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Abstract Recently, the ATLAS data of isolated three-
photon production showed that the next-to-leading order
(NLO) collinear factorization is not enough to describe
experimental data. Therefore, one needs to calculate the
cross section beyond the NLO, and as showed later, these
data can be well described by the NNLO calculation within
the collinear factorization framework. However, it is shown
that the kt -factorization can be quite successful in describ-
ing exclusive and high energy collision processes, hence-
forth we decided to calculate isolated three-photon produc-
tion within this framework. In this work we use the Martin,
Ryskin, and Watt unintegrated parton distribution functions
(MRW UPDFs) at LO and NLO levels, in addition to parton
branching (PB) UPDFs in order to calculate cross section
which we utilize the KATIE parton level event generator.
It will be shown that in contrast to collinear factorization,
the kt -factorization can describe quiet well the three-photon
production ATLAS data. Interestingly our results using the
NLO-MRW and PB UPDFs can cover the data within their
uncertainty bands, similar to the NNLO collinear results.

1 Introduction

Precise prediction of experimental data at the LHC is one
of the main challenges in high energy physics. Three iso-
lated prompt photons in the protons-protons collision at
the ATLAS [1] shows that the next-to-leading order (NLO)
result is not enough to obtain a good description of the data.
However, it is shown that the next-to-next-to leading order
(NNLO) QCD results [2,3] can nicely cover the experimental
data. These predictions are based on the collinear factoriza-
tion framework, and assumes that the parton enters into hard
interaction is collinear to the incoming proton, i.e. k = x P ,
where P is momentum of the proton, and x is the fraction
of the proton’s momentum that the parton carries. This fac-

a e-mail: mmodares@ut.ac.ir (corresponding author)

torization allows us to write the hadronic cross section as a
convolution of partonic cross section, σ̂ , and parton distribu-
tion functions (PDFs):

σ =
∑

i, j∈q,g

∫
dx1

x1

dx2

x2
fi (x1, μ

2) f j (x2, μ
2)σ̂i j (1)

Where fi( j)(x1(2), μ
2
F ) in the above equation are the momen-

tum weighted parton densities and related to PDFs as
fq(g)(x1(2), μ

2
F ) = x1(2)q(g)(x1(2), μ

2
F ). These scale depen-

dent PDFs follow the DGLAP evolution equation [4–6] and
are based on the assumption that parton enters into hard
interaction emits collinear parton along the evolution lad-
der. Hence one has the strong ordering on the scale in a way
the transverse momentum of parton is negligible with respect
to the scale along the evolution ladder.

However, at large center of mass energies, x becomes
small and transverse momentum of parton is also compa-
rable against the collinear component of momentum. There-
fore the momentum of parton can be written as k = x P + kt ,
where kt is transverse momentum of the parton. In contrast to
collinear factorization framework, due to the important role
of parton transverse momentum, no strong ordering on evo-
lution scale exists and hence instead of the PDFs one needs
transverse momentum dependent parton distribution func-
tions (TMDs) or equivalently Unintegrated parton distribu-
tion functions (UPDFs), i.e. f (x, k2

t , μ
2). In this framework

hadronic cross section can be calculated with the help of the
kt -factorization, i.e.:

σ =
∑

i, j∈q,g

∫
dx1

x1

dx2

dx2

dk2
1,t

k2
1,t

dk2
2,t

k2
2,t

fi (x1, k
2
1,t , μ

2)

× f j (x2, k
2
2,t , μ

2)σ̂ ∗
i j , (2)

where σ̂ ∗
i j is the off-shell partonic cross section.

The kt -factorization has shown to be successful in describ-
ing the data of non-inclusive and those belong to high energy
limit observables, see reviews [7–9]. However, there are chal-
lenges in obtaining appropriate UPDFs for all partons, due to
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the fact that the BFKL [10–12] and CCFM [13–15] evolution
equations were only limited to gluon. Although later CCFM
UPDFs are extended to include valence quarks [16], but still
no complete set of CCFM UPDFs for all quark flavors exist.

One of the first approaches that defined UPDFs for all
partons is named Kimber, Martin and Ryskin (KMR) [17].
This approach utilizes the DGLAP evolution equation in a
way that parton becomes kt dependent only in the last evolu-
tion step. This approach in its original form applies angular
ordering not only on gluon emission but also on quark emis-
sion, too. However, later Martin, Ryskin and Watt (MRW)
[18] fix this theoretical inconsistency, by correctly applying
this ordering only on gluon emission. They also extends the
LO-MRW approach to the NLO level (NLO-MRW). One can
find a detailed investigation of these UPDFs in the references
[19–21], and also effects of using these UPDFs in cross sec-
tion calculations are discussed in the references [22–30].

Recently, another approach for obtaining different UPDFs
introduced which solves the DGLAP evolution equation by
parton branching method and collects transverse momentum
of partons along the evolution ladder [31,32]. This method
is called parton branching (PB), and has shown remarkable
success in describing experimental data [33]. This method is
also compared with the LO-MRW approach by calculating
the Drell–Yan Z-boson pllT distribution [34], and showed that
its prediction at small and large di-lepton transverse momen-
tum is closer to the data than the LO-MRW.

Our goal in this work is to utilize the kt -factorization to
calculate three isolated prompt photon productions, which
is not currently available in the literature. On the one side,
we pursue to show that the kt -factorization framework with
only tree level Feynman diagrams at the NLO-level with the
PB and NLO-MRW UPDFs can describe the data well and
even comparable to the NNLO level of collinear factorization
framework. On the other side, it will be shown that the NLO-
MRW UPDF in the wide kinematics range is close to the PB
UPDF.

The structure of this paper is as follows: In Sect. 2 we
give an overview of different UPDF models, including LO-
MRW, NLO-MRW and PB, then we present the method of
calculation and experimental cuts. In the Sect. 3 we discuss
our results by presenting, comparing and discussing differ-
ent UPDFs and also their predictions of experimental data.
Finally, in the Sect. 4 our conclusions will be presented.

2 Theoretical framework

2.1 MRW UPDFs at LO and NLO levels

LO-MRW UPDFs as introduced shortly in the introduction
is based on the DGLAP evolution equation. In this approach
it is assumed that parton evolves to the last evolution step

collinear to the parent proton, i.e. fb∈q,g(x/z, k2
t ), where z

is the momentum fraction with respect to the parent parton,
and also as it is obvious the scale of the DGLAP evolution is
set equal to transverse momentum of parton. Then the parton
has a real emission with kt comparable to the factorization

scale described by
αs(k2

t )

2π
Pab(z) in the leading logarithmic

approximation. Finally, the parton evolves to the factorization
scale without emitting any real emission via the Sudakov
form factor, i.e. Ta(k2

t , μ
2). Therefore, the MRW UPDFs

can be written as follows:

fa(x, k
2
t , μ

2) = Ta(k
2
t , μ

2)
αs(k2

t )

2π

∫ 1

x
Pab(z) fb

(
x

z
, k2

t

)
,

(3)

where the Sudakov form factor is:

Ta(k
2
t , μ

2) = exp

(
−

∫ μ2

k2
t

dκ2
t

κ2
t

αs(κ
2
t )

2π

∑

b=q,g

∫ 1

0
dξξ Pba(ξ)

)
.

(4)

One should note that the above equation is valid only in
the kt ≥ μ0 ∼ 1 GeV, and for defining UPDFs at kt < μ0,
normalization condition can be employed:

fa(x, μ
2) =

∫ μ2

0

dk2
t

k2
t

fa(x, k
2
t , μ

2). (5)

Therefore, constraining UPDFs to satisfy the normalization
condition, the following constant distribution can be obtained
at kt < μ0 [18,35]:

1

k2
t
fa(x, k

2
t , μ

2)

∣∣∣∣
kt<μ0

= 1

μ2
0

fa(x, μ
2
0)Ta(μ

2
0, μ

2) (6)

Expanding Eq. (3), one can write the LO-MRW UPDFs
in their full forms as follows:

fq(x, k
2
t , μ

2) = Tq (k
2
t , μ

2)
αLO
s (k2

t )

2π

×
∫ 1

x

[
PLO
qq (z) f LOq

(
x

z
, k2

t

)
�(zmax − z)

+PLO
qg (z) f LOg

(
x

z
, k2

t

)]
dz,

(7)

fg(x, k
2
t , μ

2) = Tg(k
2
t , μ

2)
αLO
s (k2

t )

2π

×
∫ 1

x

[
PLO
gg (z) f LOg

(
x

z
, k2

t

)
�(zmax − z)

+
∑

q

PLO
gq (z) f LOq

(
x

z
, k2

t

)]
dz,

(8)
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with Sudakov form factors as:

Tq(k
2
t , μ

2) = exp

(
−

∫ μ2

k2
t

dp2
t

p2
t

αLO
s (p2

t )

2π

×
∫ 1

0
PLO
qq (ξ)�(ξmax − ξ) dξ

)
, (9)

Tg(k
2
t , μ

2) = exp

(
−

∫ μ2

k2
t

dp2
t

p2
t

αLO
s (p2

t )

2π

×
∫ 1

0
(PLO

gg (ξ)�(ξmax − ξ)�(ξ − ξmin)

+nF P
LO
qg (ξ)) dξ

)
, (10)

where in the Eq. (10), nF is the active number of quark–
antiquark flavors and ξmin = 1 − ξmax , and also in Eqs. (7)
to (10), ξmax and zmax are introduced to avoid soft gluon
emission divergence.

The zmax cutoff can be determined with the help of angular
ordering of gluon emission in the last evolution step [17,18,
35], i.e:

μ > zq̃, (11)

where q̃ is the rescale transverse momentum of the last step
emission and is equal to kt/(1− z). Therefore one can obtain
zmax as follows:

μ > z
kt

(1 − z)
→ zmax = μ

μ + kt
. (12)

Unitarity gives the same cutoff for ξmax [35], i.e.:

ξmax = μ

μ + pt
. (13)

It is important to note that in the literature two forms of
the LO-MRW formalism exist, where one is based on the
Integral form discussed above and the other is based on the
differential form, i.e.:

fa(x, k
2
t , μ

2) = ∂

∂ log k2
t

[
fa(x, k

2
t )Ta(k

2
t , μ

2)
]

(14)

It is straightforward to show that the two forms are equiv-
alent, however as shown in the reference [36], this is not
correct. It is shown that using the differential form leads to
discontinuous and negative behavior in the region kt ≥ μ.
In order to obtain same results with the integral form one
needs to use the cutoff dependent PDFs, instead of the ordi-
nary PDFs. However, as it is mentioned in the reference [36],
complications which arise due to cutoff dependent PDFs can
be avoided by using the integral form and ordinary PDF sets.
Therefore, in this work we adopt the integral form of the
LO-MRW with angular ordering constraint zmax .

The LO-MRW formalism is extended to the NLO level by
the choice of the DGLAP scale as k2 = k2

t /(1− z) instead of
k2
t . In these UPDFs, NLO level strong coupling and splitting

functions instead of LO ones are used. The consequence of
using k2, is an additional cutoff �(μ2 − k2) that suppresses
k2 to be less than μ2.

Martin et al. showed that using the LO splitting functions
in this formalism has little effect on the UPDFs, and one can
reach relatively the same UPDFs considering the splitting
functions at the LO level instead of the NLO ones [18]. Here
in this work we use this simplified form and henceforth the
NLO-MRW can be written as follows:

fq (x, k
2
t , μ

2) =
∫ 1

x
Tq (k

2, μ2)
αNLO
s (k2)

2π

×
[
PLO
qq (z) f N LO

q

(
x

z
, k2

)
�(zmax − z)

+PLO
qg (z) f N LO

g

(
x

z
, k2

)]
�(μ2 − k2) dz,

(15)

fg(x, k
2
t , μ

2) =
∫ 1

x
Tg(k

2, μ2)
αNLO
s (k2)

2π

×
[
PLO
gg (z) f N LO

g

(
x

z
, k2

)
�(zmax − z)

+
∑

q

PLO
gq (z) f N LO

q

(
x

z
, k2

)]
�(μ2 − k2) dz,

(16)

with Sudakov form factors as:

Tq(k
2, μ2) = exp

(
−

∫ μ2

k2

dp2

p2

αNLO
s (p2)

2π

×
∫ 1

0
dξ PLO

qq (ξ)�(ξmax − ξ)

)
, (17)

Tg(k
2, μ2) = exp

(
−

∫ μ2

k2

dp2

p2

αNLO
s (p2)

2π

×
∫ 1

0
dξ

[
PLO
gg (ξ)�(ξmax − ξ)�(ξ − ξmin)

+nF P
LO
qg (ξ)

])
. (18)

Here one should note that due to dependence of k2 on
z, the coupling and Sudakov form factors in Eqs. (14) and
(17) are moved into the integral of z. Additionally, the cutoff
�(μ2 − k2) stops the parton to have momentum larger than
the factorization scale.

Before finishing this section an important point is in order
here. The LO-MRW in its original form has no dimension,
while, some other UPDF sets in the literature have 1/(GeV2)

dimension. This results in different hadronic cross section
formula with 1/(k2

t ) in the denominator of the Eq. (2) to be

123



961 Page 4 of 16 Eur. Phys. J. C (2021) 81 :961

moved into the UPDFs, and hence one has F(x, k2
t , μ

2) =
f (x, k2

t , μ
2)

k2
t

, i.e.:

σ =
∑

i, j∈q,g

∫
dx1

x1

dx2

dx2
dk2

1,t dk
2
2,t Fi (x1, k

2
1,t , μ

2)

×Fj (x2, k
2
2,t , μ

2)σ̂i j . (19)

In addition to this change, it is straightforward that the
normalization condition changes as follows:

fa(x, μ
2) =

∫ μ2

0
dk2

t Fa(x, k
2
t , μ

2), (20)

2.2 PB UPDFs

Another approach which allows us to obtain UPDFs for both
quark and gluon is called parton branching UPDFs. This
method allows to obtain UPDFs by solving the DGLAP evo-
lution equation iteratively with Monte Carlo method and by
calculating transverse momentum at every splitting kernel.
This method imposes angular ordering in addition to virtual-
ity ordering along the evolution ladder. UPDFs distributions
at the initial scale μ0 is chosen to have a factorized form
of dependent on the transverse momentum via Gaussian dis-
tribution and a parameterized form with dependency on x
and μ2

0 [37,38]. Generally parton branching UPDFs can be
written as follows:

Fa(x, k
2
t , μ

2) = 	a(μ
2)Fa(x, k

2
t , μ

2
0)

+
∑

b

∫
d2q ′

πq ′2
	a(μ

2)

	a(q ′2)
�(μ2 − q′2)�(q ′2 − μ2

0)

×
∫ zM

x

dz

z
PR
ab(αs, z)Fb

(
x

z
, k′2

t , q′2
)

.

(21)

where k′
t = q′(1 − z)+ kt and the PR

ab(αs, z) is the splitting
function separated into two parts, one contains soft gluon
emission singularity and the other contains logarithmic and
analytic terms, see reference [37]. Additionally, the Sudakov
form factor 	 is as follows:

	a(μ
2) = exp

(
−

∑

b

∫ μ2

μ2
0

dμ′2

μ′2

∫ zM

0
dzzPR

ba(αs, z)

)
,

(22)

where zM is the soft gluon resolution scale and separates real
and no-real emissions.

PB UPDFs can be generated by employing TMDlib [39]
which provides different UPDF sets. In this work we uti-
lize PB-NLO-HERAI+II-2018-set2 (PB18-set2) [37] UPDF
set which are obtained by fitting to the experimental data of
HERA I+II. In this set the zM is fixed to 0.99999, but as it is
pointed out in [32,37] due to using angular ordering, UPDFs

are stable with respect to variations of zM . Another important
point about PB18-set2 is that the emitted parton transverse
momentum is used as the argument of the coupling constant,
while for the other PB set PB-NLO-HERAI+II-2018-set1
(PB18-set1) available in the TMDlib the evolution scale μ

is used. It is shown in [37] that these two sets give similar
results for large kt , however the difference is mostly shown
itself at small kt in a way that qllT of Z Boson Drell–Yann
spectrum at small dilepton transverse momentum can be bet-
ter described by PB18-set2. This is the reason we stick to
PB18-set2 for calculating differential cross sections of three
photons production, and for simplicity we adopt the PB name
alone in what follows rather than PB18-set2.

2.3 Method of calculation and experimenta cuts

We calculate three-photon productions in proton-proton col-
lisions at center of mass energy of 8 TeV within the kt -
factorization framework in accordance with the correspond-
ing ATLAS experimental data [1]. The calculation is per-
formed with the KATIE [40] parton-level event generator
with nF = 5. In the following, we first give a brief review
of the KATIE and then present the cut requirements of the
ATLAS three-photon production [1] experiment.

The KATIE is the parton-level event generator which can
produce parton-level events at tree level for various number
of final state particles with off-shell, in addition to on-shell
kinematics. This generator can be either linked to TMDlib
and use different UPDFs via this library or one can produce
grid files which then read by the KATIE for event genera-
tion. Here, we adopt the first method for using PB UPDFs
and the latter method for using the LO-MRW and NLO-
MRW UPDFs in our cross section calculation. It should be
noted that the NLO-MRW UPDFs and the integral form of
the LO-MRW UPDFs are not available in the TMDlib yet.
Unfortunately, the LO-MRW grid files with the name MRW-
CT10nlo [41] in TMDlib are based on the differential form
of the LO-MRW and as discussed in the Sect. 2.1, they can
be problematic for cross section calculation. Therefore, we
generate grids files of the LO and NLO-MRW UPDFs for
each parton and also provide them publicly [42]. For the LO
and NLO-MRW input PDFs we utilize MMHT2014 PDFs set
[43]. These grid files as mentioned in the [40] must be com-
prised of four columns according to ln(x), ln(k2

t ), ln(μ2)

and F(x, k2
t , μ

2).
In calculating cross section three sub-processes q + q →

γ γ γ , q + g → γ γ γ + q and q + q → γ γ γ + g are con-
sidered. Due to this fact that the KATIE is limited to parton
level processes, the full NLO calculation by considering var-
ious loops is not yet possible. Hence, soft gluon emission can
be problematic and therefore we impose a cut on the phase
space to avoid the soft gluon region by requiring the emitted
gluon to have transverse momentum larger than the factor-
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Fig. 1 The top (bottom) panel
shows the fraction of
CT14nlo/MMHT2014nlo for up
quark (gluon) respectively

ization scale, i.e. to be hard, which is similar to the method
employed in the reference [44]. Calculating the cross section
with imposing this cutoff and removing the soft gluon emis-
sion results in the process q+q → γ γ γ +g to have negligi-
ble role in comparison with the other two sub-processes. On
the other hand, in the definition of our adopted UPDFs, there
is the Sudakov form factors which have suppressive effect
and can make the cross section well-behaved and finite [45].
The same issue is also mentioned in the page 7 of the refer-
ence [46]. Furthermore, the following experimental cuts are
imposed on our calculation:

1. Photons need to be separated from each other by 	Ri j >

0.45, where 	Ri j =
√

(ηi − η j )2 + (φi − φ j )2.

2. Transverse energy of the three photons with highest trans-
verse energies are: Eγ1

T > 27 GeV, Eγ2
T > 22 GeV,

Eγ3
T > 15 GeV, where Eγ1

T , Eγ2
T and Eγ3

T are the photons
with the highest, second highest and softest transverse
energies.

3. All photons must have pseudo-rapidities 0 ≤ |ηγ | ≤ 1.37
or 1.56 ≤ |ηγ | ≤ 2.37.

4. Three photon invariant mass, mγ1γ2γ3 , is larger than
50 GeV.

5. Instead of the standard isolation cone implemented in the
experiment, we impose smooth isolation cone [47] with
benefits that on the one side it regularizes photon collinear
divergence and on the other side it suppresses fragmenta-
tion contribution [1].
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Fig. 2 The plots of LO-MRW, NLO-MRW and PB gluon UPDFs with respect to k2
t for different x values as denoted in each plot are shown

The smooth isolated cone enforces the transverse energies
of particles around the distance 	R ≤ R0 from each
photon to be:

Eiso
T (	R) < Emax

T
1 − cos 	R

1 − cos R0
, (23)

where Eiso
T is the sum of transverse energies of the par-

ticles around the photon in the distance less than 	R. In
this work, our calculation is limited to the parton level
and therefore we have only one particle in the final state.
Additionally similar to the reference [3], we set R0 = 0.4
and Emax

T = 10 GeV.

We choose μcentral
F,R =

√
p2
γ γ γ,T + m2

γ γ γ as the factoriza-

tion and renormalization scales. Additionally, to estimate the
scale uncertainty of our calculation we repeat the same event
generation one with μ

upper
F,R = 2μcentral

F,R and the other with

μlower
F,R = 0.5μcentral

F,R .

3 Results and discussions

Before presenting the results, it is important to gain an insight
of different UPDF models to understand the difference and
similarity of them in cross section predictions.

One of the most important elements of the LO and NLO-
MRW UPDFs is the input PDFs. These PDFs are provided by
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Fig. 3 The same as Fig. 2 but for up quark

different theoretical groups for instance MMHT2014 [43],
CT14 [48], NNPDF [49]. The difference between PDFs
sets are mostly due to the choice of heavy quark treatment
and the data sets they use for the initial scale fitting [37].
In order to see how our results may be affected with the
different input PDF sets choices, we as an example, ana-
lyze our adopted PDF set, i.e. MMHT2014, with another
famous PDF set, i.e. CT14 at the NLO level by plotting
the fraction of them, i.e. CT 14nlo/MMHT 2014nlo, for
up and gluon PDFs in log10 x − log10 μ2 space. For pre-
senting such a comparison and using these two PDF sets,
LHAPDF library [50] is adopted. It can be seen in the
Fig. 1 that these two PDF sets are in accordance with each

other in most log10 x − log10 μ2 space. Although, a rela-
tively significant difference between gluon PDF ofCT 14nlo
and MMHT 2014nlo at large log10(x) ≥ 0.5 and small
log10(x) ≤ −4.2 is observed which does not play any sig-
nificant role in our calculation for the energy range of three
photon production experiment. To generate our results, we
use PDF sets of MMHT2014nlo68cl and MMHT2014lo68cl
for the LO-MRW and NLO-MRW UPDFs with the help of
LHAPDF [50] interface library.

In the Figs. 2 and 3, a comparison between different
UPDF models for up quark and gluon at μ2 = 1000 and
for x = 0.0001, x = 0.001 and x = 0.01 is shown. As can
be seen in these two figures, UPDFs of the NLO-MRW and
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Fig. 4 The top (bottom) panel
shows the fraction of
NLO − MRW/PB for gluon
(up) quark at μ2 = 10000,
respectively

PB are larger than the LO-MRW UPDFs at small transverse
momentum, while they become smaller at large transverse
momentum. The reason for steep decrease of NLO-MRW
UPDFs at large transverse momentum is due to the cutoff
�(μ2 − k2), where it constrains the transverse momentum
to the region less than the factorization scale. While, because
the LO-MRW UPDFs have no cutoff on the non-diagonal
terms of the DGLAP splitting function, this leads to LO-
MRW UPDFs becomes much larger at kt close to μ with
respect to other two UPDF models. Finally, it can be seen
that while gluon UPDF models at middle transverse momen-
tum are relatively similar to each other, for up quark the PB
UPDF becomes larger with respect to other two UPDF mod-
els.

As can be seen in the Fig. 4, the degree of similarity
between two UPDF models of NLO-MRW and PB is shown

by plotting the fraction of NLO-MRW/PB for gluon and up
quark in log10 x− log10 k

2
t space at μ2 = 10000. These plots

enable us to gain a better insight of each UPDF models by
covering a wide range of x and k2

t region. As it is shown in in
this figure, the gluon UPDFs of the NLO-MRW and PB are
in close agreement to each other in most region. While for
the up quark UPDFs, the NLO-MRW only similar at small
and large kt . As mentioned before the NLO-MRW becomes
smaller than the PB up UPDFs at middle transverse momen-
tum.

In the Fig. 5 the degree of similarity between the UPDFs of
LO-MRW and PB is investigated with the help of the fraction
PB/LO-MRW at μ2 = 10000 in log10 x − log10 k

2
t space. A

cut is also imposed to remove regions with large difference.
As can be seen in this figure, the same behavior as before
is observed where gluon UPDFs of the LO-MRW is smaller
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Fig. 5 The top (bottom) panel
shows the fraction of
PB/LO − MRW for gluon
(up) quark at μ2 = 10000,
respectively

than the PB in the small kt , and relatively similar to each
other at middle kt , while LO-MRW becomes larger than PB
in kt ∼ μ. For the MRW up UPDFs, this similarity with PB
becomes worse compared to the similarity between PB and
NLO-MRW up UPDFs. The up UPDF of the LO-MRW and
PB is only close to each other in the limited log10 x−log10 k

2
t

region.
As observed in the Figs. 2, 3, 4 and 5, UPDFs of the

NLO-MRW and PB are more similar to each other than
the LO-MRW and PB ones. Therefore, one could expect
their predictions of experimental results also be close to
each other. Now, we seek to investigate these UPDFs and
also the kt -factorization framework by means of compar-
ing the differential cross section predictions of UPDF mod-
els with each other and also the NNLO [3] results of the
collinear factorization framework. In the reference [3], cross

Table 1 Predictions of different UPDFs models an the NNLO collinear
for the inclusive fiducial of three-photon cross section. The upper and
lower limit of the cross section is due to scale uncertainty

σ prediction

LO-MRW 86.17+8.31
−2.64 f b

NLO-MRW 64.66+12.54
−14.69 f b

PB 68.99+8.66
−9.51 f b

NNLO Collinear 67.46+7.39
−4.91 f b

section is calculated for different choices of the factoriza-
tion/renormalization scales, however the chosen central scale

choice is μF,R = 1

4

∑3
i=1 E

γi
T . We use the data in ancillary

files provided along with the manuscript of the reference [3]
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Fig. 6 In the top panel of each plot the differential cross sections for
different UPDF models and also NNLO collinear with respect to Eγ1

T ,
Eγ2
T and Eγ3

T are shown and compared to the ATLAS experimental data
[1] as denoted in each figure. In the two bottom panels in each plot,

prediction/data of each UPDF models and NNLO collinear with their
scale uncertainties are shown. Additionally, in the figure at the right
bottom panel, a comparison of the role of each sub-processes using the
NLO-MRW UPDFs is shown

to show comparison between the NNLO collinear with our
kt -factorization results.

In Table 1, a comparison of fiducial cross sections of dif-
ferent UPDF models and also the NNLO collinear results are
presented. It is interesting to note that the cross section pre-
diction of all our UPDF models cover the experimental cross
section σ experiment = 72.6 ± 6.5 (stat) ± 9.2(sys) f b,
where stat and sys denote statistical and systematic uncer-

tainties. It can be seen that the NLO-MRW and PB UPDF
models central value cross section predictions are more in
accordance with the experiment with respect to the LO-MRW
UPDF prediction, where this model tends to overestimate the
experimental cross section. The reason for such behavior is
the large role of LO-MRW UPDFs at kt ∼ μ with respect
to the NLO-MRW and PB UPDF models. It should be noted
that large tail of the LO-MRW UPDF models with respect to
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Fig. 7 The same as Fig. 6 but for difference between azimuthal angles of final state photons, and also no comparison between sub-processes is
shown

the PB is investigated in the reference [34]. The key point is
that one cannot see the unwanted behavior of the LO-MRW
UPDF model at large parton transverse momentum by impos-
ing virtuality ordering in the NLO-MRW UPDF model, and
as a result of this constraint, the NLO-MRW has better per-
formance with respect to the LO-MRW in prediction of the
fiducial cross section.

In the Fig. 6, differential cross sections predictions with
respect to the transverse energies of the hardest, second hard-
est and the softest final state photons, i.e. Eγ1

T , Eγ2
T and Eγ3

T
are shown. As could be expected, one can see that the LO-

MRW prediction is slightly larger than the other two UPDFs
results. The interesting point here is that the NLO-MRW and
PB UPDFs are more in agreement with each other and also
are covering the results within their uncertainty band. Above
all, it can be surprising to see that the kt -factorization pre-
diction with the PB UPDFs and the NLO-MRW UPDFs are
even close to the results of the NNLO collinear factoriza-
tion [3]. While, as can be seen in the reference [1], the NLO
collinear results undershoot the data. Furthermore to check
the role of each sub-process in our calculation, we give a
comparison of them for the case of the NLO-MRW UPDFs,
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Fig. 8 The same as Fig. 7 but for absolute value of difference between pseudo-rapidities of final state photons

see the right bottom panel of the Fig. 6. As can be seen in
this figure the sub-process q + q → γ γ γ + g has negligible
role in cross section, while the other two sub-processes have
relatively comparable share in the total cross section.

In the Fig. 7, differential cross sections predictions with
respect to the difference between azimuthal angle of the three
photons with the highest transverse energies, i.e. 	φγ1γ2 ,
	φγ1γ3 and 	φγ2γ3 are presented. It can be seen that the LO-
MRW UPDFs predictions at 	φγ1,γ2 < 2 and 	φγ γ2γ3

> 2
fails to describe the experimental data. While, the predic-
tions of the NLO-MRW and PB UPDFs similar to the NNLO

collinear results are in excellent agreement with the exper-
imental data. Additionally, an important point here in these
channels is that the scale uncertainties of the NLO-MRW
and PB behave similar to each other and become large at
small 	φγ1γ2 and 	φγ1γ3 , while for the 	φγ2γ3 their scale
uncertainties become significant at larger azimuthal angle
differences.

In the Fig. 8, differential cross sections with respect to
the difference between pseudo-rapidites ***of the final state
photons, i.e. |	ηγiγ j |, where i 	= j and i = 1, 2, 3 or
j = 1, 2, 3, are shown. It can be seen that when |	ηγiγ j |
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Fig. 9 The same as Fig. 7 but for invariant masses of different configuration of final state photon

is getting smaller the LO-MRW predictions become larger
and even tend to overestimate the data, while at large |	ηγi γ j |
all models behave like to each other.

In the Fig. 9, differential cross section predictions with
respect to invariant mass of various configurations of final
state photons, i.e. mγ1γ2 , mγ1γ3 , mγ2γ3 and mγ1γ2γ3 are pre-
sented. It can be seen that small invariant mass is more sen-
sitive to the transverse momentum of incoming parton and
difference between UPDF models mostly shown themselves
in this region. However, despite different behaviors of each

UPDF models, all of them are in good agreement with the
experimental data.

Before, wrapping up this section a discussion about uncer-
tainty is in order. First, we should stress that, although the
results of the NLO-MRW and PB UPDFs may be close to the
full NNLO collinear results, but their uncertainties are much
larger with respect to the collinear NNLO ones. Additionally,
we should point out the main element in the large difference
between the scale uncertainty using the UPDFs of the LO-
MRW and the NLO-MRW is the scale of the DGLAP in the
definition of UPDFs models, and not the order of the pertur-
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Fig. 10 The comparison of the scale uncertainty between the LO-
MRW, NLO-MRW and LO-MRW differential cross sections with scale
k2

bation theory. Because, the NLO-MRW UPDFs that we use,
are only an approximation to the full NLO-MRW UPDFs,
since we consider the LO splitting functions (instead of the
NLO ones) with the NLO-PDFs. Additionally, if we consider
the LO-PDFs instead of the NLO-PDFs in the definition of
the NLO-MRW UPDFs, then we actually have the LO-MRW
UPDFs with the scale k2 = k2

t /(1 − z), and hence it is rea-
sonable to relate the large uncertainty between the LO-MRW
and the NLO-MRW to the scale of the DGLAP when defin-
ing these UPDFs and not the order of the perturbation theory.
To show it visually and make it clear, in the Fig. 10 we also
give a comparison between the scale uncertainty using the
LO-MRW and the LO-MRW with scale k2 UPDFs.

We should mention here that for the process q + g →
3γ + q there is possibility that the final state quark becomes
colinear to the initial state hadron. This especially happens
in the collinear QCD frameworks. Although, it might not
cause a divergent cross section, but it could lead to the large
final state rapidity. However, this is not the case in the kt -
factorization approaches, which can be deal with, properly.
For example in the reference [51] by the help of subtraction
terms, in the context of double counting, this problem can be
taken care of, when the additional parton is highly separated
in the rapidity from central region. On the other hand, the
author of reference [52] treats the same problem through def-
inition of transverse momentum distributions, i.e., imposing
various conditions (such as rapidity-ordering) on the UPDFs.

Fig. 11 The differential cross section with respect to the final state
quark rapidity (yq ) for the different UPDFs defined in the text

In the present work, the later prescription is in order, using the
KATIE event generator with various conditions on UPDFs
such as: (1) for BP (MRW) and kt < 0.01 (kt < 0.03) GeV,
the UPDFs set equal zero. (2) The Sudakov equation (22)
((17)) and the normalization constraint (in case of MRW see
the Eqs. (5) and (6), thus they exclude that region from the
differential cross sections calculations. To make it clear, in
the Fig. 11, the differential cross section with respect to final
state quark rapidity (yq ) for different UPDFs are plotted to
clarify this issue.

4 Conclusions

In this work, we presented the three-photon production cross
section of the 8 TeV ATLAS collaboration data within kt -
factorization framework with the LO-MRW, NLO-MRW and
PB UPDF models. The calculation was done with the help of
the KATIE parton level event generator and it was observed
that the NLO-MRW and PB predictions are giving more sim-
ilar results with respect to the LO-MRW model and also their
predictions are close to the ones within the NNLO collinear
. Whereas the results with the LO-MRW UPDF overshoots
the data of some channels specially those with respect to the
azimuthal angle difference.

To understand better the difference between the results of
UPDF models, we provided various plots in log10 x−log10 k

2
t

space. These plots gave a detailed comparison between
each UPDF models and it is showed that LO-MRW UPDFs
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become larger than other two UPDF models at kt ∼ μ. While
PB and NLO-MRW UPDFs are larger with respect to the
NLO-MRW UPDF at small transverse momentum. Addi-
tionally, a similar behavior between the NLO-MRW and PB
UPDFs is observed, where this similarity in case of the gluon
UPDF is more striking.

In conclusion, it was observed that the kt -factorization
framework, especially with a proper UPDF models such as
PB and NLO-MRW, one can obtain a satisfactory description
of the ATLAS three photon production data that are com-
parable even to the NNLO collinear results. While, it was
observed in [1] that the NLO collinear is unable to give a
good description of the data.
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