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We discuss spontaneous chiral symmetry breaking and the quark bilinear condensate in
large-Nc quantum chromodynamics (QCD). It is known that the existence of the η′ meson
is implied in large-Nc QCD, as pointed out by Witten[27] and Veneziano[28]. First, we show
that the existence of η′ and the Ward–Takahashi identities implies the existence of Nambu–
Goldstone bosons from chiral symmetry breaking SU(Nf)L × SU(Nf )R → SU(Nf)V. Sec-
ond, we show that a QCD inequality implies a non-zero lower bound on the quark bilinear
condensate.
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1. Introduction
Chiral symmetry breaking [1–3] is one of the most important features in quantum chromo-
dynamics (QCD). QCD with Nf flavors of massless quarks has continuous global symmetry
SU(Nf)L × SU(Nf)R × U(1)V × U(1)A in the classical Lagrangian. U(1)A symmetry is explicitly
broken by the quantum anomaly [4–8], and the global symmetry at quantum level is SU(Nf)L

× SU(Nf)R × U(1)V. It is shown that SU(Nf)V × U(1)V is unbroken in the vacuum [9]. On
the other hand, it is believed that the chiral symmetry is spontaneously broken as SU(Nf)L ×
SU(Nf)R → SU(Nf)V if Nf is below some threshold value. Although chiral symmetry breaking
successfully describes hadron physics, we do yet not understand why chiral symmetry breaking
occurs. There are numerous pieces of evidence of chiral symmetry breaking in lattice QCD cal-
culations (see, e.g., Ref. [10] and references therein). Also, there are investigations from anomaly
matching [11,12], supersymmetric QCD [13–20], and holographic QCD [21–25].

In this paper, we discuss spontaneous chiral symmetry breaking in a QCD-like theory, i.e.,
SU(Nc) gauge theory with Nf flavors of quarks in the limit of large Nc [26]. First, in Sect. 2,
we review the Witten–Veneziano relation [27,28], which claims the existence of a light particle
whose mass scales as 1/

√
Nc; and this particle can be interpreted as η′, the (pseudo-)Nambu–

Goldstone (NG) boson from spontaneous breaking of U(1)A symmetry. Then, in Sect. 3, we
will see that consistency with the existence of η′ and the Ward–Takahashi identities with quark
mass implies the existence of light scalar particles that are associated with axial currents. These
particles become massless in the massless quark limit, and they are nothing but NG bosons
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from chiral symmetry breaking. Finally, in Sect. 4, we estimate a lower bound on 〈q̄q〉 by a
QCD inequality [29] in the same way as Kogan et al. [30], and see that 〈q̄q〉 becomes non-zero.

1.1 Comparison with the previous literature
Let us compare our discussion with the previous literature. Proof of chiral symmetry breaking
in large-Nc QCD has been identified by Coleman and Witten [31] and Veneziano [32]. Coleman
and Witten [31] have shown the existence of massless scalar poles that are associated with axial
currents by anomaly matching in a elegant way; however, they have simply assumed that the
order parameter is a bifundamental of SU(Nf)L × SU(Nf)R and have not concluded that 〈q̄q〉 �=
0. Veneziano [32] uses the Ward–Takahashi identities that are equivalent to our Eqs. (10, 11).
They claim that 〈q̄q〉 �= 0; however, they have not realized a subtle issue that will be discussed
in Sect. 4.2 and footnote 5. In addition to this point, the lower bound on 〈qq̄〉 given in Eq. (32)
has not been reported in the previous literature.

1.2 Our assumptions
Before going to the main part, let us summarize our setup and assumptions in this paper. The
Lagrangian of the QCD-like theory is given as

LQCD = −1
4

GμνGμν +
∑

i

q̄i(i /D − m)qi. (1)

We take θ = 0 and the quark mass m to be non-negative. We assume SU(Nf) invariance of the
quark mass term for analytic convenience. In addition, we make the following two assumptions:

(1) In QCD-like theories with θ = 01 and sufficiently small non-negative quark mass m and
1/Nc, there is no phase transition and we can take a smooth limit of m → 0 and 1/Nc →
0.

(2) The topological susceptibility in pure SU(Nc) Yang–Mills theory and QCD-like theories
with massive quarks is non-zero positive2.

Note that assumption 1 leads to the idea that the two limits 1/Nc → 0 and m → 0 are com-
mutable when m is real positive.

2. Nf flavors of massless quarks
First, we review the Witten–Veneziano relation [27,28]. We assume that m = 0 in this section.
Let us define the following two-point correlation function:

χt (p2) ≡ −i
∫

d4xeipx〈0|T g2
s

32π2
GμνG̃μν (x)

g2
s

32π2
GμνG̃μν (0) |0〉. (2)

χ t(0) is called the topological susceptibility. Note that χ t(0) is also obtained as d2V/dθ2, where
V(θ ) is the vacuum energy of the θ vacuum [40,41]:

V (θ ) ≡ i log
∫

DAa
μDqDq̄ exp

(
i
∫

d4x
(
LQCD + θg2

s

32π2
GμνG̃μν

))
. (3)

When we have a massless quark, the θ parameter can be absorbed by chiral rotation of quarks
and V(θ ) becomes independent of θ , i.e., χ t(0) = 0.

1In the case of non-zero θ , a non-trivial phase structure has been discussed in a lot of literature [33–38].
2Note that the Vafa–Witten theorem [39] guarantees that the topological susceptibility cannot be neg-

ative in pure Yang–Mills theory.
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Assumption 1 allows us to use 1/Nc expansion to evaluate χ t(p2):

χt (p2) = χt,g(p2) + Nf

Nc
χt,q(p2) + O

(
N−2

c

)
. (4)

χ t, g(p2) is the contribution from pure gluonic diagrams, which is the same as pure SU(Nc)
Yang–Mills theory. χ t, g(0) is non-zero because of assumption 2. This term behaves as N0

c for
large Nc [27,28,42]. χ t, q(p2) is the leading contribution from diagrams with a single quark loop.
The leading contribution of the quark loop is proportional to the number of quarks Nf and
suppressed by 1/Nc compared to χ t, g(q2). We explicitly use the Nf /Nc factor in Eq. (4) so that
χ t, q(p2) itself does not have Nf and Nc dependence at the leading term of 1/Nc expansion.

χ t(0) should become zero once we introduce a massless quark [40,41]. This means that the
χ t, q(0) term should cancel χ t, g(0); however, one could naively think that this is impossible
because of the Nf /Nc factor in front of χ t, q. This puzzle has been solved by Witten [27] and
Veneziano [28] by assuming that χ t, q(p2) has a pole from the CP-odd scalar particle η′ whose
mass squared scales as 1/Nc. Then, χ t, q can be written as

χt,q(p2) = a2
η′

p2 − m(0)2
η′

, (5)

where

aη′ ≡
√

Nc

Nf
×
〈
0| g2

s

32π2
GμνG̃μν |η′

〉
. (6)

aη′ is defined so that aη′ does not depend on Nc and Nf at the leading order of 1/Nc expansion.
χ t(0) = 0 leads to the following mass formula [27,28]:

m(0)2
η′ = Nf

Nc

a2
η′

χt,g
. (7)

Here we attach the superscript to emphasize that this is the η′ mass formula for m = 0. The
chiral anomaly equation is

∂μ jμ5 = Nf g2
s

16π2
GμνG̃μν. (8)

Since 〈0|GμνG̃μν |η′〉 is non-zero, we obtain

〈
0| jμ5 |η′〉 = √Nf f pμ, f ≡

√
Nf χt,g

2m(0)
η′

. (9)

This indicates that η′ is the NG boson from spontaneous U(1)A symmetry breaking in the limit
of 1/Nc → 0. For finite Nc, U(1)A is explicitly broken by the chiral anomaly and the η′ mass is
non-zero and scales as 1/

√
Nc. In this definition, f scales as

√
Nc and is independent of Nf at

the leading order of 1/Nc.
Note that, even if η′ is identified as the NG boson for U(1)A symmetry breaking, we do not

know which order parameter induces this U(1)A symmetry breaking at this point. For example,
if the order parameter is the ’t Hooft determinant εi1...iN f

ε j1... jN f
(q̄i1q j1 ) · · · (q̄iN f

q jN f
), U(1)A is

broken but SU(Nf)L × SU(Nf)R is unbroken [43].

3. Nf flavors of quarks with small mass
Next, let us assume that m is non-zero positive. A non-zero quark mass breaks the chiral sym-
metry explicitly and the remaining global symmetry is SU(Nf)V × U(1)V. We can derive the
following Ward–Takahashi identities [44–46] (for the derivation, see Appendix A):
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Nf χt (0) = m〈q̄q〉 + m2χs(0), (10)

0 = m〈q̄q〉 + m2χadj(0), (11)

where χ s and χadj have pseudo-scalar susceptibility and are defined as

χs(p2) ≡ 1
Nf

∑
i, j

∫
d4xeipx〈0|T (q̄iγ

5qi)(x)(q̄ jγ
5q j )(0)|0〉, (12)

χadj(p2)δab ≡
∫

d4xeipx〈0|T (q̄iγ
5T aqi)(x)(q̄ jγ

5T bq j )(0)|0〉. (13)

Here Ta are Hermitian matrices such that tr[TaTb] = δab and trTa = 0. We have used the fact
that the SU(Nf)V × U(1)V symmetry is unbroken in the vacuum [9] and parameterize 〈q̄iq j〉 =
〈q̄q〉δi j .

Assumption 1 implies the existence of η′ for at least sufficiently small m. Because of assump-
tion 2, the cancellation between χ t, g(0) and χ t, q(0) in Eq. (4) should be broken for m �= 0. This
means that the η′ mass formula should be modified as

m2
η′ = m(0)2

η′ + δm2
η′ . (14)

δm2
η′ is the leading contribution from the non-zero quark mass. δm2

η′ (m = 0) = 0 is satisfied and
δm2

η′ is an increasing function for quark mass m, at least if m is sufficiently small. The quark
mass term is a source of the explicit breaking of U(1)A symmetry and this effect should remain
in the limit of 1/Nc → 0. Thus, δm2

η′ scales as N0
c with a given quark mass m.

3.1 Singlet pseudo-scalar susceptibility
In the current discussion, we have two small parameters; m and 1/Nc. Since the η′ mass becomes
small in the limit of small m and 1/Nc, some amplitude and correlation functions could have
singular behavior if there is an η′ contribution. Let us discuss χ s and χ t with this point in mind.

First let us discuss χ s. As we have seen, the leading contribution of the quark loop in χ t

is coming from the η′ one-particle state. Since GμνG̃μν and
∑

i q̄iγ
5qi have the same quantum

number, η′ gives a dominant contribution to χ s as

χs(k2) 
 1
Nf

1

k2 − m(0)2
η′ − δm2

η′

∣∣∣∣∣
∑

i

〈0|q̄iγ
5qi|η′〉

∣∣∣∣∣
2

. (15)

For sufficiently small m, δm2
η′ satisfies

δm2
η′ � M2, (16)

where M is the typical mass of heavier hadrons. Furthermore, since δm2
η′ scales as N0

c , we can
take sufficiently small 1/Nc for a given quark mass m such that

m(0)2
η′ � δm2

η′ . (17)

By using assumption 1, we assume that there is no phase transition between m(0)2
η′ � δm2

η′ and

m(0)2
η′ � δm2

η′ as long as both of δm2
η′ and m(0)2

η′ are sufficiently smaller than M2.3 Then, in the

3It is known that this assumption is broken in the case of θ = π [33–38]. In this paper, we only focus
on the case of θ = 0 and make assumption 1.
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case of m(0)2
η′ � δm2

η′ � M2, Eq. (15) can be expanded as4

χs(0) 
 − 1
Nf

1
δm2

η′

∣∣∣∣∣
∑

i

〈0|q̄iγ
5qi|η′〉

∣∣∣∣∣
2

+ 1
Nf

m(0)2
η′(

δm2
η′

)2

∣∣∣∣∣
∑

i

〈0|q̄iγ
5qi|η′〉

∣∣∣∣∣
2

. (18)

Next, let us discuss χ t(0). In the case of m(0)2
η′ � δm2

η′ � M2, by using Eqs. (10) and (18), we
obtain

Nf χt (0) 
 m〈q̄q〉 − m2

Nf

1
δm2

η′

∣∣∣∣∣
∑

i

〈0|q̄iγ
5qi|η′〉

∣∣∣∣∣
2

+ m2

Nf

m(0)2
η′(

δm2
η′

)2

∣∣∣∣∣
∑

i

〈0|q̄iγ
5qi|η′〉

∣∣∣∣∣
2

. (19)

Let us compare the above equation with Eq. (4). Since m(0)2
η′ /δm2

η′ suppresses (Nf /Nc)χ t, q(0) in
Eq. (4), the dominant contribution in χ t(0) is from χ t, g(0) and χ t(0) becomes independent of
m. Assumption 1 implies that 〈q̄q〉 is not singular at small m; i.e., the m〈q̄q〉 term depends on
m. In order for the RHS of Eq. (19) to be independent of m, the first and second terms should
cancel because the third term is suppressed by m(0)

η′ /δm2
η′ . Then, we obtain the following two

equations:

m〈q̄q〉 = m2

Nf

1
δm2

η′

∣∣∣∣∣
∑

i

〈0|q̄iγ
5qi|η′〉

∣∣∣∣∣
2

, (20)

Nf χt,g = m2

Nf

m(0)2
η′(

δm2
η′

)2

∣∣∣∣∣
∑

i

〈0|q̄iγ
5qi|η′〉

∣∣∣∣∣
2

. (21)

These equations correspond to Eqs. (1a) and (1c) in Ref. [32]. We can show that

〈q̄q〉 = 4 f 2
δm2

η′

m
, (22)

〈0|q̄iγ5q j|η′〉 = δi j × 2i f√
Nf

δm2
η′

m
, (23)

χs(k2) = − 4 f 2

k2 − m(0)2
η′ − δm2

η′

(
δm2

η′

)2

m2
, (24)

where f is defined in Eq. (9). Note that these equations should be valid at the leading order of
m and 1/Nc as long as both of δm2

η′ and m(0)2
η′ are sufficiently smaller than M2, though we have

derived these relations by assuming m(0)2
η′ � δm2

η′ � M2.
Equation (22) shows that 〈q̄q〉 gives a non-zero vacuum expectation value (VEV) for small

non-zero m because of δm2
η′ �= 0. However, it is non-trivial whether 〈q̄q〉 �= 0 in the limit of m

→ 0. We discuss this point in Sect. 4.

4On the other hand, in the limit of δm2
η′ � m(0)2

η′ � M2, we obtain

χs(0) 
 − 1
Nf

1

m(0)2
η′

∣∣∣∣∣
∑

i

〈0|q̄iγ
5qi|η′〉

∣∣∣∣∣
2

+ 1
Nf

δm2
η′

m(0)4
η′

∣∣∣∣∣
∑

i

〈0|q̄iγ
5qi|η′〉

∣∣∣∣∣
2

.

Note that this equation cannot be directly derived from Eq. (18) and vice versa. In this sense, we have to
be careful about the order of taking limits. See also Ref. [47].
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3.2 Adjoint pseudo-scalar susceptibility
In 1/Nc expansion, the leading contributions to χ s and χadj are the same because they come
from a similar diagram with connected quark lines. In particular, in comparison with Eq. (24),
the behavior in the limit of large k2 � m(0)2

η′ , we obtain

χadj(k2) = −4 f 2

k2

(
δm2

η′

)2

m2
× (1 + O(N−1

c )). (25)

Thus, the one-particle state should dominate at the leading order of 1/Nc expansion. Therefore,
to be consistent with Eqs. (11, 22), χadj(k2) is given as

χadj(k2) = − 4 f 2

k2 − δm2
η′

(
δm2

η′

)2

m2
, (26)

and there should exist CP-odd SU(Nf) adjoint scalar particles π such that

〈0|q̄γ 5T aq|πa〉 = 2i f
δm2

η′

m
, m2

π = δm2
η′ . (27)

We can immediately show that

〈0|q̄γ 5γ μT aq|πa〉 = i f pμ. (28)

4. Massless quark limit
Finally, let us discuss massless QCD again. Assumption 1 allows us to take a limit of m → 0
for the results in the previous section.

4.1 Chiral symmetry breaking
In the massless quark limit, mπ becomes 0 because of Eq. (27) and δm2

η′ → 0. On the other
hand, the matrix element (28) does not depend on the quark mass m and it keeps its non-zero
value. Thus, in massless large-Nc QCD, we conclude that there exist massless scalar particles
that can be created by the axial current operator. This means chiral symmetry breaking SU(Nf)L

× SU(Nf)R → SU(Nf)V; the π are NG bosons from this symmetry breaking. Now we can see
that Eq. (22) is nothing but the Gell-Mann–Oakes–Renner relation [48].

4.2 Bilinear condensate
We have shown the chiral symmetry breaking SU(Nf)L × SU(Nf)R → SU(Nf)V; however, we
have not specified the order parameter for this symmetry breaking. As shown in Eq. (22), 〈q̄q〉
in the massless quark limit depends on the quark mass dependence in δm2

η′ . For example, 〈q̄q〉
becomes zero if δm2

η′ behaves as mn with n ≥ 2. The possibility of chiral symmetry breaking with
〈q̄q〉 = 05 was pointed out by Refs. [49,50] and, later, Kogan et al. [30] excluded this possibility
by utilizing a QCD inequality6. One of the QCD inequalities [29,30] yields

〈(q̄iγ
5q j )(x)(q̄ jγ

5qi)(0)〉 ≥ |〈(q̄iγ
μγ 5q j )(x)(q̄ jγ

νγ 5qi)(0)〉|, (29)

where i �= j. Note that this inequality is exact and should hold for any μ, ν, and any x. For the
derivation of this inequality, see Appendix B. For x � m−1

π , the pion contributions on both
sides are

5This possibility was not realized and m2
π ∝ m was implicitly assumed in Ref. [32].

6Note that chiral symmetry breaking without the bilinear condensate can occur with a different matter
content; see, e.g., Ref. [51].
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〈(q̄iγ
5q j )(x)(q̄ jγ

5qi)(0)〉 
 〈q̄q〉2

4π2 f 2x2 , (30)

〈(q̄iγ
μγ 5q j )(x)(q̄ jγ

νγ 5qi)(0)〉 
 f 2

8π2

(
gμν

x4 − 4xμxν

x6

)
. (31)

Let us denote M as the mass of the next-to-lightest particle that couples to q̄iγ
5q j or q̄iγ

μγ 5q j .
For M−1 � x � m−1

π , the pion contribution dominates both correlation functions. By compar-
ing the pion contributions for M−1 � x � m−1

π , 〈q̄q〉 cannot be zero and we obtain a lower
bound:

〈q̄q〉 � f 2M. (32)

Here we are sloppy about the O(1) numerical factor. The QCD Lagrangian with massless
quarks has non-anomalous discrete Z2Nf symmetry, which is a subgroup of U(1)A, and non-
zero 〈q̄q〉 means spontaneous breaking of this Z2Nf symmetry. This conclusion is consistent
with the anomaly matching discussion in Ref. [52].
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Appendix A. Derivation of the Ward–Takahashi identities
In this appendix, we derive Eqs. (10) and (11). Similar equations were first derived in
Refs. [44,45]. The equivalent equations were used in Ref. [32] to show chiral symmetry breaking
in large-Nc QCD, and also used in Ref. [46] in the context of the strong CP problem.

For non-zero quark mass m, the chiral anomaly equation is

∂μ jμ5T − 2imq̄γ5T q = trT × g2
s

16π2
GμνG̃μν, (A1)

where T is an Nf × Nf matrix and jμ5T = q̄γ 5γ μT q. By using Eqs. (2) and (A1), χ t(0) can be
rewritten as

(trT )2χt (0) = χt,v + χt,m, (A2)

where

χt,v ≡ − i
4

lim
p→0

∫
d4xeipx〈0| (∂μ jμ5T

)
(x)

(
∂μ jμ5T − 4im

∑
i

q̄γ 5T q

)
(0)|0〉 (A3)

χt,m ≡ m2 lim
p→0

∫
d4xeipx〈0| (q̄γ 5T q

)
(x)
(
q̄γ 5T q

)
(0)|0〉. (A4)

χ t, v is simplified by using Eq. (A1) again and taking integration by parts as

χt,v = − i
4

lim
p→0

∫
d4xeipx〈0| (∂μ jμ5T

)
(x)
(

trT
g2

s

32π2
GμνG̃μν − 2imq̄γ 5T q

)
(0)|0〉,

= i
4

lim
p→0

∫
d4xeipxδ(x0)〈0|[ j0

5T (x), (−2imq̄γ 5T q̄)(0)]|0〉

= m
∑

i

〈0|q̄T 2q|0〉. (A5)
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We obtain the following equation:

(trT )2χt (0) = m〈0|q̄T 2q|0〉 + m2 lim
p→0

∫
d4xeipx〈0|T (q̄γ 5T q)(x)(q̄γ 5T q)(0)|0〉. (A6)

By using χ s and χadj defined in Eqs. (12, 13), we obtain the following simple equations:

Nf χt (0) = m〈q̄q〉 + m2χs(0), (A7)

0 = m〈q̄q〉 + m2χadj(0). (A8)

Here we have used 〈q̄iq j〉 = 〈q̄q〉δi j .

Appendix B. Derivation of the QCD inequality
In this appendix, we derive a QCD inequality (29). This inequality was first derived in Ref. [29].
Kogan et al. [30] pointed out that this inequality can be used to exclude the possibility of 〈q̄q〉 =
0. See also Sect. 11 of Ref. [53].

The inequality (29) can be shown in Euclidean QCD on a lattice. The action is

S = SU +
∑
x,y

q̄(x)D(x, y)q(y). (B1)

x and y are the lattice sites and SU is the action for the link (gauge) field U. D(x, y) is given as
[54–56]

D(x, y) = (4 + m0a)δx,y − 1
2

∑
μ

[
(1 − γμ)U (x, y)δy,x+μ̂ + (1 + γμ)U (x, y)δy,x−μ̂

]
. (B2)

m0 is the bare quark mass, a is the lattice spacing, and μ̂ is the unit vectors for four directions.
The correlation function of operators that are made from quark fields is

〈∏
i

qi1 (x)q̄i2 (y)

〉
=

∫
DA

[∏
i

D−1
i1i2 (x, y)

]
(det D)Nf e−SU

∫
DA(det D)Nf e−SU

. (B3)

Let us show

〈(q̄iγ
5q j )(x)(q̄ jγ

5qi)(0)〉 ≥ |〈(q̄iγ
Mγ 5q j )(x)(q̄ jγ

Nγ 5qi)(0)〉| (B4)

for any M, N = 0, 1, 2, 3 and i �= j.
It is known that det D ≥ 0 is satisfied in QCD-like theories [9]. Then, a sufficient condition

to satisfy the above inequality is

tr[D−1(x, y)γ 5D−1(y, x)γ 5] ≥ ∣∣tr[D−1(x, y)γ 5γ μD−1(y, x)γ 5γ ν ]
∣∣ . (B5)

for any μ, ν = 0, 1, 2, 3. We can show γ 5D(x, y)γ 5 = D(y, x)†; then γ 5D−1(x, y)γ 5 = D−1(y,
x)†. The difference between the LHS and RHS of the above inequality is

tr[D−1(x, y)γ 5D−1(y, x)γ 5] − ∣∣tr[D−1(x, y)γ 5γ μD−1(y, x)γ 5γ ν ]
∣∣

= tr[D−1(x, y)(D−1(x, y))†] − ∣∣tr[D−1(x, y)γ μ(D−1(x, y))†γ ν ]
∣∣ . (B6)

To show that this is non-negative, let us evaluate this expression explicitly. The Dirac matrices
in 4D Euclidean space are given as

γ 0 =
(

0 1
1 0

)
, γ i =

(
0 iσ i

−iσ i 0

)
, γ 5 =

(
1 0
0 −1

)
, (B7)
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where σ i are the Pauli matrices. Let us take the following 4 × 4 matrix D−1:

D−1 =

⎛
⎜⎝

a11 · · · a14
...

. . .
...

a41 · · · a44

⎞
⎟⎠ . (B8)

An explicit calculation shows

tr[D−1D−1†] =
∑
i, j

|ai j |2, (B9)

tr[D−1γ 0D−1†γ 0] = 2Re(a11a∗
33 + a12a∗

34 + a13a∗
31 + a14a∗

32 + a21a∗
43 + a22a∗

44

+ a23a∗
41 + a24a∗

42) (B10)

tr[D−1γ 3D−1†γ 0] = 2iIm(−a11a∗
33 − a12a∗

34 − a13a∗
31 − a14a∗

32 + a21a∗
43 + a22a∗

44

+ a23a∗
41 + a24a∗

42). (B11)

By using the Cauchy–Schwartz inequality, we can show

tr[D−1D−1†] ≥ ∣∣tr[D−1γ 0D−1†γ 0]
∣∣ , (B12)

tr[D−1D−1†] ≥ ∣∣tr[D−1γ 3D−1†γ 0]
∣∣ . (B13)

In a similar way, we can show that Eq. (B6) is non-negative for any μ and ν, and then Eq. (B4)
is satisfied.
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