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The runaway potentials, which do not possess any critical points, are viable potentials which befit the
recently proposed de Sitter swampland conjecture very well. In this work, we embed such potentials in the
warm inflation scenario motivated by quantum field theory models generating a dissipation coefficient with
a dependence cubic in the temperature. It is demonstrated that such models are able to remain in tune with
the present observations and they can also satisfy all three swampland conjectures, namely, the swampland
distance conjecture, the de Sitter conjecture, and the trans-Planckian censorship conjecture, simultaneously.
These features make such models viable from the point of view of effective field theory models in quantum
gravity and string theory, away from the swampland.
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I. INTRODUCTION

The fact that achieving a stable or metastable de Sitter
vacuum in M or string theory has proven to be a tasking
job for decades (see, e.g., Ref. [1] for a recent review)1 has
led to the recently proposed de Sitter swampland criterion
[5–7], which is conjectured to constrain constructions of
the de Sitter vacuum within string landscapes. This con-
jecture has created a lot of discussion in the recent literature
and for good reason, since the early and the late time
cosmologies are in need of phases where the Universe
evolves like close to a de Sitter state [8,9]. Another decade-
old swampland criterion, known as the swampland distance
conjecture [10] and which was formulated to restrict tower
of masses from appearing in a low-energy effective field
theory, has cosmological implications as well and where
the cosmological dynamics involves evolution of scalar
fields, like inflation. The latest addition to this list of
swampland criteria is the trans-Planckian censorship con-
jecture (TCC) [11,12], which has been devised to refrain

any sub-Planckian primordial modes from leaving the
causal horizon during the inflationary phase and which
would seed the structures in our Universe at later stages.
In short, all three above-mentioned swampland criteria

restrict the dynamics of inflation in one way or another. The
de Sitter conjecture, which puts bounds on the slope of the
scalar potentials in an effective field theory [6,7],

j∇Vj ≥ c
MPl

V or minð∇i∇jVÞ ≤ −
c0

M2
Pl

V; ð1:1Þ

where c and c0 are both constants of the order of unity,
essentially restricts the slow-roll parameters to become
smaller than unity [6]:
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Pl
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≤ −c0;

ð1:2Þ

with MPl ≡ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
≃ 2.4 × 1018 GeV the reduced

Planck mass. However, it is essential to have the slow-
roll parameters much smaller than unity for inflation to take
place in a canonical cold inflationary paradigm.2 The
swampland distance conjecture, which restricts the excur-
sion of a scalar field in an effective field theory [10],

Δϕ
MPl

< d; ð1:3Þ
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1Note that, despite existing proposals for constructing de Sitter
states in string theory, like, e.g., the Kachru-Kallosh-Linde-
Trivedi scenario [2], there are still concerns about that (see,
e.g., Ref. [3]). For a recent discussion about the difficulties in
constructing de Sitter states in string theory, see, for instance,
Ref. [4].

2An analysis presented in Ref. [13] has shown how the above
conjectures put strong constraints in cold inflation models as far
the cosmic microwave background data are concerned.
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where d is another constant of the order of unity, essentially
favors the small-field models of inflation over the large-
field ones. On the other hand, the TCC, which is a bound on
the length scales leaving the causal horizon [12],

�
af
ai

�
lPl <

1

Hf
; ð1:4Þ

where ai and af are, respectively, the scale factors at the
beginning and at the end of the evolution, Hf is the Hubble
parameter at the end of that evolution, and lPl is any length
scale of the order of Planck scale, yields a bound on the
scale of inflation3:

V1=4 < 6 × 108 GeV ∼ 3 × 10−10MPl: ð1:5Þ

If inflation takes place at such low-energy scales, then the
observed scalar power amplitude can be obtained in cold
inflation only if ϵV ∼ 10−31, which yields a too small
tensor-to-scalar ratio (r ¼ 16ϵ ∼ 10−30) to be detected by
any of the near-future observation [12]. Moreover, in such a
scenario, one requires ηV ∼Oð10−2Þ so that the observed
scalar spectral tilt (ns − 1 ¼ 2ηV − 6ϵV ∼ 2ηV) can be
explained [18]. It is rather impossible to construct a
potential which yields ϵV ∼ 10−31 and ηV ∼ 10−2 so that
cold inflation can be made in tune with the trans-Planckian
censorship conjecture. Therefore, as it is essential to fulfill
all the above three swampland criteria in order to realize an
inflationary phase in any effective field theory consistent
with the string landscape, it turns out to be a challenging
task to realize canonical single-field slow-roll inflationary
dynamics in a string vacuum [12,18–20].
It was pointed out in Refs. [20–23] that warm inflation

(WI) [24], a variant inflationary paradigm to the standard
cold inflation scenario, can accommodate the de Sitter
conjecture quite easily due to its very construction. In
particular, the de Sitter conjecture was explicitly analyzed
in the WI context in Ref. [25], where it was demonstrated
that this conjecture remains robust in WI. In WI, the
inflaton field can continuously transfer its energy to a
radiation bath during inflation, inducing an extra frictional
term in the inflaton dynamics and resulting the field to roll
slower than in the cold paradigm (for reviews on WI, see,
e.g., Refs. [26,27]). In that case, WI takes place when the
slow-roll parameters ϵV and ηV are smaller than 1þQ, with
Q being the ratio of the frictional terms in the inflaton
dynamics due to the dissipation, denoted by ϒ, and the

expansion of the Universe, Q≡ϒ=ð3HÞ, which can be
much greater than unity. Therefore, WI can easily take
place with steeper potentials (ϵV > 1, ηV > 1) (which the
cold paradigm fails to attain), and, thus, WI can satisfy the
de Sitter conjecture with ease. However, it was shown in
Refs. [18,28] that, in order to maintain the TCC, the scale of
WI has to be as low as in the cold paradigm [as given
in Eq. (1.5)].
Since then, at least two attempts have been made to

construct viable WI models with steep potentials which can
be realized in string landscapes by satisfying all three
swampland conjectures mentioned above. The first one
[29] was constructed in the Randall-Sundrum braneworld
scenario, where the dissipative coefficient was taken to
depend on both the inflaton field and the temperature of the
radiation bath existing during inflation, and the steep
potential was considered to be of the exponential form

VðϕÞ ¼ V0e−αϕ=MPl : ð1:6Þ

Such a steep potential in cold inflation leads to power-law-
type inflation [30], where inflation does not exit gracefully
in standard general relativity. However, as has been recently
shown in Ref. [31], such a potential can gracefully exit in
WI if the dissipative coefficient has a dependence on the
temperature of the radiation bath like ϒ ∝ Tp, with power
p > 2. This was, for instance, the case studied in the model
of Ref. [29], where the dissipation coefficient had a T3

dependence on the temperature.4 In another recent study
[32], the potential (1.6) was also studied in the context of
the WI model proposed by the authors of Ref. [33]. In
Ref. [33], a WI model, namely, the minimal warm inflation
(MWI) model, was constructed where the inflaton was an
axionlike field coupled to gauge bosons in the usual way
and whose derived dissipation coefficient turned out to be
of the formϒ ∝ T3. In the study done in Ref. [32], which is
the second study where WI with steep potentials has been
put to the test against the swampland conjectures, the
runaway exponential potential (1.6) was embedded in the
MWI model. However, the authors of that work have
shown that such a combination yields too much red tilt
in the scalar spectrum to be in accordance with the
observations.5

The aim of the present paper is to study a generalized
form of the runaway potential given by [34–37]

3A modified version of the TCC has recently been suggested in
Ref. [14] and which proposes that N is bounded only by the
logarithm of the de Sitter entropy, i.e., N < 2 lnðMPl=HfÞ. This
allows for larger values of H during inflation, Hf=MPl < 10−12,
which substantially alleviates the bound in Eq. (1.5) by some 4
orders of magnitude (see also Refs. [15–17] for other discussions
on how to relax the TCC bound).

4Note that, as also shown in Ref. [31], an additional depend-
ence on the inflaton field amplitude does not affect this
conclusion.

5A steep runaway potential of the type VðϕÞ ¼ V0½1þ
expð−αϕ=MPlÞ� was also studied in Ref. [32] when embedding
it in the MWI model. However, it was shown that, although such a
combination can satisfy all three swampland conjectures while
being in accordance with observations, inflation fails to the exit
gracefully within the parameter range studied.
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VðϕÞ ¼ V0e−αðϕ=MPlÞn ð1:7Þ

with n > 1. We note that with n > 1 there is no graceful
exit problem even for the case of cold inflation.
Furthermore, as shown in Ref. [32] that the n ¼ 1 case
produces a way too red-tilted spectrum in WI with p > 2
(in the standard general relativity context), this will compel
us to go beyond n ¼ 1 and study the cases with n > 1. One
study of the generalized potentials of the form of Eq. (1.7)
has been performed recently in Ref. [37] in the WI context
and as a quintessential inflation model. However, in that
reference, only the weak dissipative regime of WI, Q ≪ 1,
has been analyzed. Motivated by the previous studies
indicating that WI in the strong dissipative regime can
be consistent with the swampland criteria, in the present
work we reconsider this type of models in this regime of
WI. It is worth recalling here that constructing WI models
in the strong dissipative regime has been historically a
challenge [38]. Here we will show that the model (1.7) can
support strong dissipation with the well-motivated type of
dissipation coefficients behaving like ϒ ∝ T3 but also lead
to a dynamics that is consistent both from the observational
as well as from the effective field theory (as defined by the
swampland program) points of view.
This paper is organized as follows. In Sec. II, we briefly

review the generics of the WI dynamics for completeness.
In Sec. III, we present some useful analytical studies to
determine the field ranges which are suitable for our
analysis and used in the subsequent section. In Sec. IV,
we then perform a full numerical study covering the
appropriate parameter ranges leading to a consistent infla-
tionary dynamics in the strong dissipative regime. Our
conclusions are presented in Sec. V. Two Appendixes are
also included to describe some of the technical details.

II. BRIEF REVIEW OF WARM INFLATION

First, let us briefly review the background dynamics of a
generic WI paradigm. In WI, the inflaton dissipates its
energy to a constant radiation bath throughout inflation.
Thus, the background dynamics involve the evolutions
equations for the inflaton field ϕðtÞ, for the radiation energy
density ρRðtÞ [or, equivalently, for the temperature TðtÞ of
the thermal bath as ρR ∝ T4] and the Friedmann equation,
which accounts for the evolution of the scale factor:

ϕ̈þ 3H _ϕþ V;ϕ¼ −ϒðϕ; TÞ _ϕ; ð2:1Þ

_ρR þ 4HρR ¼ ϒðϕ; TÞ _ϕ2; ð2:2Þ

H2 ¼ 1

3M2
Pl

�
_ϕ2

2
þ VðϕÞ þ ρR

�
: ð2:3Þ

Here, ϒ is the rate of dissipation at which the inflaton
decays to the radiation bath. In general,ϒ can be a function

of both ϕ and T. Some details of the derivation of these
dissipation coefficients in the context of WI have been
given in Appendix A. The dimensionless ratio of the two
frictional terms in the inflaton equation of motion, the one
due to dissipation and the other due to the expansion of the
Universe, is defined as

Q≡ϒðϕ; TÞ
3H

; ð2:4Þ

which broadly classifies WI models into two classes: WI
taking place in the weak dissipative regime, where Q ≪ 1,
and WI taking place in the strong dissipative regime, when
Q ≫ 1. The slow-roll parameters in WI are modified with
respect to the ones in the cold inflation scenario to

ϵWI ¼
ϵV

1þQ
; ð2:5Þ

ηWI ¼
ηV

1þQ
; ð2:6Þ

and WI ends when ϵV ∼ 1þQ. The fact that during
inflation the energy density would be dominated by the
potential energy density of the inflaton field and the
radiation bath produced would be of (approximately)
constant energy density helps us to reduce the above
dynamical equations to the approximate ones:

3Hð1þQÞ _ϕ ≈ V;ϕ ; ð2:7Þ

ρR ≈
3Q
4

_ϕ2; ð2:8Þ

H2 ≈
V

3M2
Pl

; ð2:9Þ

where we must note that standard slow-roll approximations,
like ϵV ≪ 1 or ηV ≪ 1, have not been employed in getting
the above approximated results. Hence, these approxima-
tions hold true even in cases of steep potentials for which
ϵV > 1 and/or ηV > 1 and, yet, an inflationary regime can
still be supported provided that Q is large enough.
Let us now briefly discuss the perturbations generated

during WI. Some details of the complete set of pertur-
bation equations considered in WI have been given in
Appendix B. In the cold inflation scenario, i.e., in the
absence of dissipative effects and no radiation bath during
inflation, the primordial scalar curvature power spectrum
ΔR and the primordial tensor power spectrum ΔT are given
by the standard expressions [39]

ΔR ¼
�
H2

2π _ϕ

�
2

; ð2:10Þ

ΔT ¼ 2H2

π2M2
Pl

; ð2:11Þ
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respectively. Because of dissipation and the presence of a
radiation bath, the primordial scalar power spectrum given
by Eq. (2.10) changes, while the tensor spectrum Eq. (2.11)
remains unchanged. The primordial power spectrum for WI
at horizon crossing is given by [40,41]

ΔRðk=k�Þ ¼
�

H2�
2π _ϕ�

�
2

F ðk=k�Þ; ð2:12Þ

where the function F ðk=k�Þ in Eq. (2.12) is (see
Appendix B for details)

F ðk=k�Þ≡
�
1þ 2n� þ

2
ffiffiffi
3

p
πQ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4πQ�
p T�

H�

�
GðQ�Þ; ð2:13Þ

where n� denotes the thermal distribution of the inflaton
field due to the presence of the radiation bath and GðQ�Þ
accounts for the effect of the coupling of the inflaton and
radiation fluctuations [42–44]. The function GðQ�Þ, in
general, can be determined only by numerically solving the
set of perturbation equations in WI. The specific form for
the function GðQ�Þ depends mostly on the type of
dissipation coefficient appearing in a WI model and weakly
on the inflaton potential chosen, at least for Q ≫ 1. The
tensor-to-scalar ratio r and the spectral tilt ns are defined in
a standard way as

r ¼ ΔT

ΔR
ð2:14Þ

and

ns − 1 ¼ lim
k→k�

d lnΔRðk=k�Þ
d lnðk=k�Þ

; ð2:15Þ

respectively. A subindex � means that the quantities are
evaluated at the Hubble radius crossing of the pivot scale k�
(k� ¼ a�H�). The Planck Collaboration [45] puts an upper
bound on the tensor-to-scalar ratio r as r < 0.056
(95% C.L., Planck TT;TE;EEþ lowEþ lensingþBK15,
at the pivot scale kp ¼ 0.002 Mpc−1), while the spectral tilt
is measured to be ns ¼ 0.9658� 0.0040 (95% C.L., Planck
TT;TE;EEþ lowEþ lensingþBK15þBAOþ running) at
pivot scale k� ¼ 0.05 Mpc−1. Furthermore, the normaliza-
tion of the primordial scalar curvature power spectrum, at
the pivot scale k�, is given by ln ð1010ΔRÞ ≃ 3.047
(TT;TE;EE − lowEþ lensingþ BAO 68% limits),
according to the Planck Collaboration [46], and this is
the value we will assume in all our numerical simulations,
in particular, for finding the normalization V0 of the
potential in Eq. (1.7).

III. ANALYTICAL DETERMINATION OF THE
FIELD RANGES

As discussed in the introduction, in this work, we are
interested in studying WI for the class of runaway poten-
tials given by the generalized exponential potentials of the
form of Eq. (1.7) with n > 1. As already pointed out in
Ref. [37] (see also Ref. [31]), for a simple functional form
for the dissipation coefficient in terms of the temperature T
and the inflaton field amplitude ϕ, given by6

ϒðϕ; TÞ ¼ CϒTpϕcM1−p−c; ð3:1Þ

where Cϒ is a constant andM some appropriate mass scale
associated with the microscopic model leading to Eq. (3.1)
and using the approximations in Eq. (2.9), which are valid
during the WI dynamics, we find that the dissipation ratio
Q evolves with the number of e-folds N like

d lnQ
dN

¼ −
nαð ϕ

MPl
Þn−2

4 − pþ ð4þ pÞQ

×

�
−2pðn − 1Þ − 4cþ ðp − 2Þnα

�
ϕ

MPl

�
n
�
:

ð3:2Þ

Since the power p in the temperature satisfies −4 < p < 4
(see Refs. [49–51]), we find that only those cases of
dissipation coefficient having a power in the temperature
with p > 2 will lead to a dissipation ratio decreasing with
the number of e-folds, which ensures that WI can grace-
fully exit in this class of models [31]. Having a decreasing
dissipation ratio Q is also crucial in our derivation that
follows below and will allow us to work with very steep
potentials, yet keeping consistency with observations, in
the large dissipation regime of WI. For instance, WI models
with a dissipation coefficient ϒ ∝ T3 fit this condition. A
dissipation coefficient with a cubic dependence in the
temperature is also particularly well motivated by both
early and recent models of WI (see Appendix A for some
examples of particle physics quantum field theory inter-
action schemes leading to this type of dissipation coef-
ficient), and, therefore, it is quite suitable for the study we
have performed in the present work. Thus, henceforth, we
will consider in all of our analysis a dissipation coefficient
given simply by

ϒ ¼ Cϒ
T3

M2
: ð3:3Þ

6For some earlier studies also considering this functional form
for the dissipation coefficient in WI, see, e.g., Refs. [47,48].
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A. Background dynamics with the generalized
exponential potential in WI

The dynamics of the model given by the potential in
Eq. (1.7) can be divided in two regimes, depending on
which region of the potential inflation starts and ends. The
potential Eq. (1.7) has a plateau region at around ϕ ¼ 0 and
an inflection point located at (for n > 1)

ϕinflection

MPl
¼

�
n − 1

nα

�
1=n

: ð3:4Þ

In the region 0 < ϕ < ϕinflection, the dynamics is similar to
that of a hilltop inflation [52]. WI happening in this region
favors the weak dissipative regime, Q ≪ 1, as shown for
the hilltop type of potentials, in general [41] (this was also
the regime studied in Ref. [37] for the generalized expo-
nential potential). On the other hand, when WI happens
entirely in the runaway part of the potential, ϕ > ϕinflection,
the strong dissipative regime of WI is favored. This is the
part of the potential we are interested in to explore in this
work, as motivated by the swampland program. The form
of the potential in Eq. (1.7), for different cases for the
exponent n, is shown in Fig. 1.
Let us now confirm that WI can indeed gracefully exit in

the runaway part of the potential. WI ends when ϵV ≈ 1þQ
or ϵWI ≈ 1. Therefore, to end inflation, ϵWI should be an
increasing function of number of e-foldings yielding a
condition [31]

d ln ϵV
dN

>
Q

1þQ
d lnQ
dN

: ð3:5Þ

For the runaway potential in Eq. (1.7), the slow-roll
parameters become

ϵV ¼ α2n2

2

�
ϕ

MPl

�
2n−2

; ð3:6Þ

ηV ¼ α2n2
�

ϕ

MPl

�
2n−2

− αnðn − 1Þ
�

ϕ

MPl

�
n−2

: ð3:7Þ

The slow-roll parameter ϵV evolves with the number of
e-foldings as

d ln ϵV
dN

¼ 4ϵV − 2ηV
1þQ

¼ αnðn − 1Þ
1þQ

�
ϕ

MPl

�
n−2

: ð3:8Þ

This shows that ϵV is a constant and does not evolve when
n ¼ 1, and it does evolve for n > 1. We are interested in the
part of the potential for which ϕ > ϕinflection. We then get
from Eq. (3.8) that

�
ϕ

MPl

�
n
¼ d ln ϵV

dN
1þQ

αnðn − 1Þ
�

ϕ

MPl

�
2

: ð3:9Þ

The left-hand side of the above equation has to be greater
than ðn − 1Þ=nα such that inflation takes place in the steep
slope of the potential. Thus, in this range, we get

d ln ϵV
dN

>
ðn − 1Þ2
1þQ

�
ϕ

MPl

�
−2
: ð3:10Þ

As the right-hand side of the above inequality is always
positive, ϵV would always increase when inflation is taking
place in the steep region of the slope. Thus, inflation is
assured to end whenever Q is constant or decreases with
e-foldings. However, inflation can also end when Q
increases with N but with a slower rate than the evolution
of ϵV as shown in Eq. (3.5). This is, however, a more
difficult condition to achieve, in general.
With the form of the dissipative coefficient given in

Eq. (3.3), the dissipation ratio Q evolves as

d lnQ
dN

¼ 10ϵV − 6ηV
1þ 7Q

: ð3:11Þ

In the strong dissipative regime (Q ≫ 1), the condition to
end inflation given in Eq. (3.5) then becomes

9ϵV > 4ηV; ð3:12Þ

which yields

�
ϕ

MPl

�
n
> −

8ðn − 1Þ
nα

: ð3:13Þ

As we are interested only in the region beyond the
inflection point, this condition will always be satisfied in
the region of our interest. Thus, inflation will always end in
the steep potential region beyond the inflection point.

n =2

n =3

n =4

n =5

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

/MPl

V
(

)/
V

0

FIG. 1. The form of the generalized exponential potential (1.7)
for different values of n and by choosing α ¼ 1.
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B. The perturbations

Now, let us consider the perturbations in this theory. The
form of the scalar power spectrum in WI has already been
discussed in Eqs. (2.12) and (2.13). In this case, the form
for the function GðQ�Þ, valid for the generalized exponen-
tial potential Eq. (1.7), is found to be given by (see also
discussion concerning this point in Appendix B)

GðQ�Þ ¼
1þ 6.12Q2.73�

ð1þ 6.96Q0.78� Þ0.72

þ 0.01Q4.61� ð1þ 4.82 × 10−6Q3.12� Þ
ð1þ 6.83 × 10−13Q4.12� Þ2 ; ð3:14Þ

which is found to hold up to rather large values of Q�
(Q� ∼ 3 × 103). This will be enough to cover the range of
values of Q to be considered in the next section.
Note that the scalar power spectrum used in Ref. [33]

was of the form [see, e.g., Eq. (12) in that reference]

ΔR ≈
ffiffiffi
3

p

4π3=2
H3T
_ϕ2

�
Q
Q3

�
9

Q1=2; ð3:15Þ

where Q3 ≈ 7.3. It can be easily shown that in the strong
dissipative regime a more accurate form of the power
spectrum given in Eq. (2.12), along with the relations given
in Eqs. (2.13) and (3.14), does not differ much from the
above equation. As the above equation is presented in a
much simpler form for the strong dissipative regime, we
will derive the scalar spectral index analytically using the
form of the power spectrum given in Eq. (3.15) for
simplicity [while numerically we will use the full form
of the function GðQÞ given in Eq. (3.14) to calculate the
spectral index]. We see that

ns − 1 ¼ 3
d lnH
dN

− 2
d ln _ϕ

dN
þ d lnT

dN
þ 19

2

d lnQ
dN

: ð3:16Þ

To determine the quantities on the right-hand side of the
above equations, we will use the approximated background
equations given in Eqs. (2.9), along with the approximated
forms of Q and T valid for the form of the dissipation
coefficient given by Eq. (3.3) (see also Ref. [33]):

Q7 ≈ C̃Q
V 06

V5
; T7 ≈ C̃T

V 02

V1=2 ; ð3:17Þ

which are valid in a strong dissipative regime. From these
equations, we see that

d lnH
dN

∼ −
ϵV
Q

;
d lnQ
dN

∼
10ϵV − 6ηV

7Q
;

d lnT
dN

∼
ϵV − 2ηV

7Q
;

d ln _ϕ

dN
∼ −

3ϵV þ ηV
7Q

: ð3:18Þ

Inserting all these in the expression of ns, we get [33]

ns − 1 ¼ 3

7Q
ð27ϵV − 19ηVÞ: ð3:19Þ

It is to note that, to obtain a red tilt of the scalar spectrum,
one requires a potential yielding ηV > ϵV , as has also been
observed in Ref. [33]. To be more precise, we need
19ηV > 27ϵV , which yields a condition

�
ϕ

MPl

�
n
>

38ðn − 1Þ
11nα

: ð3:20Þ

This is a stronger bound on the field range than the
one required for field ranges beyond the inflection point.
Therefore, beyond the above range, inflation ends as well as
we get the desired spectral index with appropriate choices of
α for a given n. These findings are explicitly checked in our
numerical examples considered in the next section.

IV. NUMERICAL ANALYSIS OF THE
PARAMETER RANGES

We have numerically evolved the full background
equations given in Eqs (2.3) for the cases n ¼ 2–5, and
the findings are furnished in Table I. In principle, we can
tune appropriately both Q� and the constant α of the
potential, for a given value of n, such as to produce results
consistent with the observable quantities for either smaller
or larger values of Q� than the ones shown in Table I. Our
criteria for choosing the value of Q� was that it would be
large enough such that all the swampland criteria could be
met and also to have ns around the central value from the
Planck analysis. The tensor-to-scalar ratio r is naturally
very much suppressed in the large Q regime of WI, as
already seen in other cases (see, e.g., Refs. [29,38]). The
second and third columns containing the values of ns and r,
respectively, ensures that the models with different values
of n (and the chosen values of α accordingly) are in
accordance with the observations. The fifth column shows
the amount of field traversed, Δϕ, which turns out to be
sub-Planckian for all the cases, and it confirms that these
examples obey the swampland distance conjecture. The
tenth and the eleventh columns, which contain the values of
the slow-roll parameters ϵV and ηV , respectively, which are
much larger than unity, ensure that the swampland de Sitter
conjecture is maintained. The last column, which quotes
the values of V�, i.e., the scale of inflation, confirms that the
TCC is obeyed as well. Hence, Table I confirms that the
runaway potentials with n > 1 not only remain in tune with
observations but also obey all three swampland conjec-
tures, making these models prime candidates as consistent
effective field theory models in string landscapes.
For completeness, we have also shown in Fig. 2 how

the potential, kinetic, and radiation energy densities
evolve with the number of e-foldings for the n ¼ 3 case.
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The situation for the other models with n ¼ 2, 4, and 5 are
very much similar, so we do not show them explicitly here.
It can be seen that inflation ends when the radiation energy
density starts to dominate over the potential energy density,
while the kinetic energy density remains small all along.
As an additional point to be commented, and also related

to the result shown in Fig. 2, is the number of e-folds shown
in the fourth column of Table I. As noticed from Fig. 2, WI
exists gracefully at around 48 e-foldings, when the energy
scale of inflation is as low as 10−11MPl. In WI we can
precisely determine the number of e-folds of inflation N�
between the moment the relevant scales with wave number
k� leaving the Hubble radius and reentering around today.
This is due to the fact that WI is not followed by a reheating
phase, and, thus, there is no uncertainty associated with the
total number of e-folds which generally appears due to the
uncertainty in the number of e-foldings of the reheating
phase. By relating the comoving Hubble scale at N� when
the mode with comoving wave number k� crossed the
horizon, a�H� ¼ k�, with the one at present time, a0H0, we
have that [53]

k�
a0H0

¼ a�
aend

aend
areh

areh
a0

H�
H0

; ð4:1Þ

where a�=aend ¼ expð−N�Þ and we can use the fact that at
the end of WI the Universe smoothly transits to the
radiation-dominated regime with no intermediary reheating
phase; hence, aend=areh ¼ 1. This is particularly well satis-
fied for all the models exemplified in Table I. Furthermore,
as also seen in Fig. 2, inflation ends when VðϕÞ drops
below ρR, while the kinetic energy density _ϕ2=2 remains
always subdominant, even after inflation. Therefore, there
is no kination period as is observed, in general, for this type
of runaway exponential potentials. Finally, we can relate
aend ≡ areh with a0 in Eq. (4.1) by assuming that after WI
there are no additional sources of entropy and use then the
entropy conservation result

gsðTendÞT3
enda

3
end ¼

�
2T3

0 þ
21

4
T3
ν;0

�
a30; ð4:2Þ

where T0 and Tν;0 ¼ ð4=11Þ1=3T0 are, respectively, today’s
[cosmic microwave background (CMB)] photon and neu-
trino temperatures and we have explicitly used the respec-
tive number of degrees of freedom, while gsðTendÞ is the
effective number of degrees of freedom at the end of WI.
Putting the above relations together, Eq. (4.1), in WI,

becomes

k�
a0H0

¼ e−N�

�
43

11gsðTendÞ
�
1=3 T0

Tend

H�
H0

: ð4:3Þ

Here, we take the convention that a0 ¼ 1. For the Hubble
parameter today, we assume the Planck result H0 ¼
67.66 km s−1Mpc−1 [from the Planck Collaboration [46],
TT;TE;EE − lowEþ lensingþ BAO 68% limits, H0 ¼
ð67.66� 0.42Þ km s−1Mpc−1]. Likewise, for theCMB tem-
perature today, we assume the value T0 ¼ 2.725K ¼
2.349 × 10−13 GeV, while for the pivot scale k� we take

V ( )/V0

(
2
/2)/V0

rad /V0

0 10 20 30 40 50 60

10–18

10–14

10–10

10–6

0.01

Ne

FIG. 2. The evolution of the potential, kinetic, and radiation
energy densities for the model with n ¼ 3 given in Table I.

TABLE I. Numerical estimation of respective parameters and the relevant cosmological quantities obtained from them.

Model ns r N� Δϕ=MPl Cϒ M=MPl Tend (GeV) V0 ðGeVÞ4 ϵV� ηV� V1=4
� =MPl

n ¼ 2
α ¼ 9.6 0.9648 4.89 × 10−29 48.0 0.98 6.04 × 10−11 4.0 × 10−13 1.52 × 107 3.07 × 1038 31.7 44.2 1.52 × 10−11

Q� ¼ 850.96

n ¼ 3
α ¼ 2.5 0.9689 1.44 × 10−28 48.2 0.97 4.19 × 10−11 4.0 × 10−13 2.49 × 107 1.82 × 1039 25.9 37.2 2.49 × 10−11

Q� ¼ 740.15

n ¼ 4
α ¼ 0.45 0.9655 1.83 × 10−28 48.1 0.97 3.86 × 10−11 4.0 × 10−13 2.86 × 107 3.59 × 1039 25.0 36.5 2.85 × 10−11

Q� ¼ 719.68

n ¼ 5
α ¼ 0.06 0.9645 2.37 × 10−28 48.2 0.97 3.53 × 10−11 4.0 × 10−13 3.18 × 107 6.01 × 1039 24.1 35.6 3.18 × 10−11

Q� ¼ 699.53
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the Planck value k� ¼ 0.05=Mpc. For gsðTendÞ we assumed
the standard model value gsðTendÞ ¼ 106.75 for definiteness
(the results are very weakly dependent on gs). Putting all
these values in the above equation, N� turns out to be of the
order of 48, consistent with the results seen in Table I.
A final remark about the observational predictions of the

models studied here concerns the level of non-Gaussianity
that they produce. For WI in the large dissipative regime, as
is the case for all models we have considered, a non-
Gaussianity coefficient of the warm shape is predicted (see,
e.g., Ref. [54] for details) as large as jfwarmNL j ∼ 5 in the case
of a dissipation coefficient ϒ ∝ T3. This is still within the
range of the results obtained by the Planck 2018 team using
the WI shape [55], fwarmS

NL ¼ −48� 27 (from SMICAþ
Tþ E, 68%C.L.) and fwarmS

NL ¼ −39� 44 (from SMICAþ
T, 68% C.L.). But the expected result that we have for fNL,
for all the cases here studied, is still in a magnitude that can
be large enough to possibly be probed from, e.g., the future
fourth-generation CMB observatories [56] or from future
large-scale structure surveys. Both of these are expected to
bring down the present upper bounds on non-Gaussianities.
Thus, non-Gaussianity can be one of the indicators differ-
entiating WI in the strong dissipative regime from the weak
dissipative one, through their distinct non-Gaussianity
shapes and predictions for fNL [54].

V. CONCLUSION

The proposed swampland conjectures, namely, the
swampland distance conjecture, the de Sitter conjecture,
and the trans-Planckian censorship conjecture, have
severely constrained the construction of viable inflation
models in any string landscape. Thus, the swampland
program strongly restricts the class of possible effective
field theory models of inflation that are consistent with
quantum gravity. It is thus worthwhile to look for con-
structions where the inflationary dynamics can be accom-
modated away from swamplands. It has been pointed out
previously that the WI scenario befits the swampland
conjectures, especially the de Sitter one, much better than
its counterpart, the cold inflation paradigm. The de Sitter
conjecture is also better suited with the runaway type of
potentials [like, e.g., Eq. (1.7)] which do not have any
critical points. In particular, it has already been demon-
strated that the de Sitter conjecture also remains robust in
WI [25]. Besides of this, it has been a challenge, even for
WI, to satisfy the TCC, which in its original formulation
[12] requires inflation to happen at sufficiently small scales.
The difficulty is associated with the construction of WI
models able to support strong enough dissipation and at the
same time to be consistent with the observations [38]. Even
models motivated by WI, like the ones studied in Ref. [57],
reflect well this difficulty. It is thus an important task to find
appropriate inflation models that are able to satisfy all the

swampland criteria. In the present paper, we have explicitly
considered the validity of the runaway type of potentials
when embedding them in WI.
It was previously shown that the runaway potential with

exponent n ¼ 1 can be embedded in a Randall-Sundrum
braneworld inflation successfully where it can observe all
three swampland conjectures [29]. However, when such a
potential is embedded in a standard general relativity
context with WI, it yields too much red tilt in the scalar
power spectrum to be in accordance with the observations
[32]. In this work, we have examined the runaway
potentials with exponents n > 1 when embedded in WI
models characterized by a cubic in the temperature
dependence of the dissipation coefficient to show that
(a) such models gracefully exit inflation when inflation
takes place in the runaway part of the potential; (b) they can
remain in tune with the current observations by yielding the
correct scalar spectral index; and (c) they can also simulta-
neously satisfy all three swampland conjectures as a
consequence of supporting a strong enough dissipative
regime of WI. The combination of all these features makes
these types of models viable inflation models when con-
structed in the WI picture and which can be realized within
string landscapes.
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APPENDIX A: THE DISSIPATION COEFFICIENT

Dissipative effects are expected to be experienced by
systems, when displaced from their state of equilibrium and
interacting with an environment. We can consider the case
of a background scalar field ϕ initially displaced from its
equilibrium state and interacting with other fields X. Given
an interaction Lagrangian density like

Lintðϕ; XÞ ¼ −fðϕÞgðXÞ; ðA1Þ

a proper study of the evolution of the background field can
be performed in the context of the in-in, or the closed-time
path functional formalism [58]. By integrating over the X
field, a nonlocal effective equation of motion for ϕ can be
derived, and the ensemble-averaged effective equation of
motion for ϕ can be generically expressed like [58]
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∂μ
∂Leff;r½ϕ�
∂ð∂μϕÞ

−
∂Leff;r½ϕ�

∂ϕ − i
∂fðϕÞ
∂ϕ

Z
d4x0θðt − t0Þ½fðϕðx0ÞÞ − fðϕðxÞÞ�h½gðXðxÞÞ; gðXðx0ÞÞ�i ¼ 0; ðA2Þ

where Leff;r½ϕ� is the renormalized effective Lagrangian density for ϕ and h� � �i are ensemble averages with respect to an
equilibrium (quantum or thermal) state. Equation (A2) forms the basis of many earlier works [59–63] (for a review, see also
Ref. [26]) that evolved to warm inflation model realizations. The nonlocal term in Eq. (A2) represents a transfer of energy
from the ϕ field into radiation. The nonlocal term in Eq. (A2) can be localized and expressed in the form of a proper
dissipation term when there is a separation of timescales between the system and environment; e.g., given a response
timescale τ related to the plasma interactions and ϕ slowly varying on the response timescale τ, _ϕ=ϕ ≪ τ−1, which is
typically referred to as the adiabatic approximation, then we can write [63]

−i
∂fðϕÞ
∂ϕ

Z
d4x0θðt − t0Þ½fðϕðx0ÞÞ − fðϕðxÞÞ�h½gðXðxÞÞ; gðXðx0ÞÞ�i ≈ϒ _ϕ; ðA3Þ

where ϒ is the dissipation coefficient defined as

ϒ ¼
Z

d4x0ΣRðx; x0Þðt0 − tÞ ¼ −lim
ω→0

ImΣRðk ¼ 0;ωÞ
ω

;

ðA4Þ
where ΣRðωÞ is the Fourier transform of the retarded
correlation function:

ΣRðx; x0Þ ¼ −i
�∂fðϕÞ

∂ϕ
�
2

θðt − t0Þh½gðXðxÞÞ; gðXðx0ÞÞ�i:

ðA5Þ

Many examples of dissipation coefficients were, for
example, derived in Ref. [64]. As discussed in the intro-
duction, in this work, we are particularly interested in
models leading to a dissipation coefficient that scales with
the cubic power in the temperature, ϒ ∝ T3. Let us briefly
review viable interaction schemes leading to such a dis-
sipation coefficient.

1. Dissipation through a catalyst heavy field

One of the first working field theory models for WI has
been constructed in the case of the inflaton field dissipating
to light radiation fields intermediate by a heavy catalyst
field. The implementation is based on a supersymmetric
model with chiral superfields Φ, X, and Yi, i ¼ 1;…; NY ,
described by the superpotential [26]

W ¼ g
2
ΦX2 þ hi

2
XY2

i þ fðΦÞ; ðA6Þ

where a sum over the index i is implicit. The scalar
component of the superfield Φ describes the inflaton field,
with an expectation value ϕ ¼ ϕ=

ffiffiffi
2

p
, and fðΦÞ describes

the self-interactions in the inflaton sector. The X fields are
assumed to be heavy fields with respect to the radiation bath
temperature produced by the light fields Y, i.e., mX ≫ T
and mY ≪ T. Under these circumstances, the dissipation

coefficient in the inflaton’s equation of motion can be
shown to be given by [64,65]

ϒ ≃ Cϒ
T3

ϕ2
; Cϒ ≃

αh
4
NXNY; ðA7Þ

where αh ¼ h2NY=ð4πÞ, NX is the number of fields in the X
heavy sector, and itwas assumedh ¼ hi for all the light fields
for simplicity. Despite the dependence on the inflaton field in
Eq. (A7), the results obtained for this model do not differ
much from the ones we have obtained in Sec. IV. It can
likewise support strong dissipation and satisfy all the swamp-
land criteria and with an observationally consistent ns.
However, for Q ∼Oð700Þ as in Table I, we have instead
that Cϒ ∼ 1014, which, from Eq. (A7) and assuming h ∼ 1,
implies the need of a huge number of heavy and/or light
fields, NXNY ∼ 5 × 1015. Such a large number might be a
technical challenge associatedwith this model, from both the
perturbativity and the unitarity points of view, associated
with this model for the present analysis (see, however,
Ref. [66] for a possible scenario where these issues can be
overcome and that uses brane constructions or also the
proposal in Ref. [67] where large field multiplicities can be
allowed due to a Kaluza-Klein tower in extra-dimensional
scenarios).

2. Dissipation in the minimal warm inflation model

The MWI model was proposed by the authors in
Ref. [33]. In the MWI model, the inflaton field has
axionlike couplings to non-Abelian gauge fields, which
yields a viable model of the thermal bath that can exist
during WI. The inflaton field is coupled to a Yang-Mills
field Aa

μ in an axionlike form:

Lint ¼
αg
8π

ϕ

f
F̃aμνFa

μν; ðA8Þ

where the dual gauge field strength F̃aμν ¼ 1
2
ϵμναβFa

αβ,
Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gCabcAb

μAc
ν, with g the Yang-Mills
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coupling andCabc the structure constant of the non-Abelian
group. In Eq. (A8), one also has that αg ≡ g2=ð4πÞ and
f is a scale analogous to the axion decay constant. The
corresponding dissipative coefficient that the interaction
produces has been shown to be related to the Chern-Simons
diffusion rate and is given by [68,69]

ϒ ¼ Cϒ
T3

f2
; Cϒ ¼ κðαg; Nc; NfÞα5g; ðA9Þ

where Nc is the dimension of the gauge group, Nf is the
representation of the fermions if any, and κ is a dimensional
quantity depending on Nc, Nf, and αg.
One of the advantages of this model is that the shift

symmetry satisfied by the inflaton naturally protects it from
large thermal corrections that might undermine the slow-
roll conditions during inflation.
It is useful to estimate the scale f appearing in Eq. (A9)

from our numerical results given in Table I. Using that
κ ∼ 100 and g ∼ 0.1, then from the values for Cϒ and M
given in Table I, we find that for all models analyzed
f ∼ 5 × 104 GeV. It is clear that in the present context we
cannot associate ϕ with the QCD axion, since f is much
below the astrophysical lower bound f ≳ 109 GeV set in
for the QCD axion decay constant [70].

3. Dissipation through derivative couplings
with the inflaton field

A third option to produce dissipation coefficients behav-
ing like ϒ ∝ T3 is motivated from the previous example.
We consider the case where the inflaton has a modulilike
(or dilatonlike) derivative coupling with other radiation
fields, which can be, for example, other scalar fields and
with an interaction Lagrangian density given by

Lint ¼ g2
ϕ

2M
ð∂μχÞ2: ðA10Þ

The scalar field χ is supposed to remain in thermal
equilibrium through either its self-coupling or couplings
to other radiation fields (e.g., additional gauge or other light
fields that could be added to the model). It has been realized
in Ref. [71] that the dissipation coefficient in this model can
be precisely related to the bulk viscosity calculation for a
scalar field [72], leading then to the result for the dis-
sipation coefficient given by

ϒ ≃ 4.5g4
ln2ðξλÞ

λ

T3

M2
; ðA11Þ

where ξ is a numerical constant, ξ ¼ exp½15ζð3Þ=π2�≃
0.064736, and λ is the quartic self-coupling for the χ field,
−λχ4=4!. It is interesting to observe that this connection of
the dissipation coefficient in WI at high temperature with a
viscosity coefficient was already noticed in Ref. [60].

An additional interaction that now makes the connection
with the bulk viscosity calculation in a pure gauge theory is
by coupling the moduli field now to pure Yang-Mills gauge
fields through a coupling like [note that this is different
from the interaction term in Eq. (A8)]

Lint ¼ −g2
ϕ

2M
FaμνFa

μν; ðA12Þ

which gives for the dissipation coefficient the result [69,73]

ϒ ≃
ð12παgÞ2
lnð1=αgÞ

T3

M2
; ðA13Þ

where, as before, αg ≡ g2=ð4πÞ.
It remains, as possible future work, to see how the above

modulilike interactions can be implemented in an explicit
quantum field theory model-building construction for WI.

APPENDIX B: PERTURBATIONS IN
WARM INFLATION

We review here the first-order perturbation equations for
WI, consisting of the inflaton perturbations δϕ, the radi-
ation energy density perturbation δρr, and the radiation
momentum perturbation Ψr. The notation that we follow is
the one given in Refs. [74,75].
The perturbed Friedmann-Lemaître-Robertson-Walker

metric is given by

ds2 ¼ −ð1þ 2αÞdt2 − 2a∂iβdxidt

þ a2½δijð1þ 2φÞ þ 2∂i∂jγ�dxidxj; ðB1Þ
where α, β, γ, and φ are the spacetime-dependent per-
turbed-order variables. These metric perturbation functions
are related to the complete set of equations (when Fourier
transforming to space momentum) [74,75]

χ ¼ aðβ þ a_γÞ; ðB2Þ

κ ¼ 3ðHα − _φÞ þ k2

a2
χ; ðB3Þ

−
k2

a2
φþHκ ¼ −

1

2M2
Pl

δρ; ðB4Þ

κ −
k2

a2
χ ¼ −

3

2M2
Pl

Ψ; ðB5Þ

_χ þHχ − α − φ ¼ 0; ðB6Þ

_κ þ 2Hκ þ
�
3 _H −

k2

a2

�
α ¼ 1

2M2
Pl

ðδρþ 3δpÞ; ðB7Þ

where δρ, δp, and Ψ are, respectively, the total density,
pressure, and momentum perturbations. In our two-fluid
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system (inflaton plus radiation), they are given in terms of
the inflaton field and radiation perturbations, e.g.,

δρ ¼ δρϕ þ δρr; ðB8Þ

δp ¼ δpϕ þ δpr; ðB9Þ

Ψ ¼ Ψϕ þ Ψr; ðB10Þ

with δρϕ ¼ _ϕδ _ϕ− _ϕ2αþV;ϕδϕ, δpϕ¼ _ϕδ _ϕ− _ϕ2α−V;ϕδϕ,

δpr ¼ ωrδρr, and Ψϕ ¼ − _ϕδϕ (with a “dot” always
denoting derivative with respect to the cosmic time).
The evolution equations for the field and radiation

perturbation quantities follow from the conservation of
the energy-momentum tensor. The complete equations have
been given in Ref. [43], which we indicate the interested
reader for more details. Working in momentum space,
defining the Fourier transform with respect to the comoving
coordinates, the equations of motion for the radiation and
momentum fluctuations with comoving wave number k are
given by

δ _ρr þ 4Hδρr ¼ ð1þ ωrÞρrðκ − 3HαÞ þ k2

a2
Ψr

þ δQr þQrα; ðB11Þ

_Ψr þ 3HΨr þ ωrδρr þ δΠ ¼ −ð1þ ωrÞρrαþ Jr; ðB12Þ

where

Qr ¼ ϒ _ϕ2; ðB13Þ

δQr ¼ δϒ _ϕ2 þ 2ϒ _ϕδ _ϕ − 2αϒ _ϕ2; ðB14Þ

Jr ¼ −ϒ _ϕδϕ: ðB15Þ

In addition to Eqs. (B11) and (B12), there is also the
evolution equation for the field fluctuations δϕ, which is
described by a stochastic evolution determined by a
Langevin-like equation [42]:

δϕ̈þ 3Hδ _ϕþ
�
k2

a2
þ V;ϕϕ

�
δϕ ¼ ξq þ ξT − δϒ _ϕ

þ _ϕðκ þ _αÞ þ ð2ϕ̈þ 3H _ϕÞα −ϒðδ _ϕ − α _ϕÞ; ðB16Þ

where ξq;T ≡ ξq;Tðk; tÞ are stochastic Gaussian sources
related to quantum and thermal fluctuations with appro-
priate amplitudes (for details and for their complete
definitions, see Ref. [40]).
To complete the specification of the fluctuation equations,

we need δϒ, the fluctuation of the dissipation coefficient. For
a general temperature T and field ϕ dependent dissipative
coefficient, given by Eq. (3.1), we have that

δϒ ¼ ϒ

�
p
δT
T

þ c
δϕ

ϕ

�
: ðB17Þ

Although dissipation implies departures from thermal
equilibrium in the radiation fluid, the system has to be close
to equilibrium for the calculation of the dissipative coef-
ficient to hold; therefore, we assume pr ≃ ρr=3 and, hence,
ωr ¼ 1=3. Then, with ρr ∝ T4, we have that δT=T ≃
δρr=ð4ρrÞ and δQr in Eq. (B14) can be expressed as

δQr ¼ 3HQ _ϕ2

�
pδρr
4ρr

þ cδϕ
ϕ

�
þ 6HQ _ϕδ _ϕ − 6HQ _ϕ2α:

ðB18Þ

From the above relations, the complete system of first-
order perturbation equations for WI becomes

δϕ̈ ¼ −3Hð1þQÞδ _ϕ −
�
k2

a2
þ V;ϕϕ þ

3cHQ _ϕ

ϕ

�
δϕþ ξq

þ ξT −
pH
_ϕ

δρr þ _ϕðκ þ _αÞ þ ½2ϕ̈þ 3Hð1þQÞ _ϕ�α;

ðB19Þ

δ _ρr ¼ −H
�
4 −

3pQ _ϕ2

4ρr

�
δρr þ

k2

a2
Ψr þ 6HQ _ϕδ _ϕ

þ 3cHQ _ϕ2

ϕ
δϕþ 4ρr

3
κ − 3H

�
Q _ϕ2 þ 4ρr

3

�
α;

ðB20Þ

_Ψr ¼ −3HΨr − 3HQ _ϕδϕ −
1

3
δρr − 4ρr

α

3
: ðB21Þ

Equations (B19)–(B21), together with the metric perturba-
tions Eqs. (B2)–(B7), form a complete set of equations in a
“gauge-ready” form. From this point on, we can either
choose to work in terms of gauge-invariant quantities
[74,76] or, equivalently, just choose an appropriate gauge
directly. Even though any appropriate gauge can be chosen,
a convenient one showing good numerical stability when
numerically integrating the full set of differential equations
is the Newtonian slicing (or zero shear) gauge χ ¼ 0. In the
χ ¼ 0 gauge, the relevant metric equations become

κ ¼ 3

2M2
Pl

ð _ϕδϕ −ΨrÞ; ðB22Þ

α ¼ −φ; ðB23Þ

_φ ¼ −Hφ −
1

3
κ: ðB24Þ

Finally, the power spectrum is determined from the
comoving curvature perturbation R, defined as
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ΔRðkÞ ¼
k3

2π2
hjRj2i; ðB25Þ

where “h� � �i” means average over different realizations of
the noise terms in Eq. (B19) (see, for instance, Refs. [42–44]
for details of the numerical procedure). Finally, the comoving
curvature perturbation R is composed of contributions not
only from the metric perturbations and the inflaton momen-
tum perturbations, but also from the radiation momentum
perturbations,

R ¼
X
i¼ϕ;r

ρi þ p̄i

ρþ p̄
Ri; ðB26Þ

Ri ¼ −φ −
H

ρi þ p̄i
Ψi; ðB27Þ

with p̄ ¼ pϕ þ pr, p̄ϕ ≡ pϕ, and p̄r ¼ pr.
Note that in the literature there are different forms for

which the resulting curvature perturbations are presented.
For instance, by neglecting the explicit coupling between
the inflaton and radiation perturbations, e.g., by setting the
temperature power of the dissipation coefficient to zero,
p ¼ 0, and dropping the metric perturbations (which are
first order in the slow-roll coefficients), Eq. (B19) can be
explicitly solved [40], leading to the result, computed at
Hubble radius crossing k ¼ aH,
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where ν ¼ 3ð1þQÞ=2, α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þ 3βQ=ð1þQÞ − 3ηV

p
,

β ¼ M2
Plϒ;ϕV;ϕ=ðϒVÞ, and ΓðxÞ is the Γ function. By

dropping slow-roll coefficients, α ≈ ν and Eq. (B28) can be
very well approximated by the result
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where nBE is the Bose-Einstein distribution. In general, we
can also replace nBE by n�, representing the statistical
distribution state of the inflaton at theHubble radius crossing,
which might not be necessarily that of thermal equilibrium.
The form given by Eq. (B29) is typically the result used in
most of the recent literature in WI. When including the
coupling between the inflaton and radiation perturbations
shown in Eqs. (B19)–(B21), these equations can be solved
only numerically. The result is a correction to, e.g., Eq. (B29),
which can be expressed in the form of a functionGðQÞ of the
dissipation coefficient and determined by a proper fitting of
the numerical result for the curvature perturbation. In par-
ticular, for the cubic in the temperature dissipation coefficient
studied in this work, we obtain Eq. (3.14). Note that there are
varied ways in how the perturbation equations are solved,
which lead to differences on how this function GðQÞ is
presented in the literature. For instance, in Ref. [42], where
this effect of the coupling between inflaton and radiation
perturbations in WI was first studied, an approximation to
GðQÞwas given by neglecting both metric perturbations and
other terms proportional to slow-roll coefficients in the
perturbation equations, and only the leading -order depend-
ence on GðQÞ through a simplified fitting was presented.
Simpler fittings were also presented in Ref. [43].
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