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1 Introduction

Recent development of string scattering amplitudes (SSA) has shown that a class of 4-point
SSA form representations of the SL(K + 3, C) group [1, 2]. These are SSA with three
tachyons and one arbitrary string states∣∣∣rTn , rPm, rLl 〉 =

∏
n>0

(
αT−n

)rTn ∏
m>0

(
αP−m

)rPm∏
l>0

(
αL−l

)rLl |0, k〉 (1.1)
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where eP = 1
M (E, k, 0) = k2

M2
is the momentum polarization, eL = 1

M (k, E, 0) is the
longitudinal polarization and eT = (0, 0, 1) is the transverse polarization on the (2 + 1)-
dimensional scattering plane. Note that SSA of three tachyons and one arbitrary string
states with polarizations orthogonal to the scattering plane vanish. In addition to the mass
level M2 = 2(N − 1) with

N =
∑

n,m,l>0
{rXj 6=0}

(
nrTn +mrPm + lrLl

)
, (1.2)

another important index K was identified for the state in eq. (1.1) [3]

K =
∑

n,m,l>0
{rXj 6=0}

(n+m+ l) (1.3)

where X = (T, P, L) and one has put rTn = rPm = rLl = 1 in eq. (1.2) in the definition of K
in eq. (1.3). Intuitively, K counts the number of variety of the αX−j oscillators in eq. (1.1).

The representation bases of the above subclass of 4-point SSA was soon extended to
all 4-point SSA with arbitrary four string states, and eventually to all n-point SSA with
arbitrary n string states [4, 5]. It is thus important to study whether other known interesting
characteristics of the 4-point SSA can be similarly extended to the n-point SSA [6–8]. One
such characteristics of the 4-point SSA is the existence of infinite linear relations and their
associated constant ratios, independent of the scattering angle φ, among hard SSA (HSSA)
at each fixed mass level of the open bosonic string spectrum. These infinite linear relations
and their associated constant ratios were first conjectured by Gross [9, 10] and later explicitly
calculated by the method of decoupling of zero-norm states in [11–15].

Indeed, in one of the authors’ previous publications [16], we discovered a general stringy
scaling behavior for all n-point HSSA to all string loop orders. For the simplest case of
n = 4, the stringy scaling behavior reduces to the infinite linear relations and the constant
ratios of HSSA at each mass level mentioned above. For this case, the ratios are independent
of 1 scattering angle φ and thus the number of independent kinematics variable reduced
from 1 to 0 with dimM = 1− 0 = 1. In general higher n-point HSSA, the stringy scaling
behavior implies that the number of independent kinematics variables of the ratios reduced
by dimM [16]. See the definition of dimM in eq. (2.20) and eq. (2.25). As a result, the
linear relations and their associated constant ratios of 4-point HSSA persist only in the
parameter spacesM for the cases of higher n-point HSSA [16]. See the example of constant
ratios calculated among 6-point HSSA in eq. (2.24).

In this paper, we will extend our calculation of stringy scaling behavior of HSSA to
the case of Regge SSA (RSSA). We will demonstrate a stringy scaling behavior for a class
of n-point (n ≥ 5) RSSA with m = q = 0 (see eq. (3.4)), and the number of independent
kinematics variables is again found to be reduced by dimM. However, in contrast to the
calculation of complete 4-point RSSA (m 6= 0, q 6= 0), see the difference between eq. (3.3)
and eq. (4.24).

This paper is organized as following. In section 2, we review and give a detailed
calculation of the stringy scaling behavior of HSSA [16]. Section 3 and 4 are the main

– 2 –



J
H
E
P
0
9
(
2
0
2
3
)
1
1
1

parts of this paper and we extend the calculation of HSSA to the stringy scaling of RSSA.
We will derive a stringy scaling behavior for a class of n-point RSSA with arbitrary n in
section 4. A brief conclusion was given in section 5. In appendix A, we review examples of
ratios among HSSA. In appendix B, we give a detailed saddle-poing calculation of n-point
HSSA which was briefly discussed in [16].

2 The hard stringy scaling

A brief report on stringy scaling of n-point hard string scattering amplitudes (HSSA) was
recently given in [16]. In this section, we will first give a detailed calculation of hard string
scaling behavior. This can also be served as a preparartion for the calculation of stringy
scaling of Regge string scattering amplitudes (RSSA) to be discussed in section 3 and
section 4.

2.1 Stringy scaling of 4-point HSSA

The first stringy scaling was conjectured by Gross in 1988 [9] which claimed that all 4-point
HSSA (E → ∞, fixed φ) at each fixed mass level share the same functional form. That
is, all HSSA at each fixed mass level are proportional to each other with constant ratios
independent of the scattering angle φ.

To show this remarkable behavior, the starting point is to apply the 4-point l-loop
stringy on-shell Ward identities [11, 12]

〈V1χV3V4〉l-loop = 0 (2.1)

in the hard scattering limit. In eq. (2.1) Vj above can be any string vertex and the second
vertex χ is the vertex of a zero-norm state (ZNS). In the hard scattering limit, the kinematic
set up is shown in figure 1, and the components of polarization orthogonal to the scattering
plane are subleading order in energy. On the other hand, it can be shown that at each fixed
mass level M2 = 2(N − 1) only states of the following form [14, 15] (in the hard scattering
limit eP ' eL)

|N, 2m, q〉 =
(
αT−1

)N−2m−2q (
αL−1

)2m (
αL−2

)q
|0; k〉 (2.2)

are leading order in energy.
There are two types of physical ZNS in the old covariant first quantized open bosonic

string spectrum: [17]

Type I : L−1 |y〉 , where L1 |y〉 = L2 |y〉 = 0, L0 |y〉 = 0; (2.3)

Type II :
(
L−2 + 3

2L
2
−1

)
|ỹ〉 , where L1 |ỹ〉 = L2 |ỹ〉 = 0, (L0 + 1) |ỹ〉 = 0. (D = 26 only).

(2.4)

(1) We first consider χ to be the type I hard ZNS (HZNS) calculated from Type I ZNS

L−1|N−1,2m−1, q〉= (MαL−1 +αL−2α
L
1 +αT−2α

T
1 +α−3 ·α2 + · · ·︸ ︷︷ ︸

irrelevant

)|N−1,2m−1, q〉

'M |N,2m,q〉+(2m−1)|N,2m−2, q+1〉 (2.5)
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Figure 1. Kinematic variables in the center of mass frame.

where many terms are omitted because they are not of the form of eq. (2.2). This
implies the following relation among 4-point amplitudes of three arbitrary string states
and one high energy string state of eq. (2.2) (we keep only tensor indice of the state
in eq. (2.2) in T (N,2m,q))

T (N,2m,q) = −2m− 1
M

T (N,2m−2,q+1). (2.6)

Using this relation repeatedly, we get

T (N,2m,q) = (2m− 1)!!
(−M)m T

(N,0,m+q). (2.7)

(2) Next, we consider another class of HZNS calculated from type II ZNS

L−2|N − 2, 0, q〉 =

1
2α

T
−1α

T
−1 +MαL−2 + α−3 · α1 + · · ·︸ ︷︷ ︸

irrelevant

 |N − 2, 0, q〉

' 1
2 |N, 0, q〉+M |N, 0, q + 1〉. (2.8)

Again, irrelevant terms are omitted here. From this we deduce that

T (N,0,q+1) = − 1
2M T

(N,0,q), (2.9)

which leads to
T (N,0,q) = 1

(−2M)q T
(N,0,0). (2.10)
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In conclusion, the decoupling of ZNS in eq. (2.7) and eq. (2.10) leads to constant ratios
among 4-point HSSA [11, 12, 14, 15]

T (N,2m,q)

T (N,0,0) = (2m)!
m!

( −1
2M

)2m+q
. (independent of φ !) (2.11)

In eq. (2.11) T (N,2m,q) is the 4-point HSSA of any string vertex Vj with j = 1, 3, 4 and V2 is
the high energy state in eq. (2.2); while T (N,0,0) is the 4-point HSSA of any string vertex
Vj with j = 1, 3, 4, and V2 is the leading Regge trajectory string state at mass level N .
Note that we have omitted the tensor indice of Vj with j = 1, 3, 4 and keep only those of V2
in T (N,2m,q).

2.2 Stringy scaling of higher point (n ≥ 5) HSSA

It is tempted to extend the stringy scaling behavior of 4-point SSA derived in the previous
subsection to the higher point SSA. The n-point stringy on-shell Ward identities can be
written as

〈V1χV3 · · ·Vn〉l-loop = 0 (2.12)

where χ again is the vertex of a ZNS. We begin the discussion with a simple kinematics
regime on the scattering plane.

2.2.1 On the scattering plane

In the hard scattering limit on the scattering plane, the space part of momenta kj (j =
3, 4, · · · , n) form a closed 1-chain with (n − 2) sides due to momentum conservation. It
turned out that all the 4-point calculation in the previous subsection persist and one ends
up with eq. (2.11) again [16]. However, while for n = 4 the ratios are independent of 1
scattering angle φ, for n = 5, the ratios are independent of 3 kinematics variables (2 angles
and 1 fixed ratio of two infinite energies) or, for simplicity, 3 scattering “angles”. For n = 6,
there are 5 scattering “angles” etc.

2.2.2 Out of the scattering plane

The general high energy states at each fixed mass level M2 = 2(N − 1) can be written
as [16]

|{pi} , 2m, q〉 =
(
αT1
−1

)N+p1 (
αT2
−1

)p2 · · ·
(
αTr−1

)pr (
αL−1

)2m (
αL−2

)q
|0; k〉 (2.13)

where
∑r
i=1 pi = −2(m+ q) with r ≤ 24. In eq. (2.13), Tj is the jth transverse direction

orthogonal to k2. For higher dimensional scattering space, one generalizes the transverse
polarization eT = (0, 0, 1) to eT̂ = (0, 0, ~ω) where

ωi = cos θi
i−1∏
σ=1

sin θσwith i = 1, · · · , r, θr = 0 (2.14)
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are the solid angles in the transverse space spanned by 24 transverse directions eTi . Note
that αT̂−1 = α−1 · eT̂ etc. With

(
αTi−1

)
=
(
αT̂−1

)
ωi, we easily obtain

(
αT1
−1

)N+p1 (
αT2
−1

)p2 · · ·
(
αTr−1

)pr (
αL−1

)2m (
αL−2

)q
|0; k〉

=
(
ωN1

r∏
i=1

ωpii

)(
αT̂−1

)N−2m−2q (
αL−1

)2m (
αL−2

)q
|0; k〉 , (2.15)

which leads to the ratios of n-point HSSA [16]

T ({pi},2m,q)

T ({0i},0,0) = (2m)!
m!

( −1
2M

)2m+q r∏
i=1

ωpii (2.16)

where T ({0i},0,0) is the HSSA of leading Regge trajectory state at mass level M2 = 2(N − 1).
It is important to note that the number of kinematics variables dependence in the ratios
of eq. (2.16) reduced. This stringy scaling behavior of n-point (n ≥ 5) HSSA is the
generalization of that of 4-point HSSA in eq. (2.11). Since the result of ZNS calculation
in eq. (2.16) is based on the stringy Ward identity in eq. (2.12), The ratios calculated in
eq. (2.16) are valid to all string loop orders.

2.3 Degree of stringy scaling

We see in the previous section that for the simple case with n = 4 and r = 1, one has two
variables, s and t (or E, φ). The ratios of all HSSA are independent of the scattering angle
φ and we will call the degree of the scaling dimM = 1. The dependence of the number of
kinematics variable reduced from 1 to 0 and we have 1− 0 = dimM = 1. (see the definition
ofM below)

For the general n-point HSSA with r ≤ 24, d = r+2, we have kj vector with j = 1, · · · , n
and kj ∈ Rd−1,1. The number of kinematics variables is n (d− 1) − d(d+1)

2 . Indeed, as
p = E →∞, that implies qj →∞ in the hard limit, we define the 26-dimensional momenta
in the CM frame to be

k1 = (E,−E, 0r) ,
k2 = (E,+E, 0r) ,
...

kj =
(
−qj ,−qjΩj

1,−qjΩj
2, · · · ,−qjΩj

r,−qjΩj
r+1

)
(2.17)

where j = 3, 4, · · · , n, and

Ωj
i = cosφji

i−1∏
σ=1

sinφjσ with φjj−1 = 0, φji>r = 0 and r ≤ min {n− 3, 24} (2.18)

are the solid angles in the (j − 2)-dimensional spherical space with
∑j−2
i=1

(
Ωj
i

)2
= 1. In

eq. (2.17), 0r denotes the r-dimensional null vector. The condition φjj−1 = 0 in eq. (2.18)
was chosen to fix the frame by using the rotational symmetry.

– 6 –
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The independent kinematics variables can be chosen to be some ϕji and some fixed
ratios of infinite qj . For the kinematics parameter spaceM defined by [16]

ωj (kinematics parameters with E →∞) = fixed constant (j = 2, · · · , r), (2.19)

we can count the dimension ofM to be [16]

dimM = n (d− 1)− d (d+ 1)
2 − 1− (r − 1) = (r + 1) (2n− r − 6)

2 (2.20)

where r = d − 2 is the number of transverse directions eTi . In sum, the ratios among
n-point HSSA with r ≤ 24 are constants and independent of the scattering “angles” in the
kinematic regimeM.

2.3.1 Examples

(1). For n = 5 and r = 2, d = r + 2 = 4 and one has n (d− 1)− d(d+1)
2 = 5 parameters (r1

is the ratio of two infinite energies)

E, φ3
2, φ

4
2, φ

4
3, r1. (2.21)

In the hard scattering limit E →∞, for θ1 = fixed we get dimM = 3.
(2). For n = 6 and r = 3, the ratios of 6-point HSSA depends only on 2 variables θ1

and θ2 instead of 8 “angles” and dimM = 6. For this case,M is defined by

θj (8 kinematics parameters) = fixed constant, j = 1, 2, (2.22)

and the ratios [16]

T ({p1,p2,p3},2m,q)

T ({0,0,0},0,0) = (2m)!
m!

( −1
2M

)2m+q
(cos θ1)p1 (sin θ1 cos θ2)p2 (sin θ1 sin θ2)p3 (2.23)

are independent of kinematics parameters in the space M. For example, for say θ1 = π
4

and θ2 = π
6 , we get the ratios among 6-point HSSA

T ({p1,p2,p3},2m,q)

T ({0,0,0},0,0) =
(
− 1
M

)2m+q
(2m− 1)!!

(1
2

)p2+p3 (√
3
)p3 . (2.24)

These ratios for higher point HSSA are one example of generalization of previous ratios
calculated in eq. (2.11) for the case 4-point HSSA.

2.3.2 General cases

In general, in the hard scattering limit, the number of scattering “angles” dependence on
ratios of n-point HSSA with r ≤ 24 reduces by dimM. For a given (n, r), we can calculate
some examples of dimM [16]

dimM r = 1 r = 2 r = 3 r = 4
n = 4 1
n = 5 3 3
n = 6 5 6 6
n = 7 7 9 10 10

(2.25)

Note that for the n = 4 and r = 1 case, one obtains the previous 4-point case in eq. (2.11).

– 7 –
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3 Stringy scaling of Regge string scattering amplitudes

Another important high-energy regime of 4-point SSA is the fixed momentum transfer
regime which contains complementary information of the theory. That is in the kinematic
regime

s→∞,
√
−t = fixed,

(
but
√
−t 6=∞

)
. (3.1)

In this regime, the number of high-energy SSA is much more numerous than that of the
fixed angle regime. One of the reason is that in contrast to the identification eP ' eL in
the hard scattering limit, eP does not approach to eL in the Regge scattering limit. For
example, at mass level M2 = 4 of open bosonic string, there are only 4 HSSA while there
are 22 RSSA [31, 32]. On the other hand, in the Regge regime both the saddle-point method
and the method of decoupling of zero-norm states adopted in the calculation of fixed angle
regime do not apply.

The complete leading order high-energy open string states in the Regge regime at each
fixed mass level N =

∑
n,m,l>0 npn +mqm + lrl are

|vn, qm, rl〉 =
∏
n>0

(αT−n)vn
∏
m>0

(αP−m)qm
∏
l>0

(αL−l)rl |0, k〉. (3.2)

It turned out that the 4-pont RSSA of three tachyons and states in eq. (3.2) are NOT
proportional to each other, and the ratios are t-dependent functions. However, it was
shown that for the RSSA A(N,2m,q) with v1 = N −m − q, r1 = 2m and r2 = q and all
others 0 in eq. (3.2), one can extract the ratios of hard string scatterings in eq. (2.11) from
A(N,2m,q) [33–35]

lim
t̃′→∞

A(N,2m,q)

A(N,0,0) = T (N,2m,q)

T (N,0,0) = (2m)!
m!

( −1
2M

)2m+q
(3.3)

where t̃′ = t+M2
2 −M2

3 . It is thus reasonable to expect that for the n-point (n ≥ 5) RSSA
with n− 1 tachyons and some subset of the high-energy states in eq. (2.13), the RSSA show
similar stringy scaling behavior as in eq. (2.16) of HSSA.

In this paper, we will consider a class of n-point (n ≥ 5) RSSA with n− 1 tachyons
and one high-energy state at mass level N

|{pi} , 0, 0〉 =
(
αT1
−1

)N+p1 (
αT2
−1

)p2 · · ·
(
αTr−1

)pr |0; k〉 , (3.4)

which is obtained by setting m = q = 0 in eq. (2.13). We will show that these RSSA
show stringy scaling behavior for arbitrary n similar to that we obtained for the HSSA in
eq. (2.16).

There are many different Regge regimes for the n-point (n ≥ 5) RSSA. To specify
the Regge regime, we first discuss the system of kinematics variables we will use. The
standard kinematics variables commonly adopted for the n-point scatterings can be defined
as following. One first defines the (n− 3) s variables

s12 = − (k1 + k2)2 , s123 = − (k1 + k2 + k3)2 , · · · , s1,··· ,n−2 = − (k1 + · · ·+ kn−2)2 , (3.5)

– 8 –
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and then defines the (n−2)(n−3)
2 t variables

t23 = − (k2 + k3)2 , t24 = − (k2 + k4)2 , · · · , t2,n−1 = − (k2 + kn−1)2 ,

t34 = − (k3 + k4)2 , · · · , t3,n−1 = − (k3 + kn−1)2 ,

...
tn−2,n−1 = − (kn−2 + kn−1)2 , (3.6)

which amount to n(n−3)
2 independent kinematics variables.

For our purpose in the calculation of this paper, we will adopt another system of
independent kinematics variables. We use the notation kij ≡ ki · kj to define the following
n(n−3)

2 independent kinematics variables

k12, k13, k14, · · · , k1,n−2,

k23, k24, k25, · · · , k2,n−1,

k34, k35, · · · , k3,n−1,

...
kn−3,n−2, kn−3,n−1,

kn−2,n−1. (3.7)

For later use, we also define

k1,··· ,i−1,i = k1,··· ,i−1 +
i−1∑
j=1

kji, (3.8)

which means, for example,

k123 = k12+k13+k23, k1234 = k123+k14+k24+k34, k12345 = k1234+k15+k25+k35+k45. (3.9)

3.1 The 5-point and 6-point Regge stringy scaling

Let’s begin with the calculation of 5-point RSSA with r = 2 in eq. (3.4). The kinematics
are

k1 =
(√

p2 +M2
1 ,−p, 0, 0

)
,

k2 =
(√

p2 +M2
2 , p, 0, 0

)
,

k3 =
(
−
√
q2

3 +M2
3 ,−q3 cosφ3

1,−q3 sinφ3
1, 0
)
,

k4 =
(
−
√
q2

4 +M2
4 ,−q4 cosφ4

1,−q4 sinφ4
1 cosφ4

2,−q4 sinφ4
1 sinφ4

2

)
,

k5 =
(
−
√
q2

5 +M2
5 ,−q5 cosφ5

1,−q5 sinφ5
1 cosφ5

2,−q5 sinφ5
1 sinφ5

2

)
. (3.10)

– 9 –
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During the calculation, we will keep record of the notations used for each step so that
eventually we can generalize the calculation to the case of n-point RSSA. The amplitude of
state (

αT1
−1

)N+p1 (
αT2
−1

)p2 |0, k〉 , p1 + p2 = 0 (3.11)
and 4 tachyon states can be written as

A{p1,p2},0,0 =
∫ 1

0
dx3

∫ x3

0
dx2 × xk12

2 xk13
3 (x3 − x2)k23 (1− x2)k24 (1− x3)k34

×
[

kT1
3

x3 − x2
+ kT1

4
1− x2

]N+p1

 kT2
3

x3 − x2︸ ︷︷ ︸
0

+ kT2
4

1− x2


p2

. (3.12)

One can easily find that kT2
3 = 0. After doing the change of variables

x2 = z2z3, x3 = z3, (3.13)

we can rewrite the above 5-point amplitude as following

A{p1,p2},0,0 =
∫ 1

0
dz3

∫ 1

0
dz2z

k12
2 zk123+1

3 (1− z2)k23 (1− z2z3)k24 (1− z3)k34

×
[

kT1
3

z3 − z2z3
+ kT1

4
1− z2z3

]N+p1 [
kT2

4
1− z2z3

]p2

(3.14)

where we have defined k123 = k12 + k23 + k13. Next, let’s perform the binomial expansion
on the bracket to obtain

A{p1,p2},0,0 =
∑

J1
1 +J1

2 =N+p1

(N + p1)!
J1

1 !J1
2 !

(
kT1

3

)J1
1
(
kT1

4

)J1
2
(
kT2

4

)p2

×
∫ 1

0
dz3

∫ 1

0
dz2z

k12
2 z

k123+1−J1
1

3 (1− z2)k23−J1
1 (1− z2z3)k24−J1

2−p2 (1− z3)k34 . (3.15)

For the next step, we expand the crossing term (1− z2z3)k24−J1
2−p2 to obtain

A{p1,p2},0,0 =
∑

J1
1 +J1

2 =N+p1

(N + p1)!
J1

1 !J1
2 !

(
kT1

3

)J1
1
(
kT1

4

)J1
2
(
kT2

4

)p2

×
∑
m23

(−k24 + p2 + J1
2
)
m23

m23!

∫ 1

0
dz2z

k12+m23
2 (1− z2)k23−J1

1

∫ 1

0
dz3z

k123+1−J1
1 +m23

3 (1− z3)k34

(3.16)

where the subscripts of m23 keep record of the subscripts z2z3 in (1− z2z3)k24−J1
2−p2 . After

the integration, the amplitude can be written as

A{p1,p2},0,0 =
∑

J1
1 +J1

2 =N+p1

(N + p1)!
J1

1 !J1
2 !

(
kT1

3

)J1
1
(
kT1

4

)J1
2
(
kT2

4

)p2

×
∑
m23

(−k24 + p2 + J1
2
)
m23

m23!
Γ (k12 + 1 +m23) Γ

(
k23 + 1− J1

1
)

Γ
(
k12 + k23 + 2 +m23 − J1

1
)

× Γ
(
k123 + 2 +m23 − J1

1
)

Γ (k34 + 1)
Γ
(
k123 + k34 + 3 +m23 − J1

1
) . (3.17)
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Now we choose to work on the Regge regime defined by

k123 ∼ s, k34 ∼ s, k123 + k34 ∼ t (3.18)

where s→∞ and t = fixed. (we will use these notations to define a Regge regime for the
rest of the paper) In this Regge regime, the amplitude can be approximated as

A{p1,p2},0,0 ∼
∑

J1
1 +J1

2 =N+p1

(N + p1)!
J1

1 !J1
2 !

(
kT1

3

)J1
1
(
kT1

4

)J1
2
(
kT2

4

)p2

×
∑
m23

(−k24 + p2 + J1
2
)
m23

m23!
Γ (k12 + 1 +m23) Γ

(
k23 + 1− J1

1
)

Γ
(
k12 + k23 + 2 +m23 − J1

1
)

× (k123)m23−J1
1 Γ (k123 + 2) Γ (k34 + 1)

(k123 + k34 + 3)m23−J1
1

Γ (k123 + k34 + 3) . (3.19)

The leading power of k123 occurs when J1
1 = 0 which means J1

2 = N + p1. Since p1 + p2 = 0,
the leading term of the RSSA is

A{p1,p2},0,0 ∼
(
kT1

4

)N+p1 (
kT2

4

)p2 ∑
m23

(−k24 +N)m23

m23!
Γ (k12 + 1 +m23) Γ (k23 + 1)

Γ (k12 + k23 + 2 +m23)

× (k123)m23 Γ (k123 + 2) Γ (k34 + 1)
(k123 + k34 + 3)m23

Γ (k123 + k34 + 3) . (3.20)

The ratio of A{p1,p2},0,0 and A{0,0},0,0 can be easily calculated to be

A{p1,p2},0,0

A{0,0},0,0
=

(
kT1

4

)N+p1 (
kT2

4

)p2

(
kT1

4

)N =
(
kT1

4

)p1 (
kT2

4

)p2

=
(
−q4 sinφ4

1 cosφ4
2
)p1 (−q4 sinφ4

1 sinφ4
2
)p2

= (cos θ1)p1 (sin θ1)p2 = (ω1)p1 (ω2)p2 , (3.21)

which is the same as eq. (2.16) with m = q = 0 and r = 2.
Let’s now calculate the 6-point RSSA with r = 3 in eq. (3.4). The kinematics are

k1 =
(√

p2+M2
1 ,−p,0,0,0

)
,

k2 =
(√

p2+M2
2 ,p,0,0,0

)
,

k3 =
(
−
√
q2

3 +M2
3 ,−q3 cosφ3

1,−q3 sinφ3
1,0,0

)
,

k4 =
(
−
√
q2

4 +M2
4 ,−q4 cosφ4

1,−q4 sinφ4
1 cosφ4

2,−q4 sinφ4
1 sinφ4

2,0
)
,

k5 =
(
−
√
q2

5 +M2
5 ,−q5 cosφ5

1,−q5 sinφ5
1 cosφ5

2,−q5 sinφ5
1 sinφ5

2 cosφ5
3,−q5 sinφ5

1 sinφ5
2 sinφ5

3

)
,

k6 =
(
−
√
q2

5 +M2
5 ,−q6 cosφ6

1,−q6 sinφ6
1 cosφ6

2,−q6 sinφ6
1 sinφ6

2 cosφ6
3,−q6 sinφ6

1 sinφ6
2 sinφ6

3

)
.

(3.22)
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The amplitude of state(
αT1
−1

)N+p1 (
αT2
−1

)p2 (
αT3
−1

)p3 |0, k〉 , p1 + p2 + p3 = 0 (3.23)

and 5 tachyon states is

A{p1,p2,p3},0,0

=
∫ 1

0
dx4

∫ x4

0
dx3

∫ x3

0
dx2

× xk12
2 xk13

3 xk14
4 (x3 − x2)k23 (x4 − x2)k24 (1− x2)k25 (x4 − x3)k34 (1− x3)k35 (1− x4)k45

×

 kT1
3

x3 − x2
+ kT1

4
x4 − x2

+ kT1
5

1︸︷︷︸
x5

− x2


N+p1

 kT2
3

x3 − x2︸ ︷︷ ︸
=0

+ kT2
4

x4 − x2
+ kT2

5
1− x2


p2

×

 kT3
3

x3 − x2︸ ︷︷ ︸
=0

+ kT3
4

x4 − x2︸ ︷︷ ︸
=0

+ kT3
5

1− x2


p3

. (3.24)

Since kT2
3 = kT3

3 = kT3
4 = 0, we can rewrite the amplitude as

A{p1,p2,p3},0,0

=
∫ 1

0
dx4

∫ x4

0
dx3

∫ x3

0
dx2 x

k12
2 xk13

3 xk14
4 (x3−x2)k23 (x4−x2)k24 (1−x2)

×k25 (x4−x3)k34 (1−x3)k35 (1−x4)k45

×
[

kT1
3

x3−x2
+ kT1

4
x4−x2

+ kT1
5

1−x2

]N+p1 [
kT2

4
x4−x2

+ kT2
5

1−x2

]p2 [
kT3

5
1−x2

]p3

. (3.25)

We can do the following change of variables

xi = zi · · · zn−2, (3.26)

or
x2 = z2z3z4, x3 = z3z4, x4 = z4 (3.27)

to obtain

A{p1,p2,p3},0,0

=
∫ 1

0
dz4

∫ 1

0
dz3

∫ 1

0
dz2 × zk12

2 zk123+1
3 zk1234+2

4 (1− z2)k23 (1− z3)k34 (1− z4)k45

× (1− z2z3)k24 (1− z2z3z4)k25 (1− z3z4)k35

×
[

kT1
3

z3z4 − z2z3z4
+ kT1

4
z4 − z2z3z4

+ kT1
5

1− z2z3z4

]N+p1

×
[

kT2
4

z4 − z2z3z4
+ kT2

5
1− z2z3z4

]p2 [
kT3

5
1− z2z3z4

]p3

(3.28)
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where we have defined

k123 = k12 + k13 + k23, k1234 = k12 + k13 + k14 + k23 + k24 + k34. (3.29)

Next, let’s perform the binomial expansion on the brackets to obtain

A{p1,p2,p3},0,0

=
∫ 1

0
dz4

∫ 1

0
dz3

∫ 1

0
dz2 × zk12

2 zk123+1
3 zk1234+2

4 (1− z2)k23 (1− z3)k34 (1− z4)k45

× (1− z2z3)k24 (1− z2z3z4)k25 (1− z3z4)k35

×
N+p1∑

J1
1 +J1

2 +J1
3 =N+p1

(N + p1)!
J1

1 !J1
2 !J1

3 !

(
kT1

3
z3z4 − z2z3z4

)J1
1
(

kT1
4

z4 − z2z3z4

)J1
2
(

kT1
5

1− z2z3z4

)J1
3

×
p2∑

J2
1 +J2

2 =p2

p2!
J2

1 !J2
2 !

(
kT2

4
z4 − z2z3z4

)J2
1
(

kT2
5

1− z2z3z4

)J2
2
[

kT3
5

1− z2z3z4

]p3

(3.30)

where J1
1 , J1

2 , J1
3 , J2

1 , J2
2 are non-negative integers with J1

1 +J1
2 = N + p1 and J2

1 +J2
2 = p2.

We then rearrange the above equation

A{p1,p2,p3},0,0

=
N+p1∑

J1
1 +J1

2 +J1
3 =N+p1

(N + p1)!
J1

1 !J1
2 !J1

3 !

(
kT1

3

)J1
1
(
kT1

4

)J1
2
(
kT1

5

)J1
3

×
p2∑

J2
1 +J2

2 =p2

p2!
J2

1 !J2
2 !

(
kT2

4

)J2
1
(
kT2

5

)J2
2
(
kT3

5

)p3

×
∫ 1

0
dz4

∫ 1

0
dz3

∫ 1

0
dz2 × zk12

2 z
k123+1−J1

1
3 z

k1234+2−J1
1−(J1

2 +J2
1 )

4

× (1− z2)k23−J1
1 (1− z3)k34 (1− z4)k45 (1− z2z3)k24−(J1

2 +J2
1 )

× (1− z2z3z4)k25−(J1
3 +J2

2 +p3) (1− z3z4)k35 , (3.31)

and expand the crossing terms to obain

A{p1,p2,p3},0,0

=
N+p1∑

J1
1 +J1

2 +J1
3 =N+p1

(N+p1)!
J1

1 !J1
2 !J1

3 !

(
kT1

3

)J1
1
(
kT1

4

)J1
2
(
kT1

5

)J1
3

×
p2∑

J2
1 +J2

2 =p2

p2!
J2

1 !J2
2 !

(
kT2

4

)J2
1
(
kT2

5

)J2
2
(
kT3

5

)p3

×
∫ 1

0
dz4

∫ 1

0
dz3

∫ 1

0
dz2×zk12

2 z
k123+1−J1

1
3 z

k1234+2−J1
1−(J1

2 +J2
1 )

4

×(1−z2)k23−J1
1 (1−z3)k34 (1−z4)k45

×
∑

m23=0

[−k24+
(
J1

2 +J2
1
)]
m23

m23! (z2z3)m23
∑

m24=0

[−k25+
(
J1

3 +J2
2 +p3

)]
m24

m24! (z2z3z4)m24

×
∑

m34=0

[−k35]m34

m34! (z3z4)m34 (3.32)
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where, for example, the subscripts of m24 keep record of the first and the last subscripts of
(z2z3z4) etc. We rearrange the above equation again

A{p1,p2,p3},0,0

=
N+p1∑

J1
1 +J1

2 +J1
3 =N+p1

(N + p1)!
J1

1 !J1
2 !J1

3 !

(
kT1

3

)J1
1
(
kT1

4

)J1
2
(
kT1

5

)J1
3

N+p1∑
J2

1 +J2
2 =p2

(
kT2

4

)J2
1
(
kT2

5

)J2
2
(
kT3

5

)p3

×
∑

m23=0

[−k24 +
(
J1

2 + J2
1
)]
m23

m23!
∑

m24=0

[−k25 +
(
J1

3 + J2
2 + p3

)]
m24

m24!
∑

m34=0

[−k35]m34

m34!

×
∫ 1

0
dz2z

k12+m23+m24
2 (1− z2)k23−J1

1

×
∫ 1

0
dz3z

k123+1−J1
1 +m23+m24+m34

3 (1− z3)k34

×
∫ 1

0
dz4z

k1234+2−J1
1−(J1

2 +J2
1 )+m24+m34

4 (1− z4)k45 , (3.33)

and perform the integration to obtain

A{p1,p2,p3},0,0

=
N+p1∑

J1
1 +J1

2 +J1
3 =N+p1

(N + p1)!
J1

1 !J1
2 !J1

3 !

(
kT1

3

)J1
1
(
kT1

4

)J1
2
(
kT1

5

)J1
3

×
p2∑

J2
1 +J2

2 =p2

p2!
J2

1 !J2
2 !

(
kT2

4

)J2
1
(
kT2

5

)J2
2
(
kT3

5

)p3

×
∑

m23=0

[−k24 +
(
J1

2 + J2
1
)]
m23

m23!
∑

m24=0

[−k25 +
(
J1

3 + J2
2 + p3

)]
m24

m24!
∑

m34=0

[−k35]m34

m34!

× Γ (k12 + 1 +m23 +m24) Γ
(
k23 + 1− J1

1
)

Γ
(
k12 + k23 + 2− J1

1 +m23 +m24
)

× Γ
(
k123 + 2− J1

1 +m23 +m24 +m34
)

Γ (k34 + 1)
Γ
(
k123 + k34 + 3− J1

1 +m23 +m24 +m34
)

× Γ
(
k1234 + 3− (J1

1 + J1
2 + J2

1
)

+m24 +m34
)

Γ (k45 + 1)
Γ
(
k1234 + k23 + 4− (J1

1 + J1
2 + J2

1
)

+m24 +m34
) . (3.34)

Now we choose to work on the Regge regime defined by

k1234 ∼ s, k1234 + k23 ∼ t. (3.35)
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In this Regge regime, the amplitude can be approximated as

A{p1,p2,p3},0,0

∼
N+p1∑

J1
1 +J1

2 +J1
3 =N+p1

(N + p1)!
J1

1 !J1
2 !J1

3 !

(
kT1

3

)J1
1
(
kT1

4

)J1
2
(
kT1

5

)J1
3

×
p2∑

J2
1 +J2

2 =p2

p2!
J2

1 !J2
2 !

(
kT2

4

)J2
1
(
kT2

5

)J2
2
(
kT3

5

)p3

×
∑

m23=0

[−k24 +
(
J1

2 + J2
1
)]
m23

m23!
∑

m24=0

[−k25 +
(
J1

3 + J2
2 + p3

)]
m24

m24!
∑

m34=0

[−k35]m34

m34!

× Γ (k12 + 1 +m23 +m24) Γ
(
k23 + 1− J1

1
)

Γ
(
k12 + k23 + 2− J1

1 +m23 +m24
)

× Γ
(
k123 + 2− J1

1 +m23 +m24 +m34
)

Γ (k34 + 1)
Γ
(
k123 + k34 + 3− J1

1 +m23 +m24 +m34
)

× (k1234)−(J1
1 +J1

2 +J2
1 )+m24+m34

(k1234 + k23 + 4)−(J1
1 +J1

2 +J2
1 )+m24+m34

Γ (k1234 + 3) Γ (k45 + 1)
Γ (k1234 + k23 + 4) . (3.36)

We can now take J1
1 = J1

2 = J2
1 = 0 to extract the leading order term in k1234. This implies

J1
3 = N + p1 and J2

2 = p2 which give

A{p1,p2,p3},0,0 ∼
(
kT1

5

)N+p1 (
kT2

5

)p2 (
kT3

5

)p3

×
∑

m23=0

[−k24]m23

m23!
∑

m24=0

[−k25 +N ]m24

m24!
∑

m34=0

[−k35]m34

m34!

× Γ (k12 + 1 +m23 +m24) Γ (k23 + 1)
Γ (k12 + k23 + 2 +m23 +m24)

× Γ (k123 + 2 +m23 +m24 +m34) Γ (k34 + 1)
Γ (k123 + k34 + 3 +m23 +m24 +m34)

× (k1234)m24+m34

(k1234 + k23 + 4)m24+m34

Γ (k1234 + 3) Γ (k45 + 1)
Γ (k1234 + k23 + 4) . (3.37)

Finally, the ratios of the 6-point RSSA can be easily calculated to be

A{p1,p2,p3},0,0

A{0,0,0},0,0
=
(
kT1

5

)p1 (
kT2

5

)p2 (
kT3

5

)p3

=
(
cosφ5

2
)p1 (sinφ5

2 cosφ5
3
)p2 (sinφ5

2 sinφ5
3
)p3

= (cos θ1)p1 (sin θ1 cos θ2)p2 (sin θ1 sin θ2)p3

= (ω1)p1 (ω2)p2 (ω3)p3 , (3.38)

which is the same as eq. (2.16) with m = q = 0 and r = 3.
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3.2 The 7-point Regge stringy scaling

In this section we calculate the 7-point RSSA with r = 4 in eq. (3.4). The kinematics are

k1 =
(√

p2 +M2
1 ,−p, 0, 0, 0, 0

)
,

k2 =
(√

p2 +M2
2 , p, 0, 0, 0, 0

)
,

k3 =
(
−
√
q2

3 +M2
3 ,−q3 cosφ3

1,−q3 sinφ3
1, 0, 0, 0

)
,

k4 =
(
−
√
q2

4 +M2
4 ,−q4 cosφ4

1,−q4 sinφ4
1 cosφ4

2,−q4 sinφ4
1 sinφ4

2, 0, 0
)
,

k5 =
(
−
√
q2

5 +M2
5 ,−q5 cosφ5

1,−q5 sinφ5
1 cosφ5

2,−q5 sinφ5
1 sinφ5

2 cosφ5
3,

− q5 sinφ5
1 sinφ5

2 sinφ5
3, 0
)
,

k6 =

−√q2
5 +M2

5 ,−q6 cosφ6
1,−q6 sinφ6

1 cosφ6
2,−q6 sinφ6

1 sinφ6
2 cosφ6

3,

−q6 sinφ6
1 sinφ6

2 sinφ6
3 cosφ6

4,−q6 sinφ6
1 sinφ6

2 sinφ6
3 sinφ6

4

 ,
k7 =

−√q2
5 +M2

5 ,−q7 cosφ7
1,−q7 sinφ7

1 cosφ7
2,−q7 sinφ7

1 sinφ7
2 cosφ7

3,

−q7 sinφ7
1 sinφ7

2 sinφ7
3 cosφ7

4,−q7 sinφ7
1 sinφ7

2 sinφ7
3 sinφ7

4

 . (3.39)

The tensor state we are going to consider is(
αT1
−1

)N+p1 (
αT2
−1

)p2 (
αT3
−1

)p3 (
αT4
−1

)p4 |0, k〉 , p1 + p2 + p3 + p4 = 0. (3.40)

We will use the notation defined in eq. (3.7), so we have the following 7(7−3)
2 = 14 independent

kinematics variables

k12, k13, k14, k15, k23, k24, k25, k26, k34, k35, k36, k45, k46, k56. (3.41)

The RSSA of one tensor state and 6 tachyon states is

A{p1,p2,p3,p4},0,0

=
∫ 1

0
dx5

∫ x5

0
dx4

∫ x4

0
dx3

∫ x3

0
dx2

· xk12
2 xk13

3 xk14
4 xk15

5 (x3 − x2)k23 (x4 − x2)k24 (x5 − x2)k25 (1− x2)k26

× (x4 − x3)k34 (x5 − x3)k35 (1− x3)k36 (x5 − x4)k45 (1− x4)k46 (1− x5)k56

×
[

kT1
3

x3 − x2
+ kT1

4
x4 − x2

+ kT1
5

x5 − x2
+ kT1

6
1− x2

]N+p1

×
[

kT2
4

x4 − x2
+ kT2

5
x5 − x2

+ kT2
6

1− x2

]p2

×
[

kT3
5

x5 − x2
+ kT3

6
1− x2

]p3 [
kT4

6
1− x2

]p4

. (3.42)
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Note that kT2
3 , kT3

3 , kT4
3 , kT3

4 , kT4
4 , kT4

5 are all zeros. Let us make the following change of
variables

x2 = z2z3z4z5, x3 = z3z4z5, x4 = z4z5, x5 = z5, x6 = z6 = 1 (3.43)

to obtain

A{p1,p2,p3,p4},0,0

=
∫ 1

0
dz5

∫ 1

0
dz4

∫ 1

0
dz3

∫ 1

0
dz2 ·

(
z3z

2
4z

3
5
)

(z2z3z4z5)k12 (z3z4z5)k13 (z4z5)k14 zk15
5

×(z3z4z5−z2z3z4z5)k23 (z4z5−z2z3z4z5)k24 (z5−z2z3z4z5)k25 (1−z2z3z4z5)k26

×(z4z5−z3z4z5)k34 (z5−z3z4z5)k35 (1−z3z4z5)k36 (z5−z4z5)k45 (1−z4z5)k46 (1−z5)k56

×
[

kT1
3

z3z4z5−z2z3z4z5
+ kT1

4
z4z5−z2z3z4z5

+ kT1
5

z5−z2z3z4z5
+ kT1

6
1−z2z3z4z5

]N+p1

×
[

kT2
4

z4z5−z2z3z4z5
+ kT2

5
z5−z2z3z4z5

+ kT2
6

1−z2z3z4z5

]p2

×
[

kT3
5

z5−z2z3z4z5
+ kT3

6
1−z2z3z4z5

]p3 [
kT4

6
1−z2z3z4z5

]p4

. (3.44)

We use the definition in eq. (3.8) to obtain

k123 = k12 + k13 + k23, k1234 = k123 + k14 + k24 + k34, k12345 = k1234 + k15 + k25 + k35 + k45.

(3.45)
After some calculation, we get

A{p1,p2,p3,p4},0,0

=
∫ 1

0
dz5

∫ 1

0
dz4

∫ 1

0
dz3

∫ 1

0
dz2 · zk12

2 zk123+1
3 zk1234+2

4 zk12345+3
5

× (1− z2)k23 (1− z2z3)k24 (1− z2z3z4)k25 (1− z2z3z4z5)k26

× (1− z3)k34 (1− z3z4)k35 (1− z3z4z5)k36

× (1− z4)k45 (1− z4z5)k46

× (1− z5)k56

×
[

kT1
3

z3z4z5 − z2z3z4z5
+ kT1

4
z4z5 − z2z3z4z5

+ kT1
5

z5 − z2z3z4z5
+ kT1

6
1− z2z3z4z5

]N+p1

×
[

kT2
4

z4z5 − z2z3z4z5
+ kT2

5
z5 − z2z3z4z5

+ kT2
6

1− z2z3z4z5

]p2

×
[

kT3
5

z5 − z2z3z4z5
+ kT3

6
1− z2z3z4z5

]p3 [
kT4

6
1− z2z3z4z5

]p4

. (3.46)
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The next step is to expand the brackets to get

A{p1,p2,p3,p4},0,0

=
∫ 1

0
dz5

∫ 1

0
dz4

∫ 1

0
dz3

∫ 1

0
dz2 · zk12

2 zk123+1
3 zk1234+2

4 zk12345+3
5

× (1− z2)k23 (1− z2z3)k24 (1− z2z3z4)k25 (1− z2z3z4z5)k26

× (1− z3)k34 (1− z3z4)k35 (1− z3z4z5)k36

× (1− z4)k45 (1− z4z5)k46

× (1− z5)k56

×
N+p1∑

J1
1 +J1

2 +J1
3 +J1

4 =N+p1

 (N + p1)!
J1

1 !J1
2 !J1

3 !J1
4 !

(
kT1

3
z3z4z5 − z2z3z4z5

)J1
1
(

kT1
4

z4z5 − z2z3z4z5

)J1
2

(
kT1

5
z5 − z2z3z4z5

)J1
3
(

kT1
6

1− z2z3z4z5

)J1
4


×
p2∑

J2
1 +J2

2 +J2
3 =p2

P2!
J2

1 !J2
2 !J2

3 !

(
kT2

4
z4z5 − z2z3z4z5

)J2
1
(

kT2
5

z5 − z2z3z4z5

)J2
2
(

kT2
6

1− z2z3z4z5

)J2
3

×
p2∑

J3
1 +J3

2 =p3

P3!
J3

1 !J3
2 !

(
kT3

5
z5 − z2z3z4z5

)J3
1
(

kT3
6

1− z2z3z4z5

)J3
2

×
(

kT4
6

1− z2z3z4z5

)p4

(3.47)

where J1
1 , J

1
2 , J

1
3 , J

1
4 , J

2
1 , J

2
2 , J

2
3 , J

3
1 , J

3
2 are non-negative integers with J1

1 + J1
2 + J1

3 + J1
4 =

N + p1, J2
1 + J2

2 + J2
3 = p2 and J3

1 + J3
2 = p3. Let us rearrange the above equation as

A{p1,p2,p3,p4},0,0 =
N+p1∑

J1
1 +J1

2 +J1
3 +J1

4 =N+p1

(N + p1)!
J1

1 !J1
2 !J1

3 !J1
4 !

(
kT1

3

)J1
1
(
kT1

4

)J1
2
(
kT1

5

)J1
3
(
kT1

6

)J1
4

×
p2∑

J2
1 +J2

2 +J2
3 =p2

P2!
J2

1 !J2
2 !J2

3 !

(
kT2

4

)J2
1
(
kT2

5

)J2
2
(
kT2

6

)J2
3

×
p2∑

J3
1 +J3

2 =p3

P3!
J3

1 !J3
2 !

(
kT3

5

)J3
1
(
kT3

6

)J3
2
(
kT4

6

)p4
.

×
∫ 1

0
dz5

∫ 1

0
dz4

∫ 1

0
dz3

∫ 1

0
dz2 · zk12

2 zk123+1
3 zk1234+2

4 zk12345+3
5

× (1− z2)k23 (1− z2z3)k24 (1− z2z3z4)k25 (1− z2z3z4z5)k26

× (1− z3)k34 (1− z3z4)k35 (1− z3z4z5)k36

× (1− z4)k45 (1− z4z5)k46

× (1− z5)k56

× (z3z4z5 − z2z3z4z5)−(J1
1 ) (z4z5 − z2z3z4z5)−(J1

2 +J2
1 )

× (z5 − z2z3z4z5)−(J1
3 +J2

2 +J3
1 ) (1− z2z3z4z5)−(J1

4 +J2
3 +J3

2 +p4) , (3.48)
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which means

A{p1,p2,p3,p4},0,0

=
N+p1∑

J1
1 +J1

2 +J1
3 +J1

4 =N+p1

(N + p1)!
J1

1 !J1
2 !J1

3 !J1
4 !

(
kT1

3

)J1
1
(
kT1

4

)J1
2
(
kT1

5

)J1
3
(
kT1

6

)J1
4

×
p2∑

J2
1 +J2

2 +J2
3 =p2

P2!
J2

1 !J2
2 !J2

3 !

(
kT2

4

)J2
1
(
kT2

5

)J2
2
(
kT2

6

)J2
3

×
p2∑

J3
1 +J3

2 =p3

P3!
J3

1 !J3
2 !

(
kT3

5

)J3
1
(
kT3

6

)J3
2
(
kT4

6

)p4
.

×
∫ 1

0
dz5

∫ 1

0
dz4

∫ 1

0
dz3

∫ 1

0
dz2 · zk12

2 z
k123+1−(J1

1 )
3 z

k1234+2−(J1
1 +J1

2 +J2
1 )

4

× zk12345+3−(J1
1 +J1

2 +J2
1 +J1

3 +J2
2 +J3

1 )
5

× (1− z2)k23−J1
1 (1− z2z3)k24−(J1

2 +J2
1 ) (1− z2z3z4)k25−(J1

3 +J2
2 +J3

1 )

× (1− z2z3z4z5)k26−(J1
4 +J2

3 +J3
2 +p4)

× (1− z3)k34 (1− z3z4)k35 (1− z3z4z5)k36

× (1− z4)k45 (1− z4z5)k46

× (1− z5)k56 . (3.49)

Then we expand the crossing terms to get

A{p1,p2,p3,p4},0,0

=
N+p1∑

J1
1 +J1

2 +J1
3 +J1

4 =N+p1

(N + p1)!
J1

1 !J1
2 !J1

3 !J1
4 !

(
kT1

3

)J1
1
(
kT1

4

)J1
2
(
kT1

5

)J1
3
(
kT1

6

)J1
4

×
p2∑

J2
1 +J2

2 +J2
3 =p2

P2!
J2

1 !J2
2 !J2

3 !

(
kT2

4

)J2
1
(
kT2

5

)J2
2
(
kT2

6

)J2
3

×
p2∑

J3
1 +J3

2 =p3

P3!
J3

1 !J3
2 !

(
kT3

5

)J3
1
(
kT3

6

)J3
2
(
kT4

6

)p4
.

×
∫ 1

0
dz5

∫ 1

0
dz4

∫ 1

0
dz3

∫ 1

0
dz2 · zk12

2 z
k123+1−(J1

1 )
3 z

k1234+2−(J1
1 +J1

2 +J2
1 )

4

× zk12345+3−(J1
1 +J1

2 +J2
1 +J1

3 +J2
2 +J3

1 )
5

× (1− z2)k23−J1
1 (1− z3)k34 (1− z4)k45 (1− z5)k56

×
∑
m23

[−k24 +
(
J1

2 + J2
1
)]
m23

m23! (z2z3)m23
∑
m24

[−k25 +
(
J1

3 + J2
2 + J3

1
)]
m24

m24! (z2z3z4)m24

×
∑
m25

[−k26 +
(
J1

4 + J2
3 + J3

2 + p4
)]
m25

m25! (z2z3z4z5)m25

×
∑
m34

[−k35]m34

m34! (z3z4)m34
∑
m35

[−k36]m34

m35! (z3z4z5)m35
∑
m45

[−k46]m34

m45! (z4z5)m45 , (3.50)
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which gives

A{p1,p2,p3,p4},0,0

=
N+p1∑

J1
1 +J1

2 +J1
3 +J1

4 =N+p1

(N + p1)!
J1

1 !J1
2 !J1

3 !J1
4 !

(
kT1

3

)J1
1
(
kT1

4

)J1
2
(
kT1

5

)J1
3
(
kT1

6

)J1
4

×
p2∑

J2
1 +J2

2 +J2
3 =p2

P2!
J2

1 !J2
2 !J2

3 !

(
kT2

4

)J2
1
(
kT2

5

)J2
2
(
kT2

6

)J2
3

×
p2∑

J3
1 +J3

2 =p3

P3!
J3

1 !J3
2 !

(
kT3

5

)J3
1
(
kT3

6

)J3
2
(
kT4

6

)p4

×
∑
m23

[−k24 +
(
J1

2 + J2
1
)]
m23

m23!
∑
m24

[−k25 +
(
J1

3 + J2
2 + J3

1
)]
m24

m24!

×
∑
m25

[−k26 +
(
J1

4 + J2
3 + J3

2 + p4
)]
m25

m25!

×
∑
m34

[−k35]m34

m34!
∑
m35

[−k36]m35

m35!
∑
m45

[−k46]m45

m45!

×
∫ 1

0
dz2 · zk12+m23+m24+m25

2 (1− z2)k23−J1
1

×
∫ 1

0
dz3 · z

k123+1−(J1
1 )+m23+m24+m25+m34+m35

3 (1− z3)k34

×
∫ 1

0
dz4 · z

k1234+2−(J1
1 +J1

2 +J2
1 )+m24+m25+m34+m35+m45

4 (1− z4)k45

×
∫ 1

0
dz5z

k12345+3−(J1
1 +J1

2 +J2
1 +J1

3 +J2
2 +J3

1 )+m25+m35+m45
5 (1− z5)k56 . (3.51)

After integration, we obtain

A{p1,p2,p3,p4},0,0

=
N+p1∑

J1
1 +J1

2 +J1
3 +J1

4 =N+p1

(N + p1)!
J1

1 !J1
2 !J1

3 !J1
4 !

(
kT1

3

)J1
1
(
kT1

4

)J1
2
(
kT1

5

)J1
3
(
kT1

6

)J1
4

×
p2∑

J2
1 +J2

2 +J2
3 =p2

P2!
J2

1 !J2
2 !J2

3 !

(
kT2

4

)J2
1
(
kT2

5

)J2
2
(
kT2

6

)J2
3

×
p2∑

J3
1 +J3

2 =p3

P3!
J3

1 !J3
2 !

(
kT3

5

)J3
1
(
kT3

6

)J3
2
(
kT4

6

)p4

×
∑
m23

[−k24 +
(
J1

2 + J2
1
)]
m23

m23!
∑
m24

[−k25 +
(
J1

3 + J2
2 + J3

1
)]
m24

m24!

×
∑
m25

[−k26 +
(
J1

4 + J2
3 + J3

2 + p4
)]
m25

m25!

×
∑
m34

[−k35]m34

m34!
∑
m35

[−k36]m35

m35!
∑
m45

[−k46]m45

m45!

– 20 –



J
H
E
P
0
9
(
2
0
2
3
)
1
1
1

× Γ (k12 + 1 +m23 +m24 +m25) Γ
(
k23 + 1− J1

1
)

Γ (k12 + k23 + 2 +m23 +m24 +m25)

× Γ
(
k123 + 2− J1

1 +m23 +m24 +m25 +m34 +m35
)

Γ (k34 + 1)
Γ
(
k123 + k34 + 3− J1

1 +m23 +m24 +m25 +m34 +m35
)

× Γ
(
k1234 + 3− (J1

1 + J1
2 + J2

1
)

+m24 +m25 +m34 +m35 +m45
)

Γ (k45 + 1)
Γ
(
k1234 + k45 + 4− (J1

1 + J1
2 + J2

1
)

+m24 +m25 +m34 +m35 +m45
)

× Γ
(
k12345 + 4− (J1

1 + J1
2 + J2

1 + J1
3 + J2

2 + J3
1
)

+m25 +m35 +m45
)

Γ (k56 + 1)
Γ
(
k12345 + k56 + 5− (J1

1 + J1
2 + J2

1 + J1
3 + J2

2 + J3
1
)

+m25 +m35 +m45
) .

(3.52)

Now we choose to work on the Regge regime defined by

k12345 ∼ s, k12345 + k56 ∼ t. (3.53)

In this regime, the RSSA can be approximated as

A{p1,p2,p3,p4},0,0

∼
N+p1∑

J1
1 +J1

2 +J1
3 +J1

4 =N+p1

(N + p1)!
J1

1 !J1
2 !J1

3 !J1
4 !

(
kT1

3

)J1
1
(
kT1

4

)J1
2
(
kT1

5

)J1
3
(
kT1

6

)J1
4

×
p2∑

J2
1 +J2

2 +J2
3 =p2

P2!
J2

1 !J2
2 !J2

3 !

(
kT2

4

)J2
1
(
kT2

5

)J2
2
(
kT2

6

)J2
3

×
p2∑

J3
1 +J3

2 =p3

P3!
J3

1 !J3
2 !

(
kT3

5

)J3
1
(
kT3

6

)J3
2
(
kT4

6

)p4

×
∑
m23

[−k24 +
(
J1

2 + J2
1
)]
m23

m23!
∑
m24

[−k25 +
(
J1

3 + J2
2 + J3

1
)]
m24

m24!

×
∑
m25

[−k26 +
(
J1

4 + J2
3 + J3

2 + p4
)]
m25

m25!

×
∑
m34

[−k35]m34

m34!
∑
m35

[−k36]m35

m35!
∑
m45

[−k46]m45

m45!

× Γ (k12 + 1 +m23 +m24 +m25) Γ
(
k23 + 1− J1

1
)

Γ
(
k12 + k23 + 2− J1

1 +m23 +m24 +m25
)

× Γ
(
k123 + 2− J1

1 +m23 +m24 +m25 +m34 +m35
)

Γ (k34 + 1)
Γ
(
k123 + k34 + 3− J1

1 +m23 +m24 +m25 +m34 +m35
)

× Γ
(
k1234 + 3− (J1

1 + J1
2 + J2

1
)

+m24 +m25 +m34 +m35 +m45
)

Γ (k45 + 1)
Γ
(
k1234 + k45 + 4− (J1

1 + J1
2 + J2

1
)

+m24 +m25 +m34 +m35 +m45
)

× (k12345)−(J1
1 +J1

2 +J2
1 +J1

3 +J2
2 +J3

1 )+m25+m35+m45

(k12345 + k56 + 5)−(J1
1 +J1

2 +J2
1 +J1

3 +J2
2 +J3

1 )+m25+m35+m45

Γ (k12345 + 4) Γ (k56 + 1)
Γ (k12345 + k56 + 5) .

(3.54)

To get the leading order in k12345, we take

J1
1 = J1

2 = J1
3 = J2

1 = J2
2 = J3

1 = 0,
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which implies
J1

4 = N + p1, J
2
3 = p2, J

3
2 = p3. (3.55)

With p1 + p2 + p3 + p4 = 0, the leading term is

A{p1,p2,p3,p4},0,0

∼
(
kT1

6

)N+p1 (
kT2

6

)p2 (
kT3

6

)p3 (
kT4

6

)p4

×
∑
m23

[−k24]m23

m23!
∑
m24

[−k25]m24

m24!
∑
m25

[−k26 +N ]m25

m25!

×
∑
m34

[−k35]m34

m34!
∑
m35

[−k36]m35

m35!
∑
m45

[−k46]m45

m45!

× Γ (k12 + 1 +m23 +m24 +m25) Γ (k23 + 1)
Γ (k12 + k23 + 2 +m23 +m24 +m25)

× Γ (k123 + 2 +m23 +m24 +m25 +m34 +m35) Γ (k34 + 1)
Γ (k123 + k34 + 3 +m23 +m24 +m25 +m34 +m35)

× Γ (k1234 + 3 +m24 +m25 +m34 +m35 +m45) Γ (k45 + 1)
Γ (k1234 + k45 + 4 +m24 +m25 +m34 +m35 +m45)

× (k12345)+m25+m35+m45

(k12345 + k56 + 5)m25+m35+m45

Γ (k12345 + 4) Γ (k56 + 1)
Γ (k12345 + k56 + 5) . (3.56)

So the ratios of the 7-point RSSA is

A{p1,p2,p3,p4},0,0

A{0,0,0,0},0,0
=
(
kT1

6

)p1 (
kT2

6

)p2 (
kT3

6

)p3 (
kT4

6

)p4

=
(
cosφ6

2
)p1 (sinφ6

2 cosφ6
3
)p2 (sinφ6

2 sinφ6
3 cosφ6

4
)p3 (sinφ6

2 sinφ6
3 sinφ6

4
)p4

= (cos θ1)p1 (sin θ1 cos θ2)p2 (sin θ1 sin θ2 cos θ3)p3 (sin θ1 sin θ2 sin θ3)p4

= (ω1)p1 (ω2)p2 (ω3)p3 (ω4)p4 , (3.57)

which is the same as eq. (2.16) with m = q = 0 and r = 4.

4 The n-point Regge stringy scaling

In this section, we generalize the previous calculations to the case of n-point RSSA. We
first define the 26-dimensional momenta in the CM frame to be

k1 =
(√

p2 +M2
1 ,−p, 0r

)
,

k2 =
(√

p2 +M2
2 , p, 0r

)
,

...

kj =
(
−
√
q2
j +M2

j ,−qjΩj
1,−qjΩj

2, · · · ,−qjΩj
r,−qjΩj

r+1

)
(4.1)

where j = 3, 4, · · · , n, and

Ωj
i = cosφji

i−1∏
σ=1

sinφjσ with φjj−1 = 0, φji>r = 0 and r ≤ min {n− 3, 24} (4.2)
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are the solid angles in the (j − 2)-dimensional spherical space with
∑j−2
i=1

(
Ωj
i

)2
= 1. In

eq. (4.1), 0r denotes the r-dimensional null vector. The amplitude of one tensor state(
αT1
−1

)N+p1 (
αT2
−1

)p2 · · ·
(
αTr−1

)pr |0, k〉 , p1 + p2 + · · ·+ pr = 0 (4.3)

and n− 1 tachyon states is

A{p1,p2,··· ,pr},0,0

=
∫ 1

0
dxn−2

∫ xn−2

0
dxn−3 · · ·

∫ x4

0
dx3

∫ x3

0
dx2

×
∏

0≤i<j≤n−1
(xj − xi)kij

r∏
σ=1

 n−1∑
j=σ+2

(
kTσj

xj − x2

)Pσ (4.4)

where we have defined
P1 = N + p1,Pσ 6=1 = pσ. (4.5)

Now, let’s explicitly write down the second product part of eq. (4.4) as

A{p1,p2,··· ,pr},0,0

=
∫ 1

0
dxn−2

∫ xn−2

0
dxn−3 · · ·

∫ x4

0
dx3

∫ x3

0
dx2 ×

∏
0≤i<j≤n−1

(xj − xi)kij

×
[

kT1
3

x3 − x2
+ kT1

4
x4 − x2

+ kT1
5

x5 − x2
· · ·+ kT1

n−1
1− x2

]P1

×
[

kT2
4

x4 − x2
+ kT2

5
x5 − x2

+ · · ·+ kT2
n−1

1− x2

]P2

...

×
[

kTrr+2
xr+2 − x2

+ · · ·+ kTrn−1
1− x2

]Pr
. (4.6)

For convience, from now on we add trivial terms with Pσ = 0 (r + 1 ≤ σ ≤ n− 3) to the
amplitude and obtain

A{p1,p2,··· ,pr},0,0

=
∫ 1

0
dxn−2

∫ xn−2

0
dxn−3 · · ·

∫ x4

0
dx3

∫ x3

0
dx2 ×

∏
0≤i<j≤n−1

(xj − xi)kij

×
[

kT1
3

x3 − x2
+ kT1

4
x4 − x2

+ kT1
5

x5 − x2
+ kT1

5
x6 − x2

+ · · ·+ kT1
n−1

1− x2

]P1

×
[

kT2
4

x4 − x2
+ kT2

5
x5 − x2

+ kT2
6

x6 − x2
+ · · ·+ kT2

n−1
1− x2

]P2

...
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×
[

kTrr+2
xr+2 − x2

+
kTrr+3

xr+3 − x2
+ · · ·+ kTrn−1

1− x2

]Pr [
k
Tr+1
r+3

xr+3 − x2
+ · · ·+ k

Tr+1
n−1

1− x2

]Pr+1

...

×
[
k
Tn−3
n−1

1− x2

]Pn−3

. (4.7)

Now we can expand the brackets

A{p1,p2,··· ,pr},0,0

=
∫ 1

0
dxn−2

∫ xn−2

0
dxn−3 · · ·

∫ x4

0
dx3

∫ x3

0
dx2×

∏
0≤i<j≤n−1

(xj−xi)kij

×
∑

J1
1 +J1

2 +···+J1
n−4+J1

n−3≡P1

P1!
J1

1 !J1
2 ! · · ·J1

n−4!J1
n−3!

(
kT1

3
x3−x2

)J1
1
(

kT1
4

x4−x2

)J1
2

· · ·
(
kT1
n−1

1−x2

)J1
n−3

×
∑

J2
1 +J2

2 +···+J2
n−5+J2

n−4=P2

P2!
J2

1 !J2
2 ! · · ·J2

n−5!J2
n−4!

(
kT2

4
x4−x2

)J2
1

· · ·
(
kT2
n−1

1−x2

)J2
n−4

...

×
∑

Jn−3
1 =Pn−3=0

Pn−3!
Jn−3

1 !

(
k
Tn−3
n−1

1−x2

)Jn−3
1

(4.8)

where all J are non-negative integers. (Note that all Jσ≥r+1
j = 0 due to Pσ≥r+1 = 0.)

After some rearrangements, we can derive

A{p1,p2,··· ,pn−3},0,0

=
∑

J1
1 +J1

2 +···+J1
n−4+J1

n−3≡P1

P1!
J1

1 !J1
2 ! · · · J1

n−4!J1
n−3!

(
kT1

3

)J1
1
(
kT1

4

)J1
2 · · ·

(
kT1
n−1

)J1
n−3

×
∑

J2
1 +J2

2 +···+J2
n−5+J2

n−4=P2

P2!
J2

1 !J2
2 ! · · · J2

n−5!J2
n−4!

(
kT2

4

)J2
1
(
kT2

5

)J2
2 · · ·

(
kT2
n−1

)J2
n−4

...

×
∑

Jn−3
1 =Pn−3=0

Pn−3!
Jn−3

1 !

(
k
Tn−3
n−1

)Jn−3
1

×
∫ 1

0
dxn−2

∫ xn−2

0
dxn−3 · · ·

∫ x4

0
dx3

∫ x3

0
dx2 ×

∏
0≤i<j≤n−1

(xj − xi)kij

×
( 1
x3 − x2

)J1
1
( 1
x4 − x2

)J1
2
· · ·
( 1

1− x2

)J1
n−3

( 1
x4 − x2

)J2
1
· · ·
( 1

1− x2

)J2
n−4

...

×
( 1

1− x2

)Jn−3
1

. (4.9)
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We can collect terms with the same sum of subscripts and superscripts to get

A{p1,p2,··· ,pn−3},0,0

=
n−3∏
σ=1

 ∑∑n−2−σ
j=1 Jσj =Pσ

Pσ!
n−2−σ∏
j=1

(
kTσj+σ+1

)Jσj
Jσj !




×
∫ 1

0
dxn−2

∫ xn−2

0
dxn−3 · · ·

∫ x4

0
dx3

∫ x3

0
dx2×

∏
0≤i<j≤n−1

(xj−xi)kij−δi2(J
1
j−2+···+Jj−2

1 ) .

(4.10)

To perform the integral of the last line in eq. (4.10), let’s do the following change of variables

xi =
n−2∏
k=i

zk, or x2 = z2z3 · · · zn−2, x3 = z3z4 · · · zn−2, · · · , xn−2 = zn−2, xn−1 = zn−1 = 1

(4.11)
to make all the integral intervals from 0 to 1. The integral becomes∫ 1

0
dxn−2

∫ xn−2

0
dxn−3 · · ·

∫ x4

0
dx3

∫ x3

0
dx2 ×

∏
0≤i<j≤n−1

(xj − xi)kij−δi2(J
1
j−2+···+Jj−2

1 )

=
∫ 1

0
dzn−2 · · ·

∫ 1

0
dz3

∫ 1

0
dz2

n−4∏
i=1

(zi+2)i
∏

0≤i<j≤n−1

n−2∏
k=j

zk −
n−2∏
k=i

zk

kij−δi2(J1
j−2+···+Jj−2

1 )

=
∫ 1

0
dzn−2 · · ·

∫ 1

0
dz2 ×

n−4∏
i=1

(zi+2)i
∏

0≤i<j≤n−1

n−2∏
k=j

zk

1−
j−1∏
k=i

zk

kij−δi2(J1
j−2+···+Jj−2

1 )
.

(4.12)

Now, the amplitude can be explicitly written as

A{p1,p2,··· ,pn−3},0,0

=
n−3∏
σ=1

 ∑∑n−2−σ
j=1 Jσj =Pσ

Pσ!
n−2−σ∏
j=1

(
kTσj+σ+1

)Jσj
Jσj !




×
∫ 1

0
dzn−2

∫ 1

0
dzn−3 · · ·

∫ 1

0
dz3

∫ 1

0
dz2

× zk12
2 z

k123+1−J1
1

3 z
k1234+2−J1

1−(J2
1 +J1

2 )
4 · · · zk1,··· ,n−2+(n−4)−J1

1−(J2
1 +J1

2 )−···−(Jn−4
1 +···+J1

n−4)
n−2

× (1− z2)k23−J1
1 (1− z2z3)k24−(J2

1 +J1
2 ) · · · (1− z2z3z4 · · · zn−2)k2,n−1−(Jn−3

1 +···+J1
n−3)

× (1− z3)k34 (1− z3z4)k35 · · · (1− z3z4 · · · zn−2)k3,n−1

...

× (1− zn−3)kn−3,n−2 (1− zn−3zn−2)kn−3,n−1

× (1− zn−2)kn−2,n−1 . (4.13)
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Let’s rearrange the above equation to get a more symmetric form in the following

A{p1,p2,··· ,pn−3},0,0

=
n−3∏
σ=1

 ∑∑n−2−σ
j=1 Jσj =Pσ

Pσ!
n−2−σ∏
j=1

(
kTσj+σ+1

)Jσj
Jσj !




×
∫ 1

0
dzn−2

∫ 1

0
dzn−3 · · ·

∫ 1

0
dz3

∫ 1

0
dz2·

× zk12
2 z

k123+1−J1
1

3 z
k1234+2−J1

1−(J2
1 +J1

2 )
4 · · · zk1,··· ,n−2+(n−4)−J1

1−(J2
1 +J1

2 )−···−(Jn−4
1 +···+J1

n−4)
n−2

× (1− z2)k23−J1
1 (1− z3)k34 (1− z4)k45 · · · (1− zn−2)kn−2,n−1

× (1− z2z3)k24−(J2
1 +J2

1 ) (1− z2z3z4)k25−(J3
1 +J2

2 +J1
3 ) · · ·

× (1− z2z3z4 · · · zn−2)k2,n−1−(Jn−3
1 +···+J1

n−3)

× (1− z3z4)k35 · · · (1− z3z4 · · · zn−2)k3,n−1

...

× (1− zn−3zn−2)kn−3,n−1 . (4.14)

Then we expand the crossing terms to get

A{p1,p2,··· ,pn−3},0,0

=
n−3∏
σ=1

 ∑∑n−2−σ
j=1 Jσj =Pσ

Pσ!
n−2−σ∏
j=1

(
kTσj+σ+1

)Jσj
Jσj !




×
∫ 1

0
dzn−2

∫ 1

0
dzn−3 · · ·

∫ 1

0
dz3

∫ 1

0
dz2

× zk12
2 z

k123+1−J1
1

3 z
k1234+2−J1

1−(J2
1 +J1

2 )
4 · · · zk1,··· ,n−2+(n−4)−J1

1−(J2
1 +J1

2 )−···−(Jn−4
1 +···+J1

n−4)
n−2

× (1− z2)k23−J1
1 (1− z3)k34 (1− z4)k45 · · · (1− zn−2)kn−2,n−1

×
∑
m23

[−k24 +
(
J2

1 + J1
2
)]
m23

m23! (z2z3)m23 · · ·

×
∑

m2,n−2

[
−k2,n−1 +

(
Jn−3

1 + · · ·+ J1
n−3

)]
m2,n−2

m2,n−2! (z2z3z4 · · · zn−2)m2,n−2

×
∑
m34

(−k35)m34

m34! (z3z4)m34 · · ·
∑

m3,n−2

(−k3,n−1)m3,n−2

m3,n−2! (z3z4 · · · zn−2)m3,n−2

...

×
∑

mn−3,n−2

(−kn−3,n−1)m3,n−2

mn−3,n−2! (zn−3zn−2)mn−3,n−2 (4.15)
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where the subscripts ofmij keep record of the first and the last subscripts of (zizi+1 · · · zj−1zj)
etc. The amplitude becomes

A{p1,p2,··· ,pn−3},0,0

=
n−3∏
σ=1

 ∑∑n−2−σ
j=1 Jσj =Pσ

Pσ!
n−2−σ∏
j=1

(
kTσj+σ+1

)Jσj
Jσj !




×
∑
m23

[−k24+
(
J2

1 +J1
2
)]
m23

m23! · · ·
∑

m2,n−2

[
−k2,n−1+

(
Jn−3

1 +· · ·+J1
n−3

)]
m2,n−2

m2,n−2!

×
∑
m34

(−k35)m34

m34! · · ·
∑

m3,n−2

(−k3,n−1)m3,n−2

m3,n−2!
...

×
∑

mn−3,n−2

(−kn−3,n−1)m3,n−2

mn−3,n−2!

×
∫ 1

0
dzn−2

∫ 1

0
dzn−3 · · ·

∫ 1

0
dz3

∫ 1

0
dz2·

×zk12+
∑

i≤2≤jmij
2 z

k123+1−
∑

i+j≤2 J
i
j+
∑

i≤3≤jmij
3 · · ·zk1,··· ,n−2+(n−4)−

∑
i+j≤n−3 J

i
j+
∑

i≤n−2≤jmij
n−2

×(1−z2)k23−J1
1 (1−z3)k34 · · ·(1−zn−2)kn−2,n−1 . (4.16)

After integration, we can write it as

A{p1,p2,··· ,pn−3},0,0

=
n−3∏
σ=1

 ∑∑n−2−σ
j=1 Jσj =Pσ

Pσ!
n−2−σ∏
j=1

(
kTσj+σ+1

)Jσj
Jσj !




×
∑
m23

[−k24 +
(
J2

1 + J1
2
)]
m23

m23!
∑
m24

[−k25 +
(
J3

1 + J2
2 + J1

3
)]
m24

m24!

· · ·
∑

m2,n−2

[
−k2,n−1 +

(
Jn−3

1 + · · ·+ J1
n−3

)]
m2,n−2

m2,n−2!

×
∑
m34

(−k35)m34

m34! · · ·
∑

m3,n−2

(−k3,n−1)m3,n−2

m3,n−2!
...

×
∑

mn−3,n−2

(−kn−3,n−1)m3,n−2

mn−3,n−2!

×
Γ
(
k12 + 1 +

∑
i≤2≤jmij

)
Γ
(
k23 + 1− J1

1
)

Γ
(
k12 + k23 + 2− J1

1 +
∑
i≤2≤jmij

)
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×
Γ
(
k123 + 2−∑i+j≤2 J

i
j +

∑
i≤3≤jmij

)
Γ (k34 + 1)

Γ
(
k123 + k34 + 3−∑i+j≤2 J

i
j +

∑
i≤3≤jmij

)
...

×
Γ
(
k1,··· ,n−2 + (n− 3)−∑i+j≤n−3 J

i
j +

∑
i≤n−2≤jmij

)
Γ (kn−2,n−1 + 1)

Γ
(
k1,··· ,n−2 + kn−2,n−1 + (n− 2)−∑i+j≤n−3 J

i
j +

∑
i≤n−2≤jmij

) . (4.17)

Now we choose to work on the Regge regime defined by

k1,··· ,n−2 ∼ s, k1,··· ,n−2 + kn−2,n−1 ∼ t. (4.18)

In this regime, the RSSA can be approximated as

A{p1,p2,··· ,pn−3},0,0

∼
n−3∏
σ=1

 ∑∑n−2−σ
j=1 Jσj =Pσ

Pσ!
n−2−σ∏
j=1

(
kTσj+σ+1

)Jσj
Jσj !




×
∑
m23

[−k24+
(
J2

1 +J1
2
)]
m23

m23!
∑
m24

[−k25+
(
J3

1 +J2
2 +J1

3
)]
m24

m24!

· · ·
∑

m2,n−2

[
−k2,n−1+

(
Jn−3

1 +· · ·+J1
n−3

)]
m2,n−2

m2,n−2!

×
∑
m34

(−k35)m34

m34! · · ·
∑

m3,n−2

(−k3,n−1)m3,n−2

m3,n−2!
...

×
∑

mn−3,n−2

(−kn−3,n−1)m3,n−2

mn−3,n−2!

×
Γ
(
k12+1+

∑
i≤2≤jmij

)
Γ
(
k23+1−J1

1
)

Γ
(
k12+k23+2−J1

1 +
∑
i≤2≤jmij

)
×

Γ
(
k123+2−∑i+j≤2J

i
j+
∑
i≤3≤jmij

)
Γ(k34+1)

Γ
(
k123+k34+3−∑i+j≤2J

i
j+
∑
i≤3≤jmij

)
...

× (k1,··· ,n−2)−
∑

i+j≤n−3 J
i
j+
∑

i≤n−2≤jmij Γ(k1,··· ,n−2+(n−3))Γ(kn−2,n−1+1)
(k1,··· ,n−2+kn−2,n−1+(n−2))−∑

i+j≤n−3 J
i
j+
∑

i≤n−2≤jmij
Γ(k1,··· ,n−2+kn−2,n−1+(n−2)) .

(4.19)

To get the leading order in k1,··· ,n−2˜ s, we take

J ij = 0, (for all i+ j ≤ n− 3) (4.20)
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or

J1
1 = J1

2 = · · · = J1
n−4 = 0,

J2
1 = · · · = J2

n−5 = 0,
Jr1 = · · · = Jrn−r−3 = 0 (4.21)

which imply
J1
n−3 = N + p1, J

2
n−4 = p2, · · · , Jrn−r−2 = pr. (4.22)

Finally, the leading order term of the amplitude is

A{p1,p2,··· ,pr},0,0

∼
r∏

σ=1

[(
kTσn−1

)Pσ]

×
∑
m23

[−k24]m23

m23!
∑
m24

[−k25]m24

m24! · · ·
∑
m24

[−k2,n−1]m2,n−2

m2,n−2!

×
∑
m34

(−k35)m34

m34! · · ·
∑

m3,n−2

(−k3,n−1)m3,n−2

m3,n−2!

×
∑

mn−3,n−2

(−kn−3,n−1)m3,n−2

mn−3,n−2!

×
Γ
(
k12 + 1 +

∑
i≤2≤jmij

)
Γ (k23 + 1)

Γ
(
k12 + k23 + 2 +

∑
i≤2≤jmij

)
×

Γ
(
k123 + 2 +

∑
i≤3≤jmij

)
Γ (k34 + 1)

Γ
(
k123 + k34 + 3−∑i+j≤2 J

i
j +

∑
i≤3≤jmij

)
...

× (k1,··· ,n−2)
∑

i≤n−2≤j mij Γ (k1,··· ,n−2 + (n− 3)) Γ (kn−2,n−1 + 1)
(k1,··· ,n−2 + kn−2,n−1 + (n− 2))∑

i≤n−2≤j mij
Γ (k1,··· ,n−2 + kn−2,n−1 + (n− 2))

=
r∏

σ=1

[(
kTσn−1

)Pσ]× (factors independent of Jrq ’s ). (4.23)

The ratios of the amplitudes are

A{p1,p2,··· ,pr},0,0

A{0,0,··· ,0},0,0
=
(
kT1
n−1

)p1 (
kT2
n−1

)p2 · · ·
(
kTrn−1

)pr
,

=
(
Ωn−1

2

)p1 (Ωn−1
3

)p2 · · ·
(
Ωn−1
r+1

)pr
,

= (ω1)p1 (ω2)p2 · · · (ωr)pr

= T
({pi},0,0)

T ({0i},0,0) (4.24)

which is the same as eq. (2.16) with m = q = 0.
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Note the difference between the 4-point calculation in eq. (3.3) and the n-point cal-
culation in eq. (4.24). In eq. (4.24), as we have calculated only a subclass of RSSA with
m = q = 0, we do not need to take limit as we did for eq. (3.3). We expect that the ratios
calculated in eq. (2.16) can also be extracted from the n-point RSSA with n− 1 tachyons
and the state in eq. (2.13) should one can explicitly calculate the amplitudes.

5 Conclusion

In this paper, we first give a review with detailed calculations of ratios among HSSA at
each fixed mass level to demonstrate the stringy scaling behavior in the hard scattering
limit. We then extend the calculations and discover a similar stringy scaling behavior for a
class of n-point RSSA. The number of independent kinematics variables of these RSSA is
found to be reduced by dimM, similar to those of the HSSA.

These stringy scaling behaviors are reminiscent of deep inelastic scattering of electron
and proton where the two structure functions W1(Q2, ν) and W2(Q2, ν) scale, and become
not functions of 2 kinematics variables Q2 and ν independently but only of their ratio Q2/ν.
Thus the number of independent kinematics variables reduces from 2 to 1. Indeed, it is now
well-known that the structure functions scale as [36]

MW1(Q2, ν)→ F1(x), νW2(Q2, ν)→ F2(x) (5.1)

where x is the Bjorken variable and M is the proton mass. Moreover, due to the spin- 1
2

assumption of quark, Callan and Gross derived the following relation [37]

2xF1(x) = F2(x). (5.2)

Both of these scaling behaviors, the reduction of the number of kinematics variables in
eq. (5.1) and the number of structure functions in eq. (5.2) in the hard scattering limit of
quark-parton model in QCD seem to persist in some way in the HSSA and some RSSA of
string theory. We believe that, comparing to hard QCD scaling, high energy stringy scaling
in general has not been well studied yet in the literature [38]. More new phenomena of
stringy scaling remain to be uncovered.
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A Examples of 4-point stringy scaling

A.1 Bosonic open string

Since the ratios of the amplitudes in eq. (2.11) are independent of the choices of V1, V3 and
V4, we choose them to be tachyons and V2 to be eq. (2.2). On the other hand, since the
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ratios are independent of the loop order, we choose to calculate HSSA of l = 0 loop. An
explicit amplitude calculation for M2 = 4, 6 and 8 gives [11, 12, 14, 15]

TTTT : T(LLT ) : T(LT ) : T[LT ] = 8 : 1 : −1 : −1, (A.1)

T(TTTT ) : T(TTLL) : T(LLLL) : TTT,L : T(TTL) : T(LLL) : T(LL)

= 16 : 4
3 : 1

3 : −2
√

6
3 : −4

√
6

9 : −
√

6
9 : 2

3 (A.2)

and

T(TTTTT ) : T(TTTL) : T(TTTLL) : T(TLLL) : T(TLLLL) : T(TLL) : TT,LL : TTLL,L : TTTT,L

= 32 :
√

2 : 2 : 3
√

2
16 : 3

8 : 1
3 : 2

3 :
√

2
16 : 3

√
2, (A.3)

respectively. These are all remarkably consistent with eq. (2.11) of ZNS calculation [18, 19].
It is important to note that for subleading order amplitudes, they are in general

not proportional to each other. For M2 = 4, for example, one gets 6 subleading order
amplitudes and 4 linear relations (on-shell Ward identities) in the ZNS calculation. An
explicit subleading order amplitude calculation gives [11, 12]

T 2
LLL ∼ −4E8 sinφ cosφ,
T 2
LTT ∼ −8E8 sin2 φ cosφ, (A.4)

which show that the proportional coefficients do depend on the scattering angle φ.

A.2 Bosonic closed string and D-particle

For closed string scatterings [20, 21], one can use the KLT formula [22], which expresses
the relation between tree amplitudes of closed and two channels of open string (α′closed =
4α′open = 2), to obtain the closed string ratios which are the tensor product of two open
string ratios in eq. (2.11). On the other hand, it is interesting to find that the ratios of
hard closed string D-particle scatterings are again given by the tensor product of two open
string ratios [23]

T

(
N ;2m,2m′ ;q,q′

)
SD

T
(N ;0,0;0,0)
SD

=
(
− 1
M2

)2(m+m′ )+q+q′ (1
2

)m+m′+q+q′

(2m− 1)!!(2m′ − 1)!!, (A.5)

which came as a surprise since there is no physical picture for open string D-particle tree
scattering amplitudes and thus no factorization for closed string D-particle scatterings into
two channels of open string D-particle scatterings, and hence no KLT-like formula there.
However, these ratios are consistent with the decoupling of high energy ZNS calculation.

A.3 Stringy scaling of superstring

It turned out to be nontrivial to extend the linear relations and their associated constant
ratios of the HSSA of bosonic string to the case of 10D open superstring. First of all, in
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addition to the NS-sector, there are massive fermionic states in the R-sector whose vertex
operators are still unknown except the leading Regge trajectory states in the spectrum [24].
So the only known complete vertex operators so far are those for the mass level M2 = 2 [25]
which contains no off leading massive Regge trajectory fermionic string states.

Secondly, in the NS-sector of M2 = 2 it was surprised to note that [27] there exists no
“inter-particle gauge transformation” induced by bosonic ZNS for the two positive-norm
physical propagating states, the symmetric spin three and the anti-symmetric spin two
states. However, the 4-point HSSA among these two positive-norm states are still related
and are indeed again proportional to each others. Presumably, this is due to the massive
spacetime SUSY and the existence of spacetime massive fermion string scattering amplitudes
of the R-sector of the theory [26].

Thirdly, it was noted that for the HSSA of the NS sector of superstring, there existed
leading order HSSA with polarizations orthogonal to the scattering plane [27]. This was
due to the ”worldsheet fermion exchange” [28] in the correlation functions and was argued
to be related to the HSSA of massive spacetime fermion of R-sector of the theory [26].

The first calculation of the 4-point superstringy scaling was performed for the NS-sector
of 10D open superstring theory. There are four classes of HSSA of superstring which are
all proportional to each other [28]

|N, 2m, q〉 ⊗
∣∣∣∣bP− 3

2

〉
=
(
− 1

2M2

)q+m (2m− 1)!!
(−M2)m |N, 0, 0〉 ⊗

∣∣∣∣bP− 3
2

〉
, (A.6)

|N + 1, 2m+ 1, q〉 ⊗
∣∣∣∣bP− 1

2

〉
=
(
− 1

2M2

)q+m (2m+ 1)!!
(−M2)m+1 |N, 0, 0〉 ⊗

∣∣∣∣bP− 3
2

〉
, (A.7)

|N + 1, 2m, q〉 ⊗
∣∣∣∣bT− 1

2

〉
=
(
− 1

2M2

)q+m (2m− 1)!!
(−M2)m−1 |N, 0, 0〉 ⊗

∣∣∣∣bP− 3
2

〉
, (A.8)

|N − 1, 2m, q − 1〉 ⊗
∣∣∣∣bT− 1

2
bP− 1

2
bP− 3

2

〉
=
(
− 1

2M2

)q+m (2m− 1)!!
(−M2)m |N, 0, 0〉 ⊗

∣∣∣∣bP− 3
2

〉
. (A.9)

Note that, in order to simplify the notation, we have only shown the second state of the
four point functions to represent the scattering amplitudes on both sides of each equation
above. Eqs. (A.6) to (A.9) are thus the SUSY generalization of eq. (2.11) for the bosonic
string.

Moreover, a recent calculation showed that [26] among 24 × 24 = 256 4-point polarized
fermion SSA (PFSSA) in the R-sector of M2 = 2 states, only 16 of them are of leading
order in energy and all of them share the same functional form in the hard scattering limit.
On the other hand, the ratios of the complete 4-point HSSA in the NS sector of mass level
M2 = 2 which include HSSA with polarizations orthogonal to the sacttering plane are [27]〈

bT−1
2
, αT−1b

T
−1
2

〉
:
〈
bT−1

2
,

(
2bL−1

2
αL−1 −MbL−3

2

)〉
:
〈
bTi−1

2
, αT−1b

Tj
−1
2

〉
:
〈
bTk−1

2
, bL−1

2
bT−1

2
bTl−1

2

〉
(A.10)

= −2kT3 E2 : −2
( 2
M2 + 1

)
kT3 E

2 : δij2kT3 E2 : δlk
−2kT3 E2

M

= 1 : 2 : −δij : δlk√
2
. ( i, j, k, l = 3, 4, 5, . . . , 9) (A.11)
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where we have, for simplicity, omitted the last two tachyon vertices in the notation of
each HSSA in eq. (A.10). In sum, in the NS sector one gets 1 + 1 + 7 + 7 = 16 HSSA
in eq. (A.10). This result agrees with those of 16 hard massive PFSSA in the R-sector
calculated recently [26].

A.4 Field theory

On the other hand, in field theory, as an example, the leading order process of the elastic
scattering of a spin- 1

2 particle by a spin-0 particle such as e−π+ −→ e−π+, the non-vanishing
amplitudes were shown to be [29]

T (e−Rπ
+ −→ e−Rπ

+) = T (e−Lπ
+ −→ e−Lπ

+) ∼ cos φ2 , (A.12)

T (e−Rπ
+ −→ e−Lπ

+) = T (e−Lπ
+ −→ e−Rπ

+) ∼ sin φ2 , (A.13)

which are not proportional to each other. In QED, as another example, for the leading
order process of e−e+ −→ µ−µ+, there are 4 non-vanishing among 16 hard polarized
amplitudes [30]

T (e−Re
+
L −→ µ−Rµ

+
L ) = T (e−Le

+
R −→ µ−Lµ

+
R) ∼ (1 + cos θ) = 2 cos2 φ

2 , (A.14)

T (e−Re
+
L −→ µ−Lµ

+
R) = T (e−Le

+
R −→ µ−Rµ

+
L ) ∼ (1− cos θ) = 2 sin2 φ

2 , (A.15)

and they are not all proportional to each other.

B Saddle point calculation

In this appendix, to justify the ZNS calculation in eq. (2.11) and eq. (2.16), we use the
saddle point calculation to explicitly calculate the HSSA. Since the ratios are independent
of the choices of Vj (J = 1, 3, 4 · · · , n), we choose them to be tachyons and V2 to be the
high energy state in eq. (2.2). On the other hand, since the ratios are independent of the
loop order, we choose to calculate l = 0 loop. We begin with the 4-point case [14, 15].

B.1 The four point calculation

The t − u channel contribution to the stringy amplitude at tree level is (after SL(2, R)
fixing)

T (N,2m,q) =
∫ ∞

1
dxx(1,2)(1− x)(2,3)

[
eT · k1
x
− eT · k3

1− x

]N−2m−2q

·
[
eP · k1
x

− eP · k3
1− x

]2m [
−e

P · k1
x2 − eP · k3

(1− x)2

]q
(B.1)

where (1, 2) = k1 · k2 etc.
In order to apply the saddle-point method, we rewrite the amplitude above into the

following form
T (N,2m,q)(K) =

∫ ∞
1

dx u(x)e−Kf(x), (B.2)
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where

K ≡ −(1, 2)→ s

2 → 2E2, (B.3)

τ ≡ −(2, 3)
(1, 2) → −

t

s
→ sin2 φ

2 , (B.4)

f(x) ≡ ln x− τ ln(1− x), (B.5)

u(x) ≡
[(1, 2)
M

]2m+q
(1− x)−N+2m+2q(f ′)2m︸ ︷︷ ︸(f ′′)q(−eT · k3)N−2m−2q. (B.6)

The saddle-point for the integration of moduli, x = x0, is defined by

f ′(x0) = 0, (B.7)

and we have

x0 = 1
1− τ = sec2 φ

2 , 1− x0 = − τ

1− τ , f ′′(x0) = (1− τ)3τ−1. (B.8)

Due to the factor (f ′)2m in eq. (B.6), it is easy to see that [14, 15]

u(x0) = u′(x0) = . . . = u(2m−1)(x0) = 0, (B.9)

and

u(2m)(x0) =
[(1, 2)
M

]2m+q
(1− x0)−N+2m+2q(2m)!(f ′′0 )2m+q(−eT · k3)N−2m−2q. (B.10)

With these inputs, one can easily evaluate the Gaussian integral associated with the
four-point amplitudes [14, 15]∫ ∞

1
dx u(x)e−Kf(x)

=
√

2π
Kf ′′0

e−Kf0

[
u

(2m)
0

2m m! (f ′′0 )m Km
+O

( 1
Km+1

)]

=
√

2π
Kf ′′0

e−Kf0

[
(−1)N−q 2N−2m−q(2m)!

m! M2m+q τ−
N
2 (1− τ)

3N
2 EN +O(EN−2)

]
. (B.11)

This result shows explicitly that with one tensor and three tachyons, the energy and angle
dependence for the four-point HSS amplitudes only depend on the level N [14, 15]

lim
E→∞

T (N,2m,q)

T (N,0,0) = (−1)q(2m)!
m!(2M)2m+q

=
(
−2m− 1

M

)
. . .

(
− 3
M

)(
− 1
M

)(
− 1

2M

)m+q
, (B.12)

which is remarkably consistent with calculation of decoupling of high energy ZNS obtained
in eq. (2.11).
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B.2 The n-point HSSA with r = 1

To illustrate the n-point HSSA calculation, we begin with n-point HSSA with r = 1. We
want to calculate n-point HSSA with (n− 1) tachyons and 1 high energy state in eq. (2.2).
With the change of variables zi = xi

xi+1
or xi = zi · · · zn−2, the HSSA can be written as

T ({pi},m,q) =
∫ 1

0
dxn−2 · · ·

∫ x4

0
dx3

∫ x3

0
dx2ue

−Kf

=
∫ 1

0
dzn−2 · · ·

∫ 1

0
dz3

∫ 1

0
dz2

∣∣∣∣∣∣∣∣∣∣
z3 · · · zn−2 z2z4 · · · zn−2 · · · z2 · · · zn−3

0 z4 · · · zn−2 · · ·
. . .

0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣
ue−Kf

=
(
n−2∏
i=3

∫ 1

0
dzi z

i−2−N
i

)∫ 1

0
dz2ue

−Kf (B.13)

where

f (xi) = −
∑
i<j

ki · kj
K

ln (xj − xi) = −
∑
i<j

ki · kj
K

ln (zj · · · zn−2 − zi · · · zn−2)

= −
∑
i<j

ki · kj
K

[ln(zj · · · zn−2) + ln (1− zi · · · zj−1)] , K = −k1 · k2, (B.14)

u (xi) =
(
kT
)N−2m−q (

kL
)2m

︸ ︷︷ ︸
(
k′L
)q
.

(
k′L = ∂kL

∂x2

)
(B.15)

In eq. (B.15), we have defined

k =
∑
i 6=2,n

ki
xi − x2

=
∑
i 6=2,n

ki
zi · · · zn−2 − z2 · · · zn−2

, (B.16)

and k⊥ = |k⊥|
∑r
i=1 e

Tiωi = |k⊥| eT̂ .
The saddle points (z̃2, · · · , z̃n−2) are the solution of

∂f

∂z2
= 0, · · · , ∂f

∂zn−2
= 0. (B.17)

Note that eq. (B.17) implies

k̃L = k̃ · k2
M

= k12
M

∂f

∂x2

∣∣∣∣
zi=z̃i

= k12
M

∂zj
∂x2

∂f

∂zj

∣∣∣∣∣
zi=z̃i

= 0 ,
∣∣∣k̃∣∣∣ =

∣∣∣k̃⊥∣∣∣ . (B.18)

We also define

f2 ≡
∂f

∂z2
, f22 ≡

∂2f

∂z2
2
, f̃ = f (z̃2, · · · , z̃n−2) , f̃22 = ∂2f

∂z2
2

∣∣∣∣∣
(z̃2,··· ,z̃n−2)

. (B.19)
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In view of the factor
(
kL
)2m

in eq. (B.15) and eq. (B.18), all up to (2m)-order
differentiations of u function in eq. (B.15) at the saddle point vanish except [16]

∂2mu

∂z2m
2

∣∣∣∣∣
(z̃2,··· ,z̃n−2)

=
(
k12
M

)2m+q
− ∑

i 6=2,n

kTi
x̃i − x̃2

N−2m−2q

(2m)!
(
f̃22
)q+2m

=
(
k12
M

)2m+q (
k̃T
)N−2m−2q

(2m)!
(
f̃22
)q+2m

. (B.20)

Finally, with the saddle point, we can calculate the HSSA to be [16]

T (N,2m,2q) =
(
n−2∏
i=3

∫ 1

0
dzi z

i−2−N
i

)∫ 1

0
dz2

(
∂2mũ

∂z2m
2

(z2 − z̃2)2m

(2m)!

)
e−Kf (B.21)

' 1
(2m)!

∂2mũ

∂z2m
2

(
n−2∏
i=3

z̃i−2−N
i

)∫ 1

0
dz2 (z2 − z̃2)2m e−Kf(z2) (B.22)

' 1
(2m)!

∂2mũ

∂z2m
2

(
n−2∏
i=3

z̃i−2−N
i

)∫ ∞
0

dz2 (z2 − z̃2)2m e−Kf(z2) (B.23)

= 2
√
π

m!

(
n−2∏
i=3

z̃i−2−N
i

)
e−Kf̃∣∣∣k̃∣∣∣2m+1

∂2mu

∂z2m
2

∣∣∣∣∣
zi=z̃i

(B.24)

= 2
√
πe−Kf̃

∣∣∣k̃∣∣∣N−1
(
n−2∏
i=3

z̃i−2−N
i

)
(2m)!
m!

( −1
2M

)2m+q

 2Kf̃22(∑
i 6=2,n

kTi
x̃i−x̃2

)2


m+q

(B.25)

where f (z2) = f (z2, z̃3, · · · , z̃n−2). The ratios of n-point HSSA with r = 1 is

T (N,m,q)

T (N,0,0) = (2m)!
m!

( −1
2M

)2m+q

 2Kf̃22(∑
i 6=2,n

kTi
x̃i−x̃2

)2


m+q

(B.26)

= (2m)!
m!

( −1
2M

)2m+q
(B.27)

where the second equality followed from the calculation of decoupling of ZNS in eq. (2.11).
This suggests the identity

2Kf̃22(∑
i 6=2,n

kTi
x̃i−x̃2

)2 = 1. (B.28)

For the case of n = 4, one can easily solve the saddle point z̃2 = sec2 φ
2 to verify the identity.

We have also proved the identity for n = 5 by using maple numerically. Similar proof can
be done by maple for the case of n = 6.
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B.3 The n-point HSSA with r = 2

Now we calculate the case of n-point HSSA with r = 2. We want to calculate n-point HSSA
with (n− 1) tachyons and 1 high energy state(

αT1
−1

)N+p1 (
αT2
−1

)p2 (
αL−1

)2m (
αL−2

)q
|0; k〉 , p1 + p2 = −2(m+ q). (B.29)

The ratios of n-point HSSA with r = 2 can be similarly calculated to be

T (p1,p2,m,q)

T (N,0,0,0) = (2m)!
m!

( −1
2M

)2m+q
(
2Kf̃22

)m+q

(∑
i 6=2,n

k
T1
i

x̃i−x̃2

)2m+2q+p2 (∑
i 6=2,n

k
T2
i

x̃i−x̃2

)−p2

= (2m)!
m!

( −1
2M

)2m+q

∑i 6=2,n
k
T2
i

x̃i−x̃2∑
i 6=2,n

k
T1
i

x̃i−x̃2

p2

∑i 6=2,n
k
T1
i

x̃i−x̃2√
2Kf̃22

2m+2q . (B.30)

On the other hand, the decoupling of ZNS calculated in eq. (2.16) gives

T (p1,p2,m,q)

T (N,0,0,0) = (2m)!
m!

( −1
2M

)2m+q
ωp1

1 ω
p2
2 = (2m)!

m!

( −1
2M

)2m+q (tan θ1)p2

(cos θ1)2m+2q . (B.31)

Eq. (B.30) and eq. (B.31) can be identified for any p2, m and q if∑
i 6=2,n

kT1
i

x̃i − x̃2

 =
√

2Kf̃22 cos θ1,

∑
i 6=2,n

kT2
i

x̃i − x̃2

 =
√

2Kf̃22 sin θ1, (B.32)

which implies the identity∑
i 6=2,n

kT1
i

x̃i − x̃2

2

+

∑
i 6=2,n

kT2
i

x̃i − x̃2

2

= 2Kf̃22. (B.33)

It is not surprising that eq. (B.33) is a generalization of eq. (B.28) to two transverse
directions T1 and T2.

B.4 The n-point HSSA with r ≤ 24

It is now easy to generalize eq. (B.33) to any r (number of Ti) with r ≤ 24∑
i 6=2,n

kT1
i

x̃i − x̃2

2

+

∑
i 6=2,n

kT2
i

x̃i − x̃2

2

+ · · ·+
∑
i 6=2,n

kTri
x̃i − x̃2

2

= 2Kf̃22. (B.34)

By using eq. (B.16) and eq. (B.18), we see that the key identity eq. (B.34) can be written
as [16]

k̃2 + 2Mk̃′L = 0. (B.35)

The ratios in eq. (2.16) are thus proved by the saddle point method.
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