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Abstract Measurements of Bose–Einstein correlations
played a crucial role in the discovery and the subsequent
detailed exploration of the Quark-Gluon-Plasma (QGP) cre-
ated in high-energy collisions of heavy nuclei. Such mea-
surements gave rise to femtoscopy, a flourishing sub-field of
high-energy physics, and there are important new directions
to explore and discoveries to be made in the near future. One
of these important current topics is the precise investigation
of the shape of the correlation functions utilizing Lévy-stable
sources. In this paper, we utilize Lebesgue’s dominated con-
vergence theorem and Fubini’s theorem to present a novel
method of calculating the shape of the two-particle correla-
tion functions, including the Coulomb final-state interaction.
This method relies on an exact calculation of a large part of
the necessary integrals of the Coulomb wave function and
can be utilized to calculate the correlation function for any
source function with an easily accessible Fourier transform.
In this way, it is eminently applicable to Lévy-stable source
functions. In this particular case, we find that the new method
is more robust and allows the investigation of a wider param-
eter range than the previously utilized techniques. We present
an easily applicable software package that is ready to use in
experimental studies.

1 Introduction

High energy heavy-ion physics aims at recreating the condi-
tions characteristic to the first few microseconds of our Uni-
verse and studying the matter that is present under such con-
ditions: the strongly interacting Quark Gluon Plasma (QGP)
[1–4]. Experiments observe the particles produced in heavy
ion collisions in order to draw conclusions about the proper-
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ties of this matter. An important class of observables is that
of momentum correlations of identical particles. In the case
of bosonic particles (e.g., pions or kaons), these are called
Bose–Einstein-correlations because they arise as a result of
the quantum statistical properties of the particles. They are
also called HBT correlations after Hanbury Brown and Twiss
[5], who first discovered a related effect in astronomy. These
correlations are connected to the space-time geometry of the
particle emitting source [6]; thus, they provide a vital tool to
study the matter produced in these collisions. These types of
measurements have been extensively studied for more than
60 years now [7], especially since the era of the Relativistic
Heavy Ion Collider (RHIC) started around the early 2000s
[8,9].

The usual way to experimentally study the source func-
tion is to assume a source shape (e.g., a Gaussian distribution)
characterized by a handful of parameters, calculate the cor-
relation function arising from such a source, then test this
assumption on the measured momentum correlation func-
tion. If the calculated correlation shape fits the data well
(in terms of statistical acceptability), one can extract the
source parameters and investigate their dependence on aver-
age momentum, centrality, collision energy, etc. One of the
most essential steps in such an analysis is thus the calculation
of the correlation function for a given source function.

As detailed below, if one neglects the final state inter-
actions of the produced particles, the correlation function
is given by the Fourier transform of the source function, a
relatively simple calculational step in most cases. However,
in the case of charged particles (such as charged pions, the
most frequent target of measurements), the correlation func-
tion is given by a more complicated integral transform of the
source function. In the process of fitting the source param-
eters to measurements, a frequently used method has been
to calculate the Coulomb integral only for a pre-defined set
of the parameter values and derive a “Coulomb correction
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factor” from it. In this way, however, there is an inherent dis-
tortion in the fitting procedure since the Coulomb effect is
calculated at some arbitrary parameter values instead of the
supposedly final, fitted ones. As experimental measurements
and phenomenological descriptions become more and more
refined, it becomes absolutely necessary that in the fitting
procedure, the Coulomb interaction is considered in a self-
consistent way. This necessitates the calculation of the men-
tioned Coulomb transform of the assumed source function
for arbitrary source parameters during the fitting procedure.

The simplest assumption for the source function is that of a
Gaussian distribution, and in the past decades, many aspects
of Gaussian correlation measurements were explored [10–
12]. However, as the experimental resolution and the accu-
mulated data increased throughout the years, an expectation
arose to better describe the correlation function’s shape [13].
One possibility is presented by a spherical harmonics expan-
sion [14]; another is to use a functional form for the source
that goes beyond the Gaussian approximation. To that end,
Lévy-stable distributions were utilized [15–17]. In this way, a
statistically acceptable successful description of the data was
achieved. The utilization of more and more general source
function assumptions, such as the mentioned Lévy distri-
butions, is thus another pressing motivation for developing
precise calculational tools to treat the Coulomb interaction.

In this paper, we present a new method for the calculation
of the Bose–Einstein correlation function with the Coulomb
interaction taken into account that is applicable to a wide
variety of source functions. The new technique relies on the
Fourier transform of the source function and is superior to
already known methods in several ways: computationally, it
is much cheaper and more stable than existing methods, and
conceptually it highlights the actual effect of the Coulomb
interaction on the correlation function in a straightforward
way. In this paper, we present the method for spherically
symmetric source functions. However, the generalization to
the non-spherical case is also being worked out (and will be
the subject of a follow-up publication).

The structure of this paper is as follows. In Sect. 2, we
detail the basic definitions and known methodology per-
taining to Bose–Einstein correlations and the effect of the
Coulomb interaction, paying particular attention to the role of
Lévy distributions as source functions. In Sect. 3, we present
the new method. It has some delicate mathematical intricacies
that are interesting on their own (so apart from the practical
benefits of our new method, its derivation might interest the
purely mathematically inclined reader as well). Some math-
ematical details are highlighted in Sect. 3, and some are left
to the Appendix. In Sect. 4, we verify our new method for
the case of Lévy-stable source functions. We find that the
technique is significantly helpful and augments experimen-
tal measurements by making the correlation function fitting
procedure easier. We also present a software package ready

to use for such measurements [18]. Section 5 summarizes our
findings, pointing to possible future applications and gener-
alizations.

2 Bose–Einstein correlation functions and the Coulomb
interaction

The definition of the observable two-particle correlation
function in a heavy-ion collision experiment is as follows:

C2( p1, p2) = N2( p1, p2)

N1( p1)N1( p2)
, (1)

where p1 and p2 are the particle momentum (three-)vectors,
N1( p) ≡ E dn

d3 p
is the single-particle invariant momen-

tum distribution (meaning the number of particles produced
within a given invariant volume element in momentum space,
and E is the particle energy corresponding to momentum p),
and N2( p1, p2) ≡ E1E2

d2n
d3 p1 d3 p2

is the two-particle invari-
ant momentum distribution, i.e., the number of particle pairs
produced with momenta p1 and p2 (and so with energies E1

and E2).

Before proceeding, let us introduce some appropriate
notations and variables. Three-vectors are denoted by bold-
face letters, four-vectors by standard typeset letters; e.g.,
p1 is the three-momentum, p1 ≡ (E1, p1) is the four-
momentum of particle 1. Lorentz products of four-vectors
are denoted by a dot; for the metric tensor we use the
gμν = diag(1,−1,−1,−1) convention. The scalar prod-
uct (Descartes inner product) of three-vectors is denoted by
writing the vectors next to each other. Below we deal with
functions of two sets of space-time coordinates, x1 ≡ (t1, r1)

and x2 ≡ (t2, r2); instead of these coordinates we can use
the center-of-mass coordinate X ≡ (T, R) and the relative
coordinates x ≡ (t, r) defined as

X := 1
2 (x1 + x2),

x := x1 − x2,
⇔ T := 1

2 (t1 + t2),
t := t1 − t2,

R := 1
2 (r1 + r2),

r := r1 − r2.

(2)

Similarly, besides the momenta of the particles, p1 and p2,

we use the average momentum four-vector K , as well as the
relative momentum four-vector Q, and use the three-vector
slices of these, K and Q:

K := 1

2
(p1+ p2), Q := p1− p2,

K := 1

2
( p1+ p2), Q := p1− p2. (3)

Since we are dealing with identical particles, their masses
are equal, m1 = m2 ≡ m. With respect to the momentum
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variables, we usually suppress the h̄ reduced Planck con-
stant, meaning that momentum vectors are also understood
as wave number vectors if the dimensions of the quantities
imply so; for example, we write a plane wave-like wave func-
tion of the r variable like ei Qr but measure Q in MeV/c like
a momentum variable.

The C2( p1, p2) correlation function introduced in Eq. (1)
above equals unity if the particle production is uncorrelated.
In high-energy nuclear collisions, there are a number of pro-
cesses that lead to C2 �= 1, i.e., correlated particle pro-
duction (collective flow, jets, resonance decays, etc.). For
identical bosons (such as charged pions), the main source
of correlation at low momentum difference is what is called
Bose–Einstein correlation, a quantum mechanical correlation
stemming from the indistinguishability of the particles. For
the simplest theoretical treatment of this, one can introduce
the source function S(x, p) ≡ S(t, r, p) as the probability
of a particle produced at space-time point x ≡ (t, r) with
momentum p. With this, the invariant momentum distribu-
tion is readily expressed as

N1( p) =
∫

d4x S(x, p), (4)

where d4x stands for dt d3r, i.e., the integration is taken
over the whole space-time; however, usually S has a finite
support or at least a rapid decrease in space and in time.
Note that for the space-time coordinates, we have used t
and r as independent variables. On the other hand, for the
momentum variable, we only write out p explicitly, with E
omitted, since for a given type of particle with mass m, E is
already determined by p as E = √

m2+ p2.

Alternatively, one can argue that the �
(1)
p (x) single-

particle wave function describing a particle with momentum
p is a plane wave, and thus

N1( p) =
∫

d4x S(x, p)
∣∣�(1)

p (x)
∣∣2 =

∫
d4x S(x, p), since

�(1)
p (x) = e−i p·x ⇒ ∣∣�(1)

p (x)
∣∣2 = 1. (5)

The essence of the description of the Bose–Einstein cor-
relation lies in the statement that the analog expression of
N2( p1, p2) that takes into account particle production at two
distinct space-time points x1 and x2 must be written up uti-
lizing the two-particle wave-function �

(2)
p1, p2

(x1, x2): [19]

N2( p1, p2) =
∫

d4x1 d4x2 |�(2)
p1, p2

(x1, x2)|2·
S(x1, p1)S(x2, p2), (6)

and that for bosons, �(2)
p1, p2

(x1, x2) is symmetric in the x1 and
x2 variables. If the final state interactions of the particles are

neglected, the wave function is a symmetrized plane wave,
denoted by �

(2,0)
p1, p2

:

�(2,0)
p1, p2

(x1, x2) = 1√
2

[
e−i p1·x1e−i p2·x2 + e−i p1·x2e−i p2·x1

]
.

(7)

For the modulus square of this wave function, one obtains

∣∣�(2,0)
p1, p2

(x1, x2)
∣∣2 = 1 + cos

(
Q · (x1−x2)

)
, (8)

and from this, after some simplifications, one gets the fol-
lowing expression for the correlation function (where the 0
superscript denotes that final state interactions are neglected):

C (0)
2 (p1, p2) = 1 + Re

S̃(Q, p1)S̃
∗(Q, p2)

S̃(0, p1)S̃∗(0, p2)
, (9)

with S̃(Q, p) being the Fourier transform of the source func-
tion:

S̃(Q, p) =
∫

d4x S(x, p)e−i Q·x . (10)

Typically the correlation function is written up as a function
of the average and relative momentum variables K and Q,

respectively, instead of p1, p2. The reason for this is that it
turns out that the dependence on Q is much stronger than
on K , so one almost always makes the so-called smoothness
approximation [20] that in Eq. (9), p1 ≈ p2 ≈ K in the
second argument of S̃. One then has

C (0)
2 (Q, K ) = 1 + |S̃(Q, K )|2

|S̃(0, K )|2 , (11)

and one can conceptually separate the Q and K dependence
by assuming that the source function S(x, K ) has a given
functional form (e.g., a Gaussian) as a function of x, and
the parameters of this functional form may depend on K .

By measuring the correlation function as a function of Q at
different K values, one can reconstruct the K -dependence of
the source parameters.

We can express the �(2,0) two-particle wave function in
terms of the center-of-mass system variables and the relative
variables as

�
(2,0)
Q,K (x, X) = e−2i K ·X · ψ

(0)
Q,K (x), (12)

where

ψ
(0)
Q,K (x) = 1√

2

[
e−i 1

2 Q·x + ei
1
2 Q·x]. (13)

In this form, we see that the relative motion and the center-of-
mass motion disentangle. In the case of non-vanishing final
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state interactions, the center-of-mass motion still retains its
plane-wave e−2i QX form. However, the form of the wave
function pertaining to the relative motion changes. In this
case, the two-particle wave function (now with the 0 super-
script omitted, owing to the presence of final state interaction)
is

�
(2)
Q,K (x, X) = e−2i K ·X · ψQ,K (x)

⇒ ∣∣�(2)
Q,K (x, X)

∣∣2 = ∣∣ψQ,K (x)
∣∣2

. (14)

Here the ψQ,K (x) part of the wave function describes the rel-
ative motion. It is symmetric to the x ↔ −x exchange (cor-
responding to the x1 ↔ x2 change), and its concrete form
depends on the interaction. We see that only this function
determines the object of interest, the modulus of the two-
particle wave function: the plane wave corresponding to the
free motion of the center of mass cancels.

With this notation, we may rewrite the expression of the
two-particle momentum distribution and the (utilizing the
smoothness approximation, p1 ≈ p2 ≈ K , just as above) as

N2(Q, K ) =
∫

d4x d4X S
(
X+ 1

2 x1, K
)
S
(
X− 1

2 x, K
)×

|ψQ,K (x)|2, (15)

N1(K )N1(K ) =
∫

d4x d4X S
(
X+ 1

2 x1, K
)
S
(
X− 1

2 x, K
)
.

(16)

So with a new definition, we have

C2(Q, K ) =

∫
d4x D(x, K )|ψQ,K (x)|2

∫
d4x D(x, K )

, (17)

where we introduced the D(x, K ) relative coordinate distri-
bution or spatial correlation function as

D(r, K ) ≡
∫

d4X S
(
X+ 1

2 x, K
)
S
(
X− 1

2 x, K
)
. (18)

Note that while S(x, p) is not necessarily an even function
of x, this D(x, K ) function is even in x . Taking this into
account, and that from Eq. (13), we have |ψ(0)

Q,K (x)|2 =
1 + cos(Q · x), we can write the correlation function in the
case of no final state interaction as

C (0)
2 (Q, K ) = 1 + D̃(Q, K )

D̃(0, K )
, where

D̃(Q, K ) =
∫

d4x D(x, K )e−i Q·x . (19)

We see that owing to the presence of the denominator in
Eqs. (17) and (19), the overall normalization of D (the inte-
gral over space-time, at any given K ) cancels from the mea-
surable C2 correlation function. To simplify our formulas, in
the following, we thus assume that D is normalized to unity
at any given K .

For actual calculations, it would be desirable to have the
time variable (in an appropriate reference frame) canceled
from the production described by S(x, p). The freeze-out
duration �τ is in principle not zero (indeed, a prime goal
of HBT studies is to measure �τ, and thus the order of
phase transition). However, as multiple calculations show
(see, e.g., Ref. [21] for an early exposition), the effect of �τ

being non-zero can essentially be factored into the geometric
(space-like) radii of the source function (with the time com-
ponent of the relative momentum, q0 being expressed with
the spatial components along the way). So in the following,
we write our formulas as if D(x, K ) was non-zero only if
t = 0, highlighting this by omitting the time-dependence
in the notation of our quantities, and remember that this is
understood in the sense that the effect of finite time parti-
cle emission was treated by incorporating its effects into the
geometrical radii of the source function. We thus have

C2(Q, K ) =
∫

d3r D(r, K )|ψQ,K (r)|2, (20)

specifically, for the case when final state interactions are
neglected,

C (0)
2 (Q, K ) = 1 +

∫
d3r D(r, K )ei Qr . (21)

We also appropriately change our notation at this point: since
we no longer need four-vectors, in the case of a three-vector
(denoted by bold letter), the same letter in standard typeset
indicates the magnitude of the vector, e.g., Q ≡ |Q|, r ≡ |r|.

In the case of the Coulomb interaction, the ψ(x) wave
function (a solution to the Schrödinger equation satisfying
appropriate boundary conditions) has a known form in the
non-relativistic case. This implies that one has to use the
center-of-mass frame of the particle pair (PCMS frame),
where their motion can be approximated to be non-relativistic
(relativistic effects are discussed in, e.g., Ref. [22]). In the
following thus, we take Q to be understood in this PCMS
frame and use the k = Q/2 notation, and (as customary for
such treatment of the Coulomb interaction) assume that the
simultaneity condition expounded above holds in PCMS. So,
in this case, we have

C2(Q) =
∫

d3r D(r)|ψk(r)|2, (22)
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where we dropped the K arguments for simplicity, but
remember that the source function depends on K through
the K -dependence of its assumed parameters, and use the
appropriately symmetrized ψk(r) Coulomb interacting out
state in the following form, well known in quantum mechan-
ical scattering theory (see, e.g., Ref. [23] for details):

ψk(r) = N ∗
√

2
e−ikr

[
M

(
1−iη, 1, i(kr+kr)

)+
M

(
1−iη, 1, i(kr−kr)

)]
. (23)

The η quantity appearing here is the so-called Sommerfeld
parameter:

η := mc2α

2h̄kc
, (24)

withα ≡ q2
e

4πε0

1
h̄c ≈ 1

137 being the fine structure constant. The
quantity N is the normalization factor of the wave function,
of whose square modulus is the so-called Gamow factor:

N = e−πη/2�(1+iη) ⇒ |N |2 = 2πη

e2πη − 1
, (25)

where �(z) is the Gamma function, and its simple properties
(such as z�(z) = �(z+1) and �(z)�(1−z) = π

sin(π z) ) lead

to the expression written up for |N |2. Finally, M(a, b, z) is
the confluent hypergeometric function,

M(a, b, z) = 1 + a

b

z

1! + a(a+1)

b(b+1)

z2

2! + · · ·

=
∞∑
n=0

�(a+n)

�(a)

�(b)

�(b+n)

zn

n! . (26)

Besides the (modulus square of the) wave function, an
assumption is needed about the functional form of the D(r)
pair distribution in order to calculate the correlation function
as in Eq. (22). As mentioned in Sect. 1, recent measurements
utilized Lévy-stable distributions as an assumption for D(r).
The appearance of Lévy-stable sources in high energy heavy-
ion collisions was expounded in [24]. Since then, several
mechanisms were proposed as the possible cause for this par-
ticular source shape, such as jet fragmentation [25], critical
phenomena [26], directional averaging and non-sphericality
[27], event averaging [27], resonance decays and hadronic
rescattering [28,29]. Out of these, each may result in Lévy-
shaped sources at different collision energies and systems: jet
fragmentation in e+e− or pp collisions, critical phenomena
at energies lower than the top RHIC or LHC energies, while
hadronic rescattering may occur generally. In [29], it was
shown that in realistic simulations of the hadronic medium,

Lévy sources appear on an event-by-event basis at various
stages of the evolution.

The symmetric Lévy distribution is a generalization of the
Gaussian function as it has an additional parameter α, called
the Lévy exponent. In the spherically symmetric case, it has
the following form:

L(α, R, r) := 1

(2π)3

∫
d3q eiqre− 1

2 |qR|α . (27)

By the known property of Fourier transforms, one sees that
this function is normalized to unity:

∫
d3r L(α, R, r) = 1. (28)

In the α = 2 case we recover a Gaussian distribution with
radius R; while for α = 1, a Cauchy distribution is obtained:

L(α=2, R, r) = 1

(2πR2)3/2 e
− r2

2R2 ,

L(α=1, R, r) = 8

π2R3

1(
1 + 4r2

R2

)2 . (29)

For α �= 2 and α �= 1, one cannot express L(α, R, r) with
a combination of simple functions. However, its asymptotic
expression is known: for every α �= 2, it decreases like a
power of r :

for large r, r2L(α, R, r) ∝ r−1−α, (30)

as exemplified in the above α=1 case as well.
Lévy distributions generalize Gaussian distributions also

in the sense that they retain the stability property of Gaussian:
the convolution of two Lévy distributions (with the same α

parameter) is again such a Lévy function, as can be directly
seen by inserting the above definition (a Fourier integral) and
performing the integrals. Specifically,

∫
d3ρ L(

α, R1, ρ+ 1
2 r

)L(
α, R2, ρ− 1

2 r
) = L(

α, R, r
)
,

with Rα = Rα
1 + Rα

2 . (31)

From another point of view, with a similar calculation, we
obtain that if the S(r, p) single-particle source function is
a Lévy-type function, then so is the D(r, p) two-particle
source function:

S(r, p) = L
(
α( p), R( p), r−r0( p)

)

⇒ D(r, p) = L
(
α( p), 21/α( p)R( p), r

)
. (32)

We could even allow p-dependent parameters as well as an
arbitrary r0( p) shift in S(r, p); this does not change the

123



1015 Page 6 of 18 Eur. Phys. J. C (2023) 83 :1015

shape of D(r, p), the quantity that appears in the expression
of the correlation function.

The stability property written up in Eq. (31) is the main
reason why Lévy distributions are expected to appear in
many different circumstances (as limiting distributions, just
as Gaussians). In the scenarios mentioned above, they also
naturally arise as particle production source functions in
heavy-ion collisions, the main object of interest in this paper.
Indeed, Lévy distributions have already been successfully
applied to describe such sources [15], after earlier measure-
ments indicated that a Gaussian description falls short of
such data [13]. However, as explained below, it turns out
that the actual calculation of the C2 correlation function for
Lévy-like D(r, p) is cumbersome even numerically; there is
thus a natural need for the development of such calculational
methods. This becomes even more pressing if one abandons
spherical symmetry or if one allows further generalizations
of the source function beyond the Lévy assumption.

3 A new method for the treatment of the Coulomb effect

As written up in Eq. (22) above, for calculating the correlation
function with the Coulomb interaction taken into account,
one has to integrate the modulus of the Coulomb interacting
wave function ψk(r) weighted with the D(r) two-particle
source function. This is deemed to be feasible only numer-
ically, owing to the complicated form of ψk(r), Eq. (23).
Nevertheless, as seen above in Eq. (21), in case of vanish-
ing Coulomb force, |ψk(r)| is a plane wave, and our desired
integral reduces to a Fourier transformation of D(r).

There is an important, if not the only interesting, class of
possible source function assumptions that have the property
of being defined and best calculable as a Fourier transform of
some simple function. A Gaussian source function obviously
falls into this category; however, a preeminent motivating
example is when the D(r) two-particle source function is
a Lévy distribution, whose Fourier transform, e−|Rq|α is an
easily computable fast decreasing function. In the following,
we thus assume that

D(r) = 1

(2π)3

∫
d3q f (q)eiqr . (33)

We assume that f (q) is an integrable function (over the whole
q space); this is a natural assumption if we want to inter-
pret this Fourier transform as a regular (Lebesgue-)integral.
We also assume D(r) to be an integrable function (over the
whole r space; this is naturally fulfilled whenever S(r) is
integrable, which is necessary to interpret S(r) as the func-
tion whose integral, according to Eq. (4), gives the single
particle invariant momentum distribution). These imply that
both f (q) and D(r) are bounded and continuous, as well as

that the (inverse) Fourier transform of D(q) is also a regular
integral:

f (q) =
∫

d3r D(r)e−iqr , (34)

and thus the normalization condition for D(r)means a simple
condition on f :

∫
d3r D(r) = 1 ⇔ f (q=0) = 1. (35)

In particular, the interaction-free correlation function has f
as the main component; from Eqs. (21) and (34),

C (0)
2 (Q) = 1 + f (Q). (36)

In the Coulomb interacting case, our goal is to calculate
the correlation function using Eq. (22); put together with
Eq. (33), we have

C2(Q) = 1

(2π)3

∫
d3r |ψk(r)|2

∫
d3q f (q)eiqr , (37)

where ψk(r) is the Coulomb wave function written up in
Eq. (23). The straightforward way to proceed used, e.g., in
Refs. [30,31] in the case of Lévy distributions, is then to cal-
culate D(r) from f (q) as a Fourier integral, then perform the
integral over r, in which |ψk(r)|2 enters. Numerically, this is
a daunting task in some cases. E.g., for the Lévy distribution,
the result of the Fourier transform (the function D(r) itself) is
only slowly decreasing (with a power-law-like behavior for
large r), while |ψk(r)|2 is an oscillating function; asymp-
totically a plane wave (up to logarithmic corrections). There
is also a conceptual awkwardness in this methodology: we
take a Fourier transform of f (q) and then subject the result-
ing D(r) function to an “almost inverse Fourier transform”
(i.e., the r-integral with the “almost plane wave” |ψk(r)|2
as a kernel) to finally arrive at C2(Q). In the interaction-
free case, |ψk(r)|2 is really a plane wave, and the result,
Eq. (36) indeed shows that these two Fourier transforma-
tions cancel each other. One would thus very much prefer a
calculational scheme where this “back and forth” transfor-
mation is not needed in its full numerical complexity. (For
example, calculating C2(Q) at high Q values, where owing
to the decrease of f (q) it is increasingly closer to unity, still
requires significant computational power because at higher
k, the oscillations of ψk(r) become faster and faster.)

The natural idea to resolve these problems is that we
would like to perform the Fourier transform of the interact-
ing |ψk(r)|2 function and “act” with this resulting integral
kernel (a function of k and q) on the f (q) function. In other
words, we would like to interchange the order of integrals in
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Eq. (37) so that we could write

C2(Q)
??↔ 1

(2π)3

∫
d3q f (q)

∫
d3r eiqr |ψk(r)|2. (38)

Regrettably, however, this is not possible in such a simple
form: since ψk(r) is asymptotically a plane wave, its mod-
ulus is definitely not an integrable function whose Fourier
transform could simply be calculated by an integral. In the
following, we work around this problem by carefully treat-
ing integrability and the interchange of integrals and limits,
a rarely found exercise in physics-motivated standard cal-
culations. The resulting formulas, however, are worth such
careful investigation. In doing so, we utilize some fundamen-
tal theorems about (Lebesgue) integrability.1 We outline the
main steps of our calculations below but leave some mathe-
matical and calculational details to the Appendix.

It turns out that we can proceed by inserting an exponential
“regularization”, e−λr into the integrand of Eq. (37), with a
positive real λ > 0 parameter, which at the end goes to 0.
With finite λ we can interchange the order of integrals and
finally arrive at

C2(Q) =
∫

d3r |ψk(r)|2
∫

d3q
(2π)3 f (q)eiqr

=
∫

d3r lim
λ→0

e−λr |ψk(r)|2
∫

d3q
(2π)3 f (q)eiqr

1.= lim
λ→0

∫
d3r

∫
d3q

(2π)3 e−λr |ψk(r)|2 f (q)eiqr

2.= lim
λ→0

∫
d3q

(2π)3 f (q)

∫
d3r e−λr |ψk(r)|2 eiqr . (39)

(Remember that Q is the variable of the resulting observable
C2 correlation function, Q = 2k, while q is a mere auxiliary
integration variable in this calculation.)

In Eq. (39), every step is justified mathematically, in par-
ticular, the exchange of the limit and the integral in Step
1 (by virtue of Lebesgue’s theorem), and the exchange of
the order of integrals in Step 2 (by virtue of Fubini’s theo-
rem); see Appendix A.1 for details. Nevertheless, the point is
that in the resulting final formula, the λ → 0 limit cannot be
exchanged with the q-integral. The way to proceed is to cal-
culate the r-integral for finite λ values, and then “simplify”
the λ → 0 limit to arrive at a final formula where there are no
explicit limits that would have to be evaluated numerically
(which would be very challenging if not impossible).

In this paper, we proceed with pair source functions that
are spherically symmetric; this also implies spherical sym-

1 These theorems provide the framework for the practical applications
of the theory of distributions. Indeed, the main idea behind our calcula-
tion is deeply connected to the theory of distributions, however, we do
not explicitly make use of any strictly distribution theory results.

metry of f (q), which we highlight everywhere with an s in
the subscript. In the spherically symmetric case, we can per-
form the solid angle integral in the Fourier integral, arriving
at the following expression of D(r):

f (q) ≡ fs(q) ⇒ D(r) ≡ D(r)

= 1

2π2r

∫ ∞

0
dq q sin(qr) fs(q).

(40)

Following the exact same steps as in Eq. (39), with this
expression for the spherically symmetric D(r) we have

C2(Q) = 1

2π2 lim
λ→0

∫ ∞
0
dq q2 fs(q)

∫
d3r e−λr sin(qr)

qr
|ψk(r)|2.

(41)

Note that while ψk(r) depends on the direction of k = Q/2,

the result of this integral indeed only depends on the magni-
tude Q, after performing the r-integral.

As a next step, we substitute ψk(r) from Eq. (23). The
modulus square results in four terms (from each pairings
of the different M(a, b, z) functions). With an appropriate
r → −r change of variable in two of these, we are left with
only two different terms:

C2(Q) = |N |2
2π2 lim

λ→0

∫ ∞
0
dq q2 fs(q)

[
D1λs(q) + D2λs(q)

]
, where

(42)

D1λs(q) =
∫

d3r
sin(qr)

qr
e−λr M

(
1+iη, 1, −i(kr+kr)

)×
M

(
1−iη, 1, i(kr+kr)

)
, (43)

D2λs(q) =
∫

d3r
sin(qr)

qr
e−λr M

(
1+iη, 1, −i(kr−kr)

)×
M

(
1−iη, 1, i(kr+kr)

)
. (44)

The integrals of Eqs. 43and 44 are calculated in Appendix A.2;
the utilized method is similar to that of Nordsieck [32]. In
our case, the result is

D1λs(q) = 4π

q
Im

[
1

(λ−iq)2

(
1+ 2k

q+iλ

)2iη×

2F1

(
iη, 1+iη, 1, 4k2

(q+iλ)2

)]
, (45)

D2λs(q) = 4π

q
Im

[
(λ−iq−2ik)iη(λ−iq+2ik)−iη

(λ−iq)2+4k2

]
, (46)

where we make use of the (ordinary) hypergeometric func-
tion:

2F1
(
a, b, c, z

) = 1 + ab

c

z

1! + a(a+1)b(b+1)

c(c+1)

z2

2! + · · ·
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=
∞∑
n=0

�(a+n)�(b+n)

�(a)�(b)

�(c)

�(c+n)

zn

n! . (47)

This power series is valid only for |z| < 1, however, the
domain of 2F1(a, b, c, z) can be extended to any z com-
plex number arguments by analytic continuation; see e.g.
Ref. [33].

The next step is then to try to evaluateC2(Q) as in Eq. (42)
from these expressions of D1λsand D2λs . For this, we need
to take the λ → 0 limit in a careful way. It turns out that
as λ approaches 0, the functional forms of D1λs and D2λs

become ill-behaved; the desired limit (of the result of the
q-integral) cannot simply be expressed as some limiting q-
function multiplied by fs(q) and then integrated. Instead, in
the final expression, one has to take a specific linear func-
tional of fs(q).2 With leaving some intermediate steps to
Appendix A.3, in the following section, we begin by writing
up the main result of our calculation for C2(Q).

4 Results and discussion

4.1 The new formula for C2(Q)

Starting from the expression of C2(Q) from Eq. (42), and
substituting D1λs and D2λs from Eqs. (45) and (46), a careful
utilization of Lebesgue’s theorem (detailed in Appendix A.3)
allows one to perform the remaining λ → 0 limit in Eq. (42).
We thus arrive at the main result of our new method for
calculating the Coulomb interacting C2(Q), which can be
summarized as follows:

C2(Q) = |N |2
(

1 + fs(2k) + η

π

[A1s + A2s
])

, (48)

where the A1s and A2s terms are the following functionals
of fs(q):

A1s = −2

η

∫ ∞

0
dq

fs(q)− fs(0)

q
Im

[(
1+2k

q

)2iη

×

2 The situation is similar in the well-known much simpler case when
one approximates the Dirac delta with ever narrower and higher peaks
with area of unity. Consider the following identity:

lim
λ→0

∫ ∞

−∞
dx

1

π

λ

λ2+(x−x0)2 f (x) = f (x0).

Based on this, one can say that the narrower and higher Lorentz curves
“approximate the δ(x−x0) delta function”; the meaning of this state-
ment is essentially the same as the displayed identity. From a practical
point of view, the benefit of this formula is that instead of numerically
performing some λ → 0 limit of the result of the left-hand side integral,
the right-hand side provides a much simpler calculational statement (by
requiring just to evaluate the f function at a given x0 point); however,
this simpler statement is no longer a true integral transformation acting
on f.

2F1

(
iη, 1+iη, 1,

4k2

q2 −i0
)]

, (49)

A2s = −2

η

∫ ∞

0
dq

fs(q)− fs(2k)

q−2k

q

q+2k
Im

(q+2k)iη

(q−2k+i0)iη
.

(50)

If η → 0 (either by letting k → ∞, or by formally turning
off the Coulomb force), A1s and A2s take on finite values
(because both the η denominator and the imaginary values
of the denoted quantities go to 0). So for η → 0, in Eq. (48)
the contributions ofA1s andA2s vanish (where they are again
multiplied by η); we wrote the η factors in the way we did to
highlight this feature.

Note also that in Eq. (48), the effect of Coulomb inter-
action enters in a straightforward, “traceable” way. Omit-
ting |N |2 as well as the A1s, A2s terms, and recalling
that Q = 2k, we simply have Eq. (36), the result for the
interaction-free case. Including the |N |2 factor (but not A1s

and A2s) is the so-called Gamow correction, the simplest
approximate treatment of the Coulomb interaction: it treats
the source as point-like for the Coulomb integration (but not
for the calculation of the interaction-free correlation func-
tion). The A1s and A2s terms can thus be thought of as the
effect of the source being not point-like; the parts of the corre-
lation function that is neglected by the Gamow prescription.

In our normalization, fs(0) = 1; however, we retained
fs(0) in Eq. (49) to highlight that the fraction containing the
fs function is a well-defined function even around q = 0
(provided that fs is continuously differentiable). Similarly,
the fraction containing fs in the expression of A2s, Eq. (50),
is also a well-defined function for continuously differentiable
fs, even around q = 2k. In fact, we can loosen the require-
ment of fs being continuously differentiable. The more gen-
eral assumption under which the above formulas are derived
is explained (along with other details) in Appendix A.3
around Eqs. (82) and (83). Here we just remark that this more
general assumption is satisfied already if f (q) is everywhere
continuously differentiable, and also in case of Lévy distri-
butions (for which f (q) is not differentiable at the origin if
α ≤ 1).

Power functions of complex variables are understood in
the strictly single-valued function sense: for z, w ∈ C,

zw := exp(w Ln z), where exp is an entire function, its
inverse however, Ln z ≡ log(|z|) + iargz, has a branch cut
along the R

−
0 negative real line (owing to the jump of arg z,

the phase of z, from π to −π, when crossing this line in
a counterclockwise direction). This branch cut along R

−
0 is

inherited by the power function zw as a function of z, when-
ever w /∈Z. So when taking a power of a quantity that is on
this branch cut, we have to specify which side of the cut we
are on. This is the reason for the +i0 term in Eq. (50). Also
when one defines the 2F1(a, b, c, z) hypergeometric func-
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tion for |z| ≥ 1, that is, outside the convergence radius of the
power series in Eq. (47), one encounters a branching point
at z = 1, and the usual convention places the branch cut on
the [1,∞] ⊂R

+ real line. The −i0 term in Eq. (49) specifies
which side of this cut we are on.

4.2 Utilizing the new formula for Lévy-stable sources

Before delving into the details of the applied computational
methods, in Fig. 1, we show the main results of our cal-
culations, i.e., the C2(Q) correlation functions calculated
for Lévy-stable source distributions L(α, R, r), separately
for pion–pion and kaon–kaon pairs. Different colors denote
different Lévy scale R values, while the dashed and solid
lines correspond to the Lévy exponent α values of 0.6 and
2, respectively. Correlation functions with α between these
two extremal values are illustrated with a filled area. In the
interaction-free case, for any given R, correlation functions
take the same value for any α at one specific Q > 0 value:
C (0)

2 (Q = h̄c/R) = 1 + 1/e. In the case when Coulomb
interaction is included, the curves with different α values still
intersect each other at approximately the same point (for a
given R), in the vicinity of Q ≈ h̄c/R. However, in this case,
theC2(Q ≈ h̄c/R) values have an R dependence. Moreover,
the intersection of all the curves is only approximate (albeit a
very good one); higher zooming around the apparent “nodes”
would tell the curves apart.

4.3 Testing the final numerical integral

As described above in Eq. (48), for the correlation function,
two numerical integrals have to be performed. For a reason-
able fs(q) function, such as the one for Lévy distributions,
the integrands there are particularly well-behaving (non-
oscillating, smooth) functions. The integrals over q ∈ R

+
0

are best transformed to integrals over the [0, 1] interval, with
a new integration variable x introduced separately on the
q ∈ [0, 2k] and the q ∈ [2k,∞] intervals as q = 2kx, and
q = 2k

x , respectively. The integrands turn out to be well-
behaving “tame” functions of this new x variable; they are
written up as

A1s = − 2

η

∫ 1

0
dx Im

[
fs(2kx) − fs(0)

x

(
1+ 1

x

)2iη

×

2F1

(
iη, 1+iη, 1, 1

x2 −i0
)
+ (51)

fs
( 2k
x

) − fs(0)

x

(
1+x

)2iη
2F1

(
iη, 1+iη, 1, x2−i0

)]
,

A2s = − 2

η

∫ 1

0
dx

sin
(
η log 1+x

1−x

)
x(x+1)

[
fs

( 2k
x

) − fs(2k)

1−x
−

x2eπη fs(2kx) − fs(2k)

1−x

]
. (52)

The integrals can then be evaluated using the rectangle
method or the trapezoidal rule, but since the individual func-
tion evaluations have a high cost in terms of CPU time and in
practical applications such as optimization (fit) procedures,
the final result has to be calculated several thousands of times
at a given Q, it is beneficial to search for methods requiring
fewer evaluations. We find that the Gauss–Kronrod quadra-
ture formula [34] provides an acceptable solution for this.
This method works well in our case because the function to
be integrated is changing fast near 0 and 1 but very slowly
in the middle. Hence a varying bin width has to be applied,
and such naturally arises from the Gauss–Kronrod iteration.

We utilized the boost C++ library to perform this inte-
gral and find that 15 nodes provide a fast converging result.
The number of function evaluations and the integral results
are shown in Fig. 2. Here we chose a large Q value, as
the accuracy of the original numerical calculations, when
one directly calculates the integral with |ψk(r)|2, decreases
towards large Q, and hence accuracy can be well tested. The
integral result changes on the order of 10−6, and even on that
scale, it converges when the number of maximum iterations
is set to 3−4. It is also important to note that the typical order
of magnitude of the bin-by-bin statistical uncertainties of a
correlation function measured in high-energy experiments is
significantly higher than the change in the integral values
shown in Fig. 2. If the tolerance parameter of the quadrature
is larger than 10−3, then the integral result differs slightly
more from the plotted results. However, beyond that, if tol-
erance is at least 10−3, increasing it further does not modify
the integral result. On the other hand, the number of function
evaluations increases fast, especially if the tolerance is very
small and the number of iterations is large. Hence an optimal
solution (analyzing results similar to Fig. 2 for many R, α,

and Q values) is provided by a tolerance value of 10−3 and
a limit of 3 for the maximal number of iterations. With this,
one integral requires up to a few hundred function evalua-
tions, suitable for simultaneously fitting many experimental
C2(Q) datasets.

4.4 Comparison with the original numerical integration
method

After carefully testing the reliability of the Gauss–Kronrod
numerical integral, we proceeded with comparing the new
calculation to a previously utilized integral method based on
Eq. (37), and used, e.g., in Ref. [31]. The previous method
requires significantly more computational effort to achieve a
reasonable precision at small α or large R values. In that case,
the values of the correlation function were pre-calculated for
various α and R values and saved in a large lookup table; from
this table, an interpolation can be used to get the correlation
function for any parameter combinations. In the following, let
us call our new approach “wave function Fourier method” and
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Fig. 1 Example correlation functions for pions (left) and kaons (right), plotted for four different R and two α values. At a given R value, the shape
of the correlation function with increasing α values from α = 0.6 to α = 2 goes smoothly through the shaded region

Fig. 2 The result of the integral for R = 6 fm and α = 1.4, at
Q = 0.2 GeV/c (left) and the number of required function calls (right).
Note that the integral result is represented as (1 −C2(Q)) · 104, so the

differences are on the order of 10−6. Both plots are shown as a function
of the tolerance and the number of maximal iterations allowed in the
Gauss–Kronrod integral

denote the result with WFFC2(Q). The previous method with
the pre-calculated lookup table is denoted with tableC2(Q).

To illustrate the difference between the two methods, we
plot �C2(Q) = tableC2(Q)−WFFC2(Q) for various α and R
values, as shown in Fig. 3. We find that �C2(Q) has a small
dependence on Q, generally its magnitude is larger at larger
Q values. It is also evident that the difference between the
two methods is largest at the smallest α values, as expected.
To better illustrate the dependence of �C2(Q) on R and α,

in Fig. 4 we plot the Q-average 〈�C2(Q)〉 values. It can
be clearly seen that the �C2(Q) difference between the two
methods is smallest at large α and small R values.

The conclusion of this comparison is that, on one hand, we
can be reasonably assured that our new methodology works
well; as cautious users, we really strive for numerical veri-
fication, even if one is convinced by the flawlessness of the
mathematical derivation. On the other hand, our new method-
ology offers, at a significantly lower numerical cost, a way of
calculating the C2(Q) correlation function more robust than
the previous method, especially at large Q values. For this
reason, we find that the new method is ready to be used in
experimental analyses of measured C2(Q) correlation func-
tions.
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Fig. 3 Difference between the correlation function calculated with a
numerical integral method described in Ref. [31] (tableC2(Q)) and the
correlation function calculated with the wave-function Fourier method
described in the current paper (WFFC2(Q)). �C2(Q) is plotted for 6

different α values and two R values, for pions (left) and kaons (right)
separately. At a given α value, �C2(Q) goes smoothly through the
shaded region when increasing R values from R = 3 fm to R = 12 fm

Fig. 4 Relative momentum averaged 〈�C2(Q)〉 as a function of R and α for pions (left) and kaons (right)

5 Summary and outlook

In summary, we presented a novel method for calculating
Bose–Einstein correlation functions with the Coulomb effect
incorporated. Our method can be applied to any particle
emitting source function assumptions that are expressed as a
Fourier transform. In this way, our method starts directly from
the interaction-free correlation function, which is the Fourier
transform of the source function. The integrals necessary for
our calculational scheme previously have eluded exact calcu-
lations, often resulting in experimental analyses using a fixed
source size when correcting for the Coulomb effect. With
precise data, however, this is no longer a viable method; our
approach allows for simple and more exact handling of the
Coulomb final state interactions. We demonstrated that for
Lévy-stable sources (including the Gaussian limiting case),
the results are close to those obtained with numerical inte-
grals previously. On the other hand, at extreme values of the

Lévy source parameters (small Lévy exponent α, and large
Lévy scale R), the new method is more precise and reliable.
Furthermore, the new method allows for a direct and fast fit-
ting of correlation functions obtained in experiments. We also
published a software package [18] that is easily applicable
and ready to use in experimental analyses.

The natural next step is to extend the methodology to the
case when the assumption of spherical symmetry is rid of. In
that case, one would have a final formula that is a linear func-
tional of the Fourier transform of the pair source function,
D(r), denoted by f (q) in this paper. It turns out that the nec-
essary integrals (similar to but slightly more complicated than
Eqs. (43) and (44) in this paper) are also readily calculable,
and then the necessary limit when the regularizing parameter
is removed (denoted as λ → 0 in this paper) is also manage-
able. The resulting formulas are, however (owing to the inher-
ently more complex nature of the non-spherically symmetric
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case) somewhat more complicated, thus their analysis and
implementation will be the subject of a separate publication.

Another plausible future generalization is taking more
complicated final state interaction schemes, such as strong
interaction, into account, along the lines of Ref. [31]. It is
also worthwhile to mention that besides identical particle cor-
relations (which were the focus of the current work), there
is considerable interest in non-identical particle correlations
[35,36]. Final state interactions, both Coulomb and strong
interactions, play an important role in such correlations as
well. The calculational scheme used in this paper may natu-
rally be adapted to such situations, possibly by omitting the
wave function symmetrization, however, this falls outside the
scope of the current paper.
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Appendix A: Assorted mathematical and calculational
details

In the Appendices, we present the calculations that were left
out of the body of the paper. We rely heavily on complex
analysis as well as on some intricacies of (Lebesgue) inte-
grability; the latter of which we give a brief summary here. (A
more detailed discussion can be found in any of the standard
textbooks on mathematical analysis, such as Ref. [37].)

A.1 Discussion of Eq. (39)

The focal point of our method of circumventing the need for
a back-and-forth integral transformation of the Fourier trans-
form of the source function (denoted by f (q) in Eq. (33) and
from that on) is Eq. (39), the mathematical justification of
whose steps is thus essential. The main ingredients are con-

ditions of integrability, Lebesgue’s dominated convergence
theorem (or simply the Lebesgue theorem), and Fubini’s the-
orem. A summary of these theorems from a practical point
of view is:

• Concerning Lebesgue integrability, the key is the modu-
lus of a function. A (real-valued, or complex-valued, or
any normed space valued) function F is integrable if and
only if |F | is integrable. Also, if there is a G function for
which |G(x)| ≥ |F(x)| for almost all x, and G is inte-
grable, then F is also integrable. (Here, we denoted the
integration variable by x ; it can be of any type of real inte-
gration variable.) Conversely, if |G(x)| ≥ |F(x)|, and F
is not integrable, then neither is G.

• Let Fλ(x) be integrable functions, with λ as a param-
eter (either a continuous one or a discrete index), and
for almost all x let the pointwise limiting function
F(x) := limλ Fλ(x) exist (for any reasonable type of
limit; for example, λ → 0, or λ ≡ n → ∞). Lebesgue’s
theorem states that if there is a (λ-independent) integrable
G function for which for almost any x, |G(x)| ≥ |Fλ(x)|,
for any λ, then the integrals of the Fλ functions (the

∫
Fλ

values) converge, the limiting function F is integrable,
and the limit of the integrals is equal to the integral of the
limiting function, limλ

∫
Fλ = ∫

F, i.e., the limit and the
integral are interchangeable.
The key is the existence of the “dominant” G function:
in the case when there is no such function, none of the
statements of the theorem are necessarily true. A simple
(counter)example is the approximation of the Dirac delta
with functions whose pointwise limit is everywhere zero;
in this well-known case, one maybe does not even recog-
nize this peculiarity. However, for less explored cases
(like ours in this paper), one has to be careful when
interchanging limits and integrals, and then this theorem
comes in handy in many cases.

• Fubini’s theorem concerns multiple integrals, iterated
integrals, and the justification of interchange of integrals.
The main point is if an F(x, y) function is such that its
modulus is integrable in one order as a repeated inte-
gral; i.e., if the

∫
dx

( ∫
dy |F(x, y)|) integral exists, then

F itself is integrable in both orders, and these integrals
coincide:

∫
dx

∫
dy F(x, y) = ∫

dy
∫

dx F(x, y), i.e.,
the integrals are interchangeable.

The transformation in Eq. (39) is again written up, with the
intermediate steps slightly more detailed, as

C2(Q) =
∫

d3r |ψk(r)|2 D(r)

1.=
∫

d3r lim
λ→0

e−λr |ψk(r)|2 D(r)
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2.= lim
λ→0

∫
d3r e−λr |ψk(r)|2 D(r)

3.= lim
λ→0

∫
d3r

∫
d3q

(2π)3 f (q) e−λr |ψk(r)|2 eiqr

4.= lim
λ→0

∫
d3q

(2π)3 f (q)

∫
d3r e−λr |ψk(r)|2 eiqr . (53)

In Step 1 we inserted the e−λr regularizing factor; its limit
being limλ→0 e−λr = 1. Because D(r) is integrable, so is
it multiplied by |ψk(r)|2 (which is a bounded function), and
thus |ψk(r)|2 · |D(r)| is a good dominant function (that is,
integrable and greater or equal than the integrand, indepen-
dently of λ). So by virtue of Lebesgue’s theorem, we could
interchange the λ → 0 limit and the r-integral in Step 2. In
Step 3, we inserted the Fourier integral expression of D(r),
careful (yet) about the order of integrals. However, since
|eiqr | = 1, the double integrand here has the modulus that is
a product of | f (q)|, an integrable q-function (as assumed),
and an integrable r-function, e−λr |ψk(r)|2. So the repeated
integral of the modulus exists, from which it follows (by
Fubini’s theorem) that we can interchange the original inte-
grals as well; this is Step 4 here.

In the resulting right-hand side, we cannot perform the
λ → 0 limit in the integrands; that would mean the exchange
of the original r- and q-integrals, which is not possible, as
stated around Eq. (38). Instead, we have to calculate the inte-
grals here, and then perform the λ → 0 limit.

As a side note, we mention here, that this technique might
also be utilized elsewhere, where a similar exchange of inte-
grals are of interest. One such case is the investigation of the
femtoscopic sum rule, see, e.g., Ref. [38].

A.2 Calculation of D1λs and D2λs

In this Appendix, we derive the Eqs. (45) and (46), the results
of the integrals D1λs and D2λs, defined in Eqs. (43) and (44).
We utilize Nordsieck’s method [32], who applied a similar
technique to simplify a very similar integral that occurs in the
theory of bremsstrahlung and pair creation. We write up the
definitions (43)–(44) again, with a slight change of notation,
to express the sin(qr) function with exponentials:

D1λs(q) = 1

2i

[D(+)
1λs (q) − D(−)

1λs (q)
]
,

D2λs(q) = 1

2i

[D(+)
2λs (q) − D(−)

2λs (q)
]
, (54)

where D(±)
1λs (q) = 1

q

∫
d3r

e−λr

r
e±iqr×

M
(
1+iη, 1,−i(kr+kr)

)
M

(
1−iη, 1, i(kr+kr)

)
, (55)

and D(±)
2λs (q) = 1

q

∫
d3r

e−λr

r
e±iqr×

M
(
1+iη, 1,−i(kr−kr)

)
M

(
1−iη, 1, i(kr+kr)

)
. (56)

We use the following complex contour integral representation
of the confluent hypergeometric function:

M(a, 1, z) = 1

2π i

∮ (0+,1+)

dt etz 1
t

(
1− 1

t

)−a
, (57)

where the path is any closed curve that encircles the real
line segment [0, 1] once counterclockwise on the complex
t plane; this segment (a branch cut) is the only set on the t
plane where the integrand is not analytic.

Inserting twice this expression (with the integration vari-
ables denoted by t and u, whose paths are such as just spec-
ified) into Eqs. (55) and (56) for the two confluent hyperge-
ometric functions in each, we get

D(±)
1λs (q) = − 1

4π2q

∫
d3r
r

e−λr±iqr
∮

du

u

∮
dt

t

(
1− 1

t

)−1−iη×
(
1− 1

u

)−1+iη
e−i(t−u)(kr+kr), (58)

D(±)
2λs (q) = − 1

4π2q

∫
d3r
r

e−λr±iqr
∮

du

u

∮
dt

t

(
1− 1

t

)−1−iη×
(
1− 1

u

)−1+iη
e−i(t−u)kr+i(t+u)kr . (59)

We would like to exchange the order of the integral over
r and the contour integrals because for the r-integral, we
could then use the following auxiliary formula, valid for any
β ∈ C complex number and B ≡ (Bx , By, Bz) three-vector
with any complex components:

∫
d3r
r

e−βr+Br = 4π

β2−B2 , if Re β > |Re B|. (60)

Here B2 = B2
x+B2

y+B2
z even for complex Bx , By, and Bz

(in particular, without complex conjugation), and the real
part of the B vector is Re B := (Re Bx , Re By, Re Bz), thus

|Re B| =
√

(Re Bx )2 + (Re By)2 + (Re Bz)2. The condition
written up in Eq. (60) is necessary and sufficient for the
integral to exist. This is because a function is (Lebesgue)
integrable if and only if its modulus is integrable, and∣∣ 1
r e

−βr+Br
∣∣ = 1

r e
−Re β·r+(ReB)r , which is integrable if and

only if the multiplier of r in the exponent, Re β, is strictly
bigger than the length of the vector there, |Re B|. For real β,

Bx , By, Bz, the stated result is elementary, and because both
the integral itself and the stated result are analytic functions
of β, Bx , By, Bz (provided the integral exists), the result is
valid for all the allowed complex values, as stated.

If we can exchange the r-integral and the contour integrals
in Eqs. (58) and (59), the we would get

D(±)
1λs (q)

?= − 1

4π2q

∮
du

u

∮
dt

t

(
1− 1

t

)−1−iη×
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(
1− 1

u

)−1+iη
∫

d3r
r

e−λr±iqr−i(t−u)(kr+kr), (61)

D(±)
2λs (q)

?= − 1

4π2q

∮
du

u

∮
dt

t
×

(
1− 1

t

)−1−iη(1− 1
u

)−1+iη

∫
d3r
r

e−λr±iqr−i(t−u)kr+i(t+u)kr . (62)

According to Fubini’s theorem, the interchange is justified
if the modulus of the integrand is integrable in either order
(provided that one has written up the contour integrals in
a parametrized way, with integrals taken over line segment
of the parameter). In our case, the moduli of the complex
powers of t and u do not cause concern: since u and t run
at a positive distance from the branch cut, these factors are
bounded and thus do not spoil integrability. The factor of the
modulus of the integrand that indeed has a role is that of the
r-dependent part. In the case of D1λs, Eq. (61), the modulus
of the part of the integrand that is of interest is

∣∣e−λr±iqr−i(t−u)(kr+kr)
∣∣ = e−[λ−kIm(t−u)]r+Im(t−u)kr ,

which is integrable over r if and only if for the following
holds (by virtue of the condition stated in Eq. (60):

λ

k
− Im(t−u)> |Im(t−u)| ⇔ Im(t−u)<

λ

2k
(for D1λs).

(63)

We arrived at the simpler condition by sorting through all the
different possibilities for Im u and Im t. Similarly, in the case
of D2λs, Eq. (62), we have

∣∣e−λr±iqr−i(t−u)kr+i(t+u)kr
∣∣ = e−[λ−kIm(t−u)]r−Im(t+u)kr ,

which is integrable over r if and only if

λ

k
− Im(t−u) > |Im(t+u)|

⇔ Im u > − λ

2k
and Im t <

λ

2k
(for D2λs). (64)

If these conditions hold for all possible u and t, then the
results of these r-integrals are continuous bounded functions
of u and t, so their contour integrals exist. So the condition for
the integrals over r and u, t to be interchangeable is that the
inequalities stated in Eqs. (63) and (64) hold for any u and t
on their integration paths. Thus if we require these additional
constraints on the u- and t-paths, we can interchange the
integrals, and utilizing Eq. (60), we get the following from
Eqs. (61) and (62):

D(±)
1λs (q) = − 1

πq

1

λ∓iq

∮
dt

t

(
1− 1

t

)−1−iη
∮

du

u
×

(
1− 1

u

)−1+iη 1

λ∓iq+2ik(t−u)
, (65)

D(±)
2λs (q) = − 1

πq

∮
dt

t

(
1− 1

t

)−1−iη 1

2kt−i(λ∓iq)

∮
du

u
×

(
1− 1

u

)−1+iη 1

2ku+i(λ∓iq)
, (66)

where the paths of the u and t variables run as specified: they
both encircle the [0, 1] branch cut and obey at all points the
conditions (63) in case of D1λs, and (64) in case of D2λs,

respectively. (For any finite λ and k, it is indeed possible to
specify the integration paths in this way.) The case of D2λs

is simpler because the integrand factorizes in u and a t ; we
have written Eq. (66) in a way that highlights this.

The next step is to perform the u-integral at a fixed t.
As a function of u, the integrand in both cases is analytic
everywhere except for the branch cut along u ∈ [0, 1] which
is encircled by the path, as well as for a simple pole, denoted
in case of D1λs and D2λs by u1s(t) and u2s(t), respectively:

u1s(t) = t ∓ q

2k
− iλ

2k
, u2s(t) = − iλ

2k
∓ q

2k
. (67)

We see that Im(t−u1s) = λ
2k and Im(u2s) = − λ

2k : this means
that (for any t that is in its allowed domain) u1s and u2s do
not satisfy the conditions in Eqs. (63) and (64). From this,
one concludes that u1s and u2s lies outside of the integration
contour on the u plane: were it otherwise, a narrower inte-
gration path chosen for u could cross u1s and u2s, but this
is impossible because then u1s and u2s could not violate the
conditions.

One can then expand the u-integration contour to infinity:
the integrand decreases rapidly enough (as ∼ 1

u2 in both
cases), so the non-vanishing contribution comes from the
simple poles u1s and u2s, so from the residue theorem we
have (with an extra minus sign from the negative sense of the
paths encircling the poles)

D(±)
1λs (q) = − 1

q

∮
dt

t

(
1− 1

t

)−1−iη

k(λ∓iq)

1

u1s

(
1− 1

u1s

)−1+iη

, (68)

D(±)
2λs (q) = − 1

q

2

λ∓iq

(
λ∓iq−2ik

λ∓iq

)−1+iη∮ dt

t

(
1− 1

t

)−1−iη

2kt−i(λ∓iq)
,

(69)

where in case of D1λs, u1s(t) is as in Eq. (67), while in case
of D2λs we inserted u2s from Eq. (67) right away.3

In Eq. (69), we can use this same method for the t-integral.
The integrand has a simple pole in t at t2s = iλ

2k ± q
2k , and the

3 Perhaps it should be stressed that expanding the u-contour here means
no conflict with our earlier requirement on the u-path, Eqs. (63) and
(64). At that stage, that restriction was needed in order to interchange
the integrals; after that (and the r-integral performed), the resulting
integrand is analytic in u, so we may do this expansion in this stage.
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same reasoning as for u2s above yields that because Im t2s =
λ
2k , t2s does not satisfy the condition in Eq. (64), so it lies
outside of the integration contour. Thus an expansion of the
contour to infinity yields (again because of the ∼ 1

t2
decrease)

just the contribution from the pole at t2s . From this, we get

D(±)
2λs (q) = 4π

q

1

λ∓iq

(
λ∓iq−2ik

λ∓iq

)−1+iη 1

λ∓iq
×

(
λ∓iq+2ik

λ∓iq

)−1−iη

. (70)

This leads to the result for D2λs, stated in Eq. (46) in the
main text, after some simplification.

In the case of D1λs, the remaining integrand in Eq. (68)
does not have a simple pole as a function of t (besides the
branch cut on [0, 1]), but another branch cut on a straight
line segment between t = ± q

2k+i λ
2k and t = 1± q

2k+i λ
2k

(i.e., where u1s(t) = 0 and u1s(t) = 1). This branch cut,
as its imaginary part, λ

2k is in violation of condition (63),
lies outside the t integration contour. In this case, we can
transform the integral in Eq. (68) into a form that yields an
ordinary hypergeometric function. To this end, we substitute
t = 1

s , with which we arrive at

D(±)
1λs (q) = N

∮
ds

(1−s)−1−iη

s−A

[
β
s−B

s−A

]−1+iη

,

where we used the notations (71)

N = −2i

q(λ∓iq)2 , A := 2k

iλ±q
,

B := 2k

iλ±q+2k
, β := 1+ 2k

iλ±q
, (72)

and the integration contour on the s plane does not intersect
the [1,∞] half line (the image of the original t ∈ [0, 1] cut),
but encircles s=0 (the image of t=∞) and the cut between
s=A and s=B (which is a circle segment; the image of the
outlying branch cut on the t plane).

We need now a linear transformation of the integration
variable s → τ, so that the three singular points s = 1, s = A
and s = B transform into τ = 0, τ = 1 and τ = x with
some x . This x will then be the variable of the resulting
hypergeometric function; this is motivated by the integral
representation

2F1
(
a, b, c, z

) = �(c)�(b−c+1)

�(b)
×

1

2π i

∫ (0+,z+)

τ=−∞
dτ τ a−c(1−τ)c−b−1(τ−x)−a, (73)

with the τ integration path coming from Re τ = −∞, going
back there, while encircling the half line branch cuts τ ∈ R

−
0

and τ−x ∈ R
−
0 , but not intersecting τ ∈ [1,∞], the third

branch cut of the integrand.4

The most convenient s → τ transformation (among the
many possible ones) turns out to be the following:

s = B + (1−B)τ ; (74)

this takes s=B into τ=0, s=1 into τ=1, and s=A into
τ= A−B

1−B , and we get

D1λs = N
∮ (0+,x+)

dτ ((1−B)(1−τ))−1−iη 1

τ−x

(
βτ

τ−x

)−1+iη

,

withx = A−B

1−B
= 4k2

(q±iλ)2 . (75)

Now in order to arrive at a form resembling the integral
representation (73), we have to simplify the complex pow-
ers. This is not entirely trivial because owing to the branch
cut of power functions, for complex numbers, the identity
(ab)c = acbc holds only if arg a + arg b = arg(ab), i.e., if
−π < arg a + arg b≤π. If the displayed quantities are func-
tions of some other complex variable t, it is very cumber-
some to verify this condition directly. For line integrals, a
workaround is that if the identity (ab)c = acbc is verified in
a small neighborhood of some point t on the path, and both
sides are analytic in t in the vicinity of the path (practically:
the path does not intersect branch cuts of either form on the
t plane), then owing to the rigidity of analytic functions, the
substitution is justified along the whole integration path.

In the case of Eq. (75), the steps are as follows. We do not
write up all the details about these transformations here; the
interested reader is advised to directly check that these steps
are indeed justified.

1. First we do the ((1−B)(1−τ))−1−iη = (1−B)−1−iη

(1−τ)−1−iη substitution. For this, we must verify that the
integration path on the τ plane can be specified (and we
indeed do so) in a way that it does not intersect the branch
cuts of either of these forms (half lines, but in different
directions).

2. Next, we substitute
( βτ

τ−x

)−1+iη with β−1+iη
(

τ
τ−x

)−1+iη
.

For this, we must verify that we can take the path so that it
does not intersect the branch cuts of either form (a circle
segment and a line segment, respectively); for this, the
key element is that none of these cuts intersect with the
other branch cuts of the integrand.

4 Equation (73) is well known in the theory of hypergeometric func-
tions; its equivalence to Eq. (47) for |x | < 1 can be verified by a power
series expansion of the present integrand in x and using similar repre-
sentations of the products of gamma functions. Equation (73) also gives
the analytic continuation of 2F1, since it defines an analytic function of
x for any x ∈ C, with a branch cut on x ∈ [1,∞].
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3. Now we open up the contour so that instead of being a
closed one encircling 0 and x, it comes from Re τ = −∞
and returns there. This can be done because, owing to the
exponents, the integrand decreases fast enough (as ∼ 1

τ 2 )

at |τ | → ∞.

4. Finally, we can write
(

τ
τ−x

)−1+iη = τ−1+iη(τ−x)1−iη;
besides τ ∈ [1,∞], this latter form has branch cuts that
are straight half lines from Re τ = −∞ to 0 and x, respec-
tively.

Finally, we thus arrive at the following expression, where we
can utilize the (73) integral representation:

D1λs = N
β−1+iη

(1−B)1+iη

∫ (0+,x+)

τ=−∞
dτ τ−1+iη(1−τ)−1−iη(τ−x)−iη

= 2π i N
β−1+iη

(1−B)1+iη 2F1(iη, 1+iη, 1, x), (76)

and from this we get the result given for D1λs in the body
of the paper, Eq. (45), by substituting N , β, B, and x, and
finally combining together D(+)

1λs and D(−)
1λs again, according

to Eq. (55).

A.3 Derivation of the final formula, Eq. (48)

In this Appendix, we derive Eq. (48) along the expression
of the quantities denoted by A1s and A2s in the body of the
paper, Eqs. (49) and (50). The starting point is Eq. (42), the
expression of C2(Q) with D1λs and D2λs as a λ → 0 limit.
We write this up again but first with the integral denoted as
a three-dimensional q-integral, and perform the first crucial
step as we “separate” the fs(0) and fs(2k) values. This idea
comes from observing that the values of fs(q) at q = 0
and q = 2k play a special role in the interaction-free case
as C (0)

2 (Q) = fs(0)+ fs(2k), moreover, fs(0) and fs(2k)
enter by virtue of the “plain” and the “cross” terms from the
modulus square of the wave function, just as D1λs and D2λs

in the interacting case. We thus write

C2(Q) = |N |2
8π3 lim

λ→0

∫
d3q fs(q)

[D1λs(q)+D2λs(q)
]

= |N |2
8π3 fs(0) lim

λ→0

∫
d3qD1λs(q)+

|N |2
8π3 lim

λ→0

∫
d3q

[
fs(q)− fs(0)

]D1λs(q)+
|N |2
8π3 fs(2k) lim

λ→0

∫
d3qD2λs(q)+

|N |2
8π3 lim

λ→0

∫
d3q

[
fs(q)− fs(2k)

]D2λs(q). (77)

Now for λ>0, the integrals of D1λs and D2λs, denoted tem-
porarily by I1 and I2, do exist:

I1 :=
∫

d3qD1λs(q) = 4π

∫ ∞

0
dq q2D1λs(q),

I2 :=
∫

d3qD2λs(q) = 4π

∫ ∞

0
dq q2D2λs(q), (78)

which can be directly seen from their expressions, Eqs. (45)
and (46): q2D1λs(q) and q2D2λs(q) are continuous and
bounded on every compact [0, qmax] interval, and they
decrease as ∼ 1

q2 , owing to the taking of the imaginary

part in them; recall that 2F1(a, b, c, x) = 1 + ab
c x + . . . as

x → 0. So the I1 and I2 integrals are given by the value of the
Fourier transforms of D1λs and D2λs at r = 0 (where r is the
variable of their Fourier transforms).5 But we actually calcu-
lated D1λs and D2λs as Fourier transforms, so we just need
to evaluate the integrands of the defining (43)–(44) integrals
at r = 0, from which, knowing that M(a, b, x=0) = 1, we
have I1 = I2 = 8π3, so

C2(Q) = |N |2
[
fs(0) + fs(2k)+

lim
λ→0

∫ ∞

0
dq

q2D1λs(q)

2π2

[
fs(q)− fs(0)

]+

lim
λ→0

∫ ∞

0
dq

q2D2λs(q)

2π2

[
fs(q)− fs(2k)

]]
. (79)

Our statement is now that these remaining limits result in
A1s and A2s as written up in Eqs. (49) and (50). Substituting
D1λs and D2λs from Eqs. (45) and (46), and using the conve-
nient F+(x) ≡ 2F1(iη, 1+iη, 1, x) notation, we thus have
to prove that

lim
λ→0

∫ ∞

0
dq q

[
fs(q)− fs(0)

]
Im

[(
1+ 2k

q+iλ

)2iη

(λ−iq)2 F+
(

4k2

(q+iλ)2

)]

=
∫ ∞

0
dq

fs(q)− fs(0)

q
Im

[(
1+ 2k

q

)2iηF+
(

4k2

q2 −i0
)]

, (80)

lim
λ→0

∫ ∞

0
dq q

[
fs(q)− fs(2k)

]
Im

(λ−iq−2ik)iη(λ−iq+2ik)−iη

(λ−iq)2+4k2

= −
∫ ∞

0
dq

fs(q)− fs(2k)

q−2k

q

q+2k
Im

(q+2k)iη

(q−2k+i0)iη
. (81)

Note that the pointwise λ → 0 limit of the integrands on
the left-hand sides are just the ones on the right-hand sides.
We want to apply Lebesgue’s theorem (see Appendix A.1
above) so that we can interchange the limit and the integral.

5 Recall that the Fourier transform of an integrable function is not
necessarily integrable; if it is (which is so in our case; but we had to
explicitly check this), then its (inverse) Fourier transform is indeed given
by the usual Fourier integral.
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To this end, we need a “dominant” function, i.e., an integrable
function whose modulus is greater or equal to that of the
integrand, independently of λ, for any λ > 0. We do not
explicitly write up this function, however, we give the various
estimations that are needed to construct this function.

1. The fs function is bounded everywhere, fs(q)≤ K . Also,
the main point of introducing the subtraction of fs(0)

and fs(2k) values as in Eqs. (80) and (81) is that for the
fractions appearing from these can be dominated by a
function that is integrable around q = 0 and q = 2k if fs
is continuously differentiable everywhere: in this case for
a finite qmax value,

| f (q)− f (0)|
q

, and
| f (q)− f (2k)|

q − 2k

are bounded on [0, qmax], (82)

and thus integrable here. Had we not have subtracted fs(0)

and fs(2k), the fractions fs (q)
q and fs (q)

q−2k would have not
be integrable around q = 0 and q = 2k.
In the case of our preeminent practical example of source
functions, the Lévy distribution, fs(q) is not necessarily
differentiable around q = 0. However, for our estimation
to find the dominant function here, it is enough if the
fractions written up in Eq. (82) are not bounded but can
be dominated by an integrable function. This is readily
satisfied also in the case of Lévy distributions, where the
following estimation is true instead:

For Lévy distributions, for any q and q ′,
| f (q)− f (q ′)| ≤ K ′|q − q ′|α; this is enough. (83)

2. For the various factors appearing, the following estima-
tions can be made. For real X and Y, the pure imagi-
nary power XiY is bounded by e−πY from below and by
eπY from above. The F+(x) hypergeometric function is
bounded on the whole complex x plane.6

3. Owing to the continuous differentiability of F+(x)
around x = 0, there exists a C ′ constant for which
|F+(x)− 1| ≤C ′|x | for small enough x . Also, for pure
imaginary powers, the following estimation can be made:

6 Recall that if f (x) is an entire (i.e., everywhere differentiable) non-
constant function of the complex x variable, then by virtue of Liouville’s
theorem, it cannot be a bounded function. Our F+(x) is not an entire
function (owing to its branch cut on x ∈ [1,∞]). The boundedness
of F+(x) can be proven by considering various linear transformations
of variables well known in the theory of hypergeometric functions; see
Ref. [33] for details.

if Y ∈ R, 0 ≤ R < 1 and |z| < R, then
∣∣(1+z)iY − 1

∣∣
≤ 1

1−R e
π |Y | · |Y | · |z| holds.7

From these, with some effort, one can construct the dominant
function; this is best done by separately treating the q ∈
[0, Qmax] and the q ∈ [Qmax,∞] intervals, where Qmax is
an arbitrary value that is at a safe distance above 2k; say:
Qmax = 4k. In this way, the exchange of the integral and the
limit in Eqs. (80) and (81) becomes justified, which leads to
the desired results for A1s and A2s .
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