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We propose a description of the gluon scattering amplitudes as the inverse Mellin transforms of 
the conformal correlators of light operators in two-dimensional Liouville theory tensored with WZW-
like chiral currents on the celestial sphere. The dimensions of operators are Mellin dual to gluon 
light cone energies while their positions are determined by the gluon momentum directions. Tree-
level approximation in Yang-Mills theory corresponds to the semiclassical limit of Liouville theory. By 
comparing subleading corrections, we find b2 = (8π2)−1β0 g2(M), where b is the Liouville coupling 
constant, g(M) is the Yang Mills coupling at the renormalization scale M and β0 is the one-loop 
coefficient of the Yang-Mills beta function.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

In a recent paper [1], we established an intriguing connection between the tree-level gluon scattering amplitudes and the correlators 
of two-dimensional Liouville theory on the celestial sphere. The gluon amplitudes were evaluated in the presence of a dilaton source and 
transformed into “celestial” amplitudes [2,3] by taking Mellin transforms with respect to the light cone energies of scattered gluons. The 
dimensions of Liouville operators were Mellin duals of such energies. Their positions were determined by the celestial map between the 
directions of light-like momenta and points on two-dimensional celestial sphere.1 The celestial amplitudes matched the Liouville correla-
tors evaluated in the limit of small Liouville coupling, b → 0, which corresponds to the infinite central charge limit. This construction has 
been recently generalized in Ref. [21] to celestial amplitudes in N = 1 supersymmetric Yang-Mills theory coupled to dilatons.

In the present work we proceed in the opposite direction. We start from the operators associated with gluons, constructed as the 
products of holomorphic Wess-Zumino-Witten (WZW) curents times the so-called light Liouville operators. The current part carries the 
information about gluon gauge charges and spins. The Liouville part determines their dimensions. The three-point correlation functions 
of such operators factorize into a relatively simple, exactly known WZW correlators times the three-point correlators of light Liouville 
operators. The latter ones are known exactly from DOZZ formula [22,23] and can be expressed in terms of Zamolodchikovs’ ϒ function [23]. 
We perform inverse Mellin transformations on the two-dimensional correlators. By using the celestial map, we construct the corresponding 
gluon scattering amplitudes. We can recover the gluon amplitudes, at the tree level and beyond, without the dilaton background, by taking 
the limit of inverse Mellin transforms in which the dilatons decouple. This procedure can be performed exactly at the leading order in the 
Liouville coupling (b → 0), corresponding to the tree level approximation in Yang-Mills theory. We also go beyond the leading order and 
identify some corrections pointing towards a direct relation between the Liouville and Yang-Mills couplings.

The Lagrangian density of two-dimensional Liouville theory is given by

L = 1

π

∂φ

∂z

∂φ

∂ z̄
+ μe2bφ , (1)

where z and z̄ are the complexified (Euclidean) spacetime coordinates, b is the dimensionless Liouville coupling constant and μ is the 
“cosmological constant” scale parameter. The theory has a “background charge at infinity,”
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1 See reviews of celestial holography in Refs. [4–7]. Most of the recent work has focused on extracting CFT data of the putative celestial CFT from scattering amplitudes in 
four dimensions, e.g., celestial OPEs [8,9], infinite-dimensional algebras [10–12], differential equations [13–15], and connections to twistor theory [16–20].
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Q = b + 1

b
, (2)

which is related to the central charge by

c = 1 + 6Q 2. (3)

The “light” primary field operators have the form:

Vσ (z, z̄) = e2σbφ(z,z̄), (4)

with the exponents parametrized by b-independent parameters σ . Their conformal dimensions are given by

d(σ ) = 2σ + 2b2σ(1 − σ) . (5)

We introduce spin and gauge charges into the two-dimensional system by including a WZW-like holomorphic sector. The WZW current 
J a(z), with a labeling the adjoint representation of the Lie group, has chiral weights (h, ̄h) = (1, 0). We also include another operator in 
the adjoint representation, Ĵ a(z), with (h, ̄h) = (−1, 0). The only property of this chiral system2 relevant to our discussion is the form of 
the three-point correlator

〈̂
J a1(z1)̂ J a2(z2) J a3(z3)

〉 = f a1a2a3
z3

12

z23z31
, (6)

where zi j = zi − z j and f a1a2a3 are the structure constants.
We construct the operators associated with the positive helicity gluons in the following way:

O +a
� (z, z̄) = F+(�,μ,b) J a(z)e2σ (�−1)bφ(z,z̄) , (7)

where F+(�, μ, b) is a normalization factor and 2σ(� − 1) ensures dimension � − 1 of the Liouville operator. At the leading order O(b0), 
2σ(� − 1) = � − 1. Similarly, for the negative helicity gluon,

O −a
� (z, z̄) = F−(�,μ,b) Ĵ a(z)e2σ (�+1)bφ(z,z̄) . (8)

Note that the normalization factors F±(�, μ, b) depend on the dimensions �, therefore they contribute to inverse Mellin transforms in a 
nontrivial way.

We are interested in the “MHV” correlator〈
O −a1

�1
(z1, z̄1)O −a2

�2
(z2, z̄2)O +a3

�3
(z3, z̄3)

〉 = f a1a2a3
z3

12

z23z31
F1− F2− F3+× (9)

× (z12 z̄12)
�3−�1−�2−3

2 (z23 z̄23)
�1−�2−�3+1

2 (z13 z̄13)
�2−�1−�3+1

2 × C(α1,α2,α3) ,

where the three-point Liouville coefficient is given by the famous DOZZ formula [22,23]:

C(α1,α2,α3) =
[
πμγ (b2)b2−2b2

](Q −∑
αi)/b× (10)

ϒ0ϒ(2α1)ϒ(2α2)ϒ(2α3)

ϒ(α1 + α2 + α3 − Q )ϒ(α1 + α2 − α3)ϒ(α2 + α3 − α1)ϒ(α3 + α1 − α2)
,

in our case specified to the case of light operators with αi = σib. Here, ϒ is the function defined in Zamolodchikovs’ Ref. [23].
The semiclassical (b → 0) limit of the three-point correlator of light Liouville fields has been studied before by Harlow, Maltz and 

Witten [24]. We use the following formulas from Ref. [24]:

ϒ(x − 1/b) = γ (x/b − 1/b2)−1b1+2/b2−2x/b ϒ(x) , (11)

ϒ0 = C
b1/2

exp

(
− 1

4b2
log b + . . .

)
, (12)

ϒb(σb) = Cb1/2−σ

�(σ )
exp

(
− 1

4b2
log b + . . .

)
, (13)

where C is a constant and γ (x) = �(x)/�(1 − x). In this way, we find

C(σ1b,σ2b,σ3b) =πμ̃γ (1/b2)γ (
∑

σi − 1 − 1/b2) [πμγ (b2)b−2b2 ]1−∑
σi

b5 (14)

× �(σ1 + σ2 + σ3 − 1)�(σ1 + σ2 − σ3)�(σ2 + σ3 − σ1)�(σ3 + σ1 − σ2)

�(2σ1)�(2σ2)�(2σ3)
,

where the “dual” cosmological constant μ̃ is related to μ as follows

2 For a more detailed discussions of this chiral system, see Ref. [19].
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πμ̃γ (1/b2) = (πμγ (b2))1/b2
. (15)

Our goal is to apply the celestial map to the inverse Mellin transform,

A3G(ωi, zi, z̄i) = M�1+�2+�3−3
(

1

2π i

)3 c+i∞∫
c−i∞

d�1d�2d�3 ω−�1
1 ω

−�2
2 ω

−�3
3 (16)

× 〈
O −a1

�1
(z1, z̄1)O −a2

�2
(z2, z̄2)O +a3

�3
(z3, z̄3)

〉
,

where the integrations are performed on the complex plane along the lines of real constant c > 0; at the end, we will take the limit of 
c → 0+ . Note that connecting two to four dimensions necessitates introducing a “renormalization” scale M in order to ensure the correct 
mass dimension −3 of the three-gluon amplitude. As mentioned before, the integrands depend on the normalization constants F± . We 
will see below that the following choice leads to the desired result in the semiclassical limit:

F+(�,μ,b) =[πμγ (b2)b−2b2 ]σ (�−1) �[2σ(� − 1)] , (17)

F−(�,μ,b) =[πμγ (b2)b−2b2 ]σ (�+1)−1/2 �[2σ(� + 1)] . (18)

Then as b → 0, when 2σ = � − 1 for positive helicity gluon and 2σ = � + 1 for negative helicity gluon, the leading term becomes

A(0)
3G (ωi, zi, z̄i) = π μ̃

b M2
f a1a2a3

z3
12

z23z31
I(0)(ω1,ω2,ω3) , (19)

where

I(0)(ω1,ω2,ω3) =
(

1

2π i

)3 c+i∞∫
c−i∞

d�1d�2d�3 M�1+�2+�3−1ω−�1
1 ω

−�2
2 ω

−�3
3 (20)

× �

(
�1 + �2 + �3 − 1

2

)
�

(
�1 + �3 − �2 − 1

2

)
�

(
�2 + �3 − �1 − 1

2

)
�

(
�1 + �2 − �3 + 3

2

)
× (z12 z̄12)

�3−�1−�2−3
2 (z23 z̄23)

�1−�2−�3+1
2 (z13 z̄13)

�2−�1−�3+1
2

It is convenient to use the integral representation

�(z) =
+∞∫
0

dt e−t tz−1 (21)

to rewrite the inverse Mellin transform as

I(0)(ω1,ω2,ω3) = 1

M

(
1

2π i

)3 c+i∞∫
c−i∞

d�1d�2d�3

+∞∫
0

dt0dt1dt2dt3 e�1x1 e�2x2 e�3x3 (22)

× e−t0−t1−t2−t3
t
− 1

2
0 t

− 1
2

1 t
− 1

2
2 t

3
2
3

t0 t1 t2 t3
(z12 z̄12)

− 3
2 (z23 z̄23)

1
2 (z13 z̄13)

1
2

where

x1 = 1

2
ln

(
M2t0 t1 t3 z23 z̄23

ω2
1 t2 z12 z̄12 z13 z̄13

)
(23)

x2 = 1

2
ln

(
M2t0 t2 t3 z13 z̄13

ω2
2 t1 z12 z̄12 z23 z̄23

)
(24)

x3 = 1

2
ln

(
M2t0 t1 t2 z12 z̄12

ω2
3 t3 z23 z̄23 z13 z̄13

)
. (25)

In terms of these variables,

t1 = ω1 ω3 ex1+x3 |z13|2
M2t0

, t2 = ω2 ω3 ex2+x3 |z23|2
M2t0

, t3 = ω1 ω2 ex1+x2 |z12|2
M2t0

. (26)

After changing the integration variables from t1, t2, t3 to x1, x2, x3 and performing inverse Mellin transforms, we obtain

I(0)(ω1,ω2,ω3) = 2ω1ω2

ω3M2

+∞∫
dt0 e

−t0− Q 2

M2t0 t−2
0 , (27)
0

3
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where

Q 2 = ω1ω2|z12|2 + ω1ω3|z13|2 + ω2ω3|z23|2 . (28)

According to the celestial map,

√
ωiω j zi j = 〈i j〉 , ωiω j|zi j|2 = 2pi · p j , (29)

therefore

Q 2 = (p1 + p2 + p3)
2 , (30)

and Q = p1 + p2 + p3 can be identified as the total momentum of the gluon system. After inserting the result (27) into Eq. (19) and using

+∞∫
0

dt0 e
−t0− Q 2

M2t0 t−2
0 = 2

√
M2

Q 2
K1

⎛⎝2

√
Q 2

M2

⎞⎠ , (31)

where K1 is a modified Bessel function, we obtain

A(0)
3G (ωi, zi, z̄i) = 4π μ̃

b M4
f a1a2a3

〈12〉3

〈23〉〈31〉

√
M2

Q 2
K1

⎛⎝2

√
Q 2

M2

⎞⎠ . (32)

Note that Bessel integrals (31) had already appeared in AdS amplitudes [25]. Here they appear in the inverse Mellin transform of the WZW-
Liouville correlator (32), which at this point seems to be different from the three-gluon amplitude of Ref. [1] evaluated in Minkowski space. 
In the latter case, the amplitude was evaluated in the presence of a dilaton background, which was taken into account by one insertion 
of the dilaton source. It contained the pole (Q 2)−1 originating from the massless dilaton propagator connecting the source to the gluon 
system. The single source approximations, however, can be justified only in the limit of small Q 2. In this limit, the Bessel function can be 
expanded as

2

√
M2

Q 2
K1

⎛⎝2

√
Q 2

M2

⎞⎠ = M2

Q 2
+ . . . , (33)

therefore

A(0)
3G (ωi, zi, z̄i) = 2π μ̃

bM2 Q 2
f a1a2a3

〈12〉3

〈23〉〈31〉 + . . . (34)

We want to match this correlator with the tree-level amplitude

A(0′)
3G (ωi, zi, z̄i) = g

′ f a1a2a3
1

Q 2

〈12〉3

〈23〉〈31〉 + . . . , (35)

where g is the Yang-Mills coupling constant, −1 is the canonical coupling of the dilaton to the gauge field strength and ′ determines 
the strength of the point-like dilaton source, J (x) = δ(4)(x)/′ . The semiclassical limit of the Liouville correlator is equal to the tree-level 
amplitude provided that the Yang-Mills and dilaton parameters are related to the Liouville parameters and the renormalization scale in 
the following way:

gM2

′ = 2π μ̃

b
. (36)

The relation between Liouville correlators and Yang-Mills amplitudes can be extended beyond the semiclassical limit. The limit of 
Q 2 → 0 singles out gluon amplitudes with one insertion of the dilaton source. These amplitudes contain the dilaton propagator and the 
coupling of the off-shell dilaton to the gluon system. It is well known, however, that the dilaton decouples in the zero-momentum limit 
[26–28]. Namely, the Feynman matrix element with one zero momentum dilaton is given by the Feynman matrix element evaluated in 
the absence of dilatons – in our case in pure Yang-Mills theory. This observation leads to

Proposition:

M3G(ωi, zi, z̄i) = lim
Q →0

Q 2

(2π i)3

c+i∞∫
c−i∞

d�1d�2d�3 M�1+�2+�3−1ω−�1
1 ω

−�2
2 ω

−�3
3

× 〈
O −a1

�1
(z1, z̄1)O −a2

�2
(z2, z̄2)O +a3

�3
(z3, z̄3)

〉
, (37)

where M3G is the exact three-gluon MHV Feynman matrix element (of mass dimension 1) in Yang-Mills theory. The equation should 
be supplemented with a prescription how to replace two-dimensional Liouville parameters on the r.h.s. by four-dimensional Yang-Mills 
parameters on the l.h.s. All what we can extract at the leading perturbative order is written in Eq. (36). We need an exact and more direct 
4
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relation, however, between Liouville and Yang-Mills couplings. It can be extracted by going beyond the leading order on the Yang-Mills 
and Liouville sides of Eq. (37).

In Yang-Mills theory, next-to-leading corrections originate from one-loop diagrams and are of order O(g2) as compared to the tree 
level. In Liouville theory, they are of order O(b2) and originate from various sources. First of all, the ϒ function has been expanded in 
Ref. [24] to the order O(b2 ln b2) only, and more work is needed to reach higher precision. Furthermore, there is a similar uncertainity 
in the normalization factors F± . In addition, DOZZ formula is written in terms of the exponents σi while the inverse Mellin transforms 
involve integrations over the dimensions �i . Eq. (5) implies that at the subleading order

σ1 = �1 + 1

2
+ b2

4
(�1 + 1)(�1 − 1)

σ2 = �2 + 1

2
+ b2

4
(�2 + 1)(�2 − 1)

σ3 = �3 − 1

2
+ b2

4
(�3 − 1)(�3 − 3) (38)

We leave full analysis of subleading Liouville corrections to future work, nevertheless already at this point, we can get a preliminary 
insight by discussing some consequences of Eq. (38).

After repeating the steps leading to Eq. (22), but now with the exponents related to dimensions by Eq. (38), we obtain

I(1)(ω1,ω2,ω3) = 1

M

(
1

2π i

)3 c+i∞∫
c−i∞

d�1d�2d�3

+∞∫
0

dt0dt1dt2dt3 e�1x1 e�2x2 e�3x3

× e−t0−t1−t2−t3
t
− 1

2
0 t

− 1
2

1 t
− 1

2
2 t

3
2
3

t0 t1 t2 t3
(z12 z̄12)

− 3
2 (z23 z̄23)

1
2 (z13 z̄13)

1
2 (39)

×
(

t0 t1 t3

t2

) b2
4 (�1+1)(�1−1) ( t0 t2 t3

t1

) b2
4 (�2+1)(�2−1) ( t0 t1 t2

t3

) b2
4 (�3−1)(�3−3)

The difference between the present case and Eq. (22) is that the integrals over dimensions �i become Gaussian instead of delta functions. 
After performing these integrals and changing the variables from t1, t2, t3 to x1, x2, x3, we obtain

I(1)(ω1,ω2,ω3) = 2ω1ω2

M2 ω3
e
[− b2

4 ln(
2 p1 ·p2

M2 )− b2
4 ln(

2 p2 ·p3
M2 )− b2

4 ln(
2 p1 ·p3

M2 )
]

×
+∞∫

−∞
dx1dx2dx3

3∏
i=1

1√
εi(xi)

e
−x2

i
εi (xi )

+xi(1− b2
2 )

(40)

×
+∞∫
0

dt0 t−2
0 e

−t0− ex1+x3 ω1 ω3 |z13 |2
M2 t0

− ex2+x3 ω2 ω3 |z23 |2
M2 t0

− ex1+x2 ω1 ω2 |z12 |2
M2t0 , (41)

where

ε1(x1) =πb2
[

ln
(2 p1 · p3 p1 · p2

M2 p2 · p3

)
+ 2x1

]
,

ε2(x2) =πb2
[

ln
(2 p2 · p3 p1 · p2

M2 p1 · p3

)
+ 2x2

]
, (42)

ε3(x3) =πb2
[

ln
(2 p1 · p3 p2 · p3

M2 p1 · p2

)
+ 2x3

]
.

Since εi(xi) ∼ b2, we can use the expansion

1√
4πε

e
−x2
4ε = eε∂2

x δ(x) , (43)

which yields the delta functions fixing xi = 0 at the leading order. After expanding the remaining factors, we obtain

I(1)(ω1,ω2,ω3) = I(0)(ω1,ω2,ω3) (44)

×
[

1 − b2

4
ln

(2 p1 · p2

M2

)
− b2

4
ln

(2 p2 · p3

M2

)
− b2

4
ln

(2 p1 · p3

M2

)]
+ . . . .

The presence of logarithmic corrections in Liouville theory indicates that the arbitrary mass scale M , introduced as a parameter linking 
Liouville and Yang-Mills theories, plays the role of renormalization scale in four dimensions. Assuming that this is indeed the case, we 
can extract a more precise relation between Liouville and Yang-Mills couplings by comparing Eq. (44) with the one-loop correction to the 
scattering amplitude of one dilaton with three gluons.
5
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The one-loop corrections to the dilaton-gluon amplitudes have been studied before in Ref. [29–31]. We are interested in the ultraviolet 
divergent part only, which after renormalization leads to the logarithmic running of the gauge coupling g(Q 2) and of the dilaton coupling 
1/. For three gluons [29–31]:

g


(Q 2) = g


(M2)

[
1 − 3g2(M2)

2(4π)2
β0 ln

( Q 2

M2

)]
, (45)

where β0 = 11c A/3 (c A is the Casimir operator in the adjoint representation of the gauge group) is the one-loop coefficient of the Yang-
Mills beta function. By comparing the renormalization scale dependence of Eqs. (44) and (45), we find

b2 = β0 g2(M)

8π2
. (46)

This relation should be taken with a grain of salt though, because it is based on a partial analysis only of the subleading Liouville 
corrections.

We admit that the Proposition (37), together with the relation (46) contain very strong statements. Does it make sense talking about 
exact gluon scattering amplitudes at all? Evidently, Yang-Mills theory confines gluons and has a mass gap. Nevertheless, gluon-like states 
(jets) are physically observable and according to our proposal, they are described by light Liouville operators. Massive glueballs are prob-
ably described by some other type of operators and their amplitudes have more string-like character.
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