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Abstract In this work, we study the structure of the lead-
ing order Martin–Ryskin–Watt (MRW) unintegrated parton
distribution function (UPDF) and explain in detail why there
exists discrepancy between the two different definitions of
this UPDF model, i.e., the integral (I-MRW) and differen-
tial (D-MRW) MRW UPDFs. We perform this investigation
with both angular and strong ordering cutoffs. The derivation
footsteps of obtaining the I-MRW UPDF from the D-MRW
ones are numerically performed, and the reason of such non-
equivalency between the two forms is clearly explained. We
show and find out that both methods suggested in the papers
by Golec-Biernat and Staśto as well as that of Guiot have
shortcomings, and only the combination of their prescrip-
tions can give us the same UPDF structure from both of these
two different versions of the MRW UPDF, namely I-MRW
and the D-MRW UPDFs.

1 Introduction

Unintegrated parton distribution functions (UPDFs) are one
of the essential ingredients of theoretical hadronic cross
sections calculation, within the kt -factorization scheme (kt
is the transverse momentum of a parton). In contrast to
the collinear factorization framework, where partons evolve
according to the DGLAP evolution equations, the evolution
equations within the kt -factorization is only limited to the
gluon, i.e., Balitsky–Fadin–Kuraev–Lipatov (BFLK) [1–4]
and Catani–Ciafaloni–Fiorani–Marchesini (CCFM) [5–8].
Therefore, different methods are introduced for obtaining
both quarks and gluon UPDFs within the kt -factorization
framework, which are mostly based on the DGLAP evolution
equations. Among these methods Kimber–Martin–Ryskin
(KMR) [9], Martin–Ryskin–Watt (MRW) [10], and parton-
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branching (PB) [11,12] are mostly used in the phenomeno-
logical study and successfully they could describe the exper-
imental data [13–18]. In the MRW formalism, which is the
main focus of this work, it is assumed that the parton moves
collinear to the incoming proton till the last evolution step,
where it becomes kt dependent, and after emitting a real
emission evolves to the factorization scales with the help of
Sudakov form factor. While in the PB UPDFs, the kt depen-
dency enters into formalism from the beginning of the evo-
lution via an initial Gaussian distribution. Then the UPDFs
are obtained by using Monte Carlo (PB) method and taking
into account the transverse momentum of the parton along
the evolution ladder.

But, the MRW formalism at the leading order (LO) level,
can be written in two alternative forms, i.e., integral (I-MRW)
and differential (D-MRW) UPDFs derivations. The appar-
ent equivalency of these two forms becomes questionable
in the Ref. [19], where it is shown that these two versions
can actually become different in certain regions of x (x is
the fractional momentum) and kt . In order to address this
problem, the authors of Ref. [19] suggested that only in the
cutoff-dependent parton distribution functions (PDFs) can
solve this discrepancy. On the other hand, the Ref. [20] con-
tradicts the above idea [19] and claims that there is no need
for the cutoff-dependent PDFs, if one introduces another term
to the D-MRW UPDF.

However, in this work we show that both of the solutions
suggested in the Refs. [19,20] are incomplete, and the true
equality between the I-MRW and D-MRW UPDFs deriva-
tions can only be obtained if the cutoff-dependent PDFs and
the additional term at the same time be included into the
formalism.

The structure of the paper is as follows: In the Sect. 2, the
integral and differential forms of the MRW UPDFs are in
detail explained. In Sect. 3, we show the numerical results of
I-MRW and D-MRW UPDFs, to explain why one obtains dif-
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ferent results, and also what should be done in order to bring
back the equivalency between the two forms. In the Sect. 4,
we derive the same UPDFs from both of the I-MRW and D-
MRW UPDFs, using our analysis in the Sect. 3. Finally, in
the Sect. 5, the conclusions are presented.

2 Integral and differential forms of the MRW UPDFs

The MRW model as explained in the introduction can simply
be obtained by assuming the evolution of parton collinear to
the parent hadron, till the last evolution step. At this step,
the parton in the last evolution step becomes kt dependent,
i.e. fb(x, k2

t ). Then the parton emits a real emission with

the probability
αs(k2

t )

2π
Pab(x/z), and finally evolves to the

factorization scale μ with the help of the Sudakov form factor
Ta(k2

t , μ
2), i.e.,:

fa(x, k
2
t , μ

2) = Ta(k
2
t , μ

2)
αs(k2

t )

2πk2
t

×
∑

b=q,g

∫ 1

x
dzPab(z) fb

(
x

z
, k2

t

)
[�(zmax − z)]δab , (1)

where the Sudakov form factor is as follows:

Ta(k
2
t , μ

2) = exp

(
−

∫ μ2

k2
t

dk2
t

k2
t

αs(k2
t )

2π

×
∑

b=q,g

∫ 1

0
dξξ Pba(ξ)[�(ξmax − ξ)]δab

⎞

⎠ , (2)

with

Ta(k
2
t > μ2, μ2) = 1. (3)

It should be noted that in the Eq. (1) the momentum weighted
PDFs are used, i.e. fb(x, k2

t ) = xb(x, k2
t ). Because of using

the collinear input PDFs with this approach, the MRW for-
malism is not valid at kt less than a certain starting point,
μ0 ∼ 1 GeV . Therefore, to define the UPDFs at kt < μ0,
one can utilize the normalization condition as a constraint,
i.e.,:

f (x, μ2) =
∫ μ2

0
dk2

t f (x, k
2
t , μ

2), (4)

and obtain UPDFs at kt < μ0 as [10]:

fa(x, k
2
t < μ2

0, μ
2) = Ta(μ

2
0, μ

2) f (x, μ2
0). (5)

Expanding the Eqs. (1) and (2) for the quark and gluon, gives
divergent behavior for the probability terms corresponding
to the soft gluon emission, i.e., Pqq and Pgg . However, the
Heaviside step function avoids this soft gluon divergences.

On the other hand we should note that in the Kimber–Martin–
Ryskin (KMR) model [9] which is used by the Ref. [19], this
cutoff is wrongly imposed on both emissions.

In the literature two kinds of cutoffs are used. The first one
that is most commonly used is based on the angular ordering
constraint (AOC) of the soft gluon emissions. Imposing this

constraint on the last emission step, i.e., zq̃t = z
kt

(1 − z)
< μ

where q̃t is the rescale transverse momentum [10,16,19],
leads to the cutoff on z which can be obtained as follows:

zmax = μ

(μ + kt )
. (6)

Using the above cutoff allows the parton to have emission
even at the kt > μ, and hence the UPDFs can become large in
this limit, mostly because the Sudakov form factor is limited
to the kt < μ. The other cutoff on z can be obtained by using
the strong ordering constraint (SOC) of the gluon emission,

i.e., q̃t = kt
(1 − z)

< μ [21]:

zmax = 1 − kt
μ

. (7)

The SOC is harsher with respect to the AOC one, and it limits
the transverse momentum of emitted gluon to the kt < μ.
However, we should be aware that parton within the MRW
UPDF model is still free to have transverse momentum larger
than the factorization scale via the quark emission term.

Although, in the MRW model, the parton has the freedom
to have the transverse momentum larger than the factorization
scale via the quark emission term, but within the KMR model,
the parton is limited to the kt ≤ μ, due to the cutoff on both
emission terms. As a result of this, one can notice from the
figure 1 of the Ref. [19] that the UPDF model adopted in this
reference is in fact the KMR model, in which the author of
Ref. [20] not correctly refers to it as the MRW UPDF. Also,
we should point out that the same author uses the strong
ordering cutoff along with the hard constraint �(μ − kt ), to
limit the parton transverse momentum to the kt ≤ μ.

From now on, in order to simply prove the above points
and show how to remove this discrepancies, in the following
sections, we only consider the non-singlet (NS) quark UPDF,
i.e.:

f N S
q (x, k2

t , μ
2)

= T NS
q (k2

t , μ
2)

αs(k2
t )

2πk2
t

∫ zmax

x
dzPqq(z) f

N S
q

(
x

z
, k2

t

)
,

(8)

where f N S
q (x, k2

t ) = ∑N f
i=1( fi (x, k

2
t ) − f i (x, k

2
t )) is the

non-singlet distribution, and the Sudakov form factor for this
distribution is:

T NS
q (k2

t , μ
2)
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= exp

(
−

∫ μ2

k2
t

dk2
t

k2
t

αs(k2
t )

2π

∫ zmax

0
dξξ Pqq(ξ)

)
. (9)

We should note that in the non-singlet distribution the
KMR and MRW UPDFs have the same form, due to this fact
that the non-diagonal quark emission terms of the DGLAP
evolution equation are no longer exist. The most important
benefit of using this distribution is that the DGLAP evolution
equation is not a coupled integro-differential evolution any
more, and we can simply obtain the cutoff-dependent PDFs
at different k2

t , see the Sect. 3.
The MRW UPDF explained above is usually written in its

integral form, I-MRW. However, in the Ref. [10] it is shown
that it can also be written as a compact D-MRW UPDF as
follows:

f N S
q (x, k2

t , μ
2) = ∂

∂k2
t
[ f N S

q (x, k2
t )T

NS
q (k2

t , μ
2)]

= T NS
q (k2

t , μ
2)

αs(k2
t )

2πk2
t

∫ 1

x
dzPqq(z) f

N S
q

(
x

z
, k2

t

)
. (10)

In order to reach from the D-MRW to the I-MRW one can
do as follows:

∂

∂k2
t
[ f N S

q (x, k2
t )T

NS
q (k2

t , μ
2)]

= T NS
q (k2

t , μ
2)

∂ f N S
q (x, k2

t )

∂k2
t

+ f N S
q (x, k2

t )
dT NS

q (k2
t , μ

2)

dk2
t

, (11)

now the derivative with respect to k2
t can be written

as the form of the modified DGLAP evolution equation
(MDGLAP), i.e.:

∂ f N S
q (x, k2

t )

∂k2
t

= αs(k2
t )

2πk2
t

[∫ zmax

x
dzPqq(z) f

N S
q

(
x

z
, k2

t

)

− f N S
q (x, k2

t )

∫ zMax

0
dzzPqq(z)

]
, (12)

and using the following relation for the Sudakov form factor:

1

T NS
q (k2

t , μ
2)

∂T NS
q (k2

t , μ
2)

∂k2
t

= αs(k2
t )

2πk2
t

∫ zmax

0
dzzPqq(z),

(13)

one can simply obtain the I-MRW UPDF. The important point
about this derivation is that the derivative with respect to the
Sudakov form factor has the role to remove the virtual contri-
bution, which comes from the modified MDGLAP. Consid-
ering this fact, therefore one expects that the I-MRW UPDF
to be always positive.

3 Numerical investigation of the D-MRW and I-MRW
UPDF

In this section we explain the D-MRW and I-MRW UPDFs
by considering only the first three quarks NS distribution, i.e.
f N S
q (x, k2

t , μ
2) = ∑

q∈u,d,s[ fq(x, k2
t , μ

2)− fq(x, k2
t , μ

2)].
For the calculation, we consider the central
MSTW2008lo90cl-nf3 (MSTW) input PDF sets [22] via the
LHAPDF library [23]. We calculate the UPDFs with respect
to k2

t at different values of x = 0.01 and x = 0.1 with
μ2 = 100 GeV 2.

Looking at the Fig. 1, it makes clear the issues related
to the equality of the differential and integral forms of the
MRW pointed out in the Refs. [19,20]. In the case of MRW
with AOC, two problems can be spotted quickly by looking
at this figure. First, as we move toward the large x limit, the
difference between the two forms is more significant, and at
some points, even in the kt < μ D-MRW UPDF becomes
negative, while the I-MRW UPDF is always positive. Second,
the D-MRW has a discontinuity at kt = μ. Also in the case
of the I(D)-MRW UPDF with SOC, one can observe the
same issues as the case of the I(D)-MRW UPDF with AOC,
but, since there is no quark emission terms, the UPDFs with
the integral form are suppressed down to zero. In order to
understand the roots of these problems, we show numerically
the derivation steps of reaching to the I-MRW UPDF from
the D-MRW UPDF, i.e., the Eqs. (12) and (13).

In the Fig. 2, we numerically demonstrate the validity
of the left and right hand sides of the Eq. (12), i.e., the
MDGLAP with collinear PDFs. It can be seen from this fig-
ure that when the parton transverse momentum increases and
becomes close to the factorization scale, or as x becomes
large, the difference between the left and right hand sides
of the MDGLAP become more significant. This is actually
related to the imposition of the soft gluon emission cutoff on
the final evolution step in the right hand side of the MDGLAP.
While in the left hand side, we only use the PDFs input, that
has no cutoff on it. Henceforth, in order to solve this discrep-
ancy, in the left hand side of the MDGLAP, one has to use
PDFs with AOC and SOC imposed in the last evolution step.
However, this is an arduous task, and one can alternatively
solves the Eq. (12) with the cutoff on all evolution steps. In
the Ref. [19], one needs the cutoff dependent-PDFs, in order
to reach this equivalency between the I-MRW and D-MRW
UPDFs. However, as it is discussed in the following para-
graphs and also in the Ref. [20], it is questionable, how the
same UPDFs from the I-MRW and D-MRW UPDFs in the
kt ≥ μ is obtained. It should also be mentioned again that
if one considers MRW quark distributions, and not the non-
singlet one, then in the case of SOC with the I-MRW UPDF,
the UPDF has a tail at kt > μ.

The problem with discontinuity and different distribution
arising from the I-MRW and D-MRW UPDFs is related to the
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Fig. 1 The left (right) panel shows the comparison of the non-singlet quark MRW UPDF with the AOC (SOC). The differential (integral) form of
the Eq. (10) is denoted by D-MRW (I-MRW)

Fig. 2 The left (right) panel shows the comparison of the left and right hand sides of the modified MDGLAP for the non-singlet quark distribution
with the AOC (SOC)

this fact that Eq. (13) does not hold in the kt > μ. Because if
we look carefully at the Eq. (9), we observe that the maximum
value of the integral over k2

t is μ2, and as a result of this, the
Eq. (13) is only truly valid at kt ≤ μ. Henceforth, one should
modify and correct this equation simply by adding the virtual
term explicitly for kt > μ:

1

T NS
q (k2

t , μ
2)

∂T NS
q (k2

t , μ
2)

∂k2
t

+ �(k2
t − μ2)

αs(k2
t )

2πk2
t

×
∫ zmax

0
dzzPqq(z) = αs(k2

t )

2πk2
t

∫ zmax

0
dzzPqq(z). (14)
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Fig. 3 The left (right) panel shows the comparison of the non-singlet quark distributions of AOC (SOC) cutoff-dependent PDF with the MSTW
one at μ2 = 100 GeV2

Fig. 4 The left (right) panel of the figure shows the numerical result of the Eq. (10) with the AOC (SOC) cutoff-dependent PDF. The differential
(integral) UPDF of the Eq. (10) is denoted by D-MRW (I-MRW)
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As a result, one can modify the Eq. (10) as follows:

∂

∂k2
t
[ f N S

q (x, k2
t )T

NS
q (k2

t , μ
2)]

+ �(k2
t − μ2) fa(x, k

2
t )

αs(k2
t )

2πk2
t

∫ zmax

0
dzzPqq(z)

= T NS
q (k2

t , μ
2)

αs(k2
t )

2πk2
t

∫ 1

x
dzPqq(z) f

N S
q

(
x

z
, k2

t

)
.

(15)

This equation is derived in another way in the Ref. [20]
by redefining the Sudakov form factor as T̃a(k2

t , μ
2) =

�(μ2 − k2
t )Ta(k

2
t , μ

2) + �(k2
t − μ2) and inserting this

Sudakov form factor inside the Eq. (10). However, the above
Ref. [20] claims that with this additional term to the MRW
formalism, one can reach to identical UPDFs, both from the
I-MRW and D-MRW UPDF, while one can not trace this con-
clusion [20]. As it is obvious from what is discussed in this
section, in order to obtain this equality, one also needs cutoff-
dependent PDFs, in addition of using the Eq. (15) instead of
the Eq. (10). Therefore, we can expect that none of the pre-
scriptions mentioned in the [19,20] alone, can give us same
UPDFs from both the I-MRW and D-MRW UPDFs, and one
needs to use them along with each other. In the following
section, we provide our numerical results and show such an
equivalency.

4 Numerical results of the equivalency between I-MRW
and D-MRW UPDFs

In this section, we solve the Eq. (11) for the NS distribution
with the brute-force method [24]. For the PDFs at the initial
scale we use MSTW-PDF at 1 GeV, i.e starting point of this
PDFs set, and then evolve PDFs according to the Eq. (11).
We perform this evolution for μ2 = 100 GeV2 and obtain
grid files in the x−k2

t space. Then with the help of the two
dimensional linear interpolation, we can obtain PDFs at dif-
ferent values of x and k2

t . One important point here is that
the results with good accuracy can only be obtained, if the
grids are dense enough. Now, we are in a position to show
our results with the cutoff-dependent NS distribution.

First, in the Fig. 3 we compare the cutoff-dependent PDFs,
i.e., the AOC and SOC, with the corresponding PDFs of
MSTW at x = 0.5 and x = 0.0001 to give an insight about
their similarities and differences. One can see from this fig-
ure that as we approach to the small x and k2

t , i.e., where the
choice of the cutoff is not important, cutoff-dependent PDFs
and MSTW ones become similar to each other. Another,
important point that one can observe in this figure is that,
at large x , the MSTW-PDF has a decreasing form, while for
the cutoff-dependent PDF, such a behavior is not observed.
This is the reason that the I-MRW UPDF with ordinary PDFs

Fig. 5 This figure shows the comparison of the non-singlet quark
MRW UPDF employing AOC cutoff-dependent PDF. The differential
(integral) UPDFs of the Eq. (15) is denoted by D-MRW (I-MRW)

are always positive, while if we use the D-MRW UPDF with
these PDFs, it can become negative at large x and k2

t , see
D-MRW UPDF at x = 0.1 in the Fig. 1. However, by using
the cutoff dependent-PDFs, one can also obtain, always, pos-
itive UPDFs from the D-MRW UPDF , too. Now, we are in a
position to check the claim of the Ref. [19] that with cutoff-
dependent PDFs one can obtain equivalency between the I-
MRW and D-MRW UPDFs in all k2

t including the k2
t > μ2.

In the left and right panels of the Fig. 4 we show numerical
result of the Eq. (10) with AOC and SOC cutoff-dependent
PDFs. As can be seen in this figure, the UPDFs obtained with
I-MRW and D-MRW UPDFs are the same in the k2

t ≤ μ2

region. However, using the Eq. (10) leads to the different
I-MRW and D-MRW UPDFs for the ones with the AOC
cutoff. We should note that if one obtains UPDFs with the
SOC, i.e., not using the NS ones, we would also observe non-
equality between the two forms at the kt > μ. Henceforth,
in the Fig. 5, we show the numerical results of employing the
Eq. (15) in order to obtain equality between the two forms.
Therefore, it is seen that the cutoff-dependent PDFs alone
are not enough for obtaining the same UPDFs both from the
I-MRW and D-MRW UPDFs, and using the Eq. (15) is essen-
tial in obtaining the same UPDFs in all kt regions. Finally,
we should state that, although our results are limited to the
non-singlet PDF, but one can generalize them and obtain the
same results.
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5 Conclusions

In this work, we investigated the equivalency of the differ-
ential and integral forms of the MRW UPDF model using
angular and strong ordering cutoffs. For simplicity, we only
considered the non-singlet quark distribution at the LO level.
We first explained the shortcomings associated with the
Refs. [19,20], and then showed that none of the solutions
mentioned within these two references are enough to obtain
the same UPDFs with the differential and integral forms.
Then, we showed that, the methods explained in the afore-
mentioned references are working in certain k2

t region, and in
order to obtain equivalent UPDFs from both the differential
and integral forms, one needs to employ both of these meth-
ods, i.e., cutoff-dependent PDFs along with the “modified”
differential form. Finally, employing these two prescriptions,
we can obtain unique UPDFs in all k2

t regions.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Our calculations
did not need any data deposited.]
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