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We study the nature of the phase transition of lattice gauge theories at high temperature and high density
by focusing on the probability distribution function, which represents the probability that a certain density
will be realized in a heat bath. The probability distribution function is obtained by creating a canonical
partition function fixing the number of particles from the grand partition function. However, if the Z3 center
symmetry, which is important for understanding the finite temperature phase transition of SUð3Þ lattice
gauge theory, is maintained on a finite lattice, the probability distribution function is always zero, except
when the number of particles is a multiple of three. For Uð1Þ lattice gauge theory, this problem is more
serious. The probability distribution becomes zero when the particle number is nonzero. This problem is
essentially the same as the problem that the expectation value of the Polyakov loop is always zero when
calculating with finite volume. In this study, we propose a solution to this problem. We also propose a
method to avoid the sign problem, which is an important problem at finite density, using the center
symmetry. In the case of Uð1Þ lattice gauge theory with heavy fermions, numerical simulations are actually
performed, and we demonstrate that the probability distribution function at a finite density can be
calculated by the method proposed in this study. Furthermore, the application of this method to QCD is
discussed.
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I. INTRODUCTION

Various results have been obtained so far in heavy-ion
collision experiments to generate quark-gluon plasma. In
particular, recently, there has been a great deal of interest in
the phase transition of QCD in the high-density region. One
of the most interesting topics is the verification that the
first-order phase transition appears at high density, which is
expected from the phenomenological discussion. Since the
critical point at which the low-density crossover changes to
the first-order phase transition is the second-order phase
transition, the fluctuation of the thermodynamic quantity of
the heat bath increases as the particle density approaches
the critical point.
In order to investigate the existence of such a critical

point, the measurement of event-by-event fluctuations for
conserved quantities such as net quark number and charge
amount is attracting attention. Furthermore, higher-order
cumulants such as kurtosis and skewness have character-
istic behaviors near the critical point, so they are also
important physical quantities [1–4]. On the other hand, in

the numerical calculation of lattice QCD, which is the first-
principles calculation, variance, skewness, and kurtosis can
be calculated by the Taylor expansion method in the low-
density region [5–12]. These are information about the
shape of the probability distribution function (histogram) of
the quark number or the charge.
The probability distribution function of the quark num-

ber can be obtained by computing the canonical partition
function [13–24]. In this study, we calculate the probability
distribution function of quark number. The probability
distribution function is a function that expresses the
probability that a physical quantity will be a certain value.
Then, we aim to establish a method to determine the critical
chemical potential (density) by numerical simulations of
lattice QCD. If there is a first-order phase transition, two
states appear with equal probability at the phase transition
point. Therefore, if we calculate the probability distribution
function and investigate its shape, we can determine
whether the phase transition is first order, second order,
or crossover.
The numerical calculation of the canonical partition

function was performed in Ref. [16] by a saddle point
approximation in two flavor lattice QCD. In the high-
density region, the probability distribution function at the
phase transition point has two peaks, indicating that the
first-order phase-transition region exists. However, since it
is a finite density system, the sign problem arises in the
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calculation of the canonical partition function. In Ref. [16],
the sign problem is avoided by introducing an approxima-
tion that assumes that the probability distribution of the
complex phase of the quark determinant, which causes the
sign problem, is a Gaussian function. This approximation
can be justified in the high-temperature phase, but in the
low-temperature phase, the validity of the approximation is
only that the actual numerical result is similar to the
approximation function.
Moreover, the calculation of Ref. [16] is implicitly

limited to the case where the number of quarks is a multiple
of 3. This is because, when calculated straightforwardly,
the probability distribution function becomes zero except
for multiples of three due to the Z3-center symmetry. The
Z3-center symmetry is an important symmetry for under-
standing the deconfinement phase transition of QCD as a
spontaneous symmetry breaking. If the symmetry is strictly
maintained under the Z3 center transformation, only states
where the net quark number is zero or a multiple of three
are realized. It is consistent with the existence of only
mesons (quark and antiquark) and baryons (three quarks) in
the confined phase where symmetry is maintained. The
deconfinement phase is realized by the spontaneous sym-
metry breaking, which allows the quark to exist alone.
However, the symmetry is not broken in the actual
numerical calculation with finite volume. In other words,
as long as there is symmetry, the number of quarks will
always be a multiple of three.
In order to discuss phase transitions due to sponta-

neous symmetry breaking by a correct procedure, it is
necessary to add an infinitesimal external field to break
the symmetry and investigate the behavior in the limit of
infinite volume. We will discuss this issue in detail in
Sec. III. Moreover, in the case of Uð1Þ lattice gauge
theory, the particle number probability distribution func-
tion is zero except when the net particle number is zero
because of the Uð1Þ center symmetry. This is reasonable
in the confinement phase (disordered phase), but in the
deconfinement phase (ordered phase), the net particle
number can be nonzero.
This paper is organized as follows. In the next section,

we introduce the probability distribution function of the
particle density, which is given by the canonical partition
function. Then, we discuss problems caused by the center
symmetry in the calculation of the canonical partition
function in Sec. III. A method to calculate the canonical
partition function by a saddle point approximation is
explained in Sec. IV. For the case of Uð1Þ lattice gauge
theory, the sign problem in the canonical approach is
avoided at the same time. We demonstrate this method
for the Uð1Þ gauge theory with heavy dynamical fermions.
The results of the probability distribution function of the
particle density are shown in Sec. V. Then, the application
to QCD is discussed in Sec. VI. Our conclusions are given
in Sec. VII.

II. CANONICAL PARTITION FUNCTION AND
PARTICLE DENSITY PROBABILITY

DISTRIBUTION FUNCTION

The relation between the grand partition function
ZGCðT; μÞ with the chemical potential μ and the canonical
partition function ZCðT;NÞ with the particle number N is
given by the fugacity expansion,

ZGCðT; μÞ ¼
X∞

N¼−∞
ZCðT;NÞeNμ=T ð1Þ

at each temperature T. The left-hand side of this equation,
ZGCðT; μÞ, is the normalization factor of the Boltzmann
weight and is classified by N in the right-hand side. Hence,
ZCðT;NÞeNμ=T can be regarded as a weight factor for each
N, and the probability distribution of N is in proportion
to ZCðT;NÞeNμ=T .
Here, we introduce an effective potential as a function of

the particle number N by the canonical partition function
ZCðT;NÞ,

ZGCðT; μÞ ¼
X∞

N¼−∞
e−VeffðT;NÞ; ð2Þ

VeffðT;NÞ ¼ − lnZCðT;NÞ − Nμ

T
: ð3Þ

We note that there is an uncertainty in adding a constant to
Veff , which corresponds to an indefiniteness of a constant
multiple of ZGC. The generation probability is maximized
when the number of particles N where VeffðT;NÞ is the
minimum. We introduce the particle density ρ as ρ ¼ N=V,
where V is the spatial volume. For sufficient large V, the
minimum point is obtained from the derivative of
VeffðT; VρÞ,

1

V
∂VeffðT; VρÞ

∂ρ
¼ −

1

V
∂ lnZCðT; VρÞ

∂ρ
−
μ

T
¼ 0: ð4Þ

Hence, the derivative −ð1=VÞ∂ lnZC=∂ρ is the μ=T where
the particle density with the maximum generation proba-
bility is ρ.
The grand partition function of Nf flavor QCD is

defined by

ZGCðT; μ1; μ2;…; μNf
Þ ¼

Z
DU

YNf

f¼1

detMðκf; μf=TÞe−Sg ;

ð5Þ

where κf is the hopping parameter and μf is the chemical
potential for the fth flavor. The action we study consists of
the gauge action and the fermion action,
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S ¼ Sg þ Sq; ð6Þ

where the gauge action is the standard plaquette action
given by

Sg ¼ −6NsiteβP̂ ð7Þ

with Nsite ¼ N3
s × Nt the space-time lattice volume and P̂

the plaquette operator. For the case of the standard pla-
quette gauge action of SUðNcÞ gauge theory, the gauge
coupling parameter is β ¼ 2Nc=g2 and

P̂ ¼ 1

6NcNsite

X
x;μ<ν

Re tr½Ux;μUxþμ̂;νU
†
xþν̂;μU

†
x;ν�: ð8Þ

Here, Ux;ν is the link variable in the ν direction at site x and
xþ ν̂ the next site in the ν direction from x. For fermions,
we adopt the standard Wilson fermion action given by

Sq ¼
XNf

f¼1

X
x;y

ψ̄ ðfÞ
x Mxyðκf; μf=TÞψ ðfÞ

y ; ð9Þ

where ψ ðfÞ is the fermion field and Mxy is the Wilson
fermion kernel

Mxyðκf; μf=TÞ

¼ δxy − κf

�X3
i¼1

½ð1 − γiÞUx;iδy;xþî þ ð1þ γiÞU†
y;iδy;x−î�

þeμfað1 − γ4ÞUx;4δy;xþ4̂ þ e−μfað1þ γ4ÞU†
y;4δy;x−4̂

�
:

ð10Þ

The lattice spacing is a. Since T ¼ ðNtaÞ−1, the dimen-
sionless ratio μf=T ¼ μfaNt.
To discuss the chemical potential dependence of the

fermion determinant, we perform hopping parameter
expansion in the vicinity of the heavy fermion limit,
κ ¼ 0. (See e.g., Sec. 5.1.3 of Ref. [25] or Sec. 11 of
Ref. [26].) For each flavor, we have

ln
�
detMðκ;μ=TÞ
detMð0;0Þ

�
¼
X∞
n¼1

1

n!

�
∂
n lndetM
∂κn

�
κ¼0

κn ¼
X∞
n¼1

Bn

n!
κn;

ð11Þ

with detMð0; 0Þ ¼ 1 and

Bn≡
�
∂
n lndetM
∂κn

�
κ¼0

¼ð−1Þnþ1ðn−1Þ!tr
��

M−1∂M
∂κ

�
n
�
κ¼0

¼ð−1Þnþ1ðn−1Þ!tr
��

∂M
∂κ

�
n
�
; ð12Þ

where ð∂M=∂κÞxy is the hopping term following κf in the
right-hand side of Eq. (10). Nonvanishing contributions to
the trace of Eq. (12) appear only when the product of the
hopping terms forms a connected closed loop in the space-
time. Therefore, Bn are the sum of connected n-step Wilson
loops [27]. We classify them into Wilson-loop-type terms
and Polyakov-loop-type terms. The former are independent
of the boundary conditions, and the latter are closed by the
antiperiodic boundary condition for the time direction. The
leading-order (LO) contribution consists of the smallest
Wilson-loop-type term, plaquette P̂, defined by Eq. (8), and
the smallest Polyakov-loop-type term, Polyakov loop Ω̂,
defined by

Ω̂¼ 1

NcN3
s

X
x⃗

tr½Ux⃗;4Ux⃗þ4̂;4Ux⃗þ2·4̂;4 � � �Ux⃗þðNt−1Þ·4̂;4�; ð13Þ

where
P

x⃗ means a summation over one time slice.
Because of the antiperiodic boundary condition and

gamma matrices in the hopping terms, up to the LO
contributions for SUðNcÞ gauge theory [28], Eq. (11) reads

ln

�YNf

f¼1

detMðκf;μf=TÞ
�
¼ 96NcNsite

XNf

f¼1

κ4fP̂

þ 2Ntþ1NcN3
s

�XNf

f¼1

κNt
f eμf=TΩ̂þ

XNf

f¼1

κNt
f eμf=TΩ̂�

�
þ � � � :

ð14Þ

The first term that is proportional to P̂ can be absorbed into
the gauge action by a shift β → β� with

β� ¼ β þ 16Nc

XNf

f¼1

κ4f: ð15Þ

The next-leading order (NLO) contributions in the Wilson-
loop-type terms are the six-step Wilson loops and are
typical operators in improved gauge actions. Thus, the
contributions of these NLO operators can also be absorbed
by a shift of improvement parameters of the gauge action.
Because a shift in improvement parameters only affects the
lattice discretization errors, the six-step Wilson loop terms
will not affect characteristic features of the system in the
continuum limit. Moreover, the coefficients of the NLO
terms are very small compared to improvement parameters
of typical improved actions [29]. In contrast, the terms
proportional to the Polyakov-loop-type terms act like
external magnetic fields in spin models and thus may
change the nature of the phase transition. The higher-order
contribution is discussed in Refs. [29–31]. We moreover
assume that Nt is an even number in this study.
As seen in Eq. (14), the Wilson-loop-type terms do not

depend on the chemical potential. Since each term of Ux;4
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in Eq. (10) always appears as a combination of eμfaUx;4 or
e−μfaU†

x;4, the chemical potential dependence of the expan-

sion term containing nþ Ux;4 and n− U†
x;4 is eμfaðnþ−n−Þ.

Because nþ and n− satisfy nþ − n− ¼ NtN for a closed
loop with a winding number N, Wilson-loop-type terms do
not depend on the chemical potential, and Polyakov-loop-
type terms closed by the antiperiodic boundary condition
with the winding number N are in proportion to
eNNtμfa ¼ eNμf=T . Thus, the expansion terms can be clas-
sified by the winding number N,

ln ½detMðκ; μf=TÞ� ¼
X∞

N¼−∞
CNeNμf=T: ð16Þ

CNeNμf=T is the sum of the terms whose winding number is
N in the hopping parameter expansion. If we classify the
expansion terms by the winding number, the canonical
partition function is obtained. For example, when Nf ¼ 2
with the same μ and κ, ZCðT;NÞ can be calculated from the
equation,

ZGCðT; μÞ ¼
Z

DUðdetMðκ; μ=TÞÞ2e−Sg ¼
Z

DU exp

� X∞
m¼−∞

Cmemμ=T þ
X∞
n¼−∞

Cnenμ=T
�
e−Sg

¼
Z

DU
X∞
l¼0

1

l!

� X∞
m¼−∞

Cmemμ=T þ
X∞
n¼−∞

Cnenμ=T
�l
e−Sg

≡ X∞
N¼−∞

�Z
DUdetNMe−Sg

�
eNμ=T ¼

X∞
N¼−∞

ZCðT;NÞeNμ=T ð17Þ

for each term of eNμ=T , if we perform path integral over
gauge configurations. Here, detN M means the expansion
term of ½detMðκ; μ=TÞ�Nf with respect to N. Therefore, the
fugacity expansion is the winding number N expansion.
Then, the chemical potential enlarges the contributions
having positive winding number and suppress the contri-
butions having negative winding number.

III. CENTER SYMMETRY AND THE CANONICAL
PARTITION FUNCTION

A. SUð3Þ gauge theory

The quenched QCD, in which no dynamical fermions are
included, has Z3 center symmetry. The centers of SUð3Þ
group are fI;ωI;ω2Ig, where ω ¼ e2πi=3 and I is the 3 × 3
unit matrix. The center transformation is defined as

Uðx⃗;tÞ;4 → ωUðx⃗;tÞ;4 ð18Þ

for all x⃗ in one time slice t. Under the center transformation,
the system is symmetric, i.e., the gauge action and integral
measure DU are invariant. However, the expectation value
of Polyakov loop Ω̂ changes as

hΩ̂i → ωhΩ̂i: ð19Þ

If this symmetry is maintained, any expectation values do
not change under the center transformation. Then, hΩ̂i ¼
ωhΩ̂i must be satisfied. Thus, hΩ̂i is zero. Therefore, the
Polyakov loop is regarded as an order parameter of the
spontaneous breaking of the center symmetry.

Similarly, under the Z3 center transformation, the
canonical partition function of the particle number N,
ZCðT;NÞ, changes as

ZCðT;NÞ → ωNZCðT;NÞ ¼ e2πNi=3ZCðT;NÞ; ð20Þ

since ZCðT;NÞ is given as the sum of the expectation
values of Polyakov-loop-type operator with a winding
number of N as discussed in the previous section.
Because the grand partition function is given by the
fugacity expansion, ZGCðT; μÞ changes as

X∞
N¼−∞

ZCðT;NÞeNμ=T →
X∞

N¼−∞
ZCðT;NÞeNμ=Tþ2πNi=3; ð21Þ

and is not invariant under the center transformation when
including dynamical fermions. At the same time, this
implies

ZGCðT; μÞ ¼ ZGCðT; μþ 2πiT=3Þ; ð22Þ

since Sg and the integral measure do not change under the
center transformation, where we extend the real μ to a
complex number. This symmetry is called Roberge-Weiss
symmetry [32].
Moreover, this indicates ZCðT;NÞ ¼ 0 expect when N is

a multiple of 3. Since ω3 ¼ 1 and 1þ ωþ ω2 ¼ 0,
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ZGCðT; μÞ ¼
1

3
ðZGCðT; μÞ þ ZGCðT; μþ 2πiT=3Þ

þ ZGCðT; μþ 4πiT=3ÞÞ

¼
X∞
n¼−∞

ZCðT; 3nÞe3nμ=T; ð23Þ

where n is an integer. This means that the number of
particles can only exist in multiples of three. This is
reasonable in the confinement phase where only baryons
and mesons exist. However, in the deconfinement phase,
there should be states of all particle numbers. The order
parameter of spontaneous symmetry breaking has a non-
zero expectation value when one vacuum is selected from
multiple vacua in the limit of infinite volume. Thus, the
center symmetry is never broken in an actual simulation
with finite volume.

B. Uð1Þ gauge theory

This problem is more serious in Uð1Þ gauge theory. For
the case of Uð1Þ gauge theory, the centers are all elements
of Uð1Þ group because of an Abelian group. The link
variable is given as Ux;ν ¼ eiθx;ν , where θx;ν is a real
variable that takes the value of −π < θx;ν ≤ π on a link
ðx; νÞ. The gauge action is given by Sg ¼ −6NsiteβP̂, with
β ¼ 1=g2 the gauge coupling parameter and P̂ the plaquette
operator,

P̂ ¼ 1

6Nsite

X
x;μ<ν

cos ½θx;μ þ θxþμ̂;ν − θxþν̂;μ − θx;ν� ð24Þ

for the case of the standard plaquette action. When we
perform the hopping parameter expansion, the LO con-
tribution of the fermion determinant is given by

ln

�YNf

f¼1

detMðκf; μf=TÞ
�
¼ 96Nsite

XNf

f¼1

κ4fP̂

þ 2Ntþ1N3
s

�XNf

f¼1

κNt
f eμf=TΩ̂þ i

XNf

f¼1

κNt
f eμf=TΩ̂�

�
þ � � � :

ð25Þ

The Polyakov loop for Uð1Þ gauge theory is

Ω̂¼ 1

N3
s

X
x⃗

exp ½iðθx⃗;4þ θx⃗þ4̂;4þ θx⃗þ24̂;4þ� � �þ θx⃗þNt4̂;4
Þ�:

ð26Þ

Under the Uð1Þ center transformation Uðx⃗;tÞ;4 →
eiηUðx⃗;tÞ;4 on one time slice t, ZCðT;NÞ changes as

ZCðT;NÞ → eiNηZCðT;NÞ: ð27Þ

Since Sg and the integral measure are invariant,
ZCðT;NÞ ¼ eiNηZCðT;NÞ. Thus, the canonical partition
function is

ZCðT;NÞ ¼ 1

2π

Z
2π

0

eiNηZCðT;NÞdη ¼ 0; ð28Þ

except for N ¼ 0. This means that the existence probability
of particles that interact with the gauge field is zero.
Moreover, the grand partition function is

ZGCðT; μqÞ ¼ ZCðT; 0Þ; ð29Þ

and does not depend on the chemical potential due to the
Uð1Þ center symmetry. Since the center symmetry cannot
be broken in numerical simulations performed with finite
volume, the canonical partition function cannot be calcu-
lated correctly.

C. Polyakov loop in Uð1Þ gauge theory

This problem is essentially the same as the problem that
the expectation value of the Polyakov loop is always zero in
a practical simulation with finite volume. In the case of
heavy fermions, i.e., κ is sufficiently small, the canonical
partition function with N ¼ 1 is in proportion to hΩ̂i, since
the leading contribution is the Polyakov loop term in the
hopping parameter expansion of ln detM with the winding
number one, and det1 M in the equation of ZCðT; 1Þ, e.g.,
Eq. (17), is proportional to Ω̂. In Fig. 1, we plot complex
values of the Polyakov loop on each configuration. The
configurations are generated by a heat bath method ofUð1Þ
lattice gauge theory [33] with the standard plaquette gauge
action and no dynamical fermions. The left panel shows the
result of the confinement (symmetric) phase at β ¼ 0.90,
and the right panel shows the result of the deconfinement
(broken) phase at β ¼ 1.10. The temporal lattice size Nt is
fixed to be 4. We adopt four spatial lattice sizes Ns. Purple,
blue, green and red symbols are the results of Ns ¼ 12, 16,
24, and 32, respectively. In the confinement phase, the
Polyakov-loop distribute around Ω ¼ 0. As the volume
increases, the width of the distribution decreases. In the
deconfinement phase, the Polyakov loop is distributed
on a circle and there is no volume dependence in the
distribution.
The Polyakov loop is an order parameter of the decon-

finement phase transition. In the deconfinement phase, the
center symmetry is spontaneously broken and hΩ̂i should
be nonzero. However, because of the center symmetry, the
probability distribution is symmetric under the Uð1Þ trans-
formation, Ω̂ → eiηΩ̂ for an arbitrary real number η, as
shown in Fig. 1. Therefore, the expectation value of Ω̂ is
always zero even in the broken phase. Because the
symmetry is not broken in an simulation, to discuss
spontaneous symmetry breaking, it is required to break
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the center symmetry adding an explicit breaking term in the
action. Then, the breaking-term dependence and spatial-
volume dependence are investigated. If hΩ̂i is nonzero in
the double limit of zero breaking term and infinite volume,
we identify that spontaneous symmetry breaking has
occurred.
To break the center symmetry, we add one flavor

of heavy dynamical fermion. We approximate the
fermion determinant with the leading-order term of the
hopping parameter κ expansion given in Eq. (14), since
we investigate the limit of κ → 0. The plaquette term
can be absorbed into the gauge action by shifting
β → β� ¼ β þ 16κ4. The expectation value is computed
by the reweighting method with the reweighting factor
including the Polyakov-loop term,

hReΩ̂iðβ;κÞ ¼
1

ZGC

Z
DUReΩ̂ detMe−SgðβÞ

≈
1

ZGC

Z
DUReΩ̂eϵVReΩ̂e−Sgðβ�Þ

¼ hReΩ̂eϵVReΩ̂iðβ�;0Þ
heϵVReΩ̂iðβ�;0Þ

; ð30Þ

where ϵ ¼ 4 × 2NtκNt , V ¼ N3
s and h� � �iðβ�;0Þ means the

average over quenched configurations at β�. Using the data
of Nt ¼ 4 in Fig. 1, the expectation value of ReΩ̂ is
computed. The number of updates is 1,000,000 for each β.
The jackknife error is evaluated adopting an appropriate bin
size. We plot the results in Fig. 2 as a function of κNt . The
left figure is the result of the confinement (symmetric)
phase at β ¼ 0.90. The results of Ns ¼ 12 (purple), 16
(blue), 24 (green), and 32 (red) are plotted. No volume

dependence is observed for hReΩ̂i. Therefore, it is not
necessary to take the volume infinity limit, and hReΩ̂i ∼
κNt in the confinement phase (symmetric phase). Then,
hReΩ̂i ¼ 0 in the limit of κ → 0. On the other hand, the
right figure is the result of the deconfinement (broken)
phase at β ¼ 1.10. In the deconfinement phase, the
Polyakov loop behaves as hReΩ̂i ∼ VκNt . Of course, if
V is fixed and the limit of κ → 0 is taken, hReΩ̂i becomes
always zero. However, in the thermodynamic limit, i.e.,
V → ∞, and κ → 0, hReΩ̂i is expected to become a
nontrivial finite value.1

Furthermore, when κ is sufficiently small, the expect-
ation value of the Polyakov loop can be evaluated by a
Taylor expansion of κNt assuming the Uð1Þ center sym-
metry. Using the distribution function of the Polyakov loop
in the complex plane, the expectation value can be
calculated as follows:

hReΩ̂iðβ;κÞ ¼
1

ZGC

Z
DUReΩ̂eϵVReΩ̂e−Sg

¼ 1

2π

ZZ
jΩj cosϕeϵVjΩj cosϕWðjΩjÞdϕdjΩj

¼ ϵV
2

Z
jΩj2WðjΩjÞdjΩj þ � � � : ð31Þ
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FIG. 1. Distribution of Polyakov loops in the complex plane generated by simulations of Uð1Þ lattice gauge theory at β ¼ 0.90 (left)
and 1.10 (right). The temporal lattice size Nt is 4. Purple, blue, green, and red symbols are the results of the spatial lattice size Ns ¼ 12,
16, 24, and 32, respectively.

1In this analysis, we ignored the difference between β and β�
because the difference is very small. To be precise, Fig. 2 is the
results of β� ¼ 0.90 and 1.10. Although hReΩ̂i at κ ¼ 0 is zero
within the statistical error due to the center symmetry, in order to
make it exactly zero at κ ¼ 0, we assumed that the generation
probability of Ω̂ and −Ω̂ is the same in the calculation of the
expectation value.
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Here, WðjΩjÞ is the probability distribution when the
Polyakov loop is jΩjeiϕ in the simulation without dynami-
cal fermions. This probability distribution function is Uð1Þ
symmetric, i.e., independent of ϕ, and is a function of the
absolute value jΩj, as seen in Fig. 1. The distribution
function is normalized as

R
∞
0 WðjΩjÞdjΩj ¼ 1. The value

of hReΩ̂ni can be also computed,

hReΩ̂niðβ;κÞ ¼
1

ZGC

Z
DUReΩ̂neϵVReΩ̂e−Sg

¼ 1

2π

ZZ
jΩjn cosðnϕÞeϵVjΩj cosϕWðjΩjÞdϕdjΩj

¼ ðϵVÞn
n!2n

Z
jΩj2nWðjΩjÞdjΩj þ � � � : ð32Þ

The complex phase can be removed in the above equations.
In the double limit of V → ∞, and κ → 0, the value of ϵV
cannot be determined. However, for example, the leading
term of the ratio hReΩ̂4i=hReΩ̂2i2 does not depend on ϵV.
The volume dependence of such a quantity is expected to
small. The explicit breaking term is also important for the
calculation of the canonical partition function. As discussed
below, this method can be applied in computing the
derivative of canonical partition function.

IV. CANONICAL PARTITION FUNCTION WITH A
SADDLE POINT APPROXIMATION

We calculate the canonical partition function following
Ref. [16]. Because the fugacity expansion is basically a
Laplace transform, the canonical partition function is
obtained by the inverse Laplace transform,

ZCðT;NÞ ¼ 1

2π

Z
π

−π
e−Nðμ0=TþiμI=TÞZGCðT;μ0þ iμIÞd

�
μI
T

�
;

ð33Þ

where μ0 is arbitrary complex number. μI=T is an integral
variable introduced to constrain the number of particles
N. Regarding as the imaginary part of μ=T, we extend
the μ=T in Eq. (1) to a complex value. This equation is
equivalent to performing the complex integral on the
complex plane of z along a path parallel to the imaginary
axis,

ZCðT;NÞ ¼ 1

2π

Z
ZGCðT; zTÞe−Nzdz; ð34Þ

where z ¼ ðμ0 þ iμIÞ=T.
We consider the case of degenerate Nf flavor QCD for

simplicity. The grand partition function,

ZGCðT; zTÞ ¼
Z

DUðdetMðκ; zÞÞNfe−Sg ð35Þ

can not be computed byMonte Carlo simulations. Thus, we
calculate the following ratio,

ZGCðT; μÞ
ZGCðT; 0Þ

¼ 1

ZGC

Z
DU

�
detMðκ; μ=TÞ
detMðκ0; 0Þ

�
Nf

× ðdetMðκ0; 0ÞÞNfe−Sg

¼
��

detMðκ; μ=TÞ
detMðκ0; 0Þ

�
Nf
	

ðT;μ¼0;κ0Þ
: ð36Þ

ZGCðT; 0Þ is the grand partition function at the simulation
point of μ ¼ 0. h� � �iðT;μ¼0;κ0Þ is the expectation value at
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FIG. 2. Expectation value of the Polyakov loop as a function of the hopping parameter κ measured at β ¼ 0.90 (left) and 1.10 (right) on
N3

s × 4 lattices with Ns ¼ 12 (purple), 16 (blue), 24 (green), and 32 (red).
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μ ¼ 0 with the hopping parameter κ0. Substituting this
equation into Eq. (34), the canonical partition function
becomes

ZCðT;NÞ ¼ 1

2π
ZGCðT; 0Þ

Z
heVDðzÞe−NziðT;μ¼0Þdz

¼ 1

2π
ZGCðT; 0Þ

�Z
eVðDðzÞ−N

VzÞdz
	

ðT;μ¼0Þ
; ð37Þ

where V ¼ N3
s and

eVDðzÞ ≡
�
detMðκ; zÞ
detMðκ0; 0Þ

�
Nf

: ð38Þ

In the second line of Eq. (37), we changed the calculation
order of the complex integral of z and the path integral of
the gauge field.
Here, the particle number density is expressed as ρ ¼

N=V in lattice units. In physical units, the density ρphy is
given by ρphy=T3 ¼ ρN3

t . For simplicity, we integrate z by a
saddle-point approximation [16]. This approximation is
valid for large volumes. The saddle-point condition is

d
dz

½DðzÞ − ρz� ¼ dDðzÞ
dz

− ρ ¼ 0: ð39Þ

Let z0 ¼ x0 þ iy0 be the saddle point where z satisfies the
saddle-point condition.

ZCðT; ρVÞ ¼
1

2π
ZGCðT; 0Þ

�Z
π

−π
e−Nðz0þixÞ

�
detMðκ; z0 þ ixÞ
detMðκ0; 0Þ

�
Nf

dx

	
ðT;μ¼0;κ0Þ

¼ 1

2π
ZGCðT; 0Þ

�Z
π

−π
exp

�
V

�
Dðz0Þ − ρz0 −

1

2
D00ðz0Þx2 þ � � �

��
dx

	
ðT;μ¼0;κ0Þ

≈
1ffiffiffiffiffiffi
2π

p ZGCðT; 0Þ
*
exp ½VðDðz0Þ − ρz0Þ�e−iα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

VjD00ðz0Þj

s +
ðT;μ¼0;κ0Þ

; ð40Þ

whereD00ðzÞ ¼ d2DðzÞ=dz2 andD00ðzÞ ¼ jD00ðzÞjeiα. The derivativewith respect to ρ is obtained by the following equation,

−
1

V
∂ lnZCðT; ρVÞ

∂ρ
≈

D
z0 exp ½VðDðz0Þ − ρz0Þ�e−iα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

VjD00ðz0Þj
q E

ðT;μ¼0;κ0ÞD
exp ½VðDðz0Þ − ρz0Þ�e−iα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

VjD00ðz0Þj
q E

ðT;μ¼0;κ0Þ

: ð41Þ

This equation can be calculated by the Monte Carlo
method.

V. Uð1Þ LATTICE GAUGE THEORY
WITH HEAVY FERMIONS

A. Canonical partition function of heavy fermions

We demonstrate the calculation of the canonical partition
function in Uð1Þ lattice gauge theory with degenerate Nf
flavors of heavy dynamical fermions. DðzÞ in Eq. (37) is
evaluated by the hopping parameter expansion,

DðzÞ ¼ 96NtNfκ
4P̂þ 2 × 2NtNfκ

Nt ½ezΩ̂þ e−zΩ̂†� þ � � � :
ð42Þ

Assuming that κ is sufficiently small, we approximateDðzÞ
by the terms P̂ and Ω̂. The first and second derivatives of
DðzÞ with respect to z are

∂DðzÞ
∂z

¼ 2 × 2NtNfκ
Nt ½ezΩ̂ − e−zΩ̂†� þ � � � ; ð43Þ

∂
2DðzÞ
∂z2

¼ 2 × 2NtNfκ
Nt ½ezΩ̂þ e−zΩ̂†� þ � � � : ð44Þ

The saddle point z0 ¼ x0 þ iy0 is defined as

�
∂DðzÞ
∂z

− ρ

�
z¼z0

¼ 0: ð45Þ

Thus,

2 × 2NtNfκ
Ntðez0Ω̂ − e−z0Ω̂†Þ ¼ ρ: ð46Þ

Because ρ is a real number, the complex phase of ðeiy0Ω̂ −
e−iy0Ω̂†Þ is zero. The imaginary part of saddle point y0 is
determined as

tan y0 ¼ −
ImΩ̂
ReΩ̂

or y0 ¼ − arctan

�
ImΩ̂
ReΩ̂

�
¼ −ArgΩ̂:

ð47Þ
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Substituting y0 into Eq. (46),

2 × 2NtNfκ
Nt ½ex0 jΩ̂j − e−x0 jΩ̂j� ¼ 4 × 2NtNfκ

Nt jΩ̂j sinh x0
¼ ρ: ð48Þ

Solving x0,

x0 ¼ arcsinh

�
ρ

4 × 2NtNfκ
Nt jΩ̂j

�

¼ ln

�
ρ

4 × 2NtNfκ
Nt jΩ̂j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ρ

4 × 2NtNfκ
Nt jΩ̂j

�
2

þ 1

s �
:

ð49Þ
The second derivative of DðzÞ at z ¼ z0, D00ðz0Þ, is
given by

D00ðz0Þ ¼ 2 × 2NtNfκ
Nt ½ex0 jΩ̂j þ e−x0 jΩ̂j�

¼ 4 × 2NtNfκ
Nt jΩ̂j cosh x0: ð50Þ

Similarly, DðzÞ at z ¼ z0 is

Dðz0Þ ¼ 96NtNfκ
4P̂þ 4 × 2NtNfκ

Nt jΩ̂j cosh x0: ð51Þ

In this approximation, x0, Dðz0Þ, and D00ðz0Þ are real
positive numbers. We substitute these equations into
Eq. (41). The derivative of ZC is

−
1

V
∂ lnZCðT;NÞ

∂ρ
≈
hz0 expðF þ iθÞi
hexpðF þ iθÞi ; ð52Þ

where F and θ are defined as

F ¼ VðDðz0Þ − ρx0Þ −
1

2
ln½VD00ðz0Þ�; ð53Þ

θ ¼ −VρArgΩ̂ ¼ −Vρ arctan
�
ImΩ̂
ReΩ̂

�
: ð54Þ

The Monte Carlo simulation is performed without
dynamical fermions, κ0 ¼ 0 and detMð0; 0Þ ¼ 1, and
h� � �i means the expectation value of the quenched simu-
lations. The term proportional to P̂ in Eq. (51) can be
absorbed into the gauge action by shifting β → β� ¼ β þ
16Nfκ

4 in the quenched simulation, and the shift of β is
very small in this calculation. Therefore, we omit Wilson-
loop-type terms such as the plaquette term and concentrate
on the effect of the Polyakov-loop term. Then, x0 and F are
real functions of ρ and the absolute value of Ω. [See
Eqs. (49)–(51).] On the other hand, θ is a real function of ρ
and the complex phase of Ω.
We calculate the derivative of the canonical partition

function by classifying the configurations by the value of
jΩj in the Monte Carlo simulation.

−
1

V
∂ lnZCðT; VρÞ

∂ρ
≈
R hz0 exp½F þ iθ�ijΩjWðjΩjÞdjΩjR hexp½F þ iθ�ijΩjWðjΩjÞdjΩj

¼
R ðx0hcos θijΩj þ hy0 sin θijΩjÞeFWðjΩjÞdjΩjR

eFhcos θijΩjWðjΩjÞdjΩj ; ð55Þ

where h� � �ijΩj means that each configuration is classified
by the value of jΩj and the expectation value is calculated
for each value of jΩj, i.e.,

h� � �ijΩj¼x ¼
h� � � δðjΩ̂j − xÞi
hδðjΩ̂j − xÞi ; ð56Þ

and WðjΩjÞ is the probability distribution function of jΩj.
However, because θ ¼ −Ny0 and y0 ¼ −ArgΩ̂≡ −ϕ,
hcos θijΩj ¼ hcosNϕijΩj ¼ 0. Namely, the phase average
hcos θijΩj is exactly zero due to the Uð1Þ symmetric
distribution function of Ω. So to speak, this is the ultimate
sign problem. Therefore, ∂ lnZC=∂ρ is indefinite.
Here, we neglect a term

R
eFhy0 sin θijΩjWðjΩjÞdjΩj in

Eq. (55). Because of the Uð1Þ center symmetry, this can be
computed as follows:

hy0 sin θijΩj ¼
1

2π

Z
cþ2π

c
ϕ sinðNϕÞdϕ

¼ 1

2π

�
−
ϕ

N
cosðNϕÞ þ 1

N2
sinðNϕÞ

�
cþ2π

c

¼ −
1

N
cosðNcÞ: ð57Þ

This value of hy0 sin θijΩj changes if the upper and lower
bounds of the integration are changed while the integration
range remains 2π. We thus define this quantity as the
product of an appropriate convergence factor, which
satisfies limϕ→∞ e−ξϕ ¼ 0. Then, this term vanishes,

hy0 sinθijΩj ≡ lim
ξ→0;m→∞

1

2mπ

Z
2mπ

0

ϕ sinðNϕÞe−ξϕdϕ

¼ lim
ξ→0;m→∞

1

2mπ

�
−

e−ξϕ

ðN2 þ ξ2Þ2
× fðNðN2 þ ξ2Þϕþ 2NξÞ cosðNϕÞ

þ ðξðN2 þ ξ2Þϕ−N2 þ ξ2Þ sinðNϕÞg
�
2mπ

0

¼ lim
ξ→0;m→∞

�
−Ne−2mπξ

N2 þ ξ2
þNξð1− e−2mπξÞ

mπðN2 þ ξ2Þ2
�
¼ 0;

ð58Þ

where ξ is a real number and m is an integer number.
Moreover, hy0 sin θ cosn ϕijΩj also vanishes for any positive
integer n, since it is given by the sum of

R
ϕ sinðkϕÞdϕ

with an appropriate integer k. When we break the center
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symmetry adding a heavy dynamical fermion, the calcu-
lation of terms like hy0 sin θ cosn ϕijΩj is required, but such
terms do not contribute to Eq. (55). Therefore, we neglect
the term of hy0 sin θijΩj.
We use the method explained in Sec. III C to compute

hcos θijΩj avoiding the sign problem. An additional heavy
fermion with a small hopping parameter κh is introduced to
break the center symmetry. The fermion determinant is
approximated by eϵVReΩ̂, where Ω̂ is the Polyakov-loop
operator and ϵ ¼ 4 × 2NtκNt

h , and the Wilson-loop-type
terms are disregarded. When ϵ is small, the denominator
of Eq. (55) is computed as follows:

heF cos θi ¼ 1

Z

Z
DUeF cos θeϵVReΩ̂e−Sg

¼ 1

Z

Z
DUeF cosðNϕÞeϵVjΩ̂j cosϕe−Sg

¼ 1

2π

ZZ
eF cosðNϕÞeϵVjΩj cosϕWðjΩjÞdϕdjΩj

¼
Z

eFWðjΩjÞ 1

2NN!
ðϵVÞN jΩjNdjΩj þ � � � :

ð59Þ

Similarly, the numerator of Eq. (55)

hx0eF cosθi ¼
Z

x0eFWðjΩjÞ 1

2NN!
ðϵVÞN jΩjNdjΩj þ � � � :

ð60Þ

Thus, the derivative of ZC is obtained by

−
1

V
∂ lnZCðT; VρÞ

∂ρ
≈
R
x0eFWðjΩjÞ 1

2NN!
ðϵVÞN jΩjNdjΩjR

eFWðjΩjÞ 1
2NN!

ðϵVÞN jΩjNdjΩj

¼
R
x0e−UeffdjΩjR
e−UeffdjΩj ; ð61Þ

where the effective potential UeffðjΩjÞ is defined as

UeffðjΩjÞ ¼ − lnWðjΩjÞ − F − N ln jΩj: ð62Þ

Here, we should note that heF cos θi and hx0eF cos θi go to
zero in the limit of ϵ → 0, causing the sign problem.
However, the factors ðϵVÞN in the numerator and denom-
inator of Eq. (61) are canceled, and this equation becomes
calculable without considering the additional factor ϵV. We
moreover find that this quantity is approximately equal to
the value of x0 at the jΩj where the effective potential
UeffðjΩjÞ is the minimum in the case that the volume is
sufficiently large.

B. Numerical simulations

We perform Monte Carlo simulations of Uð1Þ lattice
gauge theory with the standard Wilson action at several
inverse gauge couplings β ¼ 1=g2 near the transition point
βc. The effective potential UeffðjΩjÞ and saddle point are
numerically calculated, and the effective potential VeffðNÞ
for the particle number N are investigated. The lattice size
is N3

s × Nt ¼ 243 × 6. We adopt Nf ¼ 2 and κ ¼ 0.025.
Since the chiral limit of free Wilson fermion is κc ¼ 1=8,
the κ we adopt is small. The real part of saddle point x0 for
each jΩj and N ¼ ρV is given by Eq. (49), which is plotted
in Fig. 3. Also, F of Eq. (53) is calculated from only jΩj
and ρ. The solid lines in Fig. 4 are F and the dashed lines
are F − N ln jΩj for each jΩj and N. The blue, green, red,
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18 N=150
N=100
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FIG. 3. Real part of the saddle point x0 as a function of jΩj for
N ¼ 10 (blue), 50 (green), 100 (red), and 150 (black).
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FIG. 4. −F (solid line) and −F − N ln jΩj (dashed line) as a
function of jΩj for N ¼ 10 (blue), 50 (green), 100 (red),
and 150 (black).
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and black curves are the results of N ¼ 10, 50, 100, and
150, respectively.
Using a pseudoheat bath algorithm [33], the configura-

tions are generated at thirteen β values: β ¼ 1.000, 1.004,
1.006, 1.008, 1.009, 1.0094, 1.0096, 1.010, 1.012, 1.014,
1.016, 1.020, and 1.0240. The data are taken until there are
1,000,000 heat bath sweeps at each β. The multipoint
reweighting method [34,35] are used to combine the data
generated at different β. The statistical errors are estimated
by the jackknife method with the bin size chosen such that
the errors are saturated.
Figure 5 shows the distribution of the Polyakov loop

for each configuration at β ¼ 1.0096. The horizontal
and vertical axes are the real part and imaginary part,

respectively. This figure indicates that the phase transition
at β ¼ 1.0096 is of very weak first-order transition, where
two phases coexist. The distributions near the origin are the
configurations of the confinement phase. On the other
hand, the points around the circle of jΩj ¼ 0.15 are those of
the deconfinement phase.
To compute the probability distribution function of jΩj,

WðjΩjÞ, we approximate the delta function with a Gaussian
function like

δðxÞ ≈ 1

Δ
ffiffiffi
π

p exp

�
−
�
x
Δ

�
2
�
: ð63Þ

We choose the width parameter Δ by considering a balance
between the resolution of the distribution function and its
statistical error. The values of Δ we adopt are 0.0025. The
result of − lnWðjΩjÞ is shown in Fig. 6 for β ¼ 0.992
(black), 1.000 (red), 1.008 (green), and 1.016 (blue). The
results of the effective potential UeffðjΩjÞ in Eq. (61) at
β ¼ 1.00 is plotted in Fig. 7 for N ¼ 10 (blue), 50 (green),
100 (red), and 150 (black), as an example. Here, since a
constant may be added to the effective potential, in Figs. 6
and 7, the constants are added so that the minimum values
of − lnWðjΩjÞ and UeffðjΩjÞ become zero.
We then calculate the derivative of the canonical partition

function. We use the following equation to removeWðjΩjÞ
from Eq. (61) so that the equation is independent of the
approximation of the delta function, Eq. (63),

−
1

V
∂ lnZCðT; VρÞ

∂ρ
¼

R
DUx0eFjΩ̂jNR
DUeFjΩ̂jN : ð64Þ

This quantity is μ=T where the density with the maximum
generation probability is ρ and is computable without the
sign problem. We plot the result as a function of N ¼ Vρ
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FIG. 5. Polyakov-loop distribution at the transition point β ¼
1.0096 on the 243 × 6 lattice.
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FIG. 6. − lnWðjΩjÞ as a function of jΩj for β ¼ 0.992 (black),
1.000 (red), 1.008 (green), and 1.016 (blue).
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FIG. 7. Effective potential UeffðjΩjÞ defined in Eq. (62) at β ¼
1.00 for N ¼ 10 (blue), 50 (green), 100 (red), and 150 (black).
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for β ¼ 0.992 (purple), 0.996 (magenta), 1.00 (red), 1.004
(blue), 1.008 (green), 1.0012 (black), and 1.016 (brown) in
Fig. 8. The fine up and down vibrations in Fig. 8 may be an
artifact caused by the fact that the effective potential in
Fig. 7 is not smooth, since this quantity is the value of x0 at
the jΩj where Ueff is the minimum. Ignoring the fine
vibrations, when β is in the deconfinement phase at zero
density, the chemical potential is monotonically increasing.
However, in the case of a confined phase at zero density, as
the density increases, the chemical potential drops once and
increases again. This means that there are multiple Ns for a
specific μ=T. This is a typical sign when crossing the first-
order phase transition.

C. Higher-order terms of the hopping
parameter expansion

As seen in the previous section, our method to solve the
problem of the center symmetry and the sign problem
works well in Uð1Þ gauge theory. In the above calculation,
the quark determinant has been evaluated by approximating
only the leading-order term of the hopping parameter
expansion. We extend this method to include higher-order
terms of the expansion.
We classify each term of the hopping parameter expan-

sion by winding number and denote DðzÞ in Eq. (38) as
follows:

DðzÞ ¼ G0 þ
Xnmax

n¼1

½enzGn þ e−nzG�
n� ð65Þ

with nmax ¼ ∞, where Gn is the sum of terms whose
winding number is n in the positive direction, and G�

n is
those of winding number n in the negative direction. The
first and second derivatives of DðzÞ with respect to z are

∂DðzÞ
∂z

¼
Xnmax

n¼1

½nenzGn − ne−nzG�
n�;

∂
2DðzÞ
∂z2

¼
Xnmax

n¼1

½n2enzGn þ n2e−nzG�
n�: ð66Þ

The saddle point z0 ¼ x0 þ iy0 is defined as

∂D
∂z

ðz0Þ ¼
Xnmax

n¼1

½nenz0Gn − ne−nz0G�
n� ¼ ρ: ð67Þ

For the case thatDðzÞ can be approximated by nmax ¼ 1,
i.e., DðzÞ ¼ G0 þ ezG1 þ e−zG�

1. The analysis is almost
the same as the leading-order analysis. Because ρ is a real
number, the complex phase of ðeiy0G1 − e−iy0G�

1Þ is zero.
Then, the imaginary part of the saddle point y0 is
determined as

tan y0 ¼ −
ImG1

ReG1

¼ −ArgG1: ð68Þ

Then, the real part x0 is given by

ex0 jG1j − e−x0 jG1j ¼ ρ: ð69Þ

The real part of the saddle point x0 is

x0 ¼ arcsinh

�
ρ

2jG1j
�
: ð70Þ

Dðz0Þ and ∂
2D=∂z2ðz0Þ at the saddle point are real

numbers,

Dðz0Þ ¼ F0 þ ðex0 þ e−x0ÞjG1j;
∂
2D
∂z2

ðz0Þ ¼ ðex0 þ e−x0ÞjG1j: ð71Þ

Substituting ðx0; y0Þ,Dðz0Þ and ∂2D=∂z2ðz0Þ into Eqs. (53)
and (54): − ∂ lnZCðT; VρÞ=∂ρ can be computed as well as
the leading-order calculation.
The convergence of the hopping parameter expansion is

investigated in Ref. [29]. In the hopping parameter expan-
sion, the nonzero contribution of Gn appears from OðκnNtÞ
and Gn with n ≥ 2 is much smaller than G1 in relatively
low-order terms of κ. Thus, DðzÞ is well approximated by
nmax ¼ 1 for relatively small κ. In such cases, the sign
problem does not appear at all. However, as the quark mass
decreases, the contributions from higher-order terms of
κ-expansion increase. Therefore, it is necessary to consider
Gn with n ≥ 2. The complex phase for nmax ≥ 2 is not as
easy to remove as when nmax ¼ 1. Then, the complex phase
of Dðz0Þ and ∂

2D=∂z2ðz0Þ must be taken into account.
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FIG. 8. Chemical potential μ=T for which the number of
particles with the maximum generation probability is N at κ ¼
0.025 for each β in Uð1Þ lattice gauge theory with two flavors.
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VI. APPLICATION TO SUð3Þ LATTICE
GAUGE THEORY

In the discussion of avoiding sign problems in Uð1Þ
gauge theory, the Uð1Þ center symmetry is essentially
important, while the center symmetry is Z3 for SUð3Þ
gauge theory. Here, we discuss the probability distribution
of the Polyakov loop on the complex plane in SUð3Þ gauge
theory. To clarify this argument, we should consider the
Polyakov loop without spatial averaging (local Polyakov
loop) and their spatial average Ω (averaged Polyakov loop)
separately.

A. Distribution of local Polyakov loop

First, we discuss the distribution of the Polyakov loop at
one spatial point. We define an element of SUð3Þ group as
U ¼ eiH. H is a traceless Hermitian matrix, i.e., trH ¼ 0

and H ¼ H†. We diagonalize H as H ¼ VΛV†, where V is
a unitary matrix and Λ is a diagonal matrix with the
diagonal elements ðλ1; λ2; λ3Þ. BecauseH ¼ H†, λ1, λ2, and
λ3 are real numbers, and trH ¼ trΛ ¼ λ1 þ λ2 þ λ3 ¼ 0.
Since the Polyakov loop is the trace of a SUð3Þ matrix
divided by 3, trU=3, the trace can be rewritten as

trU¼ trðeiHÞ ¼ tr
X∞
n¼1

ðiHÞn
n!

¼
X∞
n¼1

in

n!
trðHnÞ ¼

X∞
n¼1

in

n!
trðΛnÞ

¼
X∞
n¼1

in

n!
ðλn1 þ λn2 þ λn3Þ ¼ eiλ1 þ eiλ2 þ eiλ3 :

ð72Þ

The complex number that can be the value of trU is in the
triangle drawn by the red lines in Fig. 9. The square of the
absolute value of trU is given as

jtrUj2 ¼ ðeiλ1 þ eiλ2 þ eiλ3Þðe−iλ1 þ e−iλ2 þ e−iλ3Þ
¼ 3þ eiðλ1−λ2Þ þ eiðλ1−λ3Þ þ eiðλ2−λ1Þ þ eiðλ2−λ3Þ

þ eiðλ3−λ1Þ þ eiðλ3−λ2Þ

¼ 3þ 2 cosðλ1 − λ2Þ þ 2 cosðλ2 − λ3Þ
þ 2 cosðλ3 − λ1Þ: ð73Þ

The condition for maximizing jtrUj2 is λ1 ¼ λ2 ¼ λ3 in
mod 2π. Because λ1 þ λ2 þ λ3 ¼ 0, λ1 ¼ λ2 ¼ λ3 ¼ 0,
2π=3 or 4π=3 in mod 2π. Then, jtrUj ¼ 3, and
the Polyakov loop is trU=3 ¼ ð1; 0Þ; ð−1=2; ffiffiffi

3
p

=2Þ, or
ð−1=2;− ffiffiffi

3
p

=2Þ. The condition for the boundary is
λ1 ¼ λ2 ≠ λ3, λ2 ¼ λ3 ≠ λ1, or λ3 ¼ λ1 ≠ λ2. In the case
of λ1 ¼ λ2 ≠ λ3, for example, jtrUj2 ¼ 5þ 4 cos x as a
function of x¼ λ3−λ1. Then, trU=3¼ð2e−ix=3þe2ix=3Þ=3,
which is the red curve in Fig. 9.
We perform simulations of SUð3Þ gauge theory

(quenched QCD) on a lattice with the size 243 × 4. The
phase transition point is βc ¼ 5.69138ð3Þ on the 243 × 4
lattice [27]. Focusing on one configuration after sufficient
thermalization, we investigate the distribution of the local
Polyakov loop. In the left and right panels of Fig. 9, we plot
the local Polyakov loop at each point on a configuration in
the confinement phase β ¼ 5.6 and the deconfinement
phase β ¼ 6.0, respectively. The distributions are in the
triangle drown by red curves. In the confinement phase, the
distribution of the local Polyakov loops at each point is Z3

symmetric. On the other hand, the Z3 symmetry in the
distribution of the local Polyakov loop is broken in the
deconfinement phase.

B. Distribution of averaged Polyakov loop

Next, we discuss the distribution of the averaged
Polyakov loop. We map the real and imaginary parts of
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FIG. 9. The distribution of the local Polyakov loop in a complex plane on one configuration of SUð3Þ gauge theory generated at
β ¼ 5.60 (left) and β ¼ 6.00 (right).
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the local Polyakov loop to two-dimensional plane of
x⃗ ¼ ðx; yÞ ¼ ðr cos θ; r sin θÞ. We calculate the variance
in a certain direction. Let e⃗ be the unit vector in the
direction perpendicular to that direction, and let η be
the angle between e⃗ and the x-axis. The distance from
the straight line drawn in the e⃗ direction from the origin is
jx⃗ × e⃗j ¼ r sinðθ − ηÞ. The variance is

R jx⃗ × e⃗j2Pðx⃗Þdx⃗,
where Pðx⃗Þ is the probability that the complex value of the
local Polyakov loop will be x⃗. Here, we assume that the
probability distribution is ZN symmetric. Then, the gen-
eration probabilities of ZN symmetric points; x⃗i with
i ¼ 1; 2;…; N satisfying x⃗1 þ x⃗2 þ � � � þ x⃗N ¼ 0 and
jx⃗1j ¼ jx⃗2j ¼ � � � ¼ jx⃗N j ¼ r, are equal, i.e., Pðx⃗1Þ ¼
Pðx⃗2Þ ¼ � � � ¼ Pðx⃗NÞ. The variance is

Z
jx⃗ × e⃗j2Pðx⃗Þdx⃗ ¼ 1

N

XN
i¼1

Z
jx⃗i × e⃗j2Pðx⃗iÞdx⃗i

¼
Z

1

N

XN
i¼1

jx⃗i × e⃗j2Pðx⃗1Þdx⃗1: ð74Þ

We calculate the sum for symmetric points before integrat-
ing over x⃗,

χ2 ¼ 1

N

XN
i¼1

jx⃗i × e⃗j2 ¼ 1

N

XN
i¼1

r2sin2ðθi − ηÞ

¼ r2

N

XN
i¼1

1 − cos 2ðθi − ηÞ
2

¼ r2

N

�
N
2
−
1

2

XN
i¼1

cos 2ðθi − ηÞ
�

¼ r2
�
1

2
−

1

2N
Re

�
e−2iη

XN
i¼1

e2iθi
��

; ð75Þ

where x⃗i ¼ ðxi; yiÞ ¼ ðr cos θi; r sin θiÞ. Because θn is
given by θn ¼ θ1 þ 2πðn − 1Þ=N,

XN
n¼1

e2iθn ¼
XN
n¼1

e2iðθ1þ2πðn−1Þ=NÞ ¼ e2iθ1
XN
n¼1

e4iπðn−1Þ=N ¼ 0;

ð76Þ

except for N ¼ 2. Hence, χ2 ¼ r2=2 ¼ jx⃗1j2=2 for N ≥ 3,
and

Z
jx⃗ × e⃗j2Pðx⃗Þdx⃗ ¼

Z jx⃗j2
2

Pðx⃗Þdx⃗: ð77Þ

The result of the variance does not depend on η. This means
that the variances in the real axis direction and the
imaginary axis direction are the same when the probability
distribution is ZN symmetric.

For the case that the distribution of the local Polyakov
loop has ZN symmetry with N ≥ 3, the variances of the real
and imaginary parts are the same. When the volume is large
enough, the distributions of the real and imaginary parts of
the averaged Polyakov loop are Gaussian by the central
limit theorem. The width of the Gaussian distribution is the
same for the real and imaginary parts. Then, the probability
distribution of the averaged Polyakov loop Ω ¼ jΩjeiϕ is

WðjΩj;ϕÞ ≈ Ce−αðReΩÞ2e−αðImΩÞ2 ¼ Ce−αjΩj2 ; ð78Þ

where the parameter α is inversely proportional to the
variance of the local Polyakov loop distribution andC is the
normalization constant. The distribution does not depend
on the complex phase ϕ and has Uð1Þ symmetry.
To summarize the above discussion, the distribution of

the local Polyakov loops is Z3 symmetric in the confine-
ment phase. Then, the probability distribution of the
spatially averaged Polyakov loop Ω is Uð1Þ symmetric
in the volume infinity limit, which is not Z3 symmetric.
Since the distribution of Ω is Uð1Þ symmetric, the method
of avoiding the sign problem used in Uð1Þ gauge theory
can be applied. On the other hand, in the deconfinement
phase of SUð3Þ gauge theory, Z3 symmetry is sponta-
neously broken as seen in the right panel of Fig. 9. Then,
the probability distribution of the averaged Polyakov loop
is not Uð1Þ symmetric. Thus, the method to avoid the
sign problem in Uð1Þ gauge theory cannot be applied.
However, the sign problem is not serious in the deconfine-
ment phase. The complex phase distribution can be well
approximated by the Gaussian distribution. In such a case,
the sign problem may be avoided by the method used in
Refs. [7,28,36–38].

VII. CONCLUSIONS

We studied the probability distribution function of
particle density. The probability distribution function is
obtained by calculating the canonical partition function
fixing the number of particles from the grand partition
function. However, if the system has the center symmetry
on a finite lattice, the canonical partition function is zero
when the number of particles is not a multiple of three for
SUð3Þ gauge theory. For Uð1Þ gauge theory, the canonical
partition function is zero except when the particle number is
zero. Then, the probability distribution function is zero for
these cases. This situation is natural in the confined phase,
but is unacceptable in the deconfinement phase because
there should be states of various particle numbers.
This problem is essentially the same as the problem that

the expectation value of the Polyakov loop is always zero
when calculating with finite volume, due to the center
symmetry. To solve this problem, it is necessary to add an
infinitesimal external field to break the symmetry and take
the limit of infinite volume. Moreover, in the case of Uð1Þ
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gauge theory, the sign problem can be solved using the
Uð1Þ center symmetry at the same time.
We performed numerical simulations of Uð1Þ lattice

gauge theory near the deconfinement phase transition point.
When the dynamical fermions are heavy, we actually
demonstrated that the calculation of the probability dis-
tribution function at finite density is possible using the
method proposed in this study. We calculated the derivative
of the canonical partition function using a saddle point
approximation [16], and found that our method to avoid the
sign problem works well. From the canonical partition
function, we calculated μ=T as a function of density ρ.
Then, the nature of the phase transition can be investigated.
The application of this method to QCD [SUð3Þ gauge

theory] was discussed. If the distribution of the local
Polyakov loops is Z3 symmetric in the confinement phase,
the probability distribution of the spatially averaged
Polyakov loop Ω is Uð1Þ symmetric when the spatial

volume is sufficiently large. Then, the method of avoiding
the sign problem and solving the problem of the center
symmetry used in Uð1Þ gauge theory can be applied. On
the other hand, in the deconfinement phase, the probability
distribution of the averaged Polyakov loop is not Uð1Þ
symmetric. Thus, the method to avoid the sign problem in
Uð1Þ gauge theory cannot be applied. However, the sign
problem is not very serious in the deconfinement phase.
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