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In supersymmetric models with minimal particle content and without large left-right squarks mixing, 
the conventional knowledge is that the Higgs Boson mass around 125 GeV leads to top squark masses 
O(10) TeV, far beyond the reach of colliders. Here, we pointed out that this conclusion is subject to 
several theoretical uncertainties. We find that electroweak symmetry breaking and evaluation of Higgs 
mass at a scale far away from the true electroweak symmetry breaking scale introduce a large uncertainty 
in Higgs mass calculation. We show that the electroweak symmetry breaking at the scale near the true 
vacuum expectation value of Higgs field can increase the Higgs Boson mass about 4–5 GeV and can 
lower the bounds on squarks and slepton masses to 1 TeV. Here we pointed out that the Higgs mass 
even with inclusion of radiative corrections can vary with electroweak symmetry breaking scale. We 
calculate it at two loop level and show that it varies substantially. We argue that Higgs mass like other 
coupling parameters can vary with energy scale and the Higgs potential with all orders loop corrections 
is scale invariant. This uncertainty to the Higgs mass calculation due to electroweak symmetry breaking 
around the supersymmetry breaking scale, normally taken as √mt̃L

mt̃R
, to minimize the 1-loop radiative 

corrections can be removed if one considers all significant radiative contributions to make Higgs potential 
renormalization group evolution scale invariant and evaluates electroweak symmetry breaking at the 
scale near the electroweak symmetry breaking scale. A large parameter space becomes allowed when 
one considers electroweak symmetry breaking at its true scale not only for producing correct values of 
the Higgs masses, but also for providing successful breaking of this symmetry in more parameter spaces.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The discovery of Higgs Boson at ATLAS [1] and CMS [2] leads 
to Higgs mass (mh) calculation an important subject of impres-
sive precision studies. In supersymmetric models with minimal 
particle content the tree level Higgs mass can not be larger than 
mZ � 91 GeV. The large radiative corrections which are function of 
masses and couplings of supersymmetric theories have direct im-
plications on the discovery prospects of supersymmetry at collid-
ers. But, there are many theoretical uncertainties in mh calculation 
and it needs to improve them for definite conclusion for the dis-
covery prospect of supersymmetry at LHC. In this paper, we first 
pointed out that electroweak symmetry breaking (EWSB) and cal-
culation of mh at the renormalization group evolution (RGE) scale 
far away from the EWSB scale (which might be close to the vac-
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uum expectation value (VEV) of Higgs field (vweak)) introduce a 
large uncertainty in mh calculation.

We show significant increase in the mass of the CP-even neutral 
Higgs Boson mh if one evaluates EWSB and calculates mh at Q EW ∼
vweak instead of Q EW = √

mt̃L
mt̃R

. This leads to a dramatic change 
in the allowed parameter space in supersymmetric models.

The EWSB is considered at Q EW = √
mt̃L

mt̃R
in all spectrum 

generator packages available in literature [4–8] and also in finding 
post-LHC constraints [3]. This technique to evaluate EWSB at RGE 
scale other than the true EWSB scale is used to make radiative 
corrections negligible compared to the tree level Higgs potential. 
In these studies, mh is also calculated at Q EW = √

mt̃L
mt̃R

. It has 
been shown in [9] that the RGE scale dependence of the Higgs 
potential becomes negligible if one adds the dominant two loop 
corrections O(αtαs +α2

t ) to the Higgs potential and it enables one 
to calculate EWSB and Higgs masses at any scale other than the 
scale where the 1-loop corrections to the Higgs potential is negli-
gible.
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Fig. 1. The variations of m2
hu,d

and �u,d with electroweak symmetry breaking scale Q EW for a typical set of mSUGRA input parameters m0 = 600, m1/2 = 1500, A0 =
−1700, tanβ = 40, sign(μ) = +1.
2. Radiative corrections to EWSB

The tree level scalar potential keeping only the dependence on 
the neutral Higgs fields:

V 0 =
(

m2
Hu

+ μ2
)

| H0
u |2 +

(
m2

Hd
+ μ2

)
| H0

d |2 +

m3
2(H0

u H0
d + h.c.) + g2 + g′ 2

8
(| H0

u |2 − | H0
d |2)2. (1)

Here, both the tree level potential V 0 and its parameters are 
strongly RGE scale dependent. However, in principle, if we in-
clude loop corrections at all orders, the effective potential V eff =
V 0 + �V should be RGE scale independent. From the minimiza-
tion criteria one can find

μ2 = −m2
Z

2
+ m2

Hd
+ �d − (m2

Hu
+ �u) tan2 β

tan2 β − 1
, (2)

m2
3 = −1

2
sin 2β

(
m2

Hd
+ m2

Hu
+ 2μ2 + �d + �u

)
(3)

where,

�a = 1

2va

∂�V

∂va
. (4)

For simplicity, �V is not calculated separately, but one directly 
evaluates �a . The checking of convergence of the V eff is not done 
through evaluation of �V , but through the invariance of the value 
of μ with respect to EWSB scale Q EW. It ensures that perturbation 
series for V eff converges at all RGE scales. The one loop corrections 
�V 1 in Landau gauge is given by [10]:

�V 1 = 1

64π2
ST rM4

[
ln(M2/Q 2) − 3/2

]
(5)

The dominant contribution that comes from stop quarks is 
given by:

�u(t̃i) ∼ 3y2
t

16π2
m2

t̃i
ln(m2

t̃i
/Q 2) (6)

The loop corrections are very significant, without which the eval-
uation of parameters from minimization of the tree level potential 
may give even wrong results [11]. These radiative corrections de-
pend strongly on the RGE scale Q and the 1-loop contributions 
normally become negligible at Q = √

mt̃L
mt̃R

.
The minima of effective Higgs potential V eff is strongly RGE 

scale dependent even with complete 1-loop corrections [12]. But, 
the addition of 2-loop corrections shows RGE scale invariance of 
the minima of the potential V eff and the parameters obtained from 
this minimization criteria (μ and m2
3) are RGE scale invariant [12]. 

The RGE scale dependence of V eff is shown in terms of μ (ob-
tained from the minimization of V eff) in Fig. 2 at tree level, 1-loop 
level and 2-loop level. It is seen that the scale dependence is al-
most completely negligible at 2-loop level.

Here, it should be noted that �a can be large at any scale and 
may be even comparable with m2

Hu,d
as it is the derivative of �V

with respect to va . The large values of derivative of �V do not 
mean the violation of convergence of V eff. The Higgs mass squared 
parameters m2

Hu
and m2

Hd
are also not physically observable. The 

interaction of the Higgs field with other fields is such that these 
parameters m2

Hu,d
, �u,d can change rapidly with RGE scale by a few 

orders of magnitude from high positive to high negative value from 
GUT scale to weak scale (e.g., +108 GeV to −108 GeV for a typical 
set of input parameters). This is shown in Fig. 1.

3. EWSB scale and evaluation of Higgs mass

The Standard Model [13] identifies weak scale Q EW =
(
√

2
√

2G F )−1 = 175 GeV with the VEV of a fundamental, isodou-
blet, “Higgs” scalar field. The minimization of the Higgs potential 
gives VEVs of the neutral part of the Higgs fields. In MSSM, EWSB 

fixes μ2 and m2
3 as the VEV v weak =

√
〈H0

u〉2 + 〈H0
d〉2

is already 
fixed from Standard Model predictions.

The scale of supersymmetry breaking Q SB ∼ mS̃ (the masses 
of sparticles) and the scale of EWSB minima Q EW originate from 
breaking of two completely separate symmetries and the physics 
at these two scales are completely different.

If mS̃ ∼ a few hundred GeV, then the running of parameters up 
to Q = v weak is negligible and one can use Q SB as the weak scale. 
But, if mS̃ ∼ TeV, one cannot neglect the running of the parame-
ters (particularly, m2

Hu
and m2

Hd
) and the approximation of using 

Q SB as Q EW does not work. The value of mh is increased signifi-
cantly when one evaluates EWSB at Q EW ≈ v weak (see Fig. 2). On 
the other-hand, if one considers EWSB scale Q EW ∼ TeV, EWSB also 
may not occur for some region of parameter space due to less run-
ning of m2

Hd
and m2

Hu
(EWSB requires μ2 positive).

In our calculation, we consider program SuSeFLAV-1.2 [5]. It 
considers full one loop corrections together with two loop lead-
ing contributions O(αtαs + α2

t ) to the Higgs mass squared pa-
rameters following ref. [9]. We have compared SuSeFLAV-1.2 with 
softsusy3.4.0 [6] for different sets of input parameters and find 
no significant change; similar changes in the spectra are observed 
with the changes in input parameters. For typical sets of mSUGRA 
[14] input parameters we show in Fig. 2 (left) that the variation 
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Fig. 2. The variation of μ (left) and mh (right) with the electroweak symmetry breaking scale Q EW for typical sets of mSUGRA input parameters (m0 (GeV), m1/2 (GeV),
A0 (GeV), tanβ, sign(μ)) = (390, 2490, 0, 14.5, 1) (thinner lines), and (390, 1895, −1125, 14.5, 1) (thicker lines), respectively. The value of √mt̃L

mt̃R
are 3817 GeV and 

2900 GeV, respectively.

Table 1
The typical values of mh calculated at Q EW = √

mt̃L
mt̃R

and Q EW ≈ vweak =
√

〈Hu〉2 + 〈Hd〉2 obtained from different program packages for different 
sets of inputs. The less differences in mh values between two scales appear for FeynHiggs since the RG running of Yukawa and other couplings are not 
considered here and they are same at these two scales. The input MSSM parameters are only different at two scales.

Input
√

mt̃L
mt̃R

(GeV) SuSeFLAV-1.2 
mh (GeV) at

SuSpect 2 
mh (GeV) at

FeynHiggs-2.12.0 
mh (GeV) at

m0 (GeV),m1/2 (GeV), A0 (GeV), tanβ, sign(μ)
√

mt̃L
mt̃R

vweak
√

mt̃L
mt̃R

vweak
√

mt̃L
mt̃R

vweak

390,2490,0,14.5,1 3817 123.0 125.3 123.8 126.9 124.7 125.2
390,1895,−1125,14.5,1 2900 122.8 125.0 123.5 126.3 125.1 125.4
513,2321,−1281,6.2,−1 3507 120.1 124.9 120.9 123.9 121.6 122.4
1956,592,−4128,14.3,−1 992 123.0 125.0 123.7 125.4 122.7 123.7
of μ (evaluated at Q EW ) with Q EW at tree level, one loop level 
and two loop level. We find that μ is scale independent at two 
loop level. In Fig. 2 (right) we show the variation of mh (evaluated 
at Q EW ) with Q EW at one loop level and two loop level. We find 
that mh remains scale dependent.

Here we pointed out that the Higgs mass (not potential) even 
with inclusion of radiative corrections can vary with electroweak 
symmetry breaking scale. We calculate it at two loop level and 
show that it varies substantially. We argue that Higgs mass like 
other coupling parameters can vary with energy scale.

In Table 1 we compare the values of mh calculated at the two 
scales Q EW = √

mt̃L
mt̃R

and Q EW ≈ vweak =
√

〈Hu〉2 + 〈Hd〉2 ob-
tained from SuSeFLAV-1.2 [5], SuSpect 2 [15] and FeynHiggs-2.12.0 
[16]. The less differences in mh values between two scales appear 
for FeynHiggs since the running of Yukawa and other couplings 
are not considered here and they are same at these two scales. 
The MSSM parameters are the input and they are considered to 
be different at these two scales. The EWSB at Q EW = vweak is not 
only required for correct masses in the Higgs sector, but also for 
successful breaking of EW symmetry. The parameter m2

Hu
goes to 

larger negative value as one decreases the RGE scale. This provides 
successful breaking of electroweak (EW) symmetry by yielding μ2

positive. As a consequence a large parameter space becomes al-
lowed.

In brief, one can conclude that V eff with complete radiative cor-
rections is RGE scale invariant and the accurate spectra through 
EWSB can be found by generating them at the true EWSB scale 
Q EW ≈

√
〈Hu〉2 + 〈Hd〉2. In generation of spectra through EWSB 

(masses of the Higgs particles), we run all MSSM parameters up 
to Q EW, and in generation of the masses of sparticles, all MSSM 
parameters are stored at Q SB.
4. The mSUGRA parameter space

We have generated the allowed mSUGRA parameter space for 
two cases of evaluation of EWSB minima: i) at Q EW = √

mt̃L
mt̃R

(scale considered for finding post-LHC constraint in literature) and 
ii) Q EW ≈ v weak ≈

√
〈Hu〉2 + 〈Hd〉2 (the true EWSB scale). Here, 

we consider the only parameter space where one can generate 
mh = 125.5 ± 0.5 GeV. No other constraints are considered (neu-
tralino may not be the lightest supersymmetric particle (LSP)). 
We generate the spectra for the range of m0 = 100–3100 GeV, 
m1/2 = 100–3100 GeV, A0 = −3m0 to + 3m0, tan β = 3–63 and 
sign(μ) = ±1.

In Fig. 3, it is seen that a dramatically large parameter space in 
mSUGRA model with almost no absolute bounds on m0, m1/2 and 
A0 is allowed when EWSB minima is evaluated at Q EW ≈ v weak in 
contrary with the one when EWSB minima is evaluated at Q EW =√

mt̃L
mt̃R

.

The parameter m2
Hu

goes to larger negative value as one de-
creases the RGE scale. This also provides successful breaking of 
EW symmetry in more parameter spaces producing μ2 positive 
and yielding correct masses for Higgs particles. A large parame-
ter space becomes allowed when one considers EWSB at its true 
scale.

5. Conclusion

In conclusion, we pointed out that electroweak symmetry 
breaking and calculation of mh at the scale other than the true 
vacuum expectation value of Higgs field introduces an uncertainty 
in Higgs mass calculation. One can remove this uncertainty if 
one considers all significant radiative contributions to make Higgs 
potential renormalization group evolution scale invariant and eval-
uates electroweak symmetry breaking at the true vacuum expec-
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Fig. 3. The allowed parameter space for 125 GeV < mh < 126 GeV in m0 − m1/2, m0 − A0 planes for sign(μ) positive (left) and negative (right), respectively. The point 
represented by triangle (circle) denotes EWSB at Q EW = vweak (Q EW = √

mt̃L
mt̃R

).
tation value of Higgs field. Then, there will be no strong absolute
bounds on m0, m1/2 and A0 in mSUGRA model to produce mh
around 125 GeV. We pointed out that the Higgs mass (not Higgs 
potential) even with inclusion of radiative corrections can vary 
with electroweak symmetry breaking scale. We calculate it at two 
loop level and show that it varies substantially. Finally, we argue 
that Higgs mass like other coupling parameters can vary with en-
ergy scale. A large parameter space becomes allowed when one 
considers EWSB at its true scale not only for producing correct 
value of the Higgs mass, but also for providing successful breaking 
of EW symmetry in more parameter spaces.

Acknowledgements

The author AS is grateful to Scientific and Engineering Research 
Board, Department of Science and Technology, Govt. of India for 
opening the scope of doing research through financial support un-
der the research grant SB/S2/HEP-003/2013.

References

[1] G. Aad, et al., ATLAS Collaboration, Phys. Lett. B 716 (2012) 1, arXiv:1207.7214 
[hep-ex].

[2] S. Chatrchyan, et al., CMS Collaboration, Phys. Lett. B 716 (2012) 30, arXiv:
1207.7235 [hep-ex].

[3] H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev, X. Tata, Phys. Rev. D 
87 (3) (2013) 035017, arXiv:1210.3019 [hep-ph];
S. Akula, P. Nath, G. Peim, Phys. Lett. B 717 (2012) 188, arXiv:1207.1839 [hep-
ph];
H. Baer, V. Barger, A. Mustafayev, J. High Energy Phys. 1205 (2012) 091, 
arXiv:1202.4038 [hep-ph].

[4] F.E. Paige, S.D. Protopopescu, H. Baer, X. Tata, arXiv:hep-ph/0312045.
[5] D. Chowdhury, R. Garani, S.K. Vempati, Comput. Phys. Commun. 184 (2013) 

899, arXiv:1109.3551 [hep-ph].
[6] B.C. Allanach, Comput. Phys. Commun. 143 (2002) 305, arXiv:hep-ph/0104145.
[7] A. Djouadi, J.L. Kneur, G. Moultaka, Comput. Phys. Commun. 176 (2007) 426, 

arXiv:hep-ph/0211331.

[8] W. Porod, F. Staub, Comput. Phys. Commun. 183 (2012) 2458, arXiv:1104.1573 
[hep-ph].

[9] A. Dedes, P. Slavich, Nucl. Phys. B 657 (2003) 333, arXiv:hep-ph/0212132.
[10] S.R. Coleman, E.J. Weinberg, Phys. Rev. D 7 (1973) 1888;

S. Weinberg, Phys. Rev. D 7 (1973) 2887.
[11] G. Gamberini, G. Ridolfi, F. Zwirner, Nucl. Phys. B 331 (1990) 331.
[12] S.P. Martin, Phys. Rev. D 67 (2003) 095012, arXiv:hep-ph/0211366.
[13] S.L. Glashow, Nucl. Phys. 22 (1961) 579;

S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264;
A. Salam, Rev. Mod. Phys. 52 (1980) 525, Science 210 (1980) 723.

[14] A.H. Chamseddine, R.L. Arnowitt, P. Nath, Phys. Rev. Lett. 49 (1982) 970;
R. Barbieri, S. Ferrara, C.A. Savoy, Phys. Lett. B 119 (1982) 343;
N. Ohta, Prog. Theor. Phys. 70 (1983) 542;
G.L. Kane, C. Kolda, L. Roszkowski, J.D. Wells, Phys. Rev. D 49 (1994) 6173.

[15] A. Djouadi, J.L. Kneur, G. Moultaka, Comput. Phys. Commun. 176 (2007) 426, 
http://dx.doi.org/10.1016/j.cpc.2006.11.009, arXiv:hep-ph/0211331.

[16] W. Hollik, S. Paûehr, J. High Energy Phys. 1410 (2014) 171, http://dx.doi.org/
10.1007/JHEP10(2014)171, arXiv:1409.1687 [hep-ph];
W. Hollik, S. Paûehr, Eur. Phys. J. C 75 (7) (2015) 336, http://dx.doi.org/
10.1140/epjc/s10052-015-3558-7, arXiv:1502.02394 [hep-ph].

http://refhub.elsevier.com/S0370-2693(16)30621-9/bib61746C61736869676773s1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib61746C61736869676773s1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib636D736869676773s1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib636D736869676773s1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib6D73756772612D6C6863s1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib6D73756772612D6C6863s1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib6D73756772612D6C6863s2
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib6D73756772612D6C6863s2
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib6D73756772612D6C6863s3
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib6D73756772612D6C6863s3
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib6973616A6574s1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib73757365666C6176s1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib73757365666C6176s1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib736F667473757379s1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib73757370656374s1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib73757370656374s1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib737068656E6Fs1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib737068656E6Fs1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib44656465733A323030326479s1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib636F6C656D616E2D7765696E62657267s1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib636F6C656D616E2D7765696E62657267s2
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib47616D626572696E693A313938396A77s1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib4D617274696E3A32303032776Es1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib736Ds1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib736Ds2
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib736Ds3
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib6D73756772612D6D6F64656Cs1
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib6D73756772612D6D6F64656Cs2
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib6D73756772612D6D6F64656Cs3
http://refhub.elsevier.com/S0370-2693(16)30621-9/bib6D73756772612D6D6F64656Cs4
http://dx.doi.org/10.1016/j.cpc.2006.11.009
http://dx.doi.org/10.1007/JHEP10(2014)171
http://dx.doi.org/10.1140/epjc/s10052-015-3558-7
http://dx.doi.org/10.1007/JHEP10(2014)171
http://dx.doi.org/10.1140/epjc/s10052-015-3558-7

	Are supersymmetric models with minimal particle content under tension for testing at LHC?
	1 Introduction
	2 Radiative corrections to EWSB
	3 EWSB scale and evaluation of Higgs mass
	4 The mSUGRA parameter space
	5 Conclusion
	Acknowledgements
	References


