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necessary criterion for the IRC safety of the GNN output.

Keywords: Jets, QCD Phenomenology

ArXiv ePrint: 2109.14636

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP02(2022)060

mailto:konar@prl.res.in
mailto:vishalng@prl.res.in
mailto:michael.spannowsky@durham.ac.uk
https://arxiv.org/abs/2109.14636
https://doi.org/10.1007/JHEP02(2022)060


J
H
E
P
0
2
(
2
0
2
2
)
0
6
0

Contents

1 Introduction 1

2 A brief recap of message-passing neural networks 4
2.1 Graphs 4
2.2 Message-passing neural networks 5

3 IRC safe message-passing 8
3.1 Constructing the neighbourhood of a particle 8
3.2 Energy-weighted message-passing 11

4 Details of network implementation 14
4.1 Analysis setup 14
4.2 Constructing the jet graphs 16
4.3 Network hyperparameters and training 17

5 Results 17
5.1 Tagging performance 17
5.2 Examining IRC safety 20

6 Summary and conclusions 23

1 Introduction

The Large Hadron Collider (LHC) has been collecting an immense amount of data for the
past decade and will continue to do so for the upcoming decade. With the absence of sig-
natures of new physics (NP), it is imperative to critically analyse all the available data and
reduce the possibility of missing out by exploring all possible ways of analysis. Machine
learning (ML) algorithms are powerful statistical learning tools that can extract features
directly from data via an optimisation procedure and are used to efficiently analyse the
huge amounts of collected data [1–4]. There has been a growing focus [5–13] on adapting
the more powerful versions of ML:1 the so-called deep-learning algorithms that extract
features from low-level data like the four-momenta of detected particles. Although highly
performant, deep-learning algorithms are not physically well-understood due to many tun-
able parameters and the numeric nature of the optimisation process. Thus, one of the
biggest challenges in deploying machine-learning methods to searches for new physics and
measurements of particle properties is their inherent complexity and the accompanying
valuation to be a so-called ‘black box’. Consequently, to facilitate the application of neural

1See ref. [14] for an updated list of application of machine learning in particle physics.
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network methods reliably to the analysis of data at particle colliders, there is an ongoing
focus to understand the phenomenologically relevant characteristics of neural networks,
i.e. interpretability [15–20], robustness to soft and collinear emissions [21–26], and better
control of uncertainties [9, 27–30]. Extending these efforts, we devise Graph Neural Net-
works, the current state-of-the-art deep-learning algorithm in various applications at LHC,
providing Neural Network outputs robust to soft and collinear emissions.

At the LHC, evidence for new physics can be hidden in the dominantly produced jets,
collimated sprays of hadrons arising from energetic, strongly interacting particles. Consid-
erable attention to the characteristics of jets is required for a holistic search strategy. Jet-
substructure [31–34] is a sub-area of LHC physics that has received significant investigation
both from a theory-driven perspective [35–41] as well as the data-driven paradigm [42–49].
It focuses on distinguishing rare hadronic decays of heavy boosted particles (signal) like the
top-quark and Higgs boson from those originating from the abundantly produced (back-
ground) gluons and lighter quarks. Conventional analyses [50–54] use variables that distin-
guish between the evolution of emissions of the signal and background jets. These high-level
variables are calculated from the four-momenta of the constituents and are amenable to
calculations [35] in perturbative QCD. Deep-learning algorithms have been found to out-
perform the high-level variables at the cost of losing the intuitive physics understanding
of the learnt features. Thus, in general, we do not control the possibility of the feature
extraction process, which leaves our classification performance potentially highly suscepti-
ble to non-perturbative effects. A necessary condition for any observable to be calculable
within perturbative QCD is infra-red and collinear (IRC) safety. It ensures the appropriate
handling of real and virtual corrections order by order in perturbative calculations via the
KLN theorem [55, 56]. Thus, an IRC safe deep-learning algorithm would learn features
that are, in principle, calculable in perturbative QCD.

The most comprehensive representation of collision events at the LHC are sets of
individually detected particles or physically reconstructed objects. The number of elements
in these sets vary from event to event and are denoted naturally in terms of point clouds
with each entry containing a vector composed of observables like four-momenta, charge,
and the identity of the object. Graphs are discrete mathematical data structures defined
on these sets’ elements (nodes), where the edges encode relational information. When
constructing graphs from a point cloud, its primary role is to unveil local structures within
the data. A popular algorithm for constructing a graph from a point cloud also used to
construct jet graphs for classification by Graph Neural Networks (GNNs) [57, 58], “the
k-nearest neighbour graph”, has a fixed number of connections by definition and hence the
GNN’s output will not be IRC safe. The GNN output’s IRC safety is closely connected to
the graph construction algorithm. This has not been explored previously, to our knowledge,
and we find that only specific classes of graph construction algorithms guarantee the IRC
safety of the network output. More accurately, the graph determines how the subnetworks
are applied to the data via the edge connections. If the edges change drastically in the
presence of soft or collinear particles, the network output will also change. The graph
construction is analogous to the jet algorithm, while the output is analogous to observables
defined on the jet.
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GNNs [59–61] have been studied for jet classification in supervised [57, 58, 62–65]
as well as unsupervised [66, 67] scenarios and has state-of-the-art performance [57] com-
pared to other still excellent architectures [68] like Convolutional Neural Networks (CNNs),
Deep-sets, and Recurrent Neural Networks (RNNs). The better performance originates in
GNNs having an inductive bias more appropriate for jet substructure in particular and col-
lider physics in general. These biases include generalising the Euclidean bias of CNNs to
higher dimensional non-Euclidean spaces [69], enhancing the feature extraction in the deep-
sets [70–72] framework by including local structures [73], and generalising RNNs [74, 75]
to undirected cyclic graphs [59]. Hence, incorporating IRC safety into GNNs will fur-
ther strengthen its biases for various applications at LHC. GNNs are a special type
of hierarchical neural networks [76], consisting of several subnetworks organised so that
the output respects properties of graph-structured data like permutation-invariance of the
nodes. It has received wide attention in recent years and has been concisely described in
the message-passing neural network (MPNN) formalism [60]. Thus, we will examine the
MPNN formalism concentrating on the problem of inductive2 graph classification.

A closely connected algorithm to GNNs: the deep-sets framework for feature learning
on point clouds, has been explored for jet physics. Energy Flow Networks (EFNs) [22] are
IRC safe deep learning models for point clouds, where the feature extraction component
learns a per-particle-map to a latent space. The process of constructing graphs out of the
point cloud imposes additional structures into the data, which can be efficiently extracted
with the help of MPNNs. Concretely, an MPPN based feature extraction phase improves
the per-particle-map in the following ways:

• It can extract inter particle information courtesy of the trainable message-passing
function Φ(pi, pj), acting on each pair of nodes pi and pj connected by each of the
edges in the graph.

• The node readout updates the node feature as a permutation invariant function of
all incoming messages. The readout, along with the message-passing step, forms
one message-passing operation. It controls the extent of information passed from
one layer to another. Therefore, the graph construction algorithm directly controls
the nature of the information that goes into learning the parameters of the message
function of the first layer.

• Since the updated node features are functions of all the neighbouring node features,
the range of information in the node features gradually increases with the repetitive
application of the message-passing operation. This is not the case for EFNs, as the
function is dependent on single-node features. Thus, applying a subsequent learnable
function to the updated node features becomes a functional composition, which does
not add additional complexity to the process of feature extraction.

2One significant area which uses GNNs is in transductive learning [77], where the aim is to extend
information to partially known regions of data. Such networks perform poorly on unseen data, as it learns
features specific to the data. For most purposes in collider phenomenology, we are always in an inductive
learning domain, where the model is applied to unseen data.
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• On top of the graph construction itself, the number of applications of the message-
passing operation also controls the amount of local information encoded into the final
node features. For EFNs, this is always limited to single particles.

Forgoing the permutation invariance of EFNs, for permutation equivariance [24] has better
feature extraction by partially taking care of the last two points, at the additional cost
of having to abandon the variable-length inputs. On the contrary, an IRC safe MPNN
would improve upon the EFNs and still be permutation invariant. Intrinsically, this is
because they are very similar, which is also self-evident within the discussed reasons. Once
the graph construction algorithm is taken care of, we find that implementing an IRC safe
MPNN can be done via an energy-weighted message (feature) with summed aggregation
at the node (graph) level. We find that the network, which we refer to as Energy-weighted
Message-Passing Network (EMPN), improves upon EFNs with a single message-passing
operation. Moreover, EMPNs can, in principle, improve upon EFNs in all the four points
discussed above as the iterative application does not spoil the IRC safety.

The rest of the paper is organised as follows. Section 2 introduces the basic idea behind
graphs and MPNNs. Readers familiar with graphs and graph neural networks can skip this
section. We present the main results of this work in section 3, where we devise the graph
construction algorithm and the MPNN architecture, which guarantees the IRC safety of
the network output. We describe in detail the application of EMPNs to three jet-tagging
scenarios: gluon vs quark, QCD vs W , and QCD vs top, in section 4. The results of these
three scenarios are presented in section 5. We conclude in section 6.

2 A brief recap of message-passing neural networks

In this section, we present graphs in the context of particle four-vectors along with a self-
contained introduction to message-passing neural networks. As the literature on graphs
and graph neural networks is rich and expansive, we focus on the context of collider phe-
nomenology and jet physics. Finally, we give a presentation of graphs and graph neural
networks, which is essential for understanding the main result of our work.

2.1 Graphs

A graph G(S, E) is defined on a set of nodes S with edges E ⊆ S × S = {(i, j) | i, j ∈ S}
consisting of an ordered pair of elements in S. The nodes can have a representation hi ∈
M ∀ i ∈ S, in some metric spaceM, where hi is the feature of node i. In the context of our
present analysis, this metric-space is the union of the timelike and lightlike regions3 of the
Lorentz manifold with the Minkowski metric or some other metric in flat spacetime. This
could extend in principle to the spacelike regions for theoretically motivated considerations
or be generalised to include general coordinate transformations in curved spacetime for
applications in the domain of general relativity. When learning from a point cloud, the
edge set E is not provided a priori and is constructed with an algorithm defined on the
node features. Well-known examples exist in the point cloud literature [78], the most

3In general, it could include other information like charge, detector component etc., which we exclude
for IRC safety. Although not exactly lightlike, we assume that the jet constituents are massless for easier
analysis.
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famous one being the k-nearest neighbour (k-NN) graph [57, 73]. The edges can also have
a representation eij in some space X . In our context, these can be quantities like mass,
directional separation, or the generalised kt measures [79] which are derived from the node
features themselves.

A walk is a sequence of edges that joins a sequence of nodes, for instance,

W = ((i, j), (j, l), (l,m), (m, i), (i, j)) ,

is a walk with the edge (i, j) repeated twice. On a jet graph, all possible walks of length
L would indicate all possible flow of information between the nodes under L iterative
application of message-passing operations. If all the edges are distinct, a walk is called a
trail. A path is a trail with no repeated nodes. The distance between two nodes is given
by the number of edges of their shortest possible path. Considering a jet graph after L
message-passing operations, any two nodes with a distance less than or equal to L would
have information about each other encoded in the updated node features. A graph cycle
is a trail where the first and the last node corresponds to the same node, with all other
nodes distinct. A cyclic graph has at least one graph cycle. If a graph has no graph cycles,
it is called an acyclic graph. A connected acyclic graph is called a tree. QCD splittings are
naturally described by a tree [80, 81].

A simple graph is one where two distinct nodes can have at most one connection, and
there are no self-loops. A graph is undirected if we do not distinguish an edge based on
the order of the nodes it connects; instead of the edge being defined by an ordered pair, we
define it by an unordered pair. Constructing a directed graph will inherently have richer
structural information of the underlying space on a point cloud. If a graph is simple, it
can be equivalently represented in terms of neighbourhood sets N (i) in place of the edge
set E . For a directed graph, N (i) is defined for each node i, as the set containing all the
nodes with incoming connections to i. We can allow for self-loops if we take the closed
neighbourhood where i is also a part of the set N [i] 3 i. We will see that allowing for self-
loops is necessary for an IRC safe definition of message-passing operation on the graph.
The l-hop neighbourhood of a node i is the set of all nodes with distances from i, less than,
or equal to l. In the rest of the work, we interchangeably use nodes or edges and their
respective sets of representation in an underlying space.

2.2 Message-passing neural networks

Modern deep neural networks (DNNs) generally have a two-stage architecture: a specialised
feature extraction section, followed by a generic dense architecture processing the extracted
information further. Message-passing neural networks (MPNNs) are specialised feature
extraction modules that act on graphs with node features and edge features. A message-
passing operation, takes as input a graph with node features h(l)

i and updates it to h(l+1),
with a two-step process:

1. Message passing: we define a learnable function Φ(l) with trainable parameters,4

which takes as input the node features h(l)
i and h(l)

j , connected by the edge5 (i, j)
4This can be a multilayer perceptron, but it can be a collection of sub networks arranged in some

particular way in general.
5It can also take the corresponding edge feature e(l)

ij if present.
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and returns the message im(l)
j ,

im(l)
j = Φ(l)(h(l)

i ,h(l)
j ) . (2.1)

The message is calculated for all edges present in the graph. We choose to use the
notation im(l)

j instead of a homogenous subscript, to make it evident that the message
or the function Φ(l) need not be symmetric with respect to the source node j, and
the destination node i.

2. Node-readout: the nodes are updated with new features h(l+1)
i by applying a permu-

tation invariant function 2local to all incoming messages

h(l)
i → h(l+1)

i = 2local
j∈N (i)

im(l)
j . (2.2)

Note that the updated features h(l+1)
i , contain the local neighbourhood information

of i.

The message-passing operation can be repeated any number of times. Each iteration leads
to a gradual increase in the neighbourhood information held within the node features. On
a static graph where the neighbourhood sets N (i) or equivalently the edge set E remain un-
changed, the node features contain information of the L-hop neighbourhood when applied
L times. Thus, the number of message-passing operations applied L, is a crucial hyperpa-
rameter in any GNN. It determines the scale at which the final node features h(L)

i , capture
the local structures within the graph. The number L is restrained by the high computa-
tional cost of applying message passing operations, thereby reducing expressive power for
the classification of large graphs. Even for jet graphs, we have a relatively large number of
nodes, and hence, the information gets restricted to a local scale, intrinsically determined
by L. For instance, in a two-prongW tagging case, if L is lesser than the length of the path
between the two hard subjets, which would vary for each jet graph, the message-passing
functions Φ(l) would not see this feature for jets with several soft particles nsoft > L, be-
tween the two subjets. Nevertheless, a precisely determined graph construction algorithm
would probabilistically give graphs with very low < nsoft >≈ 0. To avoid this limitation
in the message-passing step dynamic graphs are used to gather information from different
scales, with the possibility of learning correlations from the entire graph after one dynamic
iteration. However, for the same L, dynamic MPNNs will have a higher computational cost
because of the added graph construction after each message-passing operation. Moreover,
it may not always be desirable to mix information at the message-passing stage as the
graph representation would still have the global features intact. Note that the number of
nodes in a graph can vary. For graph classification, a permutation invariant graph readout
function 2global is applied to these node features, giving a fixed-length global representation
of the graph

g = 2global
i∈G h(L)

i . (2.3)

In all instances, a graph readout serves similar purposes to the node readout, with the only
difference being the scale of the operation. The graph representation is fed into a densely
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Message-passing

Node Readout

Graph Readout

Classification score

Figure 1. A diagramatic representation of a message-passing neural network(MPNN) for graph-
classification. We are given a graph G(S, E) with nodes S and edge set E . Each node i has a
feature vector h(l)

i . The first step called the message-passing involves evaluating the message im(l)
j

for each edge in (j, i) via a DNN Φ(l) shared for all edges. The different MPNN proposed in
literature has structural differences in how Φ(l) takes the inputs, which could include edge features
as well. The second step, called the node readout, updates the features of each node to h(l+1)

i

with a permutation invariant function 2local acting on all incoming messages. After L iterations,
a graph readout function 2global on the final node features h(L)

i , gives fixed length n-dimensional
graph representation g. This is fed into a downstream neural network which outputs the graph
classification score y.

connected network, which outputs a classification score for the whole graph. The steps of
an MPNN for graph classification, which we have discussed, are shown diagrammatically
in figure 1.
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3 IRC safe message-passing

In this section, we examine the subtleties of building an IRC safe message-passing neural
network. We can divide this into three steps: graph construction, message-passing and
node readout, and graph readout. In the following, we analyse the graph construction
algorithm in section 3.1, and the message-passing, node readout and graph readout together
in section 3.2.

3.1 Constructing the neighbourhood of a particle

An infra-red and collinear safe observable has to be equal in the presence or absence of
soft or collinear particles. Specifically, given a set S of n massless particles with their
four momenta pi = (zi, p̂i), with zi = pi

T /
∑

j∈S p
j
T denoting the relative hardness of the

particle, and p̂i being the directional (angular) coordinates. If a particle q undergoes a
splitting q → r + s, with pq = pr + ps, an IRC safe observable On must satisfy

On+1(pa, . . . , pb, pr, ps, pc, . . .)→ On(pa, . . . , pb, pq, pc, . . .) as zr → 0 ,

On+1(pa, . . . , pb, pr, ps, pc, . . .)→ On(pa, . . . , pb, pq, pc, . . .) as ∆rs → 0 ,
(3.1)

where zr is the relative hardness of pr, and ∆rs is the angle between ~pr and ~ps. Con-
sequently, the algorithm for constructing graphs should allow for the addition of soft or
collinear particles without changing the whole structure of the graph. The graph con-
structed by a vertex deletion of a soft or collinear particle should be equal to the one
formed in its absence, with proper substitution of the four-momenta in the case of collinear
particles. For instance, a k-nearest neighbour (k-NN) graph would not allow for an IRC
safe message-passing since adding a particle in the vicinity of a node i could change the
neighbourhood set N (i) to N ′(i) with a fixed cardinality. The fixed cardinality would
induce a domino effect in the neighbourhood sets of the subsequent neighbours and change
the graph’s structure to a large degree. As a concrete example, for a k-NN graph in the
(η, φ) plane, the addition of a particle closer to the node could, in principle, omit the hard-
est particle out of the neighbourhood in N ′(i). This is diagrammatically shown in figure 2,
where a particle q splitting to two particles r and s excludes another particle b from the
neighbourhod of particle i. Thus, in the node readout for particle i, a message-passing
algorithm based on a k-NN graph cannot smoothly extrapolate between the two scenarios,
when taking the IRC limits of the daughter particles r and s. This warrants a careful
examination of the graph construction algorithm.

Since our final aim is to have a message-passing neural network whose output is IRC
safe, the correctness of the graph construction algorithm is intimately connected with the
subsequent operations the network will perform on the graph’s nodes. From the perspective
of QCD, the node readout and the graph readout functions are on the same footing, with
the only difference being the scale. We look into the jet substructure with the help of
the nodes and the edge connections, which gives us a representation of the whole jet.6 In

6This could be extrapolated to the event shape, where an IRC safe graph neural network would look
into the subsequent scales present in the event and construct an event level representation which would
have the desirable property of being less affected by soft and collinear radiations.
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Figure 2. A k-nearest neighbour graph in the (η, φ)-plane will have a different structure when any
particle q splits to r and s. The set S denote the particles in the jet when there is no splitting, while
S ′ denotes the particles with q splitting. We show the directed edge connection to i from its three
nearest neighbours with red on either side. The neighbourhood set N (i) has b in it, however when
q splits, N ′(i) does not contain b. Therefore, the graph’s structure prevents a smooth extrapolation
between the two scenarios in the infra-red and collinear limit. This is not the case for a radius
graph with radius R0 in the (η, φ) plane, which is shown with black connections. We also include
the self-loop of i, by using the closed neighbourhood sets N [i] and N ′[i], since the node i could also
split into two particles.

graph theory, self-loops are often ignored, and most of the efforts concentrate on analysing
simple graphs. However, from the perspective of QCD, the destination node itself can also
emit soft or collinear particles. Therefore, an IRC safe aggregation must act on the closed
neighbourhood N [i], which includes the destination node i.

Let us take a set S of the four momenta of n massless particles. Out of these, any
particle q could undergo a splitting to r and s, which enlarges the set S to S ′ with S ′ =
S \ {q} ∪ {r, s}. The three four momenta can be written in general as

pq = (zq, p̂q) , pr = (zr, p̂r) zr = λzq , ps = (zs, p̂s), zs = (1− λ) zs , (3.2)

with λ ∈ [0, 1], and pq = pr + ps. Following are the limits that are of interest:

• IR limit: λ→ 0(λ→ 1), for r(or s) in the soft limit,

• C limit: p̂r → p̂s → p̂q or equivalently ∆rs → 0, for any λ.

For the IR limit, the two cases are for either of the daughter particles becoming soft, and it
suffices to take one of them, say λ→ 0 =⇒ zr → 0 in the following presentation. A graph

– 9 –
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construction method on S would allocate to each particle i a neighbourhood set N [i] ⊆ S.
We would have to apply the same method to S ′, which would give neighbourhood sets
N ′[i] ⊆ S ′. To devise an IRC safe message passing operation, a simple procedure is to
assume that the neighbourhood sets, N [i], behave the same way as the total set S. By
keeping the behaviour of the sets the same, the graph structure essentially works as a
control over the scale of the message-passing operation. In the IR limit, the emitter q and
the daughter r need not fall in the same neighbourhood since the other daughter s will have
the same four momenta of q in the limit zr → 0. However, in the C limit, if the emitter q is
in the neighbourhood of N [i], we need both the daughters to be in N ′[i]. Mathematically,
we can write this condition as:

• IR limit: if r /∈ N ′[i] =⇒ N ′[i] = N [i]

else N ′[i] \ {r} = N [i] ,when zr = 0 ; (3.3)

• C limit: if {r, s} ∩ N ′[i] = ∅ =⇒ N ′[i] = N [i]

else N [i] = N ′[i] \ {r, s} ∪ {q} ,when ∆rs = 0 . (3.4)

The aim now is to devise a graph construction algorithm that will give us neighbour-
hood sets satisfying these conditions. Constructing graphs from sets sampled from a point
cloud uses functions defined on the features ~βi. The algorithm can be surmised by compar-
ing two functions, which, in general, depend on features ~βi (which need not be the same
as the node features hi) of elements i belonging to subsets of the whole sample set S,
which itself can change as the edge set E grows. Calling these two functions as the decision
function D, and the threshold function T, we say that a particle j will be placed into the
neighbourhood of i, if D is less than or equal to T,

D(~βi, ~βj |~βk, ~βl, . . .) ≤ T(~βi, ~βj |~βk, ~βl, . . .) =⇒ j ∈ N [i] . (3.5)

The features ~βi can generally contain any quantity of i like charge, four-momenta, or the
identity of the sub-detector component of i. Graphs are versatile data structures that can
encode the detector components together into a compact, unified representation. However,
as our current aim is to incorporate IRC safety, it restricts us to calorimeter or particle
flow constituents with no charge information and the four vectors of the particles. In the
following, we systematically reduce the possible four-vectors which could come into the
arguments of the decision and the threshold functions.

As was previously discussed, D or T cannot be dependent on the cardinality of the
neighbourhood set N [i]. Consider the functions depending on another particle pq to decide
whether pj should be in N [i]. A splitting on pq can create situations where pj can be in
N [i] and not in N ′[i] or vice versa. Thus, the functions can not depend on any other four
vectors than the two particles in question. Looking at eq. (3.4), we see that the emitter
and the daughter particles of a collinear splitting need to be in both in the neighbourhood
N [i] and N ′[i], respectively, or not at all. We have the following condition on the decision
and threshold functions,

D(pi, pr + ps) ≤ T(pi, pr + ps)⇔ D(pi, pr) ≤ T(pi, pr) and D(pi, ps) ≤ T(pi, ps) ,

D(pr + ps, pi) ≤ T(pr + ps, pi)⇔ D(pr, pi) ≤ T(pr, pi) and D(ps, pi) ≤ T(ps, pi) ,
(3.6)

– 10 –
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in the exact collinear limit of ∆rs = 0. The second line arises when considering the emitter
or daughters as the destination node, with pi denoting any particle in their respective
sets. A simple way to satisfy these inequalities is by using the condition of collinearity and
making the functions dependent only on the directional coordinates,

D = D(p̂i, p̂j) , T = T(p̂i, p̂j) . (3.7)

The functions can also have additional dependence on any IRC safe quantity defined on
the set S.

For our network analysis, we explore the simplest possible graphs to gauge the power
of this method by constructing graphs with constant radius R0,

D = ∆Rij , T = R0 , (3.8)

in the (η, φ)-plane. Complicated dependencies on the directional variables and on IRC
safe quantities like the jet’s pT can be explored in future work. The black connections to
particle i in figure 2 show a case where a split in particle q preserves the other particles in
the neighbourhood sets, except for the emitter and the daughters.

3.2 Energy-weighted message-passing

Now that we have the graph construction algorithm, we look into building an IRC safe
message-passing function. The message-function at the first layer Φ(0) would take two
four-vectors pi and pj for a directed edge from j to i, to give the message im(0)

j . The node
features are then updated to h(1)

i , by applying a permutation invariant function on the
messages im(0)

j for all possible j ∈ N [i]. Commonly used permutation invariant functions
can be classified in the sense of QCD into exclusive or inclusive functions: the function
output depends on a specific subset of the neighbourhood, or it depends equally on all the
neighbourhood particles. Max/min falls within the first class, while mean/sum falls under
the second class. As one can presume, it is inherently problematic to build IRC safety
into exclusive functions. Building IRC safety into a mean readout is not straightforward
since it depends explicitly on the number of particles in N [i]. In the following, we examine
the conditions which give IRC safety of the updated node features on the message-passing
function for the exclusive and summed node readout operations.

Max/Min readout: since, the only difference between max and min readout is the
comparison, we look at max readout. The same for min readout follows by replacing the
greater-than with the less-than symbol in the message comparisons. We have the messages
Φ(0)(pi, pj) = im(0)

j with the max update as,

h(1)
i = max

j∈N [i]
Φ(0)(pi, pj) .

For a splitting q to r and s with pq = pr + ps and assuming that the neighbourhood sets
follow eq. (3.3) and (3.4). In the soft limit when zr → 0, we have

zj > zr =⇒ Φ(0)(pi, pj) > Φ(0)(pi, pr) for IR safety.
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For the collinear limit ∆rs → 0, we have

Φ(0)(pi, pj) ≥ Φ(0)(pi, pr) and Φ(0)(pi, pj) ≥ Φ(0)(pi, ps) ∀ j ∈ N [i] for C safety.

Implementing C safety in a max/min node readout is not possible since the angle ∆rs needs
to control the ordering of the messages im(0)

r and im(0)
s with all other messages im(0)

j . The
max function chooses the maximum value out of all im(0)

j , with the ordering essentially
determined by the second argument in Φ(0). Consider an exactly collinear splitting of the
particle contributing to the highest message vector in N [i], say pM → λ pM + (1− λ) pM ,
with λ ∈ [0, 1]. The max value in both the scenarios can be equal only at the endpoints
λ ∈ {0, 1}, which is essentially the soft and collinear limit. The same is true for min readout
when considering the particle determining the minimum value of Φ(0) in the neighbourhood.

Sum readout: the updated node features are given by,

h(1)
i =

∑
j∈N [i]

Φ(0)(pi, pj) . (3.9)

For a splitting q ∈ N [i] to r, s ∈ N ′[i] changing the neighbourhood set N [i] to N ′[i]. The
requirements on the message function Φ(0) are

IR safety: Φ(0)(pi, pr)→ 0 as zr → 0 (3.9a)

C safety: Φ(0)(pi, pr + ps) = Φ(0)(pi, pr) + Φ(0)(pi, ps) as ∆rs → 0 . (3.9b)

Satisfying these conditions gives IRC safe updated node features

h(1)
i = h′(1)

i =
∑

j∈N ′[i]
Φ(0)(pi, pj) . (3.10)

We have written these conditions for the second argument only, even though the splitting
can occur in the destination node, since it has a special status in the message passing
operation. Applying similar conditions for the first argument is highly restrictive with no
practical gain. Nodes corresponding to the daughters are present in the graph even in
the IRC limit, which is precisely the objective of the present study — to get fixed-length
representations of two graphs, with one having an additional node, which is the same
when the additional node or particle is soft or collinear. Including the destination node
in the neighbourhood set makes it possible for the emitter and the two daughters to have
the same updated node features in the exact collinear limit, with the two collinear copies
propagating forward simultaneously. In either of the limits (soft or collinear), these copies
are then taken care of separately by an IRC safe graph readout. These are explained in
more detail in the following paragraphs.

We now present an implementation of message-passing operation which satisfies the
IRC safe conditions for a summed node readout. The message function Φ(0) has a depen-
dence on two four-vectors, which allows an MPNN to extract richer features than the ones
employed in EFNs [22] with a single particle map. However, the per-particle map can be
functionally regarded as a special message function constant for the second argument. The
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point cloud could then be regarded as a graph of N nodes, with N disconnected compo-
nents with only self-loops entering the edge set. Therefore, generalising the per-particle
map, we define the message function as

im(0)
j = Φ(0)(pi, pj) = ω

(N [i])
j Φ̂(0)(p̂i, p̂j) , (3.11)

where Φ̂ takes only the directional information of the four vectors and we define scalar
weights ω(K)

j , dependent on the scope K of the readout operation,

ω
(K)
j = pj

T∑
k∈K pk

T

. (3.12)

Clearly, for the full set S, ω(S)
j = zj , and zj → 0 =⇒ ω

(K)
j → 0 regardless of K, thereby

satisfying7 eq. (3.9a). Moreover, as long as the neighbourhood sets N [i] and N ′[i] satisfy
eq. (3.4) which is true even when i undergoes a splitting we have,

ω(N [i])
q = ω(N ′[i])

r + ω(N ′[i])
s ,

where q is the emitter and r and s are the daughter particles. Since p̂q = p̂r = p̂s in the
collinear limit, we have

Φ̂(0)(p̂i, p̂q) = Φ̂(0)(p̂i, p̂r) = Φ̂(0)(p̂i, p̂s) ,

Φ̂(0)(p̂q, p̂i) = Φ̂(0)(p̂r, p̂i) = Φ̂(0)(p̂s, p̂i, ) .
(3.13)

Hence, the updated node features

h(1)
i =

∑
j∈N [i]

ω
(N [i])
j Φ̂(0)(p̂i, p̂j) , (3.14)

satisfies the IRC safety condition eq. (3.10). Note that the expression does not limit the
form of the function Φ̂(0) other than differentiability which is required for back-propagation.
Thus, we can modify any existing message-passing algorithm into the IRC safe version by
implementing the appropriate message weights and restricting the input to the directional
coordinates. We therefore implement the IRC safe version of edge-convolutions as a proof-
of-principle analysis.

Looking at the structure of the updated node features after the first message-passing
operation, we can see that it is a function of all the four-momenta of its neighbourhood
particles. If n is the number of nodes in the set N [i], we have the updated IRC safe node
feature as h(1)

i (p1, p2, . . . pn). We want to investigate the IRC safety of another message
passing on the updated quantities h(1)

i . If true, the architecture could accommodate mul-
tiple iterations of message-passing operations, thereby increasing the model’s expressive
power. For simplicity, one can consider static graphs with the same neighbourhood sets.
A weighted message-passing of the same form as eq. (3.14)

h(2)
i =

∑
j∈N [i]

ω
(N [i])
j Φ̂(1)(h(1)

i ,h(1)
j ) ,

7Note, when a soft particles has no other neighbour except itself, the node readout might change to
a finite value. However, the graph readout, and therefore the network output, will remain unchanged, as
K = S.
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with the same weights ω(N [i])
j , but with the updated node features h(1)

i satisfies IR safety.
For it to be C safe, the features h(1)

i should behave just like the directional coordinates p̂i.
Note that the neighbourhood sets for the two collinear daughters are the same. The emitter
also has the same neighbourhood after replacing the daughters with their summed four-
vector (cf. eq. (3.4)). Their aggregated node vectors become equal to that of the emitter in S
via the cancellation of the λ factors in the weights. Thus, the updated node vectors after the
first message-passing of the daughters and the emitter are exactly equal in the collinear limit
h(1)

q = h(1)
r = h(1)

s . Hence, they have essentially the same characteristics as the directional
coordinates. This ensures that Φ̂(1)(h(1)

i ,h(1)
j ) follow analogous equations to eq. (3.13),

thereby making the weighted message ω(N [i])
j Φ̂(1)(h(1)

i ,h(1)
j ) follow similar equations to

eq. (3.9). Moreover, the new features h(2)
i , would have this same property. Hence, repeating

the energy weighted message passing operation any number of times satisfies IRC safety at
the level of each updated node feature. Denoting the node features for the lth iteration
as h(l)

i with h(0)
i = p̂i, we have the iterative application of the energy-weighted message

passing as
h(l+1)

i =
∑

i∈N [i]
ω

(N [i])
j Φ̂(l)(h(l)

i ,h(l)
j ) . (3.15)

As seen above, there will be copies of emitted particles even in the IRC limit, propa-
gating forward in the graph formed after a soft or collinear splitting. Thus, any generically
defined graph readout operation acting on the node features of the full graph will not be
IRC safe. The graph readout should guarantee the equality of the obtained representation
of the two graphs in the IRC limit, with one having an additional node. The node features
at the final message-passing layer, say h(L)

i , will behave the same way as the directional
variables, regardless of L, the number of message-passing iterations. Thus, a graph readout
of the form

g =
∑
i∈G

ω
(S)
i h(L)

i , (3.16)

with zi = ω
(S)
i , is IRC safe. This is an analogue of the sum over the per-particle represen-

tation employed in EFNs. The graph convolution operation now replaces the per-particle
maps. The scale of the representation which undergoes the sum, which contains local
structural information, is determined by the number of message-passing operations and
the graph construction algorithm. A schematic representation of such a network for L = 1
is shown in figure 3.

4 Details of network implementation

In this section, we present the numerical results of the IRC safe message passing neural net-
work. The details of the datasets are given first, followed by the network hyperparameters
and training aspects.

4.1 Analysis setup

For assessing the power of Energy-weighted Message Passing Networks (EMPN), we con-
sider three scenarios: quark/gluon discrimination as a benchmark for IRC safe, supervised
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Message-passing

Node Readout

Graph Readout

Binary classification score

  

Figure 3. The specific architecture used for the three jet tagging scenarios of an Energy-weighted
Message-Passing network(EMPN), with a single energy-weighted message passing operation. It
takes graphs of constant radius R0 in the (η, φ)-plane. The message-passing network Φ(0), takes the
directional inputs of the four-vectors in the form of h(0)

i , and calculates a weighted message im(0)
j

with ω(N [i])
j as the weights. It then undergoes a summed node readout operation to update their

features to h(1)
i . The graph representation g obtained after a summed graph readout operation on

the node features h(1)
j weighted with ω

(S)
j , is fed into a DNN which outputs a binary classifica-

tion score.

Sl.No Jet Class Parton-level MPI Detector Simulation Jet-radius
1. Gluon Pythia8 Yes No 0.4
2. Quark Pythia8 Yes No 0.4
3. QCD Pythia8 No Yes 0.8
4. Top Pythia8 No Yes 0.8
5. W MadGraph5_aMC@NLO No Yes 0.8

Table 1. A summary of the different classes of data used in the three classification scenarios. The
W data was generated for this study, while for the first four classes, we use publicly availaible
datasets [82, 83]. All datasets were showered and hadronised with Pythia8, while the detector
simulation was done with Delphes3, with the default ATLAS card.
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identification of normal radius quark jets from gluon jets, boosted W vs QCD jet tagging
as an example of two-prong tagging, and boosted top vs QCD jet tagging as an example of
three-prong tagging. We use publicly available datasets for the quark vs gluon tagging [22,
82], and the top tagging scenarios [15, 83]. These datasets were generated at 14TeV
center-of-mass energy proton-proton collisions in Pythia8 [84]. The parton level events
were generated in Pythia 8.226 using the processes WeakBosonAndParton:qqbar2gmZg
and WeakBosonAndParton:qg2gmZq for the gluon and quark samples respectively. These
events were showered with the default tunings of the shower parameters with multi-parton
interactions (MPI) and hadronisation. All final state particles except neutrinos were clus-
tered with FastJet 3.3.0 [85] into anti-kT [79] jets of radius R = 0.4, with no detector
simulation. Jets are required to have pT ∈ [500, 550]GeV and rapidity |y| < 2. Parton level
events for QCD jets and top jets in the top tagging dataset were generated with Pythia
8.2.15. These were showered without MPI effects and passed through Delphes3 [86], with
the default ATLAS detector card. The particle-flow objects are clustered into anti-kT jets
with R = 0.8. The jets are required to have pT ∈ [550, 650]GeV, with pseudorapidity
|η| < 2. For the top-jets, the parton-level top quark and its decay products were required
to fall within ∆R = 0.8 of the reconstructed jet axis. QCD jets from this dataset was used
for the W -tagging scenario. For the W jets, we generated the parton level process p p >

w± z in MadGraph5_aMC@NLO(v2.6.5) [87], at 14TeV proton-proton collisions, forcing the
W boson to decay hadronically, and the Z boson to decay to neutrinos. Parton level cuts
on the missing-transverse energy with /ET > 500GeV, and the pseudorapidity of the W
bosons, |ηw| < 3, were applied during the generation. Further downstream simulation of
these partonic events was done by implementing the same configuration details of the top-
dataset, including the jet-reconstruction and baseline selection criteria. We also matched
the parton level W and its decay products to be within ∆R = 0.8 of the reconstructed W
jet axis. Up to two-hundred hardest constituents within the jet were used to construct the
graphs for the three large-radius jet tagging datasets. For all three scenarios, we have 1.2
million training, 400k validation, and 400k test jets.

4.2 Constructing the jet graphs

The jet graphs of each jet are constructed by taking their constituents. We calculate the
interparticle distance ∆Rij =

√
∆η2 + ∆φ2, in the (η, φ) plane. For each node i, we define

the neighbourhood set N [i] as the set of all the particles i with ∆Rij ≤ R0. After the
neighbourhood sets, or equivalently the edge set E of the graph are obtained, we shift the
coordinates of each constituents (ηi, φi) to (∆ηiJ ,∆φiJ), their distance between the jet
axis (ηJ , φJ). The node features that the network takes has the φ coordinates mapped to
two-dimensional coordinates (a cosφ, a sinφ). Keeping in mind the total allowed range of
η ∈ [−5, 5], we choose a = 5. Thus, for each jet constituent, we have the node features of
the input graph as

h(0)
i = (5 cos ∆φiJ , 5 sin ∆φiJ ,∆ηiJ) .

This choice of representation makes the edge-convolution (which we will be using) look at
the φ information through an embedding in a two-dimensional Euclidean space. This is
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essential since multilayer perceptrons (MLPs), the building blocks of neural networks, are
essentially sequential affine maps interspersed by non-linear activation functions, and the
periodicity of φ may not be evident to it directly even if the graph has the periodicity. The
range of φ for jets considered here are not wide enough for the periodicity to become a
major bottleneck. However, it is crucial when considering the inclusive event information.
We also calculate the weights ω(K)

j defined in eq. (3.12), for all neighbourhood sets N [i]
and the full set S. The jets are not preprocessed with steps like rotation and reflection
before extracting the node features. Doing so should improve the network performance as
these symmetries are not built into the architecture. Incorporating these symmetries into
the architecture could also improve the performance in the absence of preprocessing.

4.3 Network hyperparameters and training

As this is a proof-of-principle study, we examine the simplest of architectures to show-
case the ability of EMPNs at the different classification scenarios. We implement an
EnergyWeighted message-passsing module in PyTorch-Geometric-1.7.2 [88], for the anal-
ysis of the EMPN network. The message-passing function corresponds to an energy-
weighted edge convolution [73],

im(0)
j = ω

(N [i])
j Φ̂(0)

(
h(0)

i ⊕ (h(0)
j − h(0)

i )
)

. (4.1)

The learnable function Φ̂(0) is an MLP having two hidden layers. The input layer takes the
six-dimensional concatenated vector h(0)

i ⊕ (h(0)
j −h(0)

i ), and maps it to a 128-dimensional
representation. Both hidden layers are also fixed to have 128 nodes each with ReLU acti-
vations, while the output layer has Linear activation. The graph representation obtained
after applying the IRC safe-readout (cf. eq. (3.16)) is fed into a downstream MLP, which
outputs the binary classification score. This MLP has three hidden layers, with all of them
having sixty-four nodes and ReLU activations. The structure of the EMPN network is sum-
marised in figure 3. We use Adam [89] optimiser with an initial learning rate of 0.001,
which reduces with a decay-on-plateau condition by a factor of 0.5, with the patience of
two epochs without any cooldown. We scan over a set of R0 values for each classifica-
tion scenario. For the W and top tagging with large-radius jets (R = 0.8), we choose
R0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, while for the quark-gluon classification with normal-radius jets
(R = 0.4), we choose R0 ∈ {0.1, 0.2, 0.3, 0.4}. For all three scenarios and each R0, we
train the same network from random initialisation five times. All networks were trained
for seventy epochs. The epoch with minimum validation loss is used for evaluating the
model with their respective test datasets for each instance of the training. Note that we
do not perform any hyperparameter optimisation, and doing so should further improve the
performance.

5 Results

5.1 Tagging performance

The ROC curve for the three jet-tagging scenarios for the various values of R0 are shown in
figure 4. We evaluate the background acceptance εB, at the same set of signal efficiencies
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Figure 4. ROC curve for the three tagging scenarioes and different values of R0. The three sets
of curves correspond to QCD vs W , QCD vs top, and gluons vs quarks from respectively from top
to bottom. The band shows the maximum and the minimum values of the inverse of background
acceptance 1/εB , for fixed values of signal efficiency εS from seperate runs.

εS for all instances of the trained networks. For a specific tagging case and fixed R0, the
boundary indicates the maximum and the minimum values of 1/εB from the five training
instances. The variation of the mean AUC and their error for the five training instances for
each R0 and the three cases are shown in figure 5. These values, along with the background
rejection 1/εB at 50% signal efficiency, are shown in tables 2, 3 and 4 for gluon/quark, top
and W tagging respectively. For comparison, we also include relevant numbers for gluon
vs quark and top tagging scenarios from ref. [22] for Energy Flow Networks (EFNs). Since
we have not preprocessed our data, the values for top discrimination is for the unprocessed
case. The quark-gluon tagging networks already show improvement at R0 = 0.1 with
an AUC of 0.8888 over EFNs with 0.8824. However, for the top tagging case, the AUC
(0.9734) for R0 = 0.1 is less then that of EFNs (0.9760). This decrease indicates that the
local structural information at that scale does not help distinguish QCD jets from top jets
with a single message-passing operation. The local information learned by the message-
passing phase confuses the downstream MLP, decreasing its performance compared to
EFNs. Although, the message function or the downstream MLP we used is not exactly the
same as the analogous per-particle map and the downstream MLP used in ref. [22], and
hence the comparison is not exactly like-for-like. The difference reaches parity at R0 = 0.2,
which further increases and reaches a stable value for higher R0. Thus, for both scenarios,
the energy-weighted message-passing help in better feature extraction of the local features.
For the W tagging results, we see very stable values of AUC (see figure 5), which do not
vary appreciably with R0 compared to the other two cases. The EMPN can already extract
very rich features for the graphs at R0 = 0.1, giving an AUC of 0.9865. Increasing the
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Figure 5. Variation of mean AUC with R0 for the three tagging scenarios. For the W tagging
scenario (green cross), the AUC has saturated at R0 = 0.1 and does not increase when compared
to the other two. AUCs for the top vs QCD (red triangle), and the gluon vs quark (blue square)
classification increases as we increase R0. The error bands are the standard deviation from five
training instances.

Sl.No R0 AUC 1/εB at εS = 50%
L = 1
1. (EFN [22]) 0.8824 ± 0.0005 28.6 ± 0.3
2. 0.1 0.8888 ± 0.0013 30.1 ±0.3
3. 0.2 0.8909 ± 0.0009 30.1 ±0.2
4. 0.3 0.8916 ± 0.0008 30.7 ±0.2
5. 0.4 0.8919 ± 0.0006 31.0 ±0.1

L = 2 (Discussed Later)
1. 0.1 0.8932 ± 0.0006 30.8 ±0.2

Table 2. AUC values and the background rejection for different values of R0 for gluons vs quark
tagging dataset. Uncertainties for AUC are the standard deviation from five training instances,
while for the background rejection 1/εB are half of the inter-quartile range. The first entry is
quoted from the cited reference.
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Sl.No R0 AUC 1/εB at εS = 50%
1. (EFN [22]) 0.9760 ± 0.0001 143 ± 2
2. 0.1 0.9734 ± 0.0009 115 ±2
3. 0.2 0.9764 ± 0.0004 151 ±2
4. 0.3 0.9779 ± 0.0005 167 ±4
5. 0.4 0.9782 ± 0.0002 174 ±2
6. 0.5 0.9781 ± 0.0002 168 ±3

Table 3. AUC values and the background rejection for different values of R0 for top tagging
dataset. Uncertainties for AUC are the standard deviation from five training instances, while for
the background rejection 1/εB are half of the inter-quartile range. The first entry is quoted from
the cited reference.

complexity of the graph by enlarging R0 does not add new information which the current
architecture can extract. The stability of the AUC shown in figure 5 is likely due to the
high kinematic range of the jets compared to the W mass, giving the separation between
the two decay products as ∆R ∼ 2mW /pT ∼ 0.25. To check whether the performance
decreases for smaller R0, we repeat the training process for R0 = 0.02 and find that the
mean AUC indeed falls mildly to 0.9845 for five training instances.

Other than the apparent variation of the mean AUCs and the ROC curves, we also see
interesting features in the error bars of the AUC and the band of the ROC curves. If the
AUC increases, its errors also gradually decrease as one increases R0. On the other hand,
across the different scenarios, the errors do not follow the same relation. The variation of
AUC for each R0 is due to the random initialisation of weights from the same underlying
weight space with the same distribution8 for all networks. The optimisation proceeds via
a gradient descent algorithm that goes to a local minimum of the loss function accessible
from the initialised point in the space of weights for each instance. We can infer the relative
quality of the local minima accessible from the initialised point. Lower the error, the easier
it is to get to approximately similar values of the stable loss function. Comparing the
three scenarios with stable AUC for the same R0, we see that the top tagging case has a
minor variance, followed by W tagging. Thus, even though the performance of W tagging
is relatively higher, the distinguishing features for QCD vs top jets have a higher number
of equally good local minima. The ROC band also enlarges with increased performance
due to the decreasing statistics of the finite test sample.

5.2 Examining IRC safety

We now check the numerical stability of the network output for additional emissions. Since
the network respects IRC safety, a jet with an additional splitting in the exact collinear or
soft limit would have the same output without any splitting. We explicitly verified that the
difference between the network output of jets and their respective copies with one additional
splitting in the exact collinear or soft limit are zero within numerical precision. In order to
check the network output’s stability, we create copies of an original top jet belonging to the

8We are using the same initialiser for all networks.
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Sl.No R0 AUC 1/εB at εS = 50%
1. 0.1 0.9865 ± 0.0004 2415 ±104
2. 0.2 0.9864 ± 0.0004 2332 ±95
3. 0.3 0.9863 ± 0.0004 2381 ±71
4. 0.4 0.9868 ± 0.0004 2254 ±80
5. 0.5 0.9868 ± 0.0005 2300 ±226

Table 4. AUC values and the background rejection for different values of R0 for W tagging
dataset. Uncertainties for AUC are the standard deviation from five training instances, while for
the background rejection 1/εB are half of the inter-quartile range.
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Figure 6. Variation of the network output with one additional particle, emitted from the hardest
constituent in a top jet, on trained networks for various values of R0. The contour figures show the
contour of |yS − yS′(zr,∆Rrs)| in the two-dimensional place (zr,∆Rrs). Although, the differences
are finite for non zero zr or ∆Rrs, it goes to zero independently at the infra-red or collinear limits.

test dataset by splitting the hardest constituent. We choose the hardest constituent since
numerically, it should have the maximum effect on the probabilistic output due to the ω(K)

i

weighted node and graph readouts. The splitting is done as follows. We create a scaled
copy zr pq of the hardest four-momentum pq. Taking the plane formed by the hardest
particle and the softest particle in the jet, we rotate it by an angle θ giving us the four-
momentum of one daughter pr. The second daughter’s four-momentum ps is determined
by the enforcing conservation of energy and momentum. We vary the two quantities zr and
θ independently to get the network output of the jet with an additional split yS′(zr,∆Rrs)
as a function of zr and ∆Rrs.

The contour of the absolute difference |yS−yS′(zr,∆Rrs)| between the network output
of the initial jet yS and those with an additional splitting yS′(zr,∆Rrs) for different values
of R0 is shown in figure 6. We evaluate the difference of the best network from each of the
five instances of training. For each R0, we have plotted the contour having the maximum
variance. The value of yS , which is the probability of the jet being a top, is also displayed.
It can be seen that the difference goes to zero independently in the soft or collinear limits
for all networks. This difference is low in considerable portions of the domain, indicating
that the network output is relatively stable (at least for the particular jet).9

9We tested with multiple jets from the different classes and found similar features, for brevity we have
only included a single plot.
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We see an increase of the area with non-zero differences as one increases R0. To
understand this behaviour, we examine how the neighbourhood sets of each particle in
the jet with an additional splitting evolve as one increases R0. For a fixed ∆Rrs, the
two daughter’s neighbourhood set would grow as one increases R0. In contrast, for the
remaining particles, the number of particles that have either of the daughter particles in
them would increase with increasing R0. Since they are greater in number, we expect this
second aspect to influence the network output to a greater degree. Thus, even though
the network performances are generally lower for smaller values of R0, the network output
is more stable for additional emissions that are not too soft or collinear. Increasing R0,
therefore, increases network performance at the cost of increased computational load (due
to the addition of edges) but decreases the network’s stability to QCD emissions.

Since the increase in performance for increasing R0 comes at a price of a growing
sensitivity to additional emissions, it is worth investigating how a deeper EMPN with
more message-passing operations (which should increase the discrimination for a fixed R0)
fare against the same QCD radiations. We, therefore, train EMPN with two different
message passing operations for R0 = 0.1. For demonstration, we chose the gluon vs quark
scenario because both classes’ one-prong nature elevates the importance of the differing
soft radiation patterns. We keep the structure of the downstream MLP and the message
function at the first layer identical to the previously presented network. The second one
is chosen to correspond to an edge-convolution operation given in eq. (4.1), with l = 1 in
the superscript instead of l = 0. The MLP, therefore, takes a 256-dimensional input and
outputs a 128-dimensional vector. It contains two hidden layers of 128 nodes each, with
ReLu activation. The training is done five times with the same set of hyperparameters.
We find a mean AUC of 0.8932 ± 0.0006 over the five training instances, confirming our
presumption implying increasing performance with deeper models. Moreover, from table 2,
one finds that the value is even better than R0 = 0.4 at L = 1 with AUC = 0.8919
±0.0006, which indicates that the performance scales much faster with the number of
message-passing operations L than with R0.

We now turn to investigate the phenomenologically important resilience to additional
emissions. Following the procedure explained in the preceding paragraphs, the contours of
|yS − yS′(zr,∆Rrs)| for a gluon jet with (L,R0) ∈ {(1, 0.1), (1, 0.2), (2, 0.1)} are shown in
figure 7. Along with the increasing discrimination, the model with L = 2, R0 = 0.1 also
provides better stability to additional emissions. The variation reduces with increasing
depth for a constant R0. Naturally, compared to R0 = 0.2, which is less stable than with
R0 = 0.1 for constant L, we find that increasing L has an overall better phenomenolog-
ical suitability than increasing R0. Thus, deeper networks increase the performance and
enhance the stability of additional emissions. This stability might be due to the larger
number of functional compositions that a deeper model applies to the input, thereby re-
ducing the sensitivity of the weight space (fixed after the training) to perturbations in the
data. However, it needs a more detailed study since our present analysis is not extensive
and does not reflect a truly realistic QCD picture.
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Figure 7. Comparing the variation of the network output |yS − yS′(zr,∆Rrs)| of a gluon jet for
a deeper network (right) with L = 2 and smaller radius R0 = 0.1 against a shallower network
(middle) with L = 1 and different R0 ∈ {0.1, 0.2, 0.4}. For comparison, the variation with L = 1
and R0 = 0.1 is also shown on the left.

6 Summary and conclusions

In hadron collisions, observables have to be defined in an infrared-safe way not to lose
theoretical control. For example, the mass of a jet is defined through an elaborate jet
reconstruction algorithm and can vary depending on the choice of such an algorithm. If the
definition of perturbatively calculated observables is infrared-unsafe, a reliable comparison
of the theoretically computed observable with an experimental measurement is at stake.

With the progression towards highly performant yet increasingly elaborate, machine-
learning-based reconstruction techniques, in recent years, a growing number of collider
searches have relied on outputs of neural networks to perform classification tasks, i.e.
to categorise if an event looks more like a signal or more like background. However,
while such novel reconstruction techniques increase the sensitivity in searches for new
physics, the experimental results depend crucially on a detailed understanding of their
uncertainty budget.

In strong similarity to jet observables, e.g., jet mass, the neural network output must
be defined through an infrared-safe network algorithm. Concretely, if the neural network
output changes when a soft or collinear splitting modifies the hadronic final state, the neural
network algorithm is IRC unsafe. Thus, the neural network output becomes incalculable
with perturbative techniques and is also sensitive to soft or collinear splittings in the
parton shower and the choice of hadronisation model, which are often plagued by large
uncertainties in the simulated training data.

Thus, we propose an inherently infrared-safe definition for an Energy-weighted
Message-Passing Network to mitigate becoming sensitive to IR uncertainties while main-
taining a high classification efficacy. By defining local energy weight factors for the mes-
sages at the node readout, and global weight factors for the node features at the graph
readout, we ensure that any generic message-passing function which takes the directional
coordinates as inputs results in an IRC-safe network output when applied to graphs that
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remain structurally invariant in the presence of soft or collinear particles. Moreover, the
operations need not be restricted to a single instance as repeating the weighted message-
passing any number of times on the updated node features still guarantees IRC safety of
the network output.

Using an IRC-safe EMPN algorithm, we have applied this approach to the discrimina-
tion of hadronically decaying top quarks and W bosons from QCD jets and the classification
of jets into quark or gluon-induced jets. We find this algorithm to be highly performant,
at par with other state-of-the-art neural network classification methods quoted in the lit-
erature. Thus, our definition of an IRC-safe Energy-weighted Message-Passing Network
paves the way to highly performant jet classification algorithms that are at the same time
insensitive to often poorly modelled parts of the event simulation, i.e. phase-space regions
in the training event samples that are plagued by large theoretical uncertainties.
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