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We present a convex geometry perspective to the effective field theory (EFT) parameter space. We show
that the second s derivatives of the forward EFT amplitudes form a convex cone, whose extremal rays are
closely connected with states in the UV theory. For tree-level UV completions, these rays are simply
theories with all UV particles living in at most one irreducible representation of the symmetries of the
theory. In addition, all the extremal rays are determined by the symmetries and can be systematically
identified via group theoretical considerations. The implications are twofold. First, geometric information
encoded in the EFT space can help reconstruct the UV completion. In particular, we will show that the dim-
8 operators are important in reverse engineering the UV physics from the standard model EFT and, thus,
deserve more theoretical and experimental investigations. Second, theoretical bounds on the Wilson
coefficients can be obtained by identifying the boundaries of the cone and are, in general, stronger than the
current positivity bounds. We show explicit examples of these new bounds and demonstrate that they
originate from the scattering amplitudes corresponding to entangled states.
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Introduction.—Effective field theory (EFT) is an impor-
tant framework to systematically parameterize new high-
scale phenomena. Absent any clear signature of new
particles from the LHC data, the standard model EFT
(SMEFT) [1–3] has become a standard tool for studying
indirect signs of new physics. If EFT operators are detected
and the corresponding Wilson coefficients measured, the
next step is to pin down the underlying UV theory. While
determining the Wilson coefficients from a given UV
theory is a systematized procedure [4–14], this inverse
problem can be highly nontrivial, as one set of coefficients
can be UV completed in many ways.
A geometric perspective provides hints to this problem.

Consider the subspace of the EFT parameters [15], spanned
by the operators that contribute to the second s derivatives
of the forward 2-to-2 scattering amplitude. The Wilson
coefficients are subject to positivity bounds [16] (see
[17–25] for earlier works and recent generalizations; also
see the applications in SMEFT [26–30] and other areas
[31–50]) for the EFT to have a UV completion that satis-
fies the axiomatic principles of quantum field theory.

These bounds on dim-8 operators are a set of linear
homogeneous inequalities of the coefficients. The solutions
form a convex conewhose vertex is the origin of the (linear)
space spanned by the coefficients. In this Letter, we
establish a connection between the geometry of the s2

subspace of EFT and the UV physics behind. On the
geometry side, the physical space is a convex cone that can
be generated as positively weighted sums of its edges, i.e.,
its extremal rays (ERs). On the physics side, an ER
corresponds to an irreducible representation (irrep) under
the symmetries of the theory and can be obtained only by
integrating out heavy states from this single irrep. This
geometric view helps determine the UV physics from
measurements. By using the convex nature of the subspace,
one can often draw striking conclusions about the existence
of states including their quantum numbers and couplings.
In SMEFT, dim-8 operators [29,51–53] linearly furnish

this subspace. While dim-6 coefficients are expected to be
more accurately measured, they alone are insufficient to
determine UV models: There is an infinite number of
models, or combinations of UV states, that leave no net
dim-6 effect. A UV model can be determined only modulo
the addition of these combinations. This is in contrast to
dim-8, as positivity bounds imply that all UV completions
must have dim-8 effects [16,26]. The dim-8 operators have
attracted increasing attention as the LHC has accumulated
more and more data. Various motivations for going beyond
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dim-6 have been discussed, e.g., in Refs. [28,30,41,54–59].
A number of dim-8 coefficients can be tested at the TeV
level at the LHC [56,59–62], while better sensitivities are
expected at future colliders [58,63]. Furthermore, observ-
ables and opportunities that allow disentangling dim-8
effects from the dim-6 ones exist and are being studied
[52,59,64]. We will show that the geometric connection to
the UV physics gives another important motivation to study
dim-8 operators: Their coefficients contain vital informa-
tion for a bottom-up reconstruction of UV physics.
To formulate this mapping between ERs and UV states,

an accurate description of the EFT cone is mandatory. The
current positivity bound approach is not sufficient. Instead,
we will take a different approach that follows the extremal
representation [65] of convex cones. Before proceeding, it
is instructive to introduce some basic concepts and facts in
convex geometry.
A convex cone is a subset of a linear space that is closed

under additions and positive scalar multiplications. An ER
of a convex cone C0 is an element x ∈ C0 that cannot be
split into two other elements in a nontrivial way; i.e., if we
write x ¼ y1 þ y2 with y1; y2 ∈ C0, we must have x ¼ λy1
or x ¼ λy2, λ being real constant. For example, the ERs of a
polyhedral cone are its edges. The dual cone C�0 of C0 is the
set C�0 ≡ fyjx · y ≥ 0; ∀ x ∈ C0g, where · means the inner
product of two vectors. We have ðC�0Þ� ¼ C0, and C1 ⊂ C2
implies C�1 ⊃ C�2. The full set of positive linear combinations
of elements in some set X form a convex cone, denoted by
cone(X ). Its ERs are a subset of X .
EFT amplitudes as convex cones.—Consider the forward

scattering amplitude Mij→klðs; t ¼ 0Þ, where s, t are the
standard Mandelstam variables and 1 ≤ i; j; k; l ≤ n
represent the low-energy modes. Using analyticity of
Mij→klðsÞ and the generalized optical theorem, we have
the following dispersion relation:

Mijkl ¼
Z

∞

ðϵΛÞ2
dμDiscMij→klðμÞ
2iπðμ − M2

2
Þ3 þ ðj ↔ lÞ þ c:c: ð1Þ

¼
Z

∞

ðϵΛÞ2

X
X
0 X
K¼R;I

dμmK
ij
XmK

kl
X

πðμ − M2

2
Þ3 þ ðj ↔ lÞ: ð2Þ

Here we have focused on particles with equal masses, M2

being the total mass squared, and the lhs is the second-order
s derivative ofMij→klðsÞ, with the low-energy discontinuity
subtracted up to ϵΛ, a scale smaller than the EFT cutoff (see
Supplemental Material [66] for more details and cases with
different masses). (j ↔ l) means all the previous terms
with the swap j ↔ l.

P0
X denotes the sum over possible X

states along with their phase spaces, and we have written
the ij → X amplitude Mij→X ≡mR

ij
X þ imI

ij
X .

The elastic version of this relation (i ¼ k, j ¼ l) has
been widely used to derive positivity bounds (because
mK

ij
XmK

ij
X ≥ 0; see, e.g., [16]). One may also mix different

polarizations [26,27,31,35] and different particles (e.g., [26–
30,50,67]) to get more bounds by using Mijkluivjukvl ≥ 0

[because uivjukvlmK
ij
XmK

kl
X ¼ ðuimij

KX
vjÞ2 ≥ 0], where ui

and vj enumerate the particles and polarizations [68]. This
can be viewed as the positivity bound from superposed states
uijii and vjjji. In any case, the Mijkl on the lhs is a low-
energy quantity and can be expressed in terms of the Wilson
coefficients, either at tree level or loop level, andwewill use it
as a proxy of the EFT space. At the tree level, Mijkl can be
linearly mapped to the dim-8 coefficient space [26–30], so in
the SMEFT discussionswewill not distinguish the two.Note
that, since our discussion will be based onMijkl, which is a
physical object, field redefinitions and renormalizationgroup
(RG) runningwill not change our conclusions. The approach
is generically applicable to any EFT, including the Higgs
EFT, in case the latter is needed to describe Mijkl.
Our goal is a more accurate characterization of the set C of

all possible Mijkl. The main observation is that Eq. (2)
defines C as a convex cone. To see this, note that Eq. (2)
represents a positively weighted sum of mK

ij
XmK

kl
Xþ

ðj ↔ lÞ, with integration regarded as a limit of summation.
For a model-independent EFT, mK

ij
X are arbitrary n × n

real matrices. Thus, the set C can be viewed as a convex
cone

C ¼ coneðfMjMijkl ¼ miðjmjkjlÞ; m ∈ Rn2gÞ; ð3Þ

i.e., C is positively generated from all tensors of the form
miðjmjkjlÞ, where iðjjkjlÞmeans j, l indices are symmetrized.
Furthermore, C is a salient cone; i.e., if c ∈ C; c ≠ 0, then
−c ∉ C. This is because any nonzero element of C, after
contracting with δikδjl, is positive asmijmij > 0. According
to the Krein-Milman theorem [65], C is then determined by
the convex hull of its ERs, which leads to the extremal
representation of C.
Before moving forward, we comment on the incom-

pleteness of the elastic positivity bounds from superposed
states. As they are derived using Mijkluivjukvl ≥ 0, these
bounds describe the dual cone ofQ≡ coneðfuivjukvlgÞ. If
Q ¼ C�, then Q� is an accurate description of C. However,
we will show explicit examples where C� contains more
elements than Q, which implies that elastic bounds are not
tight. In this respect, finding the extremal representation of
C is a better approach.
ERs and UV states.—The ERs can be found by using

symmetries. The forward scattering is invariant under an SO
(2) rotation around the forward direction. Taking the SM as
an example, we can rewrite the rhs of Eq. (2), choosing the
intermediate statesX as irreps (denoted by r) under the SO(2)
rotation and the SUð3ÞC × SUð2ÞL × Uð1ÞY symmetries.
The Wigner-Eckart theorem dictates that Mðij → XαÞ can
be written as hXjMjriCr;α

i;j , where α labels the states of r
and Cr;α

i;j is the Clebsch-Gordan coefficients for the direct
sum decomposition of ri ⊗ rj, with riðrjÞ the irrep of iðjÞ.
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The dynamics is contained in hXjMjri, independent of α.
Equation (2) becomes

Mijkl ¼
Z

∞

ðϵΛÞ2
dμ

X
X in r

0 jhXjMjrij2
πðμ − 1

2
M2Þ3 P

iðjjkjlÞ
r ; ð4Þ

wherePijkl
r ≡P

α C
r;α
i;j ðCr;α

k;l Þ� are the projective operators of
the r representation. Similar to Eq. (3), we identify the cone C

as coneðfPiðjjkjlÞ
r gÞ, and its ERs are a subset of fPiðjjkjlÞ

r g.
These j, l-symmetrized projectors are not necessarily
extremal, so we call them potential ERs (PERs); taking their
convex hull identifies the true ERs among them. C is
determined by the ERs.
The ERs are closely related to UV completions. For a

physics amplitude Mijkl to be extremal, on the rhs of
Eq. (4), only one irrep can exist; otherwise, Mijkl can be
written as a sum of two different elements of C, which is
nonextremal. This contains important information about the
UV dynamics. For tree-level UV completions, an ER
implies that its entire Mijkl can be generated from the
exchange of a single (multiplet) particle; i.e., the theory is a
“one-particle extension” of the SM. It may be generated by
several particles, but they must all live in the same irrep and
have the same interaction. For loop-level UV completions,
similarly, all multiparticle intermediate states (which may
include SM particles if RG effects are not negligible) have to
live in a single irrep. For nonperturbative UV completions,
subtleties may arise, but a similar inference might exist, if
Mijkl can be interpreted as coming from the exchange of UV
states. We, however, leave the nonperturbative cases for a
future discussion. More generally, any point in C is a positive
sumof the ERs, and this coincides with the decomposition of
the intermediate UV states into irreps. Therefore, geometric
information in C helps UV reconstruction.
This approach can be applied to subsets of particles

closed under all symmetries. The PERs continue to be
projective in this subspace, so results derived (such as
bounds) are valid, in general. In the following, we will
illustrate our approach with three subsets of SM fields:
scalars, vectors, and fermions. For SM particles living in
one multiplet, the number of PERs is finite, and C is
polyhedral following a theorem by Minkowski and Weyl
[69,70], which are easy to obtain. If more particles are
involved, one may resort to more efficient numerical
algorithms, such as the reverse search algorithm [71,72]
for obtaining bounds, or simply classical linear programing
methods, for testing the inclusion of given points [68].
The Higgs triangular cone.—The SM Higgs boson lives

in the 2 of SUð2ÞL and carries hypercharge 1=2. To find the
PERs, we work with real scalars, define

H ¼
�
ϕ2 þ iϕ1

ϕ4 − iϕ3

�
; C ¼

�
0 12×2

−12×2 0

�
; ð5Þ

and use the γ matrices defined in Ref. [73]. The projectors
of the irreps from 2 ⊗ 2 define the following PERs:

Eijkl
1 ¼ 1

2
½CiðjCjkjlÞ þ ðCγ4ÞiðjðCγ4ÞjkjlÞ�;

Eijkl
1S ¼ 1iðj4×41

jkjlÞ
4×4 ; E1A ¼ γiðj4 γjkjlÞ4 ;

Eijkl
3 ¼ 1

2
½ðCγIÞiðjðCγIÞjkjlÞ þ ðCγ4γIÞiðjðCγ4γIÞjkjlÞ�

Eijkl
3S ¼ ðγ4γIÞiðjðγ4γIÞjkjlÞ; Eijkl

3A ¼ ðγIÞiðjðγIÞjkjlÞ; ð6Þ

where the subscripts 1 and 3 denote the 1 and 3,
respectively, and S and A denote the exchange symmetry
of the irrep. I runs from 1 to 3. E1 and E3 consist of two
terms, as required by hypercharge conservation. The UV
particle for each irrep can be easily identified, e.g., as
in Ref. [74].
Only three of the six PERs are linearly independent, as

there are only three independent H4D4-type operators,
conventionally taken to be OS;n, n ¼ 0, 1, 2, defined in
Ref. [75]. The convex hull of the PERs determines C as a
3D triangular cone, whose cross section is shown in Fig. 1.
There are three ERs: E1, E1S, and E1A. What can we
learn from this cone? First, any UV-completable EFT must
stay within this cone. Its three facets are, after matching
to the Wilson coefficients, CS;0 ≥ 0, CS;0 þ CS;2 ≥ 0, and
CS;0 þ CS;1 þ CS;2 ≥ 0, CS;n being the coefficients of OS;n.
These are precisely the positivity bounds obtained from
elastic scatterings of superposed Higgs modes, albeit
numerically [29]. Here we see that they are the strongest
bounds, even going beyond elastic scatterings. (This,
however, is not always true; see the W-boson case.)
Second, the shape of the cone contains nontrivial informa-
tion about the UV completion. Suppose the coefficients are
experimentally measured and fall into the blue region. We
can immediately deduce that a new particle (or a multi-
particle state, for loop-level UV completions), which is a
SUð2ÞL singlet and has hypercharge 1, must exist and
couple to HH, in order to generate E1, because the convex
hull of all other PERs does not contain this point. Similarly,
if it falls in the red (green) or orange region, we know that a
new particle that lives in the 1S (1A) representation
must exist.
The W-boson polyhedral cone.—Our second example is

the W boson, which has two polarization modes and is

FIG. 1. A cross section of the Higgs triangular cone with the
PERs, taken to be perpendicular to the direction E1 þ E1S þ E1A.
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charged under the 3 of SUð2ÞL. The projection operators
for 3 ⊗ 3 ¼ 1 ⊕ 3 ⊕ 5 of SUð2ÞL are

P1
αβγσ ¼

1

N
δαβδγσ; P2

αβγσ ¼
1

2
ðδαγδβσ − δασδβγÞ;

P3
αβγσ ¼

1

2
ðδαγδβσ þ δασδβγÞ −

1

N
δαβδγσ; ð7Þ

where N ¼ 3. For the SO(2) rotation around the forward
direction, the projectors for 2 ⊗ 2 ¼ 1 ⊕ 1 ⊕ 2 are similar
but with N ¼ 2. With these we can construct nine PERs,
denoted as Em;n, from the tensor product of the mth
SO(2) and the nth SUð2ÞL projectors. Five of them are
linearly independent. All except for E3;3 are extremal. This
immediately determines C as a 5D polyhedral cone with
eight edges.
This example remarkably illustrates the efficiency of the

extremal approach in constraining the physical EFT space.
To compare with the positivity bound approach, we switch
to the inequality representation and, after mapping to the
operator coefficients, obtain

CT;2 ≥ 0; 4CT;1 þ CT;2 ≥ 0; ð8Þ

CT;2 þ 8CT;10 ≥ 0; 8CT;0 þ 4CT;1 þ 3CT;2 ≥ 0; ð9Þ

12CT;0 þ 4CT;1 þ 5CT;2 þ 4CT;10 ≥ 0; ð10Þ

4CT;0 þ 4CT;1 þ 3CT;2 þ 12CT;10 ≥ 0: ð11Þ

Again, the corresponding operators OT;n are defined in
Refs. [75,76]. All these bounds except for CT;2 ≥ 0 have
not appeared previously in the literature and are indeed
stronger than those presented in Refs. [27,29]. These
coefficients parameterize the anomalous quartic-gauge-
boson couplings, currently being measured at the LHC
[60–62], so they alone are important results. The first
four bounds can be identified as positivity bounds by
scattering various superposed states of jW1;2

x;yi [superscripts
for SUð2ÞL and subscripts for polarization]. The last two
bounds [Eqs. (10) and (11)] deserve more attention: They
cannot be derived from any elastic scattering between
superposed states, so they are beyond elastic positivity.
More than elastic positivity.—As explained already,

elastic positivity fails to give a complete description of
C, because, in general, C� contains more elements than Q.
The two bounds in Eqs. (10) and (11) are indeed from the
following elements of C�, not contained in Q:

T1 ¼ 6E1;1 þ 3E2;1 þ 6E2;2 þ 3=2E3;1 þ 3E3;3; ð12Þ

T2 ¼ 5=2E1;1 þ 5E1;2 þ E1;3 þ 15=2E2;1 þ 3E3;3: ð13Þ

One can show that Tijkl
1;2 M

ijkl ≥ 0, which lead to Eqs. (10)
and (11), respectively, and that T1;2 ∉ Q, which implies

that those bounds cannot be derived from scattering
between superposed states (see Supplemental Material
[66] for a proof with more details).
The fact that T1;2 ∉ Q suggests that the dispersion

relation of scattering amplitudes with entangled states
can provide additional information about the UV comple-
tion. Positivity bounds would not capture this information
unless there is a systematic and efficient way to tackle all
elements in C�. Note that the T1;2 tensors are independent of
this specific problem and may lead to new bounds also
for other operators or EFTs, whenever the number of
states n ≥ 6. Our extremal approach naturally captures
all such cases.
The fermion circular cone.—Lastly, we consider SM-like

chiral fermions, with left- and right-handed components
carrying different hypercharges but other symmetries
neglected for simplicity. Defining JμL;R ≡ f̄L;RγμfL;R, we
use the following basis:

O1 ¼ −∂μJνL∂μJLν; O2 ¼ −∂μJνR∂μJRν;

O3 ¼ ∂μJνL∂μJRν; O4 ¼ Dμðf̄LfRÞDμðf̄RfLÞ: ð14Þ

We simply show the PERs, in terms of the coefficient vector
C⃗ ¼ ðC1; C2; C3; C4Þ:

ML∶ ð1;0;0;0Þ; DS∶ ð0;0;0;1Þ; V∶ ð1; r2;−2r;0Þ;
MR∶ ð0;1;0;0Þ; DA∶ ð0;0;−1;1Þ; V 0∶ ð0;0;−1;2Þ:

ML;R are from Majorana-type scalar couplings with two
fL’s or two fR’s. D is from a Dirac-type scalar coupling,
with subscripts S and A indicating the exchange sym-
metry. V (V 0) is from the vector coupling formed by
same (opposite)-chirality fermions. r is the ratio between
R=L couplings. Since V is continuously parameterized
by r, C has a curved boundary. In Fig. 2, we show a 3D
slice of C. The boundaries are given by C1; C2; C4 ≥ 0

and 2
ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p
≥ maxðC3;−C3 − C4Þ.

A geometric view for UV determination.—Let us reiterate
what the Higgs example tells us in more general cases. Let
Ena be the convex hull of all PERs with one of them, E⃗a,

FIG. 2. A slice of the 4D fermion cone, taken to be
perpendicular to the direction (1, 1, 0, 1). The three axes are
taken to be ð1;−1; 0; 0Þ, (0, 0, 1, 0), and ð−1;−1; 0; 2Þ.
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removed. If the measured coefficients, denoted as C⃗exp, are
not contained by Ena, then a tree-level UV completion must
contain a particle that couples with the Ea irrep. This
feature extends to loop-generated cases. For example, in
the blue region in Fig. 1, there must exist some multi-
particle state that couples toHH, carries hypercharge 1, and
contains a SUð2ÞL singlet.
Quantitative statements can be made. For a measured

C⃗exp in the blue region, there is a minimum λ such that

C⃗exp − λE⃗1 ∈ En1. This sets a lower bound on the strength

of the UV coupling that generates E⃗1. Similarly, an upper
bound can be set using C⃗exp − λE⃗i ∈ C for all E⃗i. As a
second example, consider the fermion cone and assume
C⃗exp ∝ ð1; 0.8; 1.4; 1Þ is observed (see the black point in
Fig. 2). If a small arc on V (shown in black) is removed, the
convex hull of remaining PERs does not contain C⃗exp. It
follows that a UV state exists and couples to the fermions
with V=A-type couplings, and an upper bound on the
coupling ratio jgV=gAj < 0.35 can be set. There are many
other interesting and phenomenologically relevant exam-
ples, where convex hulls can be used to infer UV states.
This is not possible at dim-6, as the PERs would positively
span the entire space.
As a final remark, we have shown that concepts and

theorems in convex geometry help develop a deeper under-
standing of the EFT space, to improve the positivity bounds,
and to determine the UV completion [77]. We hope that
through this geometric perspective other results in convex
geometry may find their applications in particle physics.
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