∂ν B̃0

μν − J 0
μ)

2 − 2πm0 B0,μνω0
μν. (D20)

Note that the term linear in B0
μν coming from the first term of (D20) is a total derivative and does

not contribute to the equation of motion. The partition function is proportional to

Z ∝
∫

DπMVDB0
μν exp i

[∫
d4xL∗Ph

]
. (D21)

The U (1)B phonons are now described by a massless two-form field B0
μν and vortices appear as

sources for B0
μν .
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Appendix D.3 The dual Lagrangian

We have shown that the partition function Z of the CFL phase is proportional to Z∗ with the dual
Lagrangian L∗:

Z ∝ Z∗ =
∫

DBa
μνDπMVDB0

μνDψ(det K ab
μν)
−1/2 exp

{
i
∫

d4xL∗(x)
}
, (D22)

where

L∗ = L∗G + L∗Ph + KμTr(∂μψ)2 − 4iγTr{ψ†∂0ψ} − V (ψ). (D23)

Here L∗G and L∗Ph are given in (D11) and (D20), respectively. The result above is valid for general
vortex configurations. We can discuss the interaction between vortices and quasiparticles in terms of
the dual Lagrangian. Vortices are expected to appear as a source term for gluons and U (1)B phonons.

Appendix E. Derivation of fermion zero modes

We consider the BdG equation for the single component fermion. The Hamiltonian is given by the
particle–hole basis as

H =
(

H0 − μ |�(r)|eiθγ0γ5

−|�(r)|e−iθγ0γ5 H0 + μ

)
, (E1)

where we define

H0 =
(
−μ −i �σ · �∇

−i �σ · �∇γ5 −μ

)
. (E2)

The BdG equation is then given by

H#n = E#n, (E3)

with the wave function

#n =
(
ψn+1

ηn

)
, (E4)

with the particle component (ψn+1) and the hole component (ηn). Then, the BdG equation is given
explicitly as (

H0 − μ |�(r)|eiθγ0γ5

−|�(r)|e−iθγ0γ5 H0 + μ

)(
ψn+1

ηn

)
= E

(
ψn+1

ηn

)
. (E5)

The particle and hole components are written as

ψn+1 =

⎛
⎜⎜⎜⎝

f (r)�n

i g(r)�n+1

± f (r)�n

±i g(r)�n+1

⎞
⎟⎟⎟⎠ e−ikz z, ηn =

⎛
⎜⎜⎜⎝

f̄ (r)�n

i ḡ(r)�n+1

∓ f̄ (r)�n

∓i ḡ(r)�n+1

⎞
⎟⎟⎟⎠ eikz z, (E6)
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where we introduce four functions f (r), g(r), f̄ (r), and ḡ(r), and define �n = einθ . Here ± (∓)
refers to the eigenvalue of γ5. From Eq. (E5), we obtain

(−μ± kz) f ±
(

∂

∂r
+ n + 2

r

)
g ∓ |�| f̄ = E f, (E7)

∓
(

∂

∂r
− n + 1

r

)
f + (−μ∓ kz)g ∓ |�|ḡ = Eg, (E8)

(μ∓ kz) f̄ ∓
(

∂

∂r
+ n + 1

r

)
ḡ ∓ |�| f = E f̄ , (E9)

±
(

∂

∂r
− n

r

)
f̄ + (μ± kz)ḡ ∓ |�|g = Eḡ. (E10)

Now, we consider the solution of the zero-mode fermion with E = 0. Here, we impose the
“Majorana condition”,

# = U#∗, (E11)

with the unitary matrix

U =
(

0 γ2

γ2 0

)
, (E12)

which satisfies

U−1HU = −H∗. (E13)

We then find that the Majorana condition leads to the solution with E = 0. From the BdG equation,
H# = E#, we obtain H∗#∗ = E#∗, which in turn gives H# = −E# from # = U#∗ and
U−1HU = −H∗. Therefore, we obtain E = 0. The Majorana condition restricts the wave functions,
ψn+1 and ηn , as

n = −1 (E14)

and

f̄ = ∓g, (E15)

ḡ = f. (E16)

Thus, we find the BdG equation simplified to

−μ f ±
(

∂

∂r
+ 1

r

)
g + |�|g = 0, (E17)

∓ ∂

∂r
f − μg − |�| f = 0, (E18)

∓μg − ∂

∂r
f ∓ |�| f = 0, (E19)

−
(

∂

∂r
+ 1

r

)
g ∓ μ f ∓ |�|g = 0, (E20)

with kz = 0, which turns out to be the two independent equations,

∓ ∂

∂r
f − |�| f − μg = 0, (E21)

±
(

∂

∂r
+ 1

r

)
g + |�|g − μ f = 0. (E22)
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When we eliminate g(r), we obtain the equation only for f (r),

∂2

∂r2 f + 1

r

∂

∂r
± 2|�| ∂

∂r
f ± |�|

r
f + (μ2 + |�|2) f = 0. (E23)

The solution of this equation is given as

f (r) = Ce−
∫ r

0 |�(r ′)|dr ′ J0(μr), (E24)

with the condition that it is regular at r = 0 and infinitely large r . As a consequence, we find the
other components as

g(r) = ±Ce−
∫ r

0 |�(r ′)|dr ′ J1(μr), (E25)

f̄ (r) = ∓Ce−
∫ r

0 |�(r ′)|dr ′ J1(μr), (E26)

ḡ(r) = Ce−
∫ r

0 |�(r ′)|dr ′ J0(μr). (E27)

This is the wave function of the Majorana fermion.
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