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A simple extension of Ma’s approach in a scotogenic model is studied for the purpose of simultaneously
interpreting the neutrino data and the excess of the muon anomalous magnetic moment (muon g − 2). The
feasible minimal extension is to add a Z2-odd vectorlike lepton doublet to the Ma’s model. It is found that in
addition to the neutrino data, the strict constraints on the relevant parameters are from the electroweak
oblique parameters and the induced lepton-flavor violation processes, such as li → ljγ and li → l−

j l
−
j l

þ
j .

Performing a parameter scan, we numerically demonstrate that when the constraint conditions are satisfied,
the muon g − 2 ofOð10−9Þ can be achieved, where it can be expected that with a 5σ observation, the Muon
g − 2 experiment at Fermilab can observe aμ ≈ 13.31 × 10−10 when the current experiment and the SM
errors are reduced by a factor of 4 and 2, respectively. Moreover, the branching ratio of the τ → μγ decay
can match the Belle II sensitivity of Oð10−9Þ with an integrated luminosity of 50 ab−1.

DOI: 10.1103/PhysRevD.100.015024

I. INTRODUCTION

In addition to the origin of neutrino mass, a clear hint for
new physics is the muon anomalous magnetic moment
(muon g − 2). The results measured by the E821 experi-
ment at Brookhaven National Lab (BNL) [1] and calculated
in the standard model (SM) are, respectively, given as [2]

aexpμ ¼ ð11659209.1� 5.4� 3.3Þ × 10−10;

aSMμ ¼ ð11659182.3� 0.1� 3.4� 2.6Þ × 10−10; ð1Þ

where the uncertainties in the SM are from the electroweak,
lowest-order hadronic, and higher-order hadronic effects.
The difference between the SM and experiment is [2]

Δaμ ¼ aexpμ − aSMμ ¼ ð26.8� 6.3� 4.3Þ × 10−10; ð2Þ

which indicates a 3.5σ deviation. Moreover, the recent
theoretical analysis shows a 3.7σ deviation [3]. Accordi-
ngly, resolutions to the muon g − 2 excess have been
broadly studied in the literature [4–19]. A detailed review
of the muon g − 2 can be found in [20–23].

The new muon g − 2 measurements performed in the
E989 experiment at Fermilab and the E34 experiment at
J-PARC will aim for a precision of 0.14 [24] and 0.10 ppm
[25], in which the experimental accuracy can be improved
by a factor of 4 and 5, respectively. If we assume the future
experimental and theoretical uncertainties can be, respec-
tively, reduced by a factor of 4 and 2, it is expected that with
a 5σ measurement, Δaμ ≈ 13.31 × 10−10 can be observed
by the Fermilab muon g − 2 experiment, which has started
taking data [26].
It is a highly nontrivial issue to simultaneously generate the

neutrino mass at the 10−2 eV scale and explain the muon
g − 2 excess in a simple extension of the SM. One of the
feasible possibilities to accommodate both phenomena is that
both processes can be achieved through the quantum radiative
corrections. A known mechanism for a radiative neutrino
mass ofOð10−2Þ eV is the scotogenicmodel proposed in [27]
(called the “Ma model” in this paper), where the dark matter
(DM) candidate can be the lightest inert neutral scalar or the
right-handed neutrino ðNkÞ [27,28].
It is found that the Ma model cannot generate a sufficient

Δaμ without an extension. The main reasons are as follows:
(i) The lepton anomalous magnetic moment can be gen-
erated by the mediation of inert charged Higgs bosons and
dark right-handed neutrinos. Since the involved charged
leptons are left-handed, to match the chirality of tensor-type
dipole operators, the effect is indeed suppressed bym2

l=m
2
Nk
.

(ii) aNPμ induced by a charged Higgs boson at the one-loop
level is usually negative [29]. Therefore, in this work, we
study whether the neutrino data and aNPμ ∼Oð10−9Þ can be
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accommodated in a scotogenic model when the Ma model is
minimally extended.
We find that the feasible minimal extension is to include

a Z2-odd vectorlike lepton doublet (X). Due to the new dark
lepton doublet, the left-handed and right-handed couplings
can now appear in the same loop diagram; therefore, the
induced aNPμ is proportional to mμ, not m2

μ. Because more
Yukawa couplings are involved, we have the degrees of
freedom to make the inert charged-Higgs-boson-induced
aNPμ positive. Although the inert neutral scalar bosons can
also contribute to the muon g − 2, due to strong cancella-
tion and m2

l=m
2
Nk

suppression, their effects are small and
can be neglected. Intriguingly, it will be shown that the
proposed model can originate from a larger gauge sym-
metry, such as SOð10Þ [30,31].
Since we concentrate the study in the flavor physics, we

do not analyze the DM-related physics in this study. The
relevant DM analysis can be found in [32–51]. It is worth
mentioning that it has been found that in some parameter
regions, the imposed Z2 symmetry in the original Ma model
could be broken when renormalization group equation
(RGE) effects are taken into account [40,41,45]. The
possible resolutions to the problem can be found in
[39,43,44]. In addition, we also skip the analysis for the
signal search at the LHC, where the related discussions can
be found in Refs. [52–60].
In addition to the neutrino physics and muon g − 2,

lepton flavor violation (LFV) processes, such as li → ljγ
and li → l−

j l
−
j l

þ
j (li → 3lj), can be produced in the

extension model [39,61]. Additionally, X and Nk can
together couple through the SM Higgs doublet, so that
the electroweak oblique parameters may constrain the
related parameters due to the mass splitting within the
vectorlike lepton doublet. Hence, it is a challenge to require
all related parameters through various combinations to fit
the current experimental upper limits. After taking some
assumptions based on the μ → eγ constraint, 11 new
independent parameters are involved. We will show that
the 11 free parameters can be accommodated in the model
when all constraints from the electroweak oblique param-
eters, the LFV processes, and the neutrino data are satisfied;
and the muon g − 2 can still reach the level of 10−9.
When the μ → eγ constraint is compromised in the

model, indeed, τ → μγ exerts an important constraint on
the parameters, especially those related to the neutrino mass
matrix for which we cannot arbitrarily tune the parameters
to be small. After scanning the chosen parameter regions, it
is found that the branching ratio (BR) for the τ → μγ decay
can be well controlled in the model and that BRðτ → μγÞ
can be as large as the current upper bound of 4.4 × 10−8,
depending on the values of the involved parameters. With
50 ab−1 of data accumulated at the Belle II, the sample of τ
pairs can be increased to approximately 5 × 1010, where the
sensitivity necessary to observe the LFV τ decays can reach

10−10–10−9 [62]. If Belle II observes BRðτ → μγÞ at the
level of 10−9, the scotogenic model can provide the
interpretation of the observation.
The paper is organized as follows: We briefly introduce

the model and the relevant couplings in Sec. II. In Sec. III,
we derive the formulas for the neutrino mass matrix, for the
li → ljγ decays, for the li → 3lj decays, and for the
lepton g − 2. Based on the neutrino oscillation data, we also
show the allowed region for each neutrino mass matrix
element. The parameter scan and the detailed numerical
analysis are shown in Sec. IV. In that section, we also
provide a detailed numerical analysis of the relevant
phenomena. A summary is given in Sec. V.

II. MODEL

In this study,we extend theSMgauge symmetry, including
a Z2-parity symmetry. In order to generate the neutrino mass
through a one-loop radiativemechanism and provide the dark
matter candidate, we add three right-handed neutrinos Nk ¼
ð1; 0Þ (k ¼ 1, 2, 3) andone inertHiggs doubletHI ¼ ð2; 1Þ to
the SM [27], where both Nk and HI are Z2-odd states, and
numbers in brackets denote the SUð2ÞL representation and
Uð1ÞY hypercharge, respectively. Using the introduced Nk
and HI , it is found that the muon g − 2 can be significantly
enhanced when a vectorlike lepton doublet XLðRÞ ¼ ð2;−1Þ
is included. Since the heavy lepton doublet has to couple to
the SM leptons and Z2-odd particles, i.e., Nk and HI , XLðRÞ
must carry the Z2 charge. Thus, in addition to Nk, which is
free from the mixing with the SM neutrino [27], in principle,
the new neutral lepton χ0CL and scalar bosons can be the DM
candidate.

A. Yukawa couplings and mass splitting
in dark lepton doublet

The gauge invariant lepton Yukawa couplings under
SUð2ÞL ×Uð1ÞY × Z2 symmetry can be written as

−LY ¼ ylijL̄iHlRj þ ykLiL̄iH̃INk þ yRjX̄LHIlRj

þ hkLX̄LH̃Nk þ
mNk

2
NC

k Nk þmXX̄LXR þH:c:; ð3Þ

where i, j ¼ 1, 2, 3 denote the flavor indices; HT ¼
ðGþ; ðvþ hþ iG0Þ= ffiffiffi

2
p Þ is the SM Higgs doublet and v

is the vacuum expectation value (VEV) of H; NC ¼ Cγ0N�

with C ¼ iγ0γ2, H̃ðIÞ ¼ iτ2H�
ðIÞ; mN and mX are the masses

of NR and XLðRÞ, respectively; and the representations of
dark HI and XLðRÞ are given as

HI ¼
�

Hþ
I

ðSI þ iAIÞ=
ffiffiffi
2

p
�
; XLðRÞ ¼

�
χ0

χ−

�
LðRÞ

: ð4Þ

Since χ− is a Z2-odd particle and cannot mix with the SM
charged leptons after electroweak symmetry breaking
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(EWSB), the SM charged-lepton masses are still dictated
by the first term in Eq. (3). That is, the SM leptons
in Eq. (3) can be taken as the physical states after EWSB
and their masses can be expressed as mli ¼ ylijvδij=

ffiffiffi
2

p
. In

terms of the representation components, the new Yukawa
interactions are written as

−LY ⊃ ðykLiν̄LiNk þ yRil̄Riχ
−
LÞ

SI þ iAIffiffiffi
2

p þ hkLχ
0
LNk

vþ hffiffiffi
2

p

þmNk

2
NC

k Nk þ ðyRiχ0LlRi − ykLiN̄klLiÞHþ
I

þmXðχ0Lχ0R þ χ−Lχ
−
RÞ þ H:c:; ð5Þ

where yRi and hkL are taken as the real parameters.
It is worth mentioning that the proposed model can arise

from a larger gauge group, such as SOð10Þ grand unified
theories (GUTs) [30,31], where the symmetry breaking
chain is SOð10Þ→SUð5Þ×Uð1Þχ→SUð3ÞC×SUð2ÞL×
Uð1ÞY×Uð1Þχ . Denoting all fermion representations as
the left-handed states, the new lepton doublets X and Xc

can originate from 10 of SOð10Þ and can be ð5̄;−2Þ þ
ð5; 2Þ in SUð5Þ ×Uð1Þχ . If we embed the inert doublet H̃I ,
the right-handed neutrinos Nk, and the SM Higgs field in
the representations of 16 ⊃ ð5̄; 3Þ, 45 ⊃ ð1; 0Þ, and 10, the
Yukawa interactions X̄LH̃Nk and X̄LHIlR can be gauge
singlets under the gauge symmetries 10 × 10 × 45 and
10 × 16 × 16, respectively.
Because the SM Higgs doublet H couples to XL;R and

NR and χ0L;R can mix with NR when the electroweak
symmetry is broken, the 5 × 5 neutral lepton mass matrix
in the basis ðχ0R; χ0CL ; NkÞ can be written as

M ¼

0
B@

0 mX 01×3

mX 0 vhL=
ffiffiffi
2

p

03×1 vhT
L=

ffiffiffi
2

p ðmNÞ3×3

1
CA; ð6Þ

with hL ¼ ðh1L; h2L; h3LÞ and mN ¼ diagðmN1
; mN2

; mN3
Þ.

The symmetric mass matrix can be diagonalized using an
orthogonal matrix. With the assumption of mN1

¼ mN2
¼

mN3
¼ m0, the eigenvalues of the five Majorana states can

be obtained as

m1 ≈ −mX − ðeX − eNÞ; m2 ≈mX þ eX;

m3ð4Þ ¼ m0; m5 ≈m0 − eN;

eX ¼ v2

8ðmX þm0Þ
�
ηh �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2h þ 16ζhðmX þm0Þ2=v2

q �
;

ηh ¼ ζh þ 4
m2

N −m2
X

v2
; eN ¼ eX −

v2ζh
4ðmX þm0Þ

;

ð7Þ

where we define ζh ¼
P

kðhkLÞ2, and hk ≡ vhkL=
ffiffiffi
2

p
is

taken as the perturbative parameters, and the � sign in
eX can determine what the lightest Majorana particle is, i.e.,
χ0CL or one of Nk. Note that in order to simplify the analysis
for the flavor physics, we set all mNk

to be the same
although generally this is not necessary. If the DM
candidate is the lightest right-handed neutrino (Nk0 ), we
can take mNk0 to be smaller than the others. Since our main
target is on the flavor physics, we do not further pursue the
DM issue in this work. The relevant discussion can be
found in [27,32–48,51]. Using the obtained eigen-
values, the flavor mixing matrix can be approximately
formulated as

OX≈

0
BBBBBBBBBBBB@

mX
N−X jm1j −

1
N−X

h1
2m0N−X

h2
2m0N−X

h3
2m0N−X

mX
NXm2

1
NX

− h1
NXðm0−m2Þ − h2

NXðm0−m2Þ − h3
NXðm0−m2Þ

0 0 h2
NN1

ffiffiffiffiffiffiffiffiffiffi
h2
1
þh2

2

p − h1
NN1

ffiffiffiffiffiffiffiffiffiffi
h2
1
þh2

2

p 0

0 0 h1
NN2

ffiffiffiffiffiffiffiffiffiffi
h2
1
þh2

2

p h2
NN2

ffiffiffiffiffiffiffiffiffiffi
h2
1
þh2

2

p −
ffiffiffiffiffiffiffiffiffiffi
h2
1
þh2

2

p
NN2

h3

mX
NN3

m5

1
NN3

− h1
NN3

ðm0−m5Þ −
h2

NN3
ðm0−m5Þ

h3
NN3

ðm0−m5Þ

1
CCCCCCCCCCCCA

;

ð8Þ

where Na (a ¼ −X;X;Nk) are the normalization factors,
which follow

P
iO

2
Xai ¼ 1.

From the results, it can be seen that the mass splitting
within the vectorlike lepton doublet can be expressed as
ΔmX ¼ jm2 −mXj ≈ jeXj and that it depends on vhkL=

ffiffiffi
2

p
.

This mass splitting contributes to the electroweak oblique
parameters, where the current measurements with U ¼ 0
are given as [2]

S ¼ 0.07� 0.08; T ¼ 0.10� 0.07: ð9Þ

Therefore, the precision measurements of electroweak
oblique parameters [63] may constrain hkL. In order to
consider the constraints, we write the oblique corrections
for the vectorlike lepton doublet as [64,65]

S ¼ 1

π

�
22z1 þ 14z2

9
−
1

9
ln
z1
z2

þ 11z1 þ 1

18
fðz1Þ

þ 7z2 − 1

18
fðz2Þ −

ffiffiffiffiffiffiffiffiffi
z1z2

p �
4þ fðz1Þ þ fðz2Þ

2

��
;

T ¼ 1

8πs2Wc
2
W

�
z1 þ z2 −

2z1z2
z1 − z2

ln
z1
z2

þ 2
ffiffiffiffiffiffiffiffiffi
z1z2

p �
z1 þ z2
z1 − z2

ln
z1
z2

− 2

��
;

fðxÞ ¼ −4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4x − 1

p
arctan

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4x − 1

p ; ð10Þ
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with z1 ¼ ðm0 − eXÞ2=m2
Z and z2 ¼ m2

0=m
2
Z. Since

the U parameter usually is small, we do not explicitly
show it.
In the calculations of LFV processes, we need the gauge

couplings to the photon and Z-gauge boson. The relevant
interactions are given as

LV ¼ −Qlel̄γμlAμ − ieðH−
I ∂μH

þ
I − ∂μðH−

I ÞHþ
I ÞAμ

−
g

2 cos θW
χ0γμχ

0Zμ − l̄γμðCl
LPL þ Cl

RPRÞlZμ

− i
g cos 2θW
2 cos θW

ðH−
I ∂μH

þ
I −Hþ

I ∂μH−
I ÞZμ; ð11Þ

with

Cl
L ¼ g

2 cosθW
ð−1þ 2sin2θWÞ; Cl

R ¼ gsin2θW
cosθW

: ð12Þ

B. Scalar potential and gauge couplings
to dark sector

The gauge invariant scalar potential with the Z2-parity
can be written as [27,28]

VðH;HIÞ ¼ μ2H†H þ λ1ðH†HÞ2 þm2
IH

†
IHI þ λ2ðH†

IHIÞ2
þ λ3H†HH†

IHI þ λ4H†HIH
†
IH

þ λ5
2
½ðH†HIÞ2 þ H:c:�; ð13Þ

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ2=λ1

p
with μ2 < 0 and mh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2λ1=2

p
are

the same as the SM, and the massive inert Higgs doublet
requires m2

I > 0. With v ≈ 246 GeV and mh ≈ 125 GeV,
we can obtain λ1 ≈ 0.516. The masses of ðS; A;H�Þ can be
expressed as [27,28]

m2
SI
¼ m2

I þ λLv2; m2
AI
−m2

SI
¼ −λ5v2;

m2
H�

I
¼ m2

I þ
λ3
2
v2 ð14Þ

with λL ¼ ðλ3 þ λ4 þ λ5Þ=2. It can be seen that the mass
difference between SI and AI is dictated by the λ5
parameter. We will show that, in addition to the Yukawa
couplings, the radiative neutrino mass also depends on the
mass difference. If ykLi ∼Oð10−2Þ are required, jλ5j ∼ 10−8

is necessary to fit the neutrino mass matrix elements, which
are of Oð10−2Þ eV.
In the model, the DM particle can be the lightest Nk or

SIðAIÞ. If we select SI or AI as the DM candidate, in order
to escape the constraint from the DM-nucleus scattering,
which is generated through the SIAIZ gauge coupling [28],
jmAI

−mSI j must have a low limit in order to kinematically

suppress the scattering process. Then, ykLi have to be of the
order of 10−4–10−3 to match the neutrino mass matrix
elements. As a result, the muon g − 2 arising from the inert
charged Higgs boson is suppressed. Similarly, χ0 cannot be
the DM candidate because the gauge coupling χ0χ0Z leads
a large cross section in the process of DM scattering off the
nucleus. Hence, we will concentrate on the case with
mSIðAIÞ;H�

I
> m0;X.

III. RADIATIVE NEUTRINO MASS, LFV, AND
LEPTON g− 2

In this section, we derive the formulas for the neutrino
mass matrix, the li → ljγ and li → 3lj processes, and
lepton g − 2 in the model. Although the original Ma model
can provide sizable contributions to the LFV processes, we
checked that with yk�1 yk2 ∼Oð10−3Þ, the BR for μ → eγ is of
the order of 10−15, which is 2 orders of magnitude smaller
than the current upper limit. Therefore, in the following
analysis, we concentrate on the extension effects.

A. Radiative neutrino mass

The Majorana neutrino mass arisen from a quantum loop
in the scotogenic model is sketched in Fig. 1. It can be seen
that in addition to the Yukawa couplings, the essential
effect is from the ðH†HIÞ2 coupling, which is dictated by
the λ5 parameter. From the couplings in Eqs. (5) and (13),
the Majorana neutrino mass matrix elements can be
obtained as [27,66]

mν
ij¼

X
k

ykLiy
k
Lj

2ð4πÞ2mNk

�
m2

AI
lnðm2

AI
=m2

Nk
Þ

m2
Nk
−m2

AI

−
m2

SI
lnðm2

SI
=m2

Nk
Þ

m2
Nk
−m2

SI

�
:

ð15Þ

It can be found that mν
ij can be of Oð10−2Þ eV whenP

ky
k
Liy

k
Lj ∼Oð10−4–10−3Þ, and mSIðAIÞ ≈mNk

≈ 1 TeV
are used.
The mass matrix can be diagonalized by the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix as

mν
ij ¼ U�

MNSm
diag
ν U†

MNS; ð16Þ

wheremdiag
ν ¼ diagðm1; m2; m3Þ, and the PMNSmatrix can

be parametrized as [2]

FIG. 1. Feynman diagram for radiative neutrino mass.
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UMNS ¼

0
B@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1
CAdiagð1; eiα21=2; eiα31=2Þ; ð17Þ

in which sij ≡ sin θij, cij ≡ cos θij; δ is the Dirac CP violating phase; and α21;31 are Majorana CP violating phases. Since
the mass ordering is still uncertain, the current neutrino data can be shown in terms of the different mass ordering as [2]

Δm2
21 ¼ ð7.53� 0.18Þ × 10−5 eV2; sin2θ12 ¼ 0.307� 0.013;

Δm2
32 ¼ ð2.51� 0.05;−2.56� 0.04Þ × 10−3 eV2 ðNO; IOÞ;

sin2θ23 ¼ ð0.597þ0.024
−0.030 ; 0.592

þ0.023
−0.030Þ ðNO; IOÞ; sin2θ13 ¼ ð2.12� 0.08Þ × 10−2; ð18Þ

where Δm2
ij ≡m2

i −m2
j , and Δm2

32 > 0 and Δm2
32 < 0 denote the normal ordering (NO) and inverted ordering (IO),

respectively.
Based on the neutrino oscillation data, the central values of θij, δ, and Δm2

ij using the global fit can then be obtained
as [67]

NO∶ θ12¼34.5°; θ23¼47.7°; θ13¼8.45°; δ¼218°; Δm2
21¼7.55×10−5 eV2; Δm2

31¼2.50×10−3 eV2;

IO∶ θ12¼34.5°; θ23¼47.9°; θ13¼8.53°; δ¼281°; Δm2
21¼7.55×10−5 eV2; Δm2

31¼−2.42×10−3 eV2; ð19Þ

where m1ð3Þ ¼ 0 for NO (IO) are applied, and the Majorana phases are taken to be α21ð31Þ ¼ 0. Taking the 3σ uncertainties,
the magnitudes of the Majorana matrix elements in units of eV for NO and IO can be, respectively, estimated as

0
BB@

jmν
11j jmν

12j jmν
13j

jmν
21j jmν

22j jmν
23j

jmν
31j jmν

32j jmν
33j

1
CCA

NO

≃

0
BB@

0.11 − 0.45 0.12 − 0.82 0.12 − 0.82

0.12 − 0.82 2.4 − 3.3 2.0 − 2.2

0.12 − 0.82 2.0 − 2.2 2.2 − 3.1

1
CCA × 10−2;

0
BB@

jmν
11j jmν

12j jmν
13j

jmν
21j jmν

22j jmν
23j

jmν
31j jmν

32j jmν
33j

1
CCA

IO

≃

0
B@

4.8 − 5.0 0.41 − 0.65 0.39 − 0.62

0.41 − 0.65 1.9 − 2.8 2.4 − 2.6

0.39 − 0.62 2.4 − 2.6 2.2 − 3.1

1
CA × 10−2: ð20Þ

It can be found that when
P

ky
k
Li0y

k
Lj0 ∼ 10−3 (i0, j0 ¼ 2, 3)

and

M0 ¼
m0

16π2

�
m2

AI
lnðm2

AI
=m2

0Þ
m2

0 −m2
AI

−
m2

SI
lnðm2

SI
=m2

0Þ
m2

0 −m2
SI

�
∼ eV;

ð21Þ
mν

i0;j0 ∼Oð10−2Þ eV can then be obtained. We will show
that due to the μ → eγ constraint, the ykL1-related param-
eters have to be smaller than ykL2;L3. Therefore, m

ν
1i are

preferred to be smaller than mν
i0j0 ; i.e., the model is suitable

for the NO case.

B. Radiative l → l0γ decays

In the model, the LFV processes can arise from the SI, AI ,
and H�

I boson exchanges. Since mSI ≈mAI
is taken in this

work, the SI- and AI-induced LFV effects have strong
cancellations. Thus, in this study, we concentrate on the inert
charged-Higgs-boson effects. The current experimental upper

limits on the BR for the relevant LFV processes are shown in
Table I.
The Feynman diagrams for the H�

I -mediated radiative
li → ljγ decays are sketched in Fig. 2, where plot (a) arises
from the H�

I and χ0-fermion loop and plots (b) and (c) are
the associated self-energy diagrams, which can be used to
remove the ultraviolet divergence. According to the
Yukawa couplings in Eq. (5), the effective interactions
for li → ljγ can then be obtained as

−Lχ0

li→ljγ
¼ −

e
2
mlia

ji
L l̄jσμνPLliFμν; ð22Þ

TABLE I. Current experimental upper limits on the LFV
processes.

LFV μ → eγ μ → 3e τ → μðeÞγ τ → 3μð3eÞ
BR 4.2 × 10−13 1.0 × 10−12 4.4ð3.3Þ × 10−8 2.1ð2.7Þ × 10−8
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where the Wilson coefficient and loop integral are given as

ajiL ¼ y�RjyRi
16π2m2

X
IγL

�m2
H�

I

m2
X

�
;

IγLðaÞ ¼
Z

1

0

dx
Z

x

0

dy
ðx − 1Þðx − yÞ
1 − xþ ax

: ð23Þ

Because mlj ≪ mli , we have neglected the mlj

effects. Since only right-handed leptons couple to χ0, in
order to match the chirality of the dipole operator, a
mass insertion in the li leg to flip the li chirality from
the right-handed state to the left-handed state becomes
necessary. As a result, Eq. (22) is proportional to mli , and
the left-handed li is involved in the radiative decay.
We note that although li → ljγ processes can be
induced through the Nk mediators, because the associated
Yukawa couplings yk�Ljy

k
Li are constrained by the neutrino

masses to be of Oð10−4–10−3Þ [27], we thus neglect their
contributions.
In addition to the H�

I -χ
0 loops shown in Figs. 2(a)–2(c),

the li → ljγ can be generated by Fig. 2(d), where
the diagram involves the mixing of χ0 and Nk, where the
mixing occurs through the VEVof the SM Higgs field, i.e.,
vhkL=

ffiffiffi
2

p
. Because Nk and χ0 have been massive particles

before EWSB, it is more convenient to use the weak
eigenstates of Nk and χ0 to estimate Fig. 2(d). Accordingly,
the effective interactions for li → ljγ can be written as

−LNχ0

li→ljγ
¼ −

e
2
mli l̄jσμνðbjiLPL þ bjiRPRÞliFμν; ð24Þ

where the Wilson coefficients are obtained as

bjiL ¼
1

16π2
vy�RjξLiffiffiffi
2

p
mlim

2
X

Iγ
Nkχ

0

�
m2

Nk

m2
X
;
m2

H�
I

m2
X

�
;

bjiR ¼
1

16π2
vξ�LjyRiffiffiffi
2

p
mlim

2
X

IγNkχ
0

�
m2

Nk

m2
X
;
m2

H�
I

m2
X

�
;

Iγ
Nχ0

ða;bÞ¼
Z

1

0

dx
Z

x

0

dy
2ð1−yÞy−y2

1−ð1−aÞx−ða−bÞy: ð25Þ

Since the hkL parameters always appear to be associated
with ykLi, we define the independent ξLi ¼ ykLih

k
L parame-

ters to combine the hkL and ykLi effects. In the numerical
analysis, we take all mNk

to be the same; therefore, ykLih
k
L

can be read as the sum of all k. Because the left- and right-
handed lepton couplings appear in Fig. 2(d) at the same
time, it can be seen that the mass insertion in the li leg is
not necessary. In order to combine this effect with that
arisen from the χ0 loop, the mli factor is shown in Eq. (24);

as a result, bjiL;R are 1=mli dependent. Combining Eqs. (22)
and (24), the BR for li → ljγ can be expressed as

BRðli → ljγÞ ¼ τli
αm5

li

4
ðjTji

L j2 þ jTji
R j2Þ; ð26Þ

with α ¼ e2=4π, and

Tji
L ¼ ajiL þ bjiL ; Tji

R ¼ bjiR : ð27Þ

C. li → 3lj decays

The li → 3lj decays in the model can arise from the
photon-penguin diagrams, e.g., Fig. 2 with the off-shell
photon, the Z-penguin diagrams, and the box diagrams. We
show each decay amplitude as follows: For the photon-
penguin diagrams, we write the decay amplitude as

Mðli→3ljÞγ

¼e2ūjðk1Þ
�
Cγji
R γμPRþ

mli

k2
iσμνkνðTji

LPLþTji
RPRÞ

�
uiðpÞ

× ūjðk2Þγμvjðk3Þ−ðk1↔k2Þ; ð28Þ

where Cγji
R from Fig. 2(a) is given as

Cγij
R ¼ yRiy�Rj

16π2m2
X
I1

�m2
H�

I

m2
X

�
; I1ðaÞ ¼

Z
1

0

dx
x

1− xþ ax
:

ð29Þ

Although Fig. 2(d) can also generate vectorial current-
current interaction, since its numerical contribution is at
least 1 order of magnitude smaller than Cγji

R , we have
ignored its contribution. Using the results in [68,69], the
BR for li → 3lj induced by the photon-penguin can be
expressed as

i j

γ

χ0

i j

γ

χ0Nk

H

(a) (b)

(c) (d)

H±
I

H±
I

FIG. 2. li → ljγ mediated by the inert charged Higgs boson
and the χ0 fermion, where plot (d) includes the mixing effect
between Nk and χ0.
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BRðli → 3ljÞγ ¼ τli
α2m5

li

32π

�
jCγji

R j2 − 4ReðCγji
R Tji�

L Þ

þðjTji
L j2 þ jTji

R j2Þ
�
16

3
ln
mli

mlj

−
22

3

��
;

ð30Þ

where τli denotes the li lifetime.
The lepton-flavor changing li → ljZ can be induced by

the Z-penguin diagrams. In addition to being the same
diagrams shown in Fig. 2 but using the Z-boson instead of
the photon, the Z-boson can also be emitted from χ0, as
shown in Figs. 2(a) and 2(d). It is found that the li → ljZ
decays arisen from Figs. 2(a)–2(c) are suppressed by
mlimlj=m

2
X, where the same results are also shown in

the Nk fermion loop obtained in [61]. If we apply the
approximation with mlj ≈ 0, their contributions can be
neglected. Thus, the dominant effects indeed are from
diagrams related to Fig. 2(d), and the induced effective
interactions can be written as

−LNχ0

li→ljZ
¼ l̄jγμðCZji

L PL þ CZji
R PRÞliZμ; ð31Þ

where the CZji
L;R coefficients are given as

CZji
L ¼ ξ�LjyRi

16π2
g

2 cos θW

vmliffiffiffi
2

p
m2

X

IZNχ0

�
m2

Nk

m2
X
;
m2

H�
I

m2
X

�
;

CZji
R ¼ y�RjξLi

16π2
g

2 cos θW

vmliffiffiffi
2

p
m2

X

IZNχ0

�
m2

Nk

m2
X
;
m2

H�
I

m2
X

�
;

IZNχ0
ða; bÞ ¼

Z
1

0

dx
Z

x

0

dy
Z

y

0

dz

×
z

½1 − ð1 − aÞx − ða − bÞz�2 : ð32Þ

From the result, the decay amplitude for li → 3lj through
the Z-penguin can be expressed as

Mðli → 3ljÞZ ¼ 1

m2
Z
ūjðk1ÞγμðCZji

L PL þ CZji
R PRÞuiðpÞ

× ūjðk2ÞγμðCl
LPL þ Cl

RPRÞvjðk3Þ
− ðk1 ↔ k2Þ: ð33Þ

Accordingly, the BR for li → 3lj can be obtained as
[68,69]

BRðli → 3ljÞZ ¼ τli
α2m5

li

32π

�
2

3
ðjFLLj2 þ jFRRj2Þ

þ 1

3
ðjFLRj2 þ jFRLj2Þ

�
; ð34Þ

where FLL;RR and FLR;RL are defined as

FLL ¼ CZji
L Cl

L

g2sin2θWm2
Z
; FRR ¼ CZji

R Cl
R

g2sin2θWm2
Z
;

FLR ¼ CZji
L Cl

R

g2sin2θWm2
Z
; FRL ¼ CZji

R Cl
L

g2sin2θWm2
Z
: ð35Þ

The box diagrams mediated by H�
I and χ0 for li → 3lj

are shown in Fig. 3. Although the box diagrams mediated
by H�

I and Nk can also contribute to the li → 3lj decays,
because the involved couplings are constrained by the
neutrino masses, their effects can be neglected. In addition,
there are strong cancellations between the SI-SI (AI-AI) and
SIðAIÞ-AIðSIÞ box diagrams, so we also ignore the inert
scalar and pseudoscalar contributions. Hence, the decay
amplitude for li → 3lj from Fig. 3 can be obtained as

Mðli → 3ljÞBox ¼CBji
R ūjðk1ÞγμPRuiðpÞūjðk2ÞγμPRviðk3Þ;

CBji
R ¼ 1

16π2m2
X
y�RjyRjy

�
RjyRiIB

�m2
H�

I

m2
X

�
;

IBðaÞ ¼
Z

1

0

dx
xð1− xÞ
1− xþax

: ð36Þ

The BR can be found as [68,69]

BRðli → 3ljÞBox ¼ τli
m5

li

512π3
jCBji

R j2
6

: ð37Þ

D. Lepton anomalous magnetic dipole moment

It is known that the lepton g − 2 originates from the
radiative quantum corrections, where the form factors
associated with the quantum effects can be written as

Γμ ¼ l̄ðp0Þ
�
γμF1ðk2Þ þ

iσμνkν
2ml

F2ðk2Þ
�
lðpÞ: ð38Þ

The lepton g − 2 can then be defined as

al ¼ gl − 2

2
¼ F2ð0Þ: ð39Þ

Using this definition, it can be seen that the lepton g − 2

induced by Figs. 2(a)–2(c) are suppressed by m2
l=m

2
X,

whereas al generated by Fig. 2(d) is dictated by

FIG. 3. Box diagrams mediated by H�
I and χ0 for the li → 3lj

decays.
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ml=mX · vhkL=mX. Thus, the dominant lepton g − 2 in the
model can be obtained as

al ¼ −
Reðξ�LlyRlÞ

16π2

ffiffiffi
2

p
mlv
m2

X
Iγ
Nkχ

0

�
m2

Nk

m2
X
;
m2

H�
I

m2
X

�
: ð40Þ

Although aμ is associated with
P

ky
k
L2h

k
L, which are related

to the neutrino masses, the muon g − 2 can still be
enhanced to 10−9 if ξL2 ∼Oð0.01Þ and yR2 ∼Oð1Þ are
allowed. In order to satisfy the strict constraints from the
μ → lγ and μ → 3e decays, we can take the related
Yukawa couplings, e.g., ξL1 and yR1, to be small. Then,
the electron g − 2 is far below the current experimental
accuracy in the model.
Before analyzing the relevant phenomena in detail, we

roughly estimate the BRs for li → ljγ and the BRs for
li → 3lj, which individually arise from the photon-
penguin, Z-penguin, and box diagrams. For illustration,
a benchmark for the relevant parameters is taken as follows:

ξL1¼−10−6; ξL2¼−0.05; ξL3¼0.02;yR1¼0.5×10−4;

yR2¼1; yR3¼0.5; mXðNkÞ ¼1TeV; mH�
I
¼1.1TeV;

ð41Þ

where these parameter values have been taken in such a
way that the current upper bounds of the LFV processes
shown in Table I are satisfied and aμ ∼Oð10−9Þ is
achieved. As a result, the corresponding values for
BRðli → ljγÞ, BRðli → 3ljÞ, and al are obtained as

ðBRðμ → eγÞ;BRðτ → μγÞÞ
¼ ð4.24 × 10−13; 3.47 × 10−8Þ;

BRðμ → 3eÞγ;Z;Box
¼ ð2.62 × 10−16; 9.09 × 10−28; 6.37 × 10−35Þ;

BRðτ → 3μÞγ;Z;Box
¼ ð8.64 × 10−10; 7.09 × 10−18; 1.87 × 10−10Þ;

ae;μ;τ

¼ ð9.15 × 10−21; 9.24 × 10−10;−3.13 × 10−9Þ: ð42Þ
From the simple analysis, it can be clearly seen that in order
to obtain aμ of Oð10−9Þ, the values of the associated
parameters have to be jξL2j ∼Oð0.01Þ and yR2 ∼Oð1Þ.
Then, μ → eγ inevitably gives a strict constraint on the ξL1
and yR1 parameters. If ykL1 are of the order of 10−3–10−2,
which are the typical magnitudes for explaining the
neutrino data with λ5 ≪ 1 [27], the result of ξL1 ∼
Oð10−6Þ or ξL1 ≈ 0 has to rely on the cancellation inP

ky
k
L1h

k
L. Because ξL1; yR1 ≪ 1, the contributions to μ →

3e from the Z-penguin and box diagrams are negligible.
For τ → 3μ decay, the Z-penguin contribution is still

negligible; however, the box-diagram contribution is some-
what larger and is a factor of 5 smaller than the photon-
penguin contribution. Based on these results, it is sufficient
to only consider the photon-penguin diagram effects when
studying the μ → 3e and τ → 3μ decays. In addition, due to
ξL1 ≪ 1, it indicates ykL1 < ykL2;L3. Accordingly, we take the
NO case for the neutrino mass matrix in the numerical
analysis.

IV. NUMERICAL ANALYSIS

According to previous analysis, it was found that the
neutrino mass, the LFV, and the lepton g − 2 share some
common parameters; however, the correlated parameters
appearing in the different phenomena have different forms.
From Eq. (20), it is known that we need

P
ky

k
Li0y

k
Lj0 ∼ 10−3

and
P

ky
k
L1y

k
Li ∼ 10−4 to fit the neutrino mass matrix for the

NO case. From Eq. (41), it is seen that we need ξL1 ≈ 0 and
ξL2 ∼Oð0.01Þ to satisfy the LFV constraints and to explain
the muon g − 2 excess; that is, different lepton flavor
Yukawa couplings ykLi should be different in terms of their
signs and in sizes. In order to show that the scotogenic
model can accommodate the relevant phenomena in the
same parameter spaces, in this section, we numerically
demonstrate that the accommodation can be achieved in
the model.

A. Allowed parameter spaces from the parameter scan

Since the ξLi parameters are combined by hkL and ykLi, we
first study the limit on hkL. As discussed earlier, the mass
splitting in a vectorlike lepton doublet is ΔmX ¼ jeXj, and
the direct bound is from the electroweak oblique param-
eters S and T. Using the results in Eq. (10), it can be seen
that S is far smaller than the current measurement. For
instance, with ζh ¼ 1, we obtain S ≈ 8 × 10−3; that is, the S
parameter cannot constrain the ζh parameter. In order to
understand the constraint from the T parameter, we show T
as a function of ζh in Fig. 4(a), where the dashed lines
denote the experimental central value with 0, 1, 2, and 3σ
errors, and mX ¼ mNk

¼ 1 TeV and the positive sign in eX
are used. From the plot, it can be seen that T linearly
depends on ζh. If we take 3σ as the maximum value of T,
we obtain ζh < 0.3. Moreover, we show jeXj as a function
of ζh in Fig. 4(b), where the vertical dashed line corre-
sponds to the T parameter with 3σ errors. From the result, it
can be found that the maximum value of jeXj is around
68 GeV. Our result is consistent with that obtained in [65].
According to the result, when h1L ∼ h2L ∼ h3L, the upper limit
of each parameter then is hkL ∼ 0.3.
We next numerically show that ζh < 0.3, ξL1 ¼ 0,

ξL2 ∼Oð0.01Þ, and that the mν
ij values shown in

Eq. (20) can be accommodated in the model. We note
that because ξL1 ≪ 1, we use ξL1 ¼ 0 in the numerical
analysis. From ξL1 ¼ 0, we can set
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y1L1 ¼ −
h2L
h1L

y2L1 −
h3L
h1L

y3L1: ð43Þ

To find the allowed parameter spaces, we scan the
remaining 11 free parameters in the regions chosen as

hkL ¼ ½−0.55; 0.55�; ykLi ¼ ½−10; 10� × 10−2: ð44Þ
In the calculations, we fix m0 ¼ 1 TeV and mSI ≈mAI

≈
1.1 TeV. In addition, the value of jmAI

−mSI j is taken to fit
M0 ≈ 6.12 × 10−9 GeV. From the jmν

ijj values shown in
Eq. (20), the corresponding ranges for Yij ≡ jPky

k
Liy

k
Ljj

can then be written as

Y11≈ð1.80−7.35Þ×10−4; Y12≈ð1.96−13.39Þ×10−4;

Y13≈Y12; Y22≈ð3.92−5.39Þ×10−3;

Y23≈ð3.27−3.59Þ×10−3; Y33≈ð3.59−5.06Þ×10−3:

ð45Þ

Using 5 × 108 random sampling points and the chosen
scan ranges in Eq. (44), we show the correlation between

jξL2j and Y22;33;23 in Fig. 5(a), where jξL2j > 0.01,
ζh < 0.3, and the ranges in Eq. (45) are satisfied. The
correlation between jξL2j and Y1i is shown in Fig. 5(b).
From the analysis, it can be seen that 0.01 < jξL2j < 0.04
can have a good match with Yij, which are determined by
the neutrino data.
As mentioned earlier, μ → eγ gives a strong constraint

on the ξL1 and yR1 parameters; therefore, a simple way to
comply with the requirement is to take ξL1 ¼ 0 and
yR1 ¼ 0. However, even so, the τ → μγ decay may play
an important role in constraining the parameters, where
from Eqs. (23) and (25), the related parameters are y�R2yR3,
y�R2ξL3, and ξ�L2yR3. If we take the limit with yR3 ¼ 0, the
BR for τ → μγ does not vanish due to the y�R2ξL3 effect.
Since ξL3 is a combination of hkL and ykL3, which are
correlated with ξL2, the T parameter, and the neutrino mass
matrix, we cannot arbitrarily tune ξL3 to be small. In order
to see if ξL3 can be small when the oblique T parameter and
neutrino data are satisfied, we show the correlation between
jξL2j and jξL3j in Fig. 6, where the conditions used to
determine the parameter values are the same as those shown
in Fig. 5. From the result, it can clearly be seen that when

(a) (b)

FIG. 4. (a) T parameter as a function of ζh ¼
P

kðhkLÞ2, where the dashed lines are the experimental central value with 0, 1, 2, and 3σ.
(b) Mass splitting (eX) within a vectorlike lepton doublet as a function of ζh, where the vertical dashed line corresponds to the T
parameter with 3σ errors.

FIG. 5. Correlation between jξL2j and Yi0j0 (Y1i), where i0ðj0Þ ¼ 2; 3; i ¼ 1; 2; 3; ζh < 0.3 and the ranges of Yij in Eq. (45)
are satisfied.
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jξL3j < 0.01, jξL2j can still reach 0.03. Hence, BRðτ → μγÞ
can be well controlled in the model.

B. μ → eγ and μ → 3e

According to the indication shown in Eq. (42), we have
to take a small ξL1 ¼ 0 to fit the BR for μ → eγ. For
simplicity, ξL1 ¼ 0 is fixed in the parameter scan. From
Eqs. (23) and (25), it can be seen that even when using
ξL1 ¼ 0, the BR for μ → eγ is still dictated by y�R1ξL2; that
is, the μ → eγ also gives a strict constraint on the yR1
parameter. In order to understand how BRðμ → eγÞ is
sensitive to ξL1, BRðμ → eγÞ (in units of 10−13) as a
function of jξL2j is shown in Fig. 7(a), where the allowed
parameter spaces are applied; yR2 ¼ 2.5 is used; and the
results for yR1 ¼ ð1.0; 0.8; 0.5Þ × 10−4 are shown, respec-
tively, in the plot. It can be seen that μ → eγ can further
exclude some parameter regions if the yR1 values approach

10−3 from below. We also show the dependence for the
μ → 3e decay in Fig. 7(b); however, the result is far less
than the current upper limit.

C. τ → μγ and τ → 3μ

Using the allowed data points, which are obtained by the
parameter scan, we show the scatters of BRðτ → μγÞ (in
units of 10−8) with respect to jξL2j in Fig. 8(a), where yR2 ¼
2.5 and yR3 ¼ 0.5 are used, and the horizontal dashed
line is the experimental upper limit. It can be seen that
BRðτ → μγÞ indeed can further bound the parameter. In
order to retain aμ ∼ 10−9, we can take a smaller value for
yR3. We also show the scatter plot for BRðτ → 3μÞ in units
of 10−8 in Fig. 8(b). Although the resulting BRðτ → 3μÞ is
still smaller than the current upper limit by 1 order of
magnitude, the allowed region can still reach the Belle II
sensitivity of tau physics.
As mentioned before, BRðτ → μγÞ depends on the

y�R2yR3, y
�
R2ξL3, and ξ�L2yR3 parameters. To gain a better

understanding of the correlations among parameters, we
show the contours of BRðτ → μγÞ (in units of 10−8) as a
function of ξL3 and yR2 in Fig. 9, where plots (a) and
(b) denote yR3 ¼ 0 and yR3 ¼ 0.3, respectively, and ξL2 ¼
0.03 is fixed in both plots. From the results, it can be seen that
BRðτ → μγÞ does not vanish at ξL3 ¼ 0when yR3 ≠ 0. If the
Belle II experiment does not find any event for the τ → μγ
decay at the sensitivity of 10−9 [62], a simple way to
suppress the BR for τ → μγ in the model is to take yR3 ¼ 0.

D. Muon g − 2
According to above analysis, it is known that the range of

0.01 < jξL2j < 0.04 is allowed in the model. Although we
only show the positive values for ξLi, indeed, the same
allowed region is also suitable for the negative ξLi with the
exception of the sign. From Eq. (40), it can be seen that ξL2
and yR2 have to be opposite in sign in order to get a positive

FIG. 6. Correlation between jξL2j and jξL3j.

(a) (b)

FIG. 7. (a) Scatters of BRðμ → eγÞ (in units of 10−13) as a dependence of jξL2j, where the allowed data points are applied; ξL1 ¼ 0 and
yR2 ¼ 2.5 are fixed; and the results with yR1 ¼ ð1.0; 0.8; 0.5Þ × 10−4 are shown. (b) Scatters of BRðμ → 3eÞ (in units of 10−16), where
the same conditions used in (a) are applied.
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aμ. To see the influence of inert charged-Higgs-boson
effects on the muon g − 2, we show aμ (in units of 10−10) as
a function of positive ξL2 and negative yR2 in Fig. 10, where

the dashed line denotes the 5σ result when the experimental
and theoretical uncertainties are reduced by a factor of 4
and 2, respectively. The same result can be applied to the
negative ξL2 and positive yR2. It can be concluded that
aμ ∼Oð10−9Þ can be realized in the model when the
experimental constraints are included.

V. SUMMARY

Based on the scotogenic model proposed in [27], we
extend the model by including a Z2-odd vectorlike lepton
doublet (X) in order to resolve the muon g − 2 excess
through the mediation of an inert charged Higgs boson.
In the model, two new Yukawa interactions, i.e.,

X̄LHIlR and X̄LH̃Nk, play the key roles. In addition to
the new Yukawa couplings, the induced muon g − 2 also
depends on other Yukawa couplings, which are determined
by the neutrino mass matrix elements of the order of
10−3–10−2 eV. It was found that the case with mX;Nk

>
mSIðAIÞ cannot significantly enhance the muon g − 2

because of the bound from the direct dark matter detection.
Thus, the suitable dark matter candidate in the model is the
lightest Z2-odd Majorana lepton.

(a) (b)

FIG. 8. Scatters for (a) BRðτ → μγÞ and (b) BRðτ → 3μÞ, where yR2 ¼ 2.5 and yR3 ¼ 0.5 are fixed.

(a) (b)

FIG. 9. Contours for BRðτ → μγÞ (in units of 10−8) as a function of ξL3 and yR2, where we fix yR3 ¼ 0 in (a) and yR3 ¼ 0.3 in (b),
respectively. In both plots, ξL2 ¼ 0.03 is used.

FIG. 10. Muon g − 2 (in units of 10−10) as a function of ξL2 and
yR2, where the dashed line denotes the 5σ result when the
experimental and theoretical uncertainties are reduced by a factor
of 4 and 2, respectively.
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Lepton-flavor violation processes, especially μ → eγ and
τ → μγ, make strict constraints on the relevant parameters.
Nevertheless, we found that the resulting muon g − 2 can
reach Oð10−9Þ when the 11 independent parameter values
satisfy the experimental measurements, such as lepton-
flavor violation, neutrino oscillations, and electroweak
oblique parameters. Moreover, the branching ratio for

τ → μγ can be well controlled and can reach the sensitivity
of Bell II with an integrated luminosity of 50 ab−1.
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