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1 Introduction

The precision measurement of the CP violating phase γ (φ3) is one of the primary goals of
flavour physics today. The measurement of γ in B± → DK± and related decays [1–6] has
negligible theoretical uncertainty [7]. The current precision on γ is dominated by LHCb,
which measures γ =

(
63.8+3.5

−3.7

)◦
[8, 9]. The vast, clean datasets expected from the recently

commissioned LHCb upgrade [10] and Belle II [11] will allow a sub 1◦ precision on γ, LHCb
upgrade II is expected to reduce this further to 0.35◦ [12, 13]. The parameter γ is therefore
set to become the most precisely measured parameter in the Cabibbo-Kobayashi-Maskawa
(CKM) description of CP violation in the quark sector [14, 15], giving it a pivotal role in the
search for new physics by over-constraining the Standard Model with precision measure-
ments. To fully benefit from this potential, it is critical to control systematic uncertainties.

The measurement of γ in B− → DK− and its CP conjugate is possible because
the neutral D meson in this decay is a superposition of D0 and D0 that depends on γ:
D ∝ D0 + rBe

i(δB−γ)D0, where rB ∼ 0.1 and δB is a CP-conserving phase induced by the
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strong interaction. The neutral D meson is reconstructed in a final state accessible to both
D0 and D0. For multibody decays of the D, such as K0

Sπ
+π−, the CP-violating phase γ is

obtained from analysing the amplitude structure of the D decay in both B− → DK− and
B+ → DK+ transitions; this approach is known as the BPGGSZ method [3–5].

In order to measure γ in this way, the phase difference between the D0 and D0 decay
amplitude across the Dalitz plot needs to be known. While this information can be obtained
from amplitude models, these models have well-known shortcomings that make the phase
information they provide unreliable, leading to significant, difficult-to-quantify systematic
uncertainties. For this reason, model-independent methods are required to achieve the
ultimate precision on γ. Similar considerations apply to measurements of D-mixing [16].

Model-independent methods currently in use rely on integrating over all or parts (bins)
of the multibody phase space of the D decay [4, 17–21]. Two unbinned model-independent
methods have been proposed recently. The method described in [22] is based on projecting
the two-dimensional Dalitz plot down to one dimension, where the phase difference between
the D0 and D0 amplitudes is parameterised as a Fourier series. The authors of [23] extract
γ from set of cumulative functions defined across the Dalitz plot in a way that is inspired by
the Kolmogorov-Smirnov test. This method is independent of the phase difference between
the D0 and D0 amplitudes.

In all cases, one can expect some information loss due to the integration or projec-
tion process involved. Here we present a new unbinned model-independent method that
optimally uses the full information across the two-dimensional Dalitz plot of a three-body
decay of the neutral D meson. Using the example of D0 → K0

Sπ
+π−, we will show that

this method has, with current and plausible future data sample sizes, the potential to
reach essentially the same statistical precision on γ as a model-dependent method, without
suffering from the associated model uncertainty.

This paper is organised as follows: in section 2 we remind the reader of the formalism
for the measurement of γ in B± → DK± decays, and use this opportunity to introduce
our notation and phase convention. Section 3 describes the new quasi model-independent
method introduced in this paper. In section 4, we evaluate the performance of the new
method in simulation studies for the measurement of γ in B± → DK±, D → K0

Sπ
+π−

decays. Finally, in section 5, we conclude.

2 Formalism

In this section we outline the formalism for the measurement of γ and the use of charm
threshold data developed in [1–6], to remind the reader and fix the notation. For simplicity,
we ignore the effects of D mixing [24–27]. In most cases, these effects are small enough to
be negligible [26]. Where they are not, they can be taken into account as described in [27].

2.1 Notation and conventions

We use the notation AfD(p) for the decay amplitude of the D0 meson to a final state f , at
point p in the D → f Dalitz plot and AfD(p) for that of the CP-conjugate process.

– 2 –
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Our phase convention for the CP operator is such that CP|D0〉 = |D0〉, which is the
usual practice in the context of beauty decays to charm. An alternative convention where
CP|D0〉 = −|D0〉 is widely used in the context of charm physics.

With our phase convention, and assuming the absence of CP violation in charm decays,
AfD(p) = A

f
D(p). For self-conjugate final states such as K0

Sπ
+π−, which we will use

for the simulation studies presented below, p and p are in the same Dalitz plot. We
parameterise the D0 → K0

Sπ
+π− Dalitz plot with the usual variables s+ = m2(K0

Sπ
+) and

s− = m2(K0
Sπ
−), representing the invariant mass-squared of the K0

Sπ
+ and K0

Sπ
− pair,

respectively. If p = (s−, s+), then p = (s+, s−), and AK
0
Sππ

D (s+, s−) = A
K0

Sππ
D (s−, s+).

We define the phases φfD(p) ≡ arg(AfD(p)), φfD(p) ≡ arg(AfD(p)) and the phase dif-
ference δfD(p) ≡ φfD(p) − φfD(p). It is also useful to define δfD(p) ≡ φ

f
D(p) − φfD(p), even

though it is trivially related to δD through δ
f
D(p) = δfD(p) = −δfD(p). To declutter the

notation we will omit the superscripts and/or the (p), where there is no risk of ambiguity.
When applying the method presented below in practice it will frequently be necessary

to combine results obtained using different conventions for the phase of the CP operator.
Switching from our convention with CP|D0〉 = |D0〉 to the convention with CP|D0〉 =
−|D0〉 corresponds to the change δD → δD + π.

2.2 Measuring γ with B± → DK± decays

The decay amplitude of a D meson resulting from a B− → DK to a final state f at phase
space point p is given by

AB−(p) ∝ AD(p) + rBe
i(δB−γ)AD(p), (2.1)

and the corresponding decay rate is

Γ−(p) = N
(
|AD(p)|2 + r2

B|AD(p)|2 + 2Re(AD(p)rBe−i(δB(p)−γ)A
∗
D(p))

)
(2.2)

= N
(
|AD(p)|2 + r2

B|AD(p)|2 + 2rB|AD(p)||AD(p)| cos(−δB + γ + δD)
)

(2.3)

= N
(
|AD(p)|2 + r2

B|AD(p)|2

+ 2rB|AD(p)||AD(p)| (cos(δB − γ) cos(δD(p)) + sin(δB − γ) sin(δD(p)))
)
, (2.4)

where N is a normalisation factor. For the CP-conjugate process, with a D from a B+ →
DK+:

Γ+(p) = N
(
|AD(p)|2 + r2

B|AD(p)|2

+ 2rB|AD(p)||AD(p)|
(
cos(δB + γ) cos(δD) + sin(δB + γ) sin(δD(p))

) )
(2.5)

where AD(p) = AD(p), AD(p) = AD(p), and δD(p) = δD(p) for CP conservation in
charm. For the fits in our validation studies, we follow the widely used practice to re-
parameterise the decay rates in terms of the “cartesian” variables

x+≡ rB cos(δB+γ), y+≡ rB sin(δB+γ), x−≡ rB cos(δB−γ), y−≡ rB sin(δB−γ).
(2.6)
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This is motivated by the observation that fits in terms of x± and y± are statistically better
behaved than those in terms of rB, δB, and γ, which is related to the fact that there is no
sensitivity to δB, γ as rB → 0. The decay rates in terms of the new variables are

Γ−(p) = N
(
|AD|2 +

(
x2
− + y2

−

)
|AD|2 + 2|AD||AD| (x− cos(δD) + y− sin(δD))

)
, (2.7)

Γ+(p) = N
(
|AD|2 +

(
x2

+ + y2
+

)
|AD|2 + 2|AD||AD|

(
x+ cos(δD) + y+ sin(δD)

))
. (2.8)

In a model-dependent approach, AD and AD are derived from a high-statistics ampli-
tude fit to flavour-specific D0, D0 decays. However, the models used to describe the decay
amplitude have theoretical shortcomings that make their phase information, which enters
via δD, unreliable. This in turn translates into a systematic uncertainty on γ.

For the model-independent approach described in [4, 18], one integrates over regions
(bins) of phase space. These bins are defined such that they form CP-conjugate pairs and
we label them such that the CP-conjugate of bin i is bin −i. In what follows, we assume
the D decays to K0

Sπ
+π−, although the approach clearly generalises to other decay modes.

We define the following parameters related to |AD|2, |AD|2:

Fi ≡
∫

bin i
|AD|2ds+ds−, F i ≡

∫
bin i
|AD|2ds+ds−. (2.9)

In the absence of CP violation in charm, F i = F−i. We also define the following parameters
related to the phase-difference between AD and AD:

ci ≡
∫

bin i |AD||AD| cos(δD)ds+ds−√∫
bin i |AD|2ds+ds−

∫
bin i |AD|2ds+ds−

, (2.10)

si ≡
∫

bin i |AD||AD| sin(δD)ds+ds−√∫
bin i |AD|2ds+ds−

∫
bin i |AD|2ds+ds−

, (2.11)

which implies c−i ≡ ci and s−i ≡ −si. In terms if these quantities, the decay rate B− →
DK− with the D decay in phase-space bin i, is given by

Γ−i = Fi + r2
BF−i + 2rB

√
FiF−i (cos(δB − γ)ci + sin(δB − γ)si) . (2.12)

The CP conjugate process, a B+ → DK+ decay with the D decay in phase-space bin −i, is

Γ+
−i = Fi + r2

BF−i + 2rB
√
FiF−i (cos(δB + γ)ci + sin(δB + γ)si) . (2.13)

Equivalently, these decay rates can be expressed in terms of x±, y±:

Γ−i = Fi +
(
x2
− + y2

−

)
F−i + 2

√
FiF−i (x−ci + y−si) , (2.14)

Γ+
−i = Fi +

(
x2

+ + y2
+

)
F−i + 2

√
FiF−i (x+ci + y+si) . (2.15)

All parameters related to the charm decay, i.e. Fi, ci, and si, can be directly obtained from
data, where data from the charm threshold are critical to constraining the parameters re-
lated to the phase difference of AD and AD, i.e. ci and si. It is worth noting, though, that
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the ci and si can be obtained alongside γ from (a sufficiently large sample of) B± → DK±

decays [4]; however, the input from the charm threshold dramatically improves the fit.
Measurements of γ in this way, using the D → K0

Sπ
+π− Dalitz plot we focus on here, have

been made by Belle [28, 29], Belle & Belle II [30], and LHCb [31–33], using input from
CLEO-c [34, 35] and BES III [36, 37]. We will below introduce a new method, also based on
exploiting threshold data, that does not require binning, or other forms of integration over
phase space as in [22, 23]. This is motivated by the aim to maximise the use of information
contained in the full two-dimensional Dalitz plot.

2.3 Charm threshold data

At the charm threshold, ψ(3770) are produced and decay approximately 50% of the time
to a pair of neutral D mesons that we label D1, D2. The resulting system of D mesons
must be C -odd, like the ψ(3770) they originate from. Therefore:

|ψ(3770)〉 → |D0〉1|D0〉2 − |D0〉1|D0〉2. (2.16)

Let D1 decay to final state f at phase-space point p and D2 to final state g at phase-space
point q. Then the decay amplitude for this process is

A(ψ → D1D2;D1 → f(p), D2 → g(q)) = 1√
2

(
AfD(p)AgD(q)−AfD(p)AgD(q)

)
. (2.17)

We will call g the tag and f the signal (in our feasibility study, f will be K0
Sπ

+π−).
Depending on the tag, we can distinguish a few important special cases:

1. D2 → g is a flavour-specific decay such as a semileptonic decay, or a quasi-flavour-
specific decay such as D0 → K−π+ (in our feasibility studies, we will ignore the small
dilution effect due to the suppressed decay D0 → K−π+, although this can be taken
into account). Then

A(ψ → D1D
0;D1 → f(p), D0 → g) ∝ AfD(p), (2.18)

and similarly
A(ψ → D1D

0;D1 → f(p), D0 → g) ∝ AfD(p). (2.19)

We refer to these decays as flavour tagged. They provide the same information as
flavour-tagged D0 decays at the B-factories and LHCb, where the flavour is usually
identified through the charge of the pion in D∗+ → D0π+ and D∗− → D0π− decays.
Measurements of flavour-tagged decays provide |AD(p)| and, in the binned approach,
Fi. (In recent LHCb analyses, though, Fi, and associated efficiency effects, have been
obtained from simultaneous fits to B± → DK± and B± → Dπ± data [33, 38].)

2. D2 → g is a CP-specific decay, either a CP-even decay such as D2 → K+K−,
implying |D2〉 = 1√

2

(
|D0〉+ |D0〉

)
=: D+, or CP-odd such as D2 → K0

Sπ
0, implying

|D2〉 = 1√
2

(
|D0〉 − |D0〉

)
=: D−, where the expressions for the superpositions of D0

– 5 –
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and D0 are convention-dependent; we use a convention where CP|D0〉 = |D0〉. The
corresponding decay amplitudes are

A(ψ → D1D±;D1 → f(p), D± → g) ∝ ∓AfD(p)−AfD(p), (2.20)

and the decay rates:

Γ(ψ → D1D±;D1 → f(p), D2 → g)

∝ |AfD(p)|2 + |AfD(p)|2 ± 2|AfD(p)||AfD(p)| cos(δD(p)). (2.21)

These provide information on cos(δD), or, in the binned approach, ci.

3. Both D mesons decay to the same self-conjugate signal mode e.g. K0
Sπ

+π−:

A(ψ → D1D2;D1 → f(p), D2 → f(q)) ∝ AD(p)AD(q)−AD(p)AD(q), (2.22)

with a decay rate

Γ(ψ → D1D2;D1 → f(p), D2 → f(q))
∝ |AD(p)|2|AD(q)|2 + |AD(p)|2|AD(q)|2

− 2|AD(p)||AD(q)||AD(p)||AD(q)| cos(δD(p)− δD(q)) (2.23)
∝ |AD(p)|2|AD(q)|2 + |AD(p)|2|AD(q)|2

− 2|AD(p)||AD(q)||AD(p)||AD(q)|
× (cos(δD(p)) cos(δD(q)) + sin(δD(p)) sin(δD(q))) . (2.24)

This category is therefore sensitive to both sin(δD) and cos(δD), in contrast to CP-
tagged decays which are only sensitive to cos(δD). In the binned approach, this
translates into unique sensitivity to si.

Measurements of ci and si for D → K0
Sπ

+π− have been made at CLEO-c [34, 35] and more
recently BES III [36, 37].

3 Quasi model independent unbinned method to measure γ

3.1 Basic idea

This section will introduce the quasi model-independent (QMI) method that is the subject
of this paper. For concreteness, we will consider the decay D0 → K0

Sπ
+π−, although the

method generalises to all self-conjugate charm decays, and with some modification also to
non-self-conjugate ones.

The statistically most precise way of measuring γ is the model-dependent method. We
observe that the magnitude of the amplitude structure across the Dalitz plot of D0 →
K0
Sπ

+π− is well known from flavour-specific D0 and D0 decays analysed by BaBar and
Belle [39]. The D0, D0 datasets used in these fits are orders of magnitude larger than
the B± → DK± datasets available for γ measurements. The fact that the collaborations
achieve a decent fit of their models to these datasets implies that we can trust the magnitude

– 6 –
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of existing amplitude models. However, those models violate unitarity and analyticity,
which breaks the connection between magnitude and phase. Consequently, the phases of
these models stand on less firm ground. Our approach is therefore to correct the model’s
phase in a model-independent way, or, more precisely, correct the phase difference between
the D0 amplitude AD(p) and D0 amplitude AD(p) at each phase space point p. These
phase differences are all that matters and in fact it is all we have access to. Measurements
of ci and si by CLEO-c and BES III suggest that the model’s phase differences are at least
approximately correct [34–37]. Our approach is therefore to obtain the model-independent
phase difference by adding a correcting term δcorr

D to the model’s phase difference δmodel
D ,

δD = δmodel
D + δcorr

D . (3.1)

We parameterise δcorr
D in a generic way, as a power series in the Dalitz plot parameters. We

assume CP conservation in charm decays, such that

δD(s+, s−) = −δD(s−, s+), (3.2)

which also implies
δcorr
D (s+, s−) = −δcorr

D (s−, s+). (3.3)

This symmetry reduces the number of parameters needed to parameterise δcorr
D . We will

see below that even if we depart from the assumption that the model’s phase differences
are approximately correct, such that δcorr

D becomes quite sizeable, our method still works.
The information that allows us to constrain δcorr

D comes, as for the binned methods,
predominantly from the charm threshold, although B± → DK± decays also contribute.

3.2 Constructing the correction to δD
In order to implement the symmetry relation eq. (3.3), we define the variables

z+ ≡ s+ + s−, z− ≡ s+ − s−. (3.4)

Now the symmetry condition from eq. (3.3) becomes δcorr
D (z+, z−) = −δcorr

D (z+,−z−) and
can be implemented by only allowing terms with odd powers of z− in the correcting poly-
nomial.

We found that parameterising the phase in terms of Legendre polynomials works well.
These are defined for values x ∈ [−1, 1]. We therefore scale z+, z−

z′+ =
2z+ − (zmax

+ + zmin
+ )

zmax
+ − zmin

+
, z′− =

2z− − (zmax
− + zmin

− )
zmax
− − zmin

−
, (3.5)

where the superscripts max and min indicate the maximum and minimum values of the
unprimed parameters. The kinematically allowed region of the K0

Sπ
+π− in terms of the

normalised, rotated parameters z′+, z′− is shown in figure 1b. The figure shows that within
the square z′+ ∈ [−1, 1], z′− ∈ [−1, 1] where the Legendre polynomial is defined, there is a
lot of space where there are no data, with the kinematically-allowed interval in z′− varying
a lot as a function of z+. We therefore “stretch” the Dalitz plot by replacing z′− with

z′′− =
2z′−
z′+ + 2 . (3.6)

– 7 –
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(a) Dalitz Phasepace in terms of s+, s−. (b) Rotated Dalitz Phasepace.

(c) Stretched Rotated Dalitz Phasepace.

Figure 1. The Dalitz Phasespace, (s+, s−), shaped to the rotated coordinates, (z′+, z′−) and the
stretched rotated coordinates, (z′+, z′′−).

The Dalitz plot phase space for the different parametrisations is shown in figure 1. Al-
ternatives such as a variation of the square Dalitz plot [40] would have achieved a similar
outcome.

We construct the correcting polynomial, δcorr
D , of order N with free parameters C

δcorr
D (z′+, z′′−|C) =

i≤N∑
i=0

j≤N−i
2∑

j=0
Ci,2j+1Pi(z′+)P2j+1(z′′−), (3.7)

where Pn are, in our implementation, nth order Legendre polynomials, although any func-
tion with P2j+1(z′′−) = −P2j+1(−z′′−) would be equally valid. The coefficients Cij are
free parameters, determined together with x±, y± in a simultaneous fit to ψ(3770) and
B± → DK± data.

– 8 –
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Tag (g) Events
CP-even, e.g. D → K+K− 2546
CP-odd, e.g. D → K0

Sπ
0 1725

D0 flavour, e.g. D0 → K−π+ 23457
D0 flavour, e.g. D̄0 → K+π− 23457
D → K0

Sπ
+π− (double tag) 1833

Table 1. ψ(3770)→ D1D2, D1 → K0
Sπ

+π−, D2 → g, decays generated for our simulation studies.
D1, D2 represent superpositions of D0 and D0, depending on the tag. CP even (odd) tags imply
CP-odd (even) D → K0

Sπ
+π− decays and D0 (D0) flavour tags imply D0 (D0) decays to K0

Sπ
+π−.

Sample sizes are taken from [37].

4 Simulation studies

We test the algorithm in simulation studies where we generate charm threshold and B± →
DK± data according to the equations given in section 2.2 and 2.3, using theD0 → K0

Sπ
+π−

model in AmpGen [41]. We ignore backgrounds and efficiency effects in this study.
Using a modified version of AmpGen, we also generate data where we apply a change

to the phase of the decay amplitude relative to the model assumed in the fit. We will then
show how our new unbinned approach removes the bias this would inflict on the fitted
value of γ in a model-dependent approach, and how it does so with improved statistical
uncertainty compared to the binned method.

4.1 Simulated data

4.1.1 Sample sizes

In our default settings, we simulate charm threshold data according to the event numbers
given in BES III’s latest D → K0

Sπ
+π− analysis [37] and B± → DK±, D → K0

Sπ
+π−

event yields reported in LHCb’s latest measurement of γ in this decay mode [33]. The
BES III signal yields for the different tags are shown in table 1. For the purpose of
this study, we treat D0 → K−π+ and D0 → K+π− as pure flavour tags and ignore
the small contributions from D0 → K−π+ and D0 → K+π−. LHCb report a total of
12, 533 B± → DK±, D → K0

Sπ
+π− decays. We split this evenly between B− → DK− and

B+ → DK+, and generate on average 6267 events for each. This implies that, as in LHCb’s
analysis, our fits are entirely based on the distribution of events within each Dalitz plot, not
B+ → DK+ and B− → DK− event yields integrated across the whole Dalitz plot. We also
consider scenarios with larger datasets - by a factor of 100 for B± → DK±, D → K0

Sπ
+π−

and by a factor of 10 for charm threshold data.

4.1.2 Amplitudes with modified phases

We generate events based on the nominal amplitude model from BaBar and Belle’s joint
analysis [39], but with a modified phase difference

δmodel
D (p)→ δmodel

D (p) + f(p) (4.1)

– 9 –
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A ε µ+ σ+ µ− σ−

fsingle 1 0.1 2.0 0.75 0.90 0.25
fdouble subscript 1 1 0.1 1.0 0.25 1.25 1.0
fdouble subscript 2 −1 0.1 2.5 0.25 1.25 1.0

Table 2. Parameters used for scenarios two (fsingle) and three (fdouble), where for fdouble the top
row refers to the parameters with subscript 1 in eq. (4.4), and the bottom row refers those with
subscript 2. The parameters ε, µ and σ are given in units of

(
GeV/c2)2.

Note that the expressions for decay rates (2.4), (2.5), (2.7), (2.8), (2.21), (2.24) only depend
on the phase differences between AD and AD, never the absolute phases of AD or AD them-
selves. The function f(p) modifies this phase difference. Our approach assures that the
magnitudes |AD|, |AD| remain unchanged. We generate events according to three scenarios:

1. no phase modification, f0 = 0,

2. single Gaussian modification

fsingle(s+, s−|A, ε, µ+, µ−, σ+, σ−) = A erf
(
s+ − s−

ε

)
e−G(s+,s−|µ±,σ±), (4.2)

with

G (s+, s−) =


(s+−µ+)2

σ2
+

+ (s−−µ−)2

σ2
−

s+ > s−,

(s−−µ+)2

σ2
+

+ (s+−µ−)2

σ2
−

s+ < s−,
(4.3)

3. double Gaussian modification

fdouble(s+, s−) = fsingle(s+, s−|A1, ε1, µ+1, µ−1, σ+1, σ−1)
+ fsingle(s+, s−|A2, ε2, µ+2, µ−2, σ+2, σ−2).

(4.4)

The purpose of the error function, erf(x) ≡ 2√
π

∫ x
0 e
−t2 dt, in the definition of fsingle is

to implement the condition f(s+, s−) = −f(s−, s+) while providing a smooth transition
across the line s+ = s−. The parameter values used for scenarios two and three are given
in table 2. The phase modifications they induce are shown in figure 2, which shows fsingle
and fdouble, in radians. It can be seen that scenario two targets the region of the K∗ res-
onance, while scenario three has large phase modifications especially in the region of the
ρK0

S −K∗π interference. It is worth noting that the phase change relative to the nominal
model we consider here is up to ±1 radian, which is not a small shift.

4.1.3 Other input parameters

All samples are generated with the 2022 HFLAV [42] averages rB = 0.093, δB = 119.5◦, γ =
69.5◦, which corresponds to

x+ = −0.09186, y+ = −0.01455; x− = 0.05978, y− = 0.07124. (4.5)
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(a) Single peak bias. (b) Double peak bias.

Figure 2. The figures show the difference between the phase difference δD(s+, s−) of the nominal
amplitude model and the model with which the data are actually generated, for the two biased
scenarios considered.

4.2 Fit results

4.2.1 Order by order fits to individual samples

We perform fits with the model-dependent (MD) method and with the quasi model-
independent (QMI) method with phase-correction polynomials of order N = 1, 2, . . . , 9,
for one sample of each of the phase-modification scenarios. Beyond N = 9, fits converge
very slowly due to the large number of parameters. The results are shown in tables 3, 4,
and 5, in the format (fit result) − (input value) ± (uncertainty), in units of 10−2; the uncer-
tainty is that estimated by the MINUIT2 [43]-based AmpGen [41] fitter (validated below,
in section 4.2.2). We see in table 3, where there is no phase modification relative to the
nominal amplitude model, that the model-dependent and the quasi-model-independent fit
both reproduce the input values, within uncertainties. For correction polynomials of order
N > 3, the fit results differ slightly between the methods, but far less than the statistical
uncertainty. The validation studies below show that this does not lead to a systematic
bias. Tables 4 and 5 show that the phase modifications induce a significant bias in x±, y±
in the model-dependent method, and how the QMI method recovers from it. The changes
in the fit results for x±, y± between the model-dependent and the higher order QMI fits
correspond to changes in the estimated values of rB, δB, and γ of 0.006, 11◦, and 7◦ for
the double-Gaussian bias (table 5), and of 0.021, 23◦, and 0.3◦ for the single-Gaussian bias
(table 4). An interesting feature is that the uncertainties on x± and y± do not appear to
be affected significantly by the additional fit parameters. This conclusion is confirmed in
the validation studies shown below.

4.2.2 Fits to 100 pseudoexperiments

We generate 100 pseudoexperiments and fit them with the model-dependent method, the
binned method, and the QMI method. The QMI method uses a 6th order correction
polynomial. Table 6 shows the mean and standard deviation of the distribution of residuals
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Order ∆x+ · 100 ∆y+ · 100 ∆x− · 100 ∆y− · 100
MD −0.9± 0.8 −1.1± 1.1 −1.5± 0.9 +1.0± 0.9
1 −0.9± 0.8 −1.0± 1.1 −1.5± 0.9 +0.9± 0.9
2 −0.9± 0.8 −1.0± 1.1 −1.5± 0.9 +1.0± 0.9
3 −0.9± 0.8 −1.2± 1.1 −1.5± 0.9 +1.1± 0.9
4 −0.8± 0.8 −1.1± 1.1 −1.6± 0.9 +1.2± 0.9
5 −0.9± 0.8 −1.1± 1.1 −1.6± 0.9 +1.2± 0.9
6 −0.9± 0.8 −1.1± 1.2 −1.5± 0.9 +1.1± 0.9
7 −0.9± 0.8 −1.1± 1.2 −1.5± 0.9 +1.1± 0.9
8 −0.8± 0.8 −1.3± 1.2 −1.6± 0.9 +1.3± 0.9
9 −0.8± 0.8 −1.4± 1.2 −1.6± 0.9 +1.3± 0.9

Table 3. Order to order fit for the unbiased δD sample.

Order ∆x+ · 100 ∆y+ · 100 ∆x− · 100 ∆y− · 100
MD −1.8± 0.8 +4.0± 1.1 +1.0± 0.9 −3.7± 0.9
1 −0.6± 0.8 +1.0± 1.0 +1.4± 0.9 −0.8± 0.9
2 −0.7± 0.8 +0.9± 1.0 +1.4± 0.9 −0.7± 0.9
3 −0.3± 0.8 +0.3± 1.1 +1.1± 0.9 +0.5± 1.0
4 −0.3± 0.8 +0.2± 1.0 +1.1± 0.9 +0.7± 1.0
5 −0.2± 0.8 +0.1± 1.1 +1.1± 0.9 +0.9± 1.0
6 −0.2± 0.8 −0.1± 1.0 +1.0± 0.9 +0.9± 1.0
7 −0.2± 0.8 −0.2± 1.0 +1.0± 0.9 +1.0± 1.0
8 −0.2± 0.8 −0.3± 1.0 +1.1± 0.9 +0.9± 1.0
9 −0.2± 0.8 −0.2± 1.0 +1.1± 0.9 +0.9± 1.0

Table 4. Order to order fit for δD + fsingle(s+, s−) sample.

(i.e. fit result minus truth value) for these fits. Table 7 shows the corresponding value for
the pull, which is the residual divided by the uncertainty reported by the fit. The results
show that, in the absence of any phase modification, the model-dependent and the QMI
method both yield unbiased results with essentially the same uncertainty. The pulls for
the QMI method, and for the unbiased data also those for the model-dependent method,
show generally good agreement with the expected mean of zero and standard deviation
of one. For both methods, the uncertainty the fitter reports on x+ seems to be slightly
over-estimated. There appears to be a slight under-estimation of the y− uncertainty in the
fsingle configuration. The results with the two phase modification scenarios confirm that
the phase modifications induce significant biases in the fit results of the model-dependent
method, while the QMI results remain unbiased.
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Order ∆x+ · 100 ∆y+ · 100 ∆x− · 100 ∆y− · 100
MD +1.3± 0.8 +1.2± 1.1 −1.0± 1.3 −3.3± 1.3
1 +1.1± 0.8 +0.5± 1.0 −1.3± 0.8 −0.6± 1.0
2 +0.5± 0.9 +0.1± 1.0 −1.0± 0.8 +0.4± 1.0
3 +0.6± 0.8 0.0± 1.0 −1.2± 0.8 +0.4± 1.0
4 +0.3± 0.8 +0.4± 1.0 −0.8± 0.8 +0.3± 1.0
5 +0.4± 0.8 +0.5± 1.0 −0.7± 0.8 +0.3± 1.0
6 +0.3± 0.8 +0.7± 1.0 −0.8± 0.8 +0.4± 1.0
7 +0.3± 0.8 +0.5± 1.0 −0.9± 0.8 +0.7± 1.0
8 +0.3± 0.8 +0.5± 1.0 −0.9± 0.8 +0.7± 1.0
9 +0.3± 0.8 +0.5± 1.0 −0.7± 0.8 +0.7± 1.0

Table 5. Order to order fit for δD + fdouble(s+, s−) sample.

phase Method (∆x+ ± σx+) (∆y+ ± σy+) (∆x− ± σx−) (∆y− ± σy−)
mod. ×100 ×100 ×100 ×100

f0 = 0
QMI −0.1± 0.6 +0.1± 1.1 −0.1± 1.0 0.0± 1.0
MD −0.1± 0.6 +0.1± 1.1 −0.1± 0.9 −0.1± 1.0

fsingle
QMI +0.1± 0.7 +0.1± 1.1 +0.4± 0.9 −0.1± 1.1
MD +0.9± 0.7 +3.6± 1.1 +0.3± 0.9 −3.7± 1.2

fdouble
QMI +0.1± 0.7 −0.0± 1.0 +0.1± 0.9 +0.2± 1.0
MD +0.5± 0.7 +1.8± 1.1 +0.1± 1.0 −1.6± 1.0

Table 6. Residuals from 100 fits to samples without any phase modification, with the quasi-
model-independent (QMI) and the model-dependent (MD) method. The QMI fit uses a 6th order
phase-correction polynomial. Results are shown in the format (mean result) − (input value) ±
(standard deviation), in units of 10−2. The standard deviation σ is that of the distribution of
fit results; the uncertainty on the mean is σ/

√
100. The uncertainty on the standard deviation,

σ/
√

200, varies between 0.04× 10−2 and 0.08× 10−2.

Table 8 compares the uncertainties obtained with our new method to those from the
model-dependent and the model-independent binned method. Studies in [22] show that the
unbinned model-independent method introduced there, which is based on projecting the
two-dimensional Dalitz plot onto one dimension, results in a statistical uncertainty on γ be-
tween that of the model-dependent and the binned method. The authors of [23] report for
their Kolmogorov-Smirnov-inspired unbinned method, for similar simulated event numbers
as used in our studies, a statistical uncertainty on γ of ∼ 5◦. However, because of the dif-
ferent values assumed for γ and δB and differences in the implementation of the amplitude
model, comparing the results from [23] with those in table 8 is not straightforward.
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phase-mod Method ∆x+
σx+

∆y+
σy+

∆x−
σx−

∆y−
σy−

f0 = 0
QMI −0.12± 0.82 +0.07± 1.01 −0.12± 1.11 −0.02± 1.06
MD −0.08± 0.82 +0.13± 1.01 −0.07± 1.06 −0.12± 1.01

fsingle
QMI +0.22± 0.89 −0.07± 0.93 +0.16± 1.08 +0.07± 1.28
MD +1.10± 0.85 +3.42± 1.03 +0.36± 1.03 −3.85± 1.21

fdouble
QMI +0.17± 0.90 +0.07± 0.94 +0.02± 0.99 +0.13± 1.01
MD +2.04± 0.87 +1.07± 0.95 −0.93± 1.16 −1.81± 1.24

Table 7. Pull results from 100 fits with the quasi-model-independent (QMI) and the model-
dependent (MD) method, for each of the three phase-modification scenarios. The QMI fit uses a 6th

order correction polynomial. Results are shown in the format (mean pull) ± (standard deviation).
The standard deviation is that of the pull distribution (rather than the uncertainty on the mean).
The uncertainty on the mean is 0.1, that on the standard deviation is 0.07. The substantial (and
expected) biases observed for the model-dependent method for the fits with phase-modification
disappear with the QMI method.

σx+ σy+ σx− σy− σrB σδB
σγ

×102 ×102 ×102 ×102 ×102

binned fit (fixed ci, si) 0.886 1.482 1.189 1.328 0.879 5.33◦ 5.09◦

unbinned QMI 0.780 1.091 0.877 0.945 0.664 4.24◦ 4.21◦

unbinned MD 0.784 1.081 0.878 0.939 0.660 4.19◦ 4.23◦

Table 8. Comparing the QMI method with our implementation of the model-dependent method
and the binned method with “optimal” binning (defined in [34]), for the case with no phase mod-
ification. The uncertainties given are the average of those reported by the fitter for 100 fits. For
the binned fit, we fix ci and si. In contrast to the QMI results, the uncertainties from the binned
fit therefore do not include the effect of the finite sample size at the charm threshold, which leads
to an additional uncertainty on γ of 1.2◦ [36].

In our implementation of the binned method, we base the binning on the same ampli-
tude model that we use to generate the simulated data, which should result in a slightly
optimistic performance of the binned method. We test all binning schemes defined in [34]
and find that the “optimal” binning scheme leads to the best results. In our binned fit, we
fix ci and si to their true value (according to our model), so that the uncertainty on γ for
the binned method does not include the contribution from the uncertainty on ci and si.
The sensitivity studies reported in [37] show that, for the “optimal” binning scheme, taking
into account the measurement uncertainties on ci and si leads to an additional uncertainty
on γ of 1.2◦. This results in a total uncertainty on γ of 5.1◦⊕ 1.2◦ = 5.2◦, which is, on the
same simulated signal data, improved to 4.2◦ by the new method introduced, here.
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LHCb σx+ · 102 σy+ · 102 σx− · 102 σy− · 102 σγ (◦)
Lumi MD bin MD bin MD bin MD bin MD bin
×1 0.780 0.886 1.081 1.482 0.878 1.189 0.939 1.328 4.23 5.09
×100 0.078 0.089 0.108 0.149 0.088 0.118 0.093 0.134 0.42 0.52

Table 9. Uncertainties on fit parameters for the model-dependent method and the binned method
with fixed ci, si for 1× and 100× the dataset analysed by LHCb in [33]. The uncertainties are
the average of those reported by the fitter for fits to 100 pseudoexperiments, generated without
backgrounds or detector effects. The statistical uncertainty on the mean of σγ ranges from 1% to
3% of its value.

Lumi scenario:
LHCb BES III σx+ · 102 σy+ · 102 σx− · 102 σy− · 102 σγ (◦)
×1 ×1 0.780 1.091 0.877 0.945 4.21
×1 ×10 0.773 1.062 0.866 0.924 4.18
×100 ×1 0.079 0.122 0.090 0.104 0.45
×100 ×10 0.078 0.115 0.089 0.099 0.43

Table 10. Uncertainties on fit parameters for the QMI method, for scenarios with 1× and 100×
the dataset analysed by LHCb in [33], and 1× and 10× the dataset analysed by BES III in [36, 37].
The uncertainties are the average uncertainty reported by the fitter for ∼ 100 simulated datasets,
generated without backgrounds or detector effects. The statistical uncertainty on the mean of σγ
is ∼ 1% of its value.

4.2.3 Alternative sample sizes

For the studies above, we used sample sizes corresponding to those reported in recent
publications by BES III [36, 37] and LHCb [33]. Here we consider possible future datasets
that are considerably larger, 10× as large for BES III and 100× as large for LHCb. The
results for the QMI method are presented in table 10. The results for the model-dependent
method and the binned method with fixed ci, si are given in table 9. The results for the
binned method, with fixed ci, si, represent the best possible uncertainty on γ that can
be reached with this method in the limit of infinitely large threshold data sets, given the
8-bin-pair binning scheme and other parameters used in this study. It is possible that a
finer binning would improve the uncertainty for the larger data set.

The uncertainties for all methods studied scale to a good approximation with 1/
√
NB,

where NB is the number of B± → DK±, D → K0
Sπ

+π− events. That this is so for the QMI
method is not a priori obvious, given that it depends also on ψ(3770)→ DD (i.e. CLEO-c
or BES III) data. This suggests that the QMI method is very efficient in extracting informa-
tion on δD(s+, s−) not only from threshold data, but also from B± → DK±, D → K0

Sπ
+π−.

For the 1×LHCb scenario, the lack of significant improvement in the uncertainty on
γ for the 10× larger BES III sample is consistent with the earlier observation that the
QMI method with the 1×LHCb and 1×BES III scenario already achieves effectively the
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same statistical precision as the model-dependent method (i.e. the best possible for the
B± → DK±, D → K0

Sπ
+π− dataset). For the 100×LHCb dataset, the larger BES III

sample improves the precision slightly from 0.45◦ to 0.43◦, compared to the benchmark of
0.42◦ set by the model-dependent method.

Overall, our results indicate that, with the QMI method introduced here, the statistical
precision on γ in B± → DK±, D → K0

Sπ
+π− remains close to the optimum defined by the

model-dependent method not only with current datasets, but also much larger B± → DK±

datasets that might become available in the future.

5 Conclusion

We have introduced a novel unbinned quasi model-idependent (QMI) method for the mea-
surement of γ in B± → DK± decays, with input from quantum-correlated charm threshold
data. The method uses a polynomial to correct the phase of the D meson’s decay amplitude
model in an unbinned, model-independent way.

We studied the performance of the method using simulated B± → DK±, D →
K0
Sπ

+π− and ψ(3770) → DD signal events. The method produces unbiased results for
cases where discrepancies between the assumed amplitude model and the true model pro-
duce large biases in a model-dependent measurement. For realistic current and plausible
future sample sizes, the method achieves a statistical precision on γ that is effectively the
same as the optimum defined by the model-dependent method, without suffering from the
systematic uncertainty associated with the amplitude model. The statistical uncertainty
is significantly better than that of the binned model-independent method currently in use.

We expect that the QMI method will also be beneficial in the study of charm mixing
and the study of phases of decay amplitudes across the Dalitz plot.
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