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Abstract The H0 tension stands as a prominent challenge
in cosmology, serving as a primary driver for exploring alter-
native models of dark energy. Another tension arises from
measurements of the S8 parameter, which is characterize the
amplitude of matter fluctuations in the universe. In this study,
we address the alleviation of both the Hubble tension and
S8 tension by incorporating Kaniadakis horizon entropy. We
investigate two scenarios to explore the impact of this entropy
on cosmological parameters. In the first scenario, utilizing
modified Friedmann equations through Kaniadakis entropy,
we estimate the values of H0 and S8. In the subsequent sce-
nario, we introduce the neutrino term and assess its effect on
mitigating the Hubble and S8 tensions. Our findings reveal
that when considering the first scenario, the results closely
align with Planck’s 2018 outcomes for Hubble and S8 ten-
sions. Moreover, with the inclusion of neutrinos, these ten-
sions are alleviated to approximately 2σ , and the S8 value is
in full agreement with the results from the KiDS and DES
survey. Furthermore, we impose a constraint on the parameter
K in each scenario. Our analysis yields K = 0.12 ±0.41 for
Kaniadakis entropy without neutrinos and K = 0.39 ± 0.4
for the combined dataset considering Kaniadakis entropy in
the presence of neutrinos. We demonstrate that the value of
K may be affected by neutrino mass, which can cause energy
transfer between different parts of the universe and alter the
Hubble parameter value.

1 Introduction

By directly probing the expansion, Riess et al. [1] and Perl-
mutter et al. [2] recently observed that the Universe has
entered an epoch of accelerated expansion, providing direct
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evidence for dark energy. These groups conducted observa-
tions of the apparent magnitudes of several type Ia super-
novae. If the Universe is undergoing an accelerated rate of
expansion, the energy density component responsible must
exert a negative pressure.

Although gravity is a known universal force in nature,
understanding its origin has long been a mystery. Einstein
proposed that gravity is the curvature of space, considering it
an apparent phenomenon describing the dynamics of space.
In recent decades, scientists have made numerous attempts to
unveil the nature of gravity. One prospective avenue explored
in recent years is the study of space-time thermodynamics,
revealing that Einstein’s equations of general relativity are, in
fact, the same equation of state of space-time. By considering
the equation δQ = T δS and the entropy relation, it is possible
to demonstrate the equivalence between the field equations
and the first law of thermodynamics.

These studies can be extended to a cosmological perspec-
tive, leading to the derivation of Friedman’s equations from
the first and second laws of thermodynamics. However, the
origin of general relativity remains unclear from the stand-
point of statistical mechanics. It is crucial to note that demon-
strating the equivalence between the Friedman equation and
the first law of thermodynamics dE = ThdSh + dW at
the apparent horizon requires considering the entropy of the
black hole in any gravitational theory.

Furthermore, we acknowledge that the entropy associated
with the black hole horizon is modified by the inclusion of
quantum effects. As a result, various types of quantum correc-
tions to the area law have been introduced, with one intrigu-
ing case being the generalized entropy known as Kaniadakis
entropy [3,4].

This is a one-parameter generalization of the classical
Boltzmann–Gibbs–Shannon entropy, arising from a coherent
and self-consistent relativistic statistical theory. It preserves
the basic features of standard statistical theory and recovers it
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in a particular limit. This corrective term appears in a model
of entropic cosmology and can simultaneously satisfy the
recent accelerated inflation and expansion of the universe.
The H0 tension is one of the main problems in cosmology
and is the single biggest motivator for the investigation of
alternative models of dark energy.

The value obtained for Hubble’s constant using supernova
observations, similar to what Edwin Hubble did, exhibits a
substantial difference from the value obtained using cosmic
background radiation. Despite technological advancements
and increasing measurement accuracy, contrary to expec-
tations of a decrease, the magnitude of this difference has
increased. There are two methods to obtain Hubble’s con-
stant. The first method, known as the direct measurement
method.

The direct measurement of the Hubble constant (H0)
involves measuring the apparent recession velocities of
galaxies and other astronomical objects and determining their
distances. One of the significant challenges in direct mea-
surements of H0 is obtaining accurate and precise distance
measurements to galaxies.

The second method involves using the Cosmic Microwave
Background (CMB) sound peaks with constraints for the cos-
mological model. While CMB observations offer significant
information about cosmological parameters, the available
data restrict the combination of H0 with other parameters.
Additional assumptions or data must be provided to derive
the Hubble constant. One possible assumption is that the
universe is perfectly flat (i.e., �K = 0). In this scenario,
measurements of the CMB power spectrum with the WMAP
and Planck satellites enable the determination of the Hubble
constant.

Despite direct and indirect measurements of Hubble’s
constant yielding two different values, the tension has
increased to 5.3σ as measurements have become more accu-
rate in recent years, contrary to expectations. This differ-
ence appears unrelated to measurement errors, suggesting
the potential need for new physics beyond �CDM to accu-
rately describe the universe.

Physicists have proposed various models to address Hub-
ble’s tension, though none have completely resolved it. We
will describe some categories of these models, with reference
to the article [5] in this category:

1. Models where the equation of state of dark energy is
either ω > −1 or ω < −1 [6–8].

2. Models considering a primordial dark energy component
(EDE) that exists at z > 3000 and then disappears [9–17].

3. Models considering the interaction between dark energy
and dark matter, beyond gravitational interaction [18–
22].

4. Models modifying the history of recombination and re-
ionization [23].

5. Models modifying gravity [24–26].
6. Models considering decaying dark matter [27,28].
7. Models considering interacting neutrinos [29,30].

In direct measurement, to determine the Hubble constant,
it is necessary to obtain the velocity of an object through
spectral analysis while simultaneously accounting for its dis-
tance or luminosity. In practice, the selected object must be
situated at a sufficient distance so that its motion is primar-
ily driven by the expansion of the universe. Specifically, the
expansion velocity of an object is directly proportional to its
distance from Earth, while other forms of velocity, such as
those caused by gravitational forces exerted by surrounding
objects, are negligible in comparison.

This calibration facilitates the standardization of mag-
nitudes for more distant supernovae in the Hubble flow.
Using this method, the Supernova H0 Equation of State
(SH0ES) collaboration reports a value of H0 = 74.03±1.42
km/s/Mpc. The release of new Pantheon data marks a sig-
nificant development in cosmology, particularly in the study
of Type Ia supernovae (SnIa). The catalog includes a total
of 1701 Type Ia supernovae observed over a specific redshift
range denoted as 0.001 < z < 2.3. Redshift measures how
much light from a distant object has been stretched as the
universe expands, covering a broad span of cosmic history.

Another tension arises from measurements of the σ8

parameter. The parameter S8 is a cosmological parameter
used to quantify the amplitude of matter density fluctuations
in the universe. It is defined as the root mean square ampli-
tude of mass fluctuations within a sphere of radius 8 h−1

Mpc, where h is the reduced Hubble constant.

Mathematically, S8 is expressed as: S8 = σ8

√
�m
0.3 Here,

σ8 is the amplitude of matter fluctuations on scales of 8 h−1

Mpc, and �m is the density parameter for matter in the uni-
verse. Amplitude of Fluctuations: S8 essentially tells us about
the amplitude or strength of the density fluctuations in the
matter distribution of the universe. Cosmological Structure
Formation: The parameter is crucial in the context of cos-
mological structure formation. Fluctuations in the density
of matter seed the formation of cosmic structures such as
galaxies and galaxy clusters. Comparison with Observations:
Observations of large-scale structures in the universe, such
as galaxy surveys or cosmic microwave background (CMB)
measurements, can be compared with theoretical predictions
based on cosmological models. S8 provides a convenient way
to parameterize and compare these predictions. Cosmolog-
ical Constraints: The value of S8 is influenced by various
cosmological parameters, including the matter density (�m)
and the amplitude of initial density fluctuations (σ8). By mea-
suring S8 and comparing it with observations, constraints on
these cosmological parameters can be derived.
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The value inferred from the Planck CMB measurement is
S8 = 0.832 ± 0.013. However, there is a 2σ tension with
measurements of σ8 coming from galaxy clusters and weak
lensing. We also consider cases including Gaussian priors on
S8 as measured by KiDS-1000x{2dFLenS+BOSS} (S8 =
0.766+0.02

−0.014) [31] and DES-Y3 (S8 = 0.776 ± 0.017) [32].

2 Kaniadakis horizon entropy

The Kaniadakis entropy serves as a valuable tool for the
examination of the statistical behavior of cosmic systems,
such as Cosmic Microwave Background (CMB) radiation.
It proves useful in modeling CMB temperature fluctuations
and exploring their implications for cosmology.

Kaniadakis statistics, also known as K-statistics, presents
a generalization of Boltzmann–Gibbs statistical mechan-
ics. It is founded on a relativistic extension of the classical
Boltzmann–Gibbs–Shannon entropy, commonly referred to
as Kaniadakis entropy or K-entropy.

Kaniadakis entropy retains the fundamental features of
standard statistical theory and converges to it under specific
limits. It represents a one-parameter generalization of the
classical Boltzmann–Gibbs–Shannon entropy [33,34].

This corrective term appears in a model of entropic cos-
mology and can simultaneously satisfy the recent accelerated
inflation and expansion of the universe. In particular, Kani-
adakis entropy is given by

SK = −kB

∑
i

ni ln{K }ni , (1)

with kB the Boltzmann constant. We introduce

lnk ≡ xk − x−k

2k
, (2)

where k is the Kaniadakis parameter. The kaniadakis
parameter, denoted as k, is a dimensionless parameter used
in the context of the kaniadakis statistics, which is an exten-
sion of standard statistical mechanics. This parameter plays
a crucial role in characterizing the departure from conven-
tional statistical behavior. The statistical mechanics that we
are accustomed to, often associated with the Boltzmann–
Gibbs entropy, is retrieved as a special case when k tends
towards zero.

To provide a bit more detail, the kaniadakis statistics
were introduced as a generalization of the standard sta-
tistical framework to accommodate non-extensive systems.
Such systems exhibit behaviors that cannot be adequately
described by the classical Boltzmann–Gibbs statistics. In par-
ticular, the kaniadakis distribution is derived by maximizing
the entropy under certain constraints, yielding a modified
form that encompasses a broader range of physical scenar-
ios.

When k is within the range −1 < k < 1, it sig-
nifies a departure from the classical statistical behavior.
As k approaches zero, the kaniadakis statistics converge
towards the standard Boltzmann-Gibbs statistics, indicating
the recovery of traditional statistical mechanics.Also, K → 0
recovers the standard Bekenstein-Hawking entropy, namely
SK→0 = SBH .

We trivially verify that Sk = S−k . Consistently, we also
verify

lnk x = lnq x + lnq 1
x

2
= lnq x + ln2−q x

2
, (3)

with q = 1 + k, hence

lnk x = ln1+k x + ln1−k x

2
. (4)

Consequently, the definition (2) implies

Sk = S1+k + S1−k

2
. (5)

Equivalently, kaniadakis entropy can be expressed as [35–42]

Sk = −kB

W∑
i=1

P1+k
i − P1−k

i

2k
, (6)

with Pi the probability of a system to be in a specific
microstate and W the total configuration number. Hence, for
the black hole application of kaniadakis entropy we obtain

Sk = 1

k
sinh (kSBH ), (7)

3 Modified Friedmann equations through kaniadakis
entropy

In this section, we first investigate the alleviation of the
Tensions with the use of the Modified Friedmann equations
through kaniadakis entropy [43]. Then, we discrete the ρm
and pm to ρm = ρb + ρc + ρν and pm = pb + pc + pν in
field equations and best fit the kaniadakis parameter (k), after
that we investigate the effect of considering neutrinos term
in �m = ρm

3 H2 where �m = �b + �ν + �c to alleviate the
Hubble Tension and σ8 Tension. We start from the modified
Friedmann equation in flat case, [43]

H2 = 8πG

3
(ρm + ρDE ) (8)

Ḣ = −4πG(ρm + pm + ρDE + pDE ), (9)

where ρm is matter density and pm denotes the pressure of
matter and ρDE and pDE act as dark enegy density and dark
energy pressure. The dark energy sector is defined as [43]

ρDE = 3

8πG

{
�

3
+ H2

[
1 − cosh

(
k

π

GH2

)]
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+kπ

G
shi

(
k

π

GH2

)}
, (10)

pDE = − 1

8πG

{
� + (3H2 + 2Ḣ)

[
1 − cosh

(
k

π

GH2

)]

+3kπ

G
shi

(
k

π

GH2

)}
. (11)

Hence, with the effective dark energy density and pressure at
hand, we can define the equation-of-state parameter for the
effective dark energy sector as

wDE ≡ pDE

ρDE
= −1 − 2Ḣ

[
1 − cosh

(
k

π

GH2

)]

·
{
� + 3H2

[
1 − cosh

(
k

π

GH2

)]

+3kπ

G
shi

(
k

π

GH2

)}−1

. (12)

Where the function shi(x) is generally defined as shi(x) =∫ x
0

sinh(x ′)
x ′ dx ′ which is a mathematical odd function of x with

no discontinuity. According to Eqs. (8), (9), we introduce the
following new variables,

�m = ρm

3H2 ,�DE = ρDE

3H2 , (13)

were �m is baryon density, and �DE denotes as dark energy
density. Now, we can derive the following autonomous equa-
tions as:

�′
m = −3�m − 2�m

Ḣ

H2 ,

�
′
DE = −3�DE (1 + ωDE ) − 2�DE

Ḣ

H2 ,

(14)

where prime denotes variation with respect to N and N =
lna. It is clear that in the case where k = 0, the generalized
Friedmann equations (10), (11), (12) reduce to the standard
�CDM cosmology.

Ḣ

H2 = −3

2
�m − 3

2
�DE (1 + ωDE ). (15)

We consider ωm = 0 (The pressure of matter is zero). Fur-
thermore, Eq. (13) gives immediately �m = �m0H2

0 /a3 H2

and recalling the fact that �m + �DE = 1 we can obtain an
expresssion for the Hubble parameter which reads as

H =
√

�m0H0√
a3(1 − �DE )

. (16)

where a is scale factor.

3.1 Modified Friedmann equations in presence non
relativistic neutrino through kaniadakis entropy

We start from modified Friedmann equation in presence of
non relativistic neutrino in flat case k = 0,

H2 = 8πG

3
(ρb + ρc + ρν + ρr + ρDE )

Ḣ = −4πG(ρb + ρc + ρν + ρr + pb + pc + pν + pr

(17)

+ρDE + pDE ). (18)

Moreover, we add the radiation density ρr in above equations.

�m = ρb

3H2 ,�ν = ρν

3H2 ,�c = ρc

3H2 ,

�r = ρr

3H2 ,�DE = ρDE

3H2 . (19)

were �b is baryon density, �r is radiation density, �c is cold
dark matter density, �ν is neutrino density and �DE denotes
as dark energy density. Now, we can derive the following
dynamical system:

�
′
m = −3�m − 2�m

Ḣ

H2 ,

�
′
ν = −3�ν(1 + ων(z)) − 2�ν

Ḣ

H2 ,

�
′
c = −3�c − 2�c

Ḣ

H2 ,

�
′
DE = −3�DE (1 + ωDE ) − 2�DE

Ḣ

H2

ω
′
ν = 2ων

zdur
(3ων − 1).

(20)

We shall use the following ansatz for ων(z) [44]

ων(z) = pν

ρν

=
(

1 + tanh

(
ln(1 + z) − zeq

zdur

))
, (21)

where zeq determines the transition redshift where matter and
radiation energy densities become equal and zdur represents
how fast this transition is realized. The Friedmann constraint
is:

�r = 1 − �m − �ν − �c − �DE . (22)

It is clear that in the case where k = 0, the generalized Fried-
mann equations (17), (18) reduce to the standard �CDM
cosmology. Moreover, we can ontain

Ḣ

H2 = −3

2
�ν(1 + ων) − 1

2
�r (3 + ωr )

−3

2
�DE (1 + ωDE ). (23)
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The above parameter is very useful for the connection
between the theoretical model and observations. To inves-
tigate the Hubble and S8 Tensions in the dynamical system
model, we use the luminosity distance relation for pantheon
and cc data (Direct method). We start from following dL
relation.

dL = (1 + z)
∫

dz

H(z)
. (24)

By introducing the new variables xd = dL and xh = H and
(Since 1 + z ≡ 1

a , then (1 + z) ≡ e−N , dz ≡ −e−NdN and
dN ≡ Hdt), the relation (24) can be converted to couple
ODE differential equations as

dx
′
d = −xd − e−2N

xh
(25)

dx
′
h = Ḣ

H2 .xh . (26)

4 Numerical analysis

To analyze the data and extract the constraints on these cos-
mological parameters, we used our modified version of the
publicly available Monte Carlo Markov Chain package Cos-
moMC [45]. This is equipped with a convergence diagnos-
tic based on the Gelman and Rubin statistic [46], assum-
ing R − 1 < 0.02, and implements an efficient sampling
of the posterior distribution using the fast/slow parameter
decorrelations [47]. CosmoMC includes support for the 2018
Planck data release [48]. Moreover, we used CAMB code
for anisotropy. The CAMB (Code for Anisotropies in the
Microwave Background) is a software package for calculat-
ing the cosmic microwave background (CMB) and matter
power spectra, as well as other cosmological observables. It
is widely used in the cosmology community for theoretical
predictions and analysis of observational data. Also, we used
the Akaike Information Criteria (AIC). The Akaike Informa-
tion Criterion (AIC) is a statistical measure used to compare
different statistical models based on their ability to fit the
data while balancing the complexity of the model. The AIC
equation is:

AIC = χ2
min + 2γ (27)

In these equationsχ2
min is the minimum value of χ2, γ is the

number of parameters of the given model. All observational
data where used in this paper are:

•Pantheon catalog: We used updated the Pantheon + Anal-
ysis catalog consisting of 1071 SNe Ia covering the redshift
range 0.001 < z < 2.3 [49].

• CMB data: We used the latest large-scale cosmic
microwave background (CMB) temperature and polarization

Table 1 32 H(z) data

z H(z) (km/s/Mpc) σ

0.07 69.0 19.6

0.09 69.0 12.0

0.12 68.6 26.2

0.17 83.0 8.0

0.2 72.9 29.6

0.27 77.0 14.0

0.28 88.8 36.6

0.4 95.0 17.0

0.47 89.0 50.0

0.48 97.0 62.0

0.75 98.8 33.6

0.88 90.0 40.0

0.9 117.0 23.0

1.3 168.0 17.0

1.43 177.0 18.0

1.53 140.0 14.0

1.75 202.0 40.0

0.1791 74.91 4.00

0.1993 74.96 5.00

0.3519 82.78 14

0.3802 83.0 13.5

0.4004 76.97 10.2

0.4247 87.08 11.2

0.4497 92.78 12.9

0.4783 80.91 9

0.5929 103.8 13

0.6797 91.6 8

0.7812 104.5 12

0.8754 125.1 17

1.037 153.7 20

1.363 160.0 33.6

1.965 186.5 50.4

angular power spectra from the final release of Planck 2018
plikTTTEEE+lowl+lowE [48].

• BAO data: We also used the various measurements of the
Baryon Acoustic Oscillations (BAO) from different galaxy
surveys [48], i.e. 6dFGS (2011) [50], SDSS-MGS [51].

• CC data: The 32 H(z) measurements listed in Table 1
have a redshift range of 0.07 ≤ z ≤ 1.965. The covariance
matrix of the 15 correlated measurements originally from
Refs. [52–54], discussed in Ref. [55], can be found at https://
gitlab.com/mmoresco/CCcovariance/.

By using the first and the second scenario, we can put
constraints on the following cosmological parameters: the
Baryon energy density �bh2, the cold dark matter energy
density �ch2, the neutrino density �ν , the Kaniadakis
parameter k, the ratio of the sound horizon at decoupling
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to the angular diameter distance to last scattering θMC , the
optical depth to reionization τ , the amplitude and the spectral
index of the primordial scalar perturbations As and ns . We
impose flat uniform priors on these parameters, as reported in
Table 2. The results obtained for two scenarios are in Tables 5
and 8.

5 Kaniadakis horizon entropy without neutrinos

The Kaniadakis horizon entropy without neutrinos is a the-
oretical model that aims to provide an explanation for the
accelerated expansion of the universe without the use of dark
energy. The model utilizes the Kaniadakis entropy, which is
a generalization of the Bekenstein–Hawking entropy and can
be applied to a broader range of physical systems.

To derive the Kaniadakis horizon entropy without neutri-
nos, it is assumed that the entropy associated with the appar-
ent horizon of the Friedmann–Robertson–Walker (FRW)
Universe follows the Kaniadakis prescription. This prescrip-
tion is a generalization of the standard Boltzmann–Gibbs
entropy and allows for a non-extensive distribution of matter
and energy.

The resulting modified Friedmann equations are similar to
the standard Friedmann equations but contain an additional
term that can be interpreted as an effective dark energy term.
This term is proportional to the Kaniadakis parameter K,
which determines the deviation from conventional statistical
behavior.

The Kaniadakis parameter K usually ranges between −1
and 1. When K is equal to zero, the modified Friedmann
equations reduce to the standard Friedmann equations, which
do not account for dark energy. However, as the value of K
increases, the effective dark energy density increases and the
universe accelerates at a faster rate. The results obtained for
different combinations of datasets are as follows:

• For CMB + Pantheon data: We found H0 = 69.52±1.87
km/s/Mpc at 68% CL, which is close to Planck 2018 results
and there is a 1.09σ with Planck result and 1.92σ tension with
R22. Also, the value obtained for S8 is 0.809 ± 0.059. The
tension of this result with the DES, and kiDS, and, Planck
are: 0.38σ , 0.53σ , and 0.71σ , respectively.

• For CMB + CC data: We found H0 = 69.03 ±
1.23km/s/Mpc at 68% CL, which is close to Planck 2018
results and there is a 1.22σ with Planck result and 2.66σ

tension with R22. Also, the value obtained for S8 is 0.801 ±
0.041. This result is consistent with the Planck results at
0.72σ tension, and 0.56σ with DES, and 0.82σ with kiDS.

• For CMB + BAO data: We found H0 = 68.81 ± 1.33
km/s/Mpc at 68% CL, which is close to Planck 2018 results
and there is a 0.99σ with Planck result and 2.68σ tension
with R22. Also, the value obtained for S8 is 0.81 ± 0.12.
This result is in complete agreement with Planck’s result at

Table 2 Flat priors for the
cosmological parameters

Parameter Prior

�bh2 [0.005, 0.1]
�ch2 [0.005, 0.1]
τ [0.01, 0.8]
ns [0.8, 1.2]
log[1010As ] [1.6, 3.9]
100θMC [0.5, 10]
k (−1, 1)

�ν [0.001, 0.005]

0.18σ tension and with the DES at 0.28σ . Also, this result is
in the 0.36σ with kiDS.

• For CMB + BAO + Pantheon + CC data: We found
H0 = 69.07 ± 1.51 km/s/Mpc at 68% CL, which is close to
Planck 2018 results and there is a 1.04σ with Planck result
and 2.39σ tension with R22 result. Also, the value obtained
for S8 is 0.802 ± 0.043. This result is in complete agreement
with Planck’s result at 0.66σ tension and with the DES at
0.56σ . Also, this result is in the 0.81σ with kiDS (Table 4).

All results are in Tables 3, 4. The results obtained in the
first scenario are shown in Figs. 1, 2, and 4. Also, Fig. 3
show the comparison results of the S8, �bh2, �ch2, ns ,
ln(1010As), 100θMC for different combination dataset for
kaniadakis entropy without neutrinos. All results are in Table
5.

Figure 1 illustrates the comparison results of the Hubble
constant, denoted as H0 = 69.07±1.51 km/s/Mpc, obtained
from the combined dataset (CMB + BAO + Pantheon + CC)
utilizing Kaniadakis entropy without neutrinos. The error
margin is provided at a 68% confidence level.

This specific combination of cosmological datasets aims
to offer a comprehensive understanding of the Hubble con-
stant, incorporating contributions from cosmic microwave
background (CMB), baryon acoustic oscillations (BAO),
Pantheon supernova data, and cosmic chronometers (CC).

The presented results showcase not only the central value
of the Hubble constant but also the associated uncertainty,
allowing for a more robust interpretation of the cosmolog-
ical implications. The incorporation of Kaniadakis entropy
without neutrinos further adds a nuanced perspective to the
analysis. Figure 2 denotes the Comparison results of the �m ,
S8 according to H0 for different combination dataset for kani-
adakis entropy without neutrinos. This analysis undertakes
a comparative examination of the cosmological parameters,
�m and S8, with respect to the Hubble constant (H0) within
the framework of different combination datasets. The study
employs Kaniadakis entropy without neutrinos and consid-
ers key cosmological datasets, including cosmic microwave
background (CMB), baryon acoustic oscillations (BAO),
Pantheon supernova data, and cosmic chronometers (CC).
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Table 3 Comparison H0, H0
Tension for different
combinations of data for
Kaniadakis without neutrinos

Dataset H0 (km/s/Mpc) Tension with Planck Tension with R22

CMB 68.79 ± 1.27 0.32σ 2.75σ

CMB + Pantheon 69.52 ± 1.87 1.09σ 1.92σ

CMB + CC 69.03 ± 1.23 1.22σ 2.66σ

CMB + BAO 68.81 ± 1.33 0.99σ 2.68σ

CMB + BAO + Pantheon + CC 69.07 ± 1.51 1.04σ 2.39σ

Table 4 Comparison S8, and S8 Tension for different combinations of data for Kaniadakis without neutrinos

Dataset S8 Tension with DES Tension with KiDS Tension with Planck

CMB 0.816 ± 0.086 0.45σ 0.57σ 0.18σ

CMB + Pantheon 0.809 ± 0.059 0.38σ 0.53σ 0.38σ

CMB + CC 0.801 ± 0.041 0.56σ 0.82σ 0.72σ

CMB + BAO 0.81 ± 0.12 0.28σ 0.36σ 0.18σ

CMB + BAO + Pantheon + CC 0.802 ± 0.043 0.56σ 0.81σ 0.66σ

Fig. 1 Comparison results of the H0 for combination dataset (CMB +
BAO + Pantheon + CC) for kaniadakis entropy without neutrinos

By scrutinizing the dependencies and variations of �m and
S8 in response to the chosen H0 values, this analysis eluci-
dates the interconnected nature of these crucial cosmologi-
cal parameters. Also, Fig. 3, presents a comparative analy-
sis of cosmological parameters, including S8, �bh2, �ch2,
ns , ln(1010As),τ and 100θMC , across various combination
datasets. The study employs Kaniadakis entropy without neu-
trinos. Each parameter holds significance in characterizing
different aspects of the universe. Figure 4 demonstrate the
comparison of H0 measurement for different combination of
data sets with results of Planck 2018 and R22 for kaniadakis
entropy without neutrinos.

The obtained best fit result, indicating � = 0.0052, offers
intriguing insights into the role of the cosmological constant

Fig. 2 Comparison results of the �m , S8 according to H0 for different
combination dataset for kaniadakis entropy without neutrinos

and the k parameter within the context of the Kaniadakis
horizon entropy. This relatively low value of � suggests that
the cosmological constant, often associated with dark energy,
exerts minimal influence on the observed accelerated expan-
sion of the universe in this particular model.

The key implication of this finding is that the k parameter
emerges as a potential substitute for dark energy in explaining
the accelerated expansion. The k parameter, integral to the
Kaniadakis entropy model, seems to play a significant role in
accounting for the observed cosmological phenomena. This
suggests a departure from traditional dark energy formula-
tions, providing an alternative avenue for understanding the
dynamics of the universe.
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Furthermore, the conclusion drawn from this analysis
posits that the Kaniadakis horizon entropy, incorporating the
k parameter, possesses the explanatory power to account for
the accelerated expansion without the explicit need for dark
energy. This challenges conventional paradigms and prompts
a reevaluation of the fundamental constituents driving the
observed cosmic dynamics.

In summary, the identified best fit value for � and the
suggested substitution of the k parameter for dark energy
underscore the potential of the Kaniadakis horizon entropy
model to offer a distinct and compelling explanation for the
accelerated expansion of the universe. This not only expands
our theoretical understanding of cosmic evolution but also
paves the way for further exploration into novel approaches
to cosmological modeling.

6 Kaniadakis entropy in presence of neutrino

In the early universe, neutrinos were relativistic, meaning
they traveled at speeds close to the speed of light and did not
possess any measurable mass. This relativistic nature made
them influential players in the dynamics of the cosmos during
its early stages. As the universe evolved, neutrinos under-
went a transition from being relativistic to becoming non-
relativistic. The total mass of neutrinos, denoted as

∑
mν ,

becomes a significant parameter in cosmological studies.

Transition from relativistic to non-relativistic phase for
neutrinos

The transition from the relativistic to the non-relativistic
phase for neutrinos marks a crucial epoch in the evolution of
the early universe. Neutrinos, being nearly massless and elec-
trically neutral, exhibit relativistic behavior during the high-
temperature and high-energy conditions of the early universe.
As the universe expands and cools, neutrinos undergo a sig-
nificant transition, impacting their dynamics and contribu-
tions to cosmic evolution.

During the relativistic phase, neutrinos travel at speeds
close to the speed of light, and their behavior is described
by relativistic equations. At this stage, their mass is consid-
ered negligible, and they interact primarily through weak
force interactions. As the universe expands, temperatures
decrease, and neutrinos eventually enter a phase where
their mass becomes non-negligible, marking the onset of
the non-relativistic regime. Neutrinos, which were initially
considered massless during the relativistic phase, start to
exhibit non-negligible mass effects. This transition is essen-
tial for understanding their impact on the large-scale struc-
ture of the universe [56]. Relativistic neutrinos are known for
their free-streaming behavior, meaning they travel long dis-

tances without significant interactions. As they become non-
relativistic, their free-streaming behavior diminishes, leading
to increased clustering and gravitational interactions [57].
The transition from relativistic to non-relativistic neutrinos
has implications for structure formation in the universe. In
the relativistic phase, the free-streaming of neutrinos sup-
presses the growth of cosmic structures on small scales.
As they become non-relativistic, their clustering enhances,
influencing the formation of cosmic structures like galax-
ies and galaxy clusters. The transition affects the cosmic
microwave background anisotropies. Relativistic neutrinos
contribute to the radiation content of the early universe and
influence the CMB. Their transition to non-relativistic speeds
alters their contribution to the energy density, influencing the
CMB power spectrum. As we can see in Fig. 5, considering
the mass of neutrinos lead to several changes in the Cosmic
Microwave Background (CMB) power spectrum compared
to the standard �CDM model and shifted the peaks. Addi-
tionally, their effects on the growth of large-scale structure
contribute to the Hubble tension by influencing measure-
ments of the Hubble constant at different cosmic epochs.

Neutrino transition and its cosmological implications

The transition from the relativistic to the non-relativistic
phase for neutrinos is intricately linked to key cosmologi-
cal parameters, notably the Hubble constant (H0) and the
parameter S8, which characterizes the amplitude of matter
fluctuations in the universe.

•Hubble Constant (H0) During the relativistic phase,
neutrinos contribute significantly to the energy density of the
early universe, influencing the cosmic dynamics and expan-
sion rate. The transition from relativistic to non-relativistic
phases alters the energy density and dynamics of neutrinos.
This transition is pertinent to the Hubble tension, where varia-
tions in H0 measurements from different observational meth-
ods are observed. Neutrinos, especially during their relativis-
tic phase, contribute to the overall energy density of the uni-
verse. Understanding their behavior during the transition is
crucial for precise modeling of the components influencing
H0 measurements.

• S8 Tension The transition of neutrinos from relativis-
tic to non-relativistic phases affects their role in the forma-
tion of cosmic structures. Relativistic neutrinos exhibit free-
streaming behavior, influencing the growth of structures on
small scales. The non-relativistic phase allows neutrinos to
cluster more, impacting the matter distribution in the uni-
verse. This clustering behavior is relevant to the S8 parame-
ter, which characterizes the amplitude of matter fluctuations.
The behavior of neutrinos during the transition contributes to
tensions in S8, particularly if different observational meth-
ods yield varying estimates of this parameter. A compre-
hensive understanding of neutrino dynamics is essential for
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Fig. 3 Comparison results of
the S8, �bh2, �ch2, ns ,
ln(1010As), 100θMC , H0
(km/s/Mpc) for different
combination dataset for
kaniadakis entropy without
neutrinos

addressing tensions and refining our knowledge of cosmic
evolution. A constraint on the total mass of neutrinos can
be established using the relation �ν =

∑
mν

93.14h2 , where h is
the reduced Hubble constant. This constraint provides a link
between the cosmological parameters (h,�ν) and the total
neutrino mass. Hence if the parameters (h, �ν ) are con-
strained then the parameter

∑
mν is constrained automati-

cally. Then we investigate the effect of adding the neutrino
term to the density of matter to reduce the Hubble Tension
using the dynamical system method. After that we will calcu-
late the value of S8 by estimating the value of the �m in the
present time. To understand the impact of neutrinos on the
evolution of the universe, particularly in addressing the Hub-
ble tension, the dynamical system method is employed. This
method allows for the investigation of the dynamical behav-
ior of the cosmological parameters over time. By adding the
neutrino term to the density of matter, one aims to alleviate
or explain the Hubble tension, which refers to discrepancies
in the measurements of the Hubble constant from different
observational methods. After incorporating the neutrino term

and addressing the Hubble tension, the next step involves esti-
mating the value of �m (density parameter for matter) in the
present time. This estimation then allows for the calculation
of S8, a parameter that characterizes the amplitude of matter
fluctuations in the universe.

From analysis, we find that
∑

mν < 0.276eV (95% CL)
for CMB data,

∑
mν < 0.113eV (95% CL) for CMB +

BAO, and for (CMB + CC) we find
∑

mν < 0.126eV (95%
CL), and for (CMB + Pantheon) we find

∑
mν < 0.146eV

(95% CL), and for combination of full data (CMB + BAO +
CC + Pantheon) we find

∑
mν < 0.116eV (95% CL) which

is fully agreement with [48]. It seems that this is a very good
model to estimate the mass of neutrinos because the results
obtained from this model are in broad agreement with obser-
vation, and finally we can use it for other purposes. Figure 6
shows the constraints at the (95% CL) two-dimensional con-
tours for

∑
mν in kaniadakis entropy with neutrinos.

If we add the neutrino term, we find:
• For CMB + Pantheon data: We found H0 = 71.68 ±

2.2km/s/Mpc at 68% CL, which is close to Planck 2018
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Fig. 4 The comparison of H0 measurement for different combination of data sets with results of Planck 2018 and R22 for kaniadakis entropy
without neutrinos

Table 5 Cosmological parameter results for different datasets for Kaniadakis horizon entropy without neutrinos

Parameter CMB+BAO CMB+CC CMB+Pantheon CMB+ALL CMB

�bh2 0.02234 ± 0.0002 0.02223 ± 0.00028 0.02226 ± 0.00023 0.02229 ± 0.00019 0.02233 ± 0.00027

�ch2 0.1178 ± 0.0025 0.1200 ± 0.0037 0.1200 ± 0.0037 0.1181 ± 0.0025 0.1176 ± 0.0028

100θMC 1.04119 ± 0.00039 1.04089 ± 0.00057 1.04089 ± 0.00057 1.04105 ± 0.00040 1.04120 ± 0.00037

τ 0.0559+0.0054
−0.0078 0.0544 ± 0.0076 0.0553+0.0054

−0.0080 0.0554+0.0051
−0.0076 0.0558+0.0057

−0.0079

ln(1010As) 3.042+0.013
−0.016 3.044 ± 0.018 3.046+0.015

−0.018 3.041+0.013
−0.016 3.041+0.014

−0.018

ns 0.9635 ± 0.0062 0.9677 ± 0.0087 0.9679 ± 0.0087 0.9648 ± 0.0064 0.9632 ± 0.0065

results and there is a 1.89σ tension with Planck result
and 0.89σ with R22. Also, the value obtained for S8 is
0.788 ± 0.047. This result is consistent with the kiDS at
0.45σ and there is a 0.9σ with the Planck result. For com-
paring with DES, there is a 0.24σ at 68% CL, i.e.

• For CMB + CC data: We found H0 = 70.97 ±
1.6km/s/Mpc at 68% CL, which is close to Planck 2018
results and there is a 2.12σ tension with Planck result and
1.43σ tension with R22. Also, the value obtained for S8

is 0.788 ± 0.031. This result is very close to the kiDS
result(0.15σ ) and there is a 1.3σ tension with the Planck
result. Moreover, the tension with DES is 0.33σ which is in
same as Planck 2018.

• For CMB + BAO data: We found H0 = 71.56 ±
1.51km/s/Mpc at 68% CL, which is close to Planck 2018
results and there is a 2.61σ tension with Planck result

and 1.91σ tension with R22. The value obtained for S8 is
0.789 ± 0.049. This result is in broad with the kiDS(0.45σ )
and there are 0.84σ and 0.25σ with Planck result, and DES,
respectively.

• For CMB + BAO + Pantheon + CC data: We found
H0 = 70.61 ± 1.49 km/s/Mpc at 68% CL, which is close to
Planck 2018 results and there is a 2.04σ tension with Planck
result and 1.66σ with R22. Moreover, the value obtained for
S8 is 0.788 ± 0.032. This result is fully in agreement with
kiDS at 0.65σ tension. Also, there is a 1.27σ with the Planck
result and 0.33σ with DES.

All results are shown in Tables 6 and 7. The results
obtained in the second scenario are shown in Figs. 6, 7,
and 9. Also, Fig. 8 show the comparison results of the S8,
�bh2, �ch2, ns , τ , ln(1010As), 100θMC for different com-
bination dataset for kaniadakis entropy in presence of neu-

123



Eur. Phys. J. C (2024) 84 :443 Page 11 of 16 443

Fig. 5 Comparison the CMB power spectrum combination dataset for kaniadakis entropy in presence of neutrinos with �CDM model

Fig. 6 Constraints at the (95% CL) two-dimensional contours for∑
mν in kaniadakis entropy with neutrinos

trinos. All results are in Table 8. In the context of the Fig. 7
comparison, the investigation focuses on the Hubble con-
stant within the framework of a combination dataset (CMB +
BAO + Pantheon + CC) using Kaniadakis entropy with neu-
trinos. The juxtaposition of this dataset against the Planck
and R22 results highlights the subtle intricacies and poten-

tial discrepancies in our understanding of the Hubble con-
stant. The analysis reveals a measured value of the Hubble
constant, H0 = 70.61 ± 1.49 km/s/Mpc, at a 68% confi-
dence level. This result closely aligns with the Planck 2018
findings, indicating a good agreement within the uncertain-
ties. Notably, there emerges a tension of 2.04σ with the
Planck result and 1.66σ with the R22 outcome, emphasiz-
ing a noteworthy deviation from these established cosmo-
logical measurements. Figure 8 demonstrate the comparison
results of the �m , S8 according to H0 for different combina-
tion dataset for kaniadakis entropy with neutrinos. Moreover,
Fig. 9 illustrate the comparison results of the S8, �bh2, �ch2,
ns , ln(1010As),τ , 100θMC for different combination dataset
for kaniadakis entropy with neutrinos. Figure 10 demonstrate
the comparison of H0 measurement for different combina-
tion of data sets with results of Planck 2018 and R22 for
kaniadakis entropy without neutrinos

As we have observed, when we use Kaniadakis entropy
to consider the Hubble tension and σ8 tension without taking
neutrinos into account, the results obtained are very similar
to Planck’s 2018 findings. However, when we include the
neutrino term, the Hubble and σ8 tensions are alleviated, and

Table 6 Comparison H0, H0 Tension for different combinations of data for Kaniadakis with neutrinos

Dataset H0 (km/s/Mpc) Tension with R22 Tension with Planck 2018

CMB 69.3 ± 1.7 2.13σ 0.033σ

CMB + Pantheon 71.68 ± 2.2 0.89σ 1.89σ

CMB + CC 70.97 ± 1.6 1.43σ 2.12σ

CMB + BAO 71.56 ± 1.51 1.91σ 2.61σ

CMB + BAO + Pantheon + CC 70.61 ± 1.49 1.66σ 2.04σ
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Table 7 Comparison S8, and S8 Tension for different combinations of data for Kaniadakis with neutrinos

Dataset S8 Tension with kiDS Tension with Planck Tension with DES

CMB 0.801 ± 0.067 0.51σ 0.45σ 0.36σ

CMB + Pantheon 0.788 ± 0.047 0.45σ 0.9σ 0.24σ

CMB + CC 0.788 ± 0.031 0.15σ 1.3σ 0.33σ

CMB + BAO 0.789 ± 0.049 0.45σ 0.84σ 0.25σ

CMB + BAO + Pantheon + CC 0.788 ± 0.032 0.65σ 1.27σ 0.33σ

the value of σ8 is in full agreement with the value obtained
in kiDS and DES.

The modified Friedmann equations resulting from the
Kaniadakis horizon entropy with neutrinos include an extra
term that can be seen as an effective dark energy term. This
term is directly proportional to the Kaniadakis parameter K,
which is similar to the one found in the Kaniadakis horizon
entropy without neutrinos. However, in the Kaniadakis hori-
zon entropy with neutrinos, the value of K may be influenced
by the neutrino density. Including neutrinos in the model can
impact the value of K because they can interact with other
particles, leading to energy transfer between different parts
of the universe. This interaction can cause the neutrino dis-
tribution to become anisotropic, which can ultimately affect
the value of K.

Furthermore, in the following, we put a constraint on k
in each scenario (kaniadakis entropy without neutrinos and
with neutrinos), and we obtain k = 0.12±0.41 for kaniadakis
entropy without neutrinos and k = 0.39±0.4 for kaniadakis
entropy in the presence the neutrinos. The k results for both
scenarios are plotted in Fig. 11. Figure 11 presents a compre-
hensive comparison of the parameter k in two distinct scenar-
ios: one utilizing Kaniadakis entropy without neutrinos and
the other incorporating neutrinos into the entropy model. The
parameter k holds significance in characterizing the shape
and behavior of the entropy distribution. The juxtaposition
of these scenarios allows for a detailed examination of how
the inclusion of neutrinos influences the value of k and, con-
sequently, the overall entropy dynamics. This comparison
sheds light on the nuanced interplay between neutrinos and
entropy within the Kaniadakis framework, providing valu-
able insights into the role of neutrinos in shaping the entropy
landscape.

7 Conclusion

In this study, we explored two distinct scenarios aimed at
addressing the Hubble tension and σ8 tension. In the first
scenario, we determined the values of h and �m utilizing
the Friedman equations within the framework of Kaniadakis
entropy. Subsequently, we derived H0 and σ8 based on these

Fig. 7 Comparison results of the H0 for combination dataset(CMB +
BAO + Pantheon + CC) for kaniadakis entropy with neutrinos

Fig. 8 Comparison results of the �m , S8 according to H0 for different
combination dataset for kaniadakis entropy with neutrinos

parameter estimates. In the second scenario, we introduced
the neutrino term into the Friedman equations and repeated
the parameter calculations.

For the combination dataset (CMB+BAO+CC+Pantheon)
in the first scenario, we obtained H0 = 69.07±1.51 km/s/Mps
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Table 8 Cosmological parameter results for different datasets for Kaniadakis horizon entropy with neutrinos

Parameter CMB+Pantheon CMB+CC CMB+BAO CMB+ALL CMB

�bh2 0.02226 ± 0.00023 0.02224 ± 0.00024 0.02238 ± 0.00019 0.02221 ± 0.00022 0.02236 ± 0.0002

�ch2 0.1202 ± 0.0037 0.1200 ± 0.0037 0.1185 ± 0.0030 0.1190 ± 0.0028 0.1185 ± 0.0032

100θMC 1.04088 ± 0.00056 1.04089 ± 0.00057 1.04111 ± 0.00044 1.04099 ± 0.00050 1.04112 ± 0.00043

τ 0.0547 ± 0.0076 0.0544 ± 0.0076 0.0552 ± 0.0080 0.0552+0.0054
−0.0078 0.05526 ± 0.0081

ln(1010As) 3.045 ± 0.018 3.044 ± 0.018 3.042 ± 0.019 3.043+0.016
−0.019 3.042 ± 0.019

ns 0.9686 ± 0.0085 0.9677 ± 0.0087 0.9649 ± 0.0073 0.9657 ± 0.0071 0.9645 ± 0.0078

�mν (eV) 0.146 0.126 0.116 0.113 0.276

Fig. 9 Comparison results of
the S8, �bh2, �ch2, τ , ns ,
ln(1010As), 100θMC , H0
(km/s/Mpc) for different
combination dataset for
kaniadakis entropy with
neutrinos

at 68% CL, closely aligning with Planck 2018 results.
Notably, this result exhibits a 1.04σ tension with Planck,
a 2.39σ tension with R22. The derived S8 value is 0.802 ±
0.043. When comparing this outcome with DES, kiDS, and
Planck, the tensions are 0.56σ , 0.81σ , and 0.66σ , respec-
tively.

In the second scenario, we found H0 = 70.61 ±
1.49 km/s/Mpc at 68% CL, once again in proximity to Planck

2018 results. However, this result exhibits a 2.04σ tension
with Planck, and a 1.66σ tension with R22. The correspond-
ing S8 value is 0.788 ± 0.032. Notably, this outcome is in
total agreement with kiDS, with a 0.65σ . Additionally, there
is a 1.27σ tension with Planck and a 0.33σ tension with DES.

As observed, when considering the Hubble tension and
σ8 tension using Kaniadakis entropy without the presence
of neutrinos, the results closely approximate Planck’s 2018
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Fig. 10 The comparison of H0 measurement for different combination of data sets with results of Planck 2018 and R22 for kaniadakis entropy
with neutrinos

Fig. 11 Comparison results of the k parameter for both scenario (kani-
adakis entropy Without neutrinos and with neutrinos)

results. Intriguingly, upon incorporating the neutrino term,
the Hubble and σ8 tensions are alleviated, and the σ8 value
aligns entirely with the value obtained in kiDS.

Furthermore, we imposed a constraint on k in each sce-
nario, both for Kaniadakis entropy without neutrinos and
with neutrinos, yielding k = 0.12 ± 0.41 for Kaniadakis
entropy without neutrinos and k = 0.39 ± 0.4 for Kani-
adakis entropy in the presence of neutrinos. We found that
the best fit was for � = 0.0052. This value suggests that � has
little effect as dark energy, and that the k parameter can serve
as a substitute for dark energy. Therefore, we can conclude
that Kaniadakis horizon entropy is capable of explaining the
accelerated expansion of the universe without the need for
dark energy. Finally, as illustrated in Tables 9 and 10 the
second scenario demonstrates a better fit than the first sce-
nario, and both outperform �CDM for the complete dataset
combination, leading to an improvement in the χ2 statistic.
Consequently, the inclusion of the neutrino term emerges as
particularly impactful, effectively mitigating tensions. This
is underscored by the notable improvement in χ2, indicating
that the addition of the neutrino term provides a robust con-
straint on the density of matter. In conclusion, our findings
suggest that the inclusion of the neutrino term plays a pivotal

Table 9 Mean values of free
parameters of various models
with 1σ error bar for
combinations data

Models χ2
CMB+Pantheon χ2

CMB+CC χ2
CMB+BAO χ2

ALL

�CDM 3585.821 2791.634 2776.083 3614.172

First scenario 3581.874 2774.114 2768.917 3605.766

Second scenario 3580.824 2774.038 2766.284 3602.091
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Table 10 Mean values of free parameters of various models with 1σ error bar for combinations data

Models �DE �m �� k �ν H0 (km/s/Mpc) AIC

�CDM − 0.312 ± 0.2 0.678 ± 0.2 − − 67.8 ± 1.1 3620.172

First scenario 0.69 ± 0.21 0.303 ± 0.0077 − 0.12 ± 0.41 − 69.07 ± 1.51 3613.766

Second scenario 0.706 ± 0.29 0.281+0.036
−0.059 − 0.39 ± 0.4 0.0027 ± 0.0009 70.61 ± 1.49 3612.091

role in alleviating tensions and enhancing the overall fit of
the model to the observational data.
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