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Abstract We generalize nested multiply warped braneworld
models by incorporating non-zero brane curvature caused
by an effective cosmological constant � induced on the 3-
branes. Starting with the doubly warped model, we first ana-
lyze the case where the maximally warped brane is identified
as the visible brane. For � < 0, resolution of the gauge hier-
archy problem imposes a small upper bound on |�|, and can
possibly lead to positivity of all the 3-brane tensions. For
� > 0, the latter is not possible but the tuning of the cos-
mological constant to its tiny observed value is linked to the
tuning of the extra dimensional moduli close to the inverse
Planck length, justifying the original flat brane approxima-
tion. In both regimes, we study the dependence of the scale-
clustering of the pair of TeV-branes on the brane cosmo-
logical constant and hence its potential role in generating
a fermion mass hierarchy between these branes. Identifying
the near-maximally warped brane as the visible brane instead
opens up regions in the parameter space that allow positive
3-brane tensions for both anti de Sitter and de Sitter branes,
subject to non-trivial constraints on the warping parameters.
We conclude by generalizing the key results to arbitrary n-
fold nested warped braneworlds.
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1 Introduction

The five-dimensional warped braneworld model (RS1) [1]
proposed by Randall and Sundrum provides, at first glance,
an attractive theoretical framework within which the gauge
hierarchy problem of the Standard Model (SM) can be nat-
urally resolved without extreme fine tuning of parameters.
Equipped with a modulus stabilization mechanism which is
either based on beyond-Standard Model (BSM) field(s) intro-
duced in the bulk [2–7] or is purely gravitational in origin [8–
11], the low-energy phenomenology of the model predicts
a scalar radion typically with TeV-scale mass. The lowest-
lying Kaluza-Klein (KK) mode of the five-dimensional (5D)
graviton is expected to be similarly massive, with enhanced
coupling (compared to the massless zero-mode) to SM fields
on the visible brane due to the same warping which generates
the large mass hierarchy [12–21].

The fact that these theoretical predictions fell within
experimentally testable domains accessible to present gener-
ation colliders largely motivated the shared interest of both
communities in the RS1 model following its conception.
However, the non-detection of graviton KK modes through
a variety of channels at the Large Hadron Collider (LHC)
till date [22–28] has increasingly constrained the parame-
ter space of the five-dimensional paradigm. In particular,
a small hierarchy of at least vH/M5 ∼ 10−2 between the
fundamental Higgs VEV (vH ) which appears in the higher-
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dimensional action defined on the visible brane, and the 5D
Planck scale (M5), is currently required to explain the null
results. As outlined in [29], this is based on two separate fea-
tures. Firstly, the electroweak scale v

(ph)
H is generated from

vH through the exponential warping v
(ph)
H = vHe−k5rcπ ,

with k5 being a measure of the bulk (AdS5) curvature and rc
being the size of the compact extra dimension [1]. Secondly,
the mass m1 of the first excitation of the graviton KK tower
is given by m1 = x1k5e−krcπ , where x1 is the first root of the
first-order Bessel function J1(x) [13]. Combining these rela-
tions, one arrives at the ratio m1/v

(ph)
H = x1k5/vH . We have

v
(ph)
H ∼ O(100) GeV and the latest observations have ruled

out KK gravitons at m1 � O(1) TeV [28], which together
render x1k5/vH � O(1). Let us also recall that the validity of
the semiclassical approach based on Einstein gravity hinges
on k5 being considerably smaller than the Planck scale M5,
and string-theoretic arguments in fact provide a rough upper
bound of k5/M5 � 0.1 [13]. This finally implies the so-called
“little hierarchy” vH/M5 � O(10−2), which hints at possi-
ble emergence of new physics, even beyond the effective 4D
theory whose spectrum consists of the Standard Model and
the KK gravitons, nearly two orders of magnitude below M5.
This is particularly disconcerting since it seems to require an
associated lowering of r−1

c (which in principle provides the
cut-off of the effective theory) by at least two orders of magni-
tude as well. However, this is impossible due to the sensitive
exponential dependence of the warp factor on rc. As there is
no option apart from keeping the magnitude of the cut-off r−1

c
unchanged while lowering vH by two orders of magnitude,
the situation calls for an unavoidable fine tuning worth 2 − 3
orders of magnitude to produce such a reduced vH in the first
place, so that the model is consistent with the observed value
of the Higgs mass at 125 GeV at the end of the day. Such a
compromise is quite detrimental to the efficacy and appeal
of the RS1 set-up, and the situation is likely to worsen if null
experimental results for the KK graviton continue to persist
in future searches.

Motivated largely by the aforementioned reasons, sev-
eral higher-dimensional generalizations of the original RS1
model have been proposed, most of which rely upon addi-
tional orbifolds of the form S1/Z2 [30–39]. In this regard, the
possibility of a nested doubly warped flat braneworld model
[40] is particularly interesting, where the singly warped five-
dimensional metric from [1] is further warped along the
direction of a second orbifold, thereby resulting in a “brane-
box” configuration with topology

[M(1, 3) × S1/Z2
] ×

S1/Z2. The bulk is a slice of AdS6 and the “walls” are formed
by four 4-branes, which intersect at the “vertices” of the box
and give rise to four 3-branes warped to different extents,
hence having distinct physical mass scales. In absence of any
large hierarchy between the orbifold radii, simultaneous large
warping along both directions is forbidden, which causes the

four mass scales to be clustered in a near-TeV scale pair
and a near-Planck scale pair. Such a six-dimensional (6D)
set-up has certain notable advantages over the 5D scenario.
Firstly, the doubly warped structure of the metric renders
the first KK mode of the 6D graviton heavier than that of
the 5D scenario while suppressing its coupling to the SM
fields confined to the visible brane [29]. Unlike the 5D case,
these features together help the doubly warped model sur-
vive current collider constraints without appeal to any little
hierarchy between mH and M6. At the same time, signifi-
cant regions of the parameter space for the doubly warped
model are accessible to the LHC and its near-future upgrades
and can be probed in upcoming runs, thus marking it as a
model of direct experimental interest [41]. Secondly, it offers
a natural explanation for the mass hierarchy observed among
SM fermions if the latter are described by five-dimensional
fields which are allowed to extend into the bulk. Follow-
ing standard KK decomposition of such a fermionic wave-
function, it can be shown that boundary kinetic terms local-
ized at the maximally and near-maximally warped 3-branes
can alter the effective four-dimensional (4D) fermion-scalar
Yukawa couplings, thus leading to a splitting among the
fermion masses [40,42]. This splitting is quite small as the
physical mass scales of this pair of 3-branes are clustered
around O(TeV). Other phenomenological aspects of multi-
ply warped flat braneworld models, e.g. moduli stabilization
issues and dynamics of bulk matter and gauge fields, have
been studied in [43–48], shedding light on a host of interest-
ing properties. In a recent work [49], it has also been shown
how the mass discrepancy of the W -boson with the SM pre-
diction as observed by the CDF Collaboration [50] can be
explained in a doubly warped background.

On the other hand, the negative tension of the TeV-brane
has long been an unattractive feature of the 5D RS1 model, as
such branes are known to suffer generically from instability
issues in both classical Einstein gravity and beyond [51–54].
Although there exist some dynamical schemes [55,56] which
make the effective 4D theory on the negative tension brane
consistent with general relativity in conjunction with a sep-
arate modulus stabilization mechanism (as in [2]), it would
be interesting if the TeV-brane could somehow be imparted
positive tension instead and the entire issue avoided. The lat-
ter prospect is particularly desirable if one considers string-
motivated braneworld scenarios, where the corresponding
stable D-branes turn out to have positive tensions. Interest-
ingly, this can be achieved for a minimalistic generalization
of [1] to the case of curved 3-branes as analyzed in [57].
The origin of the non-zero brane curvature can be traced to
an effective 4D cosmological constant (�) induced on the
3-branes, leading to either an anti-de Sitter (AdS) geometry
for � < 0 or a de Sitter (dS) geometry for � > 0. For � < 0,
the tension of the TeV-brane can be rendered positive. Addi-
tionally, one obtains a tiny upper bound (∼ 10−32) on the
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admissible magnitude of |�|r2
c . Besides successfully avert-

ing the issue of the negative tension visible brane, the model
is thus interesting from a cosmological viewpoint as well. On
the other hand, the de Sitter case also permits a metastable
minimum in the modulus potential whose form is determined
solely by the brane vacuum energy, hence obviating the need
to invoke any external bulk scalar or to modify the gravita-
tional sector for the purpose of modulus stabilization [58].
This possibility is arguably more attractive than the conven-
tional bulk field prescription generalized to the curved sce-
nario [59]. Some other non-trivial aspects of the 5D curved
braneworld, e.g. dynamics of bulk fields and radion-driven
inflation, have been studied in [60–62].

Motivated by the appealing features of the 5D non-flat and
the 6D flat cases separately, it is natural to take the next logical
step - generalizing the geometric structure of higher dimen-
sional multiply warped spacetimes (i.e. 6D and beyond) by
incorporating non-zero brane curvature. As we explore in
this work, such models have a variety of interesting prop-
erties which set them apart from both individual progenitor
models.

2 The 6d Einstein equations

Assuming matter fields to be absent, the total gravitational
action comprised of the bulk (S6) and 4-brane (S5) contri-
butions is S = S6 + S5, where S6 is the Einstein-Hilbert
action in presence of the bulk cosmological constant �6, and
S5 contains the brane-localized terms arising out of intrin-
sic vacuum energy densities of the 4-branes, i.e., the brane
tensions.

S6 =
∫

d4x
∫ +π

−π

dy
∫ +π

−π

dz
√−g6

(
2M4R − �6

)

(2.1)

S5 = −
∫

d4x
∫ +π

−π

dy
∫ +π

−π

dz
√−g5

× [V1(z)δ(y) + V2(z)δ(y − π)]

−
∫

d4x
∫ +π

−π

dy
∫ +π

−π

dz
√−ḡ5

× [V3(y)δ(z) + V4(y)δ(z − π)] (2.2)

where R is the six-dimensional Ricci scalar, M is the funda-
mental (six-dimensional) Planck mass, and g5 and ḡ5 are the
induced metrics on the corresponding 4-branes. To solve the
resulting Einstein equations, we first assume a nested metric
ansatz of the following form.

ds2 = b(z)2
[
a(y)2gμνdx

μdxν + R2
ydy

2
]

+ r2
z dz

2 (2.3)

where Ry and rz are the (constant) radii of the orbifolds. This
ansatz differs from the familiar flat brane case in the consid-

eration of an arbitrary gμν (instead of ημν) on the 3-branes.
Plugging this ansatz into the total action and extremizing it
leads to the following set of Einstein equations.

μν − component:

Gμν + gμν

(
3aa′′

R2
y

+ 3a′2

R2
y

+ 4a2bb̈

r2
z

+ 6a2ḃ2

r2
z

)

= − �6

4M4 a
2b2gμν − a2b

4M4 gμν

×
[
V1(z)

Ry
δ(y) + V2(z)

Ry
δ(y − π)

+bV3(y)

rz
δ(z) + bV4(y)

rz
δ(z − π)

]
(2.4)

yy − component:

−2M4
(
R2
yr

2
z

)
R + 8M4

(
3r2

z a
′2 + 3R2

ya
2ḃ2 + 2R2

ya
2bb̈
)

= −a2b2R2
yrz
[
rz�6 + V3(y)δ(z) + V4(y)δ(z − π)

]
(2.5)

zz − component:

−2M4
(
R2
yr

2
z

)
R + 8M4

(
3r2

z a
′2 + 5a2ḃ2R2

y + 2r2
z aa

′′)

= −a2bRyr
2
z

[
Ryb�6 + V1(z)δ(y) + V2(z)δ(y − π)

]

(2.6)

where Gμν is the four-dimensional Einstein tensor, R =
gμνRμν is the four-dimensional Ricci scalar, and the primes
and dots denote derivatives wrt y and z respectively.

In the bulk away from the turning points, the δ-functions
can be safely ignored and the brane tension terms no longer
contribute. Dividing both sides of (2.4) by gμν for any pair
of μ and ν and rearranging terms, it becomes clear that one
side of (2.4) depends on xμ alone, while the other side is a
function only of the compact coordinates y and z. This allows
us to separate the variables as

Gμν = −�gμν (2.7)

3aa′′

R2
y

+ 3a′2

R2
y

+ 4a2bb̈

r2
z

+ 6a2ḃ2

r2
z

+ �6

4M4 a
2b2 = �

(2.8)

where � is a global constant, which, as evident from (2.7),
plays the role of an induced four-dimensional cosmological
constant. This equation further implies a constant 4D curva-
ture R = 4�, which can be used to eliminate R from (2.5)
and (2.6) in terms of �. Plugging this result into (2.5) and
using (2.8) to simplify, we obtain

− 6aa′′

R2
y

− 4a2bb̈

r2
z

− 6a2ḃ2

r2
z

=
(
a2b2

4M4

)
�6 (2.9)
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Putting this back into (2.6) and invoking (2.5) to separate the
variables y and z finally gives us the following uncoupled
ODEs in a(y) and b(z):

a′2 − aa′′ = �R2
y

3
; a′′ − α2a = 0 (2.10)

ḃ2 − bb̈ = −α2r2
z

R2
y

(2.11)

where α is a dimensionless constant of separation. Solving
these ODEs allows us to determine the two warp factors
explicitly, followed by calculations of the brane tensions by
incorporating the boundary terms in (2.5) and (2.6). But the
natures of the a(y) and b(z) solutions depend crucially on
the positivity (dS 3-branes)/negativity (AdS 3-branes) of �.
In the following sections, we focus on these two possibilities
separately. As one possible effective solution of this multiply
warped geometry on the 3-branes, we first consider an AdS
3-brane with a negative cosmological constant in the follow-
ing section. After analyzing that scenario, we move on to the
more interesting and relevant solution for a dS 3-brane in
the subsequent section, that may correspond to our present
Universe.

3 Case I: Anti-de Sitter 3-branes (� < 0)

In this regime, the general solutions of (2.10) and (2.11) are
given by

a(y) = ω1cosh

(
ln

ω1

c1
+ αy

)
,

with ω2
1 = −�R2

y

3α2 (3.1)

b(z) = ω̄1

cosh
(

ln ω̄1
c̄1

+ βz
)

cosh
(

ln ω̄1
c̄1

+ βπ
) ,

with ω̄2
1 = r2

z α
2

R2
yβ

2 cosh2
(

ln
ω̄1

c̄1
+ βπ

)
(3.2)

As in the flat brane case, we must choose an appropriate
normalization for the warp factors such that their values are
bounded by (0, 1]. It is straightforward to see that a(0) =
b(π) = 1 is the most natural choice. For b(π) = 1, one
obtains ω̄1 = 1, and c̄1 becomes a superfluous constant which
can be set to unity to simplify (3.2) to the following form.

b(z) = cosh(βz)

cosh(βπ)
, with

rzα

Ryβ
cosh(βπ) = 1 (3.3)

Apparently, the solution of b(z) is identical to the solution
in the flat brane limit (i.e., with � → 0), and the relation
between the moduli α and β is exactly identical to the equal-
ity which relates their flat limit counterparts c and k. In hind-

sight, this makes sense because of the structure of the metric
in (2.3). Due to nested warping, the information about the
curvature of the 3-branes is encapsulated principally in a(y),
and affects b(z) implicitly through the relation between α

and β. Next, one can evaluate c1 from a(0) = 1 as

a(0) = ω1cosh

(
ln

ω1

c1

)
= 1 �⇒ c1 = 1 +

√
1 − ω2

1

(3.4)

where we have taken only the positive discriminant solution,
as in the limit ω1 → 0 one needs to ensure c1 → 2 in order
to reduce (3.1) to the well-known flat result a(y) → e−αy .
The admissible range of ω2

1 is clearly ω2
1 ∈ [0, 1]. As the

final step, the solutions a(y) and b(z) need to be plugged in
(2.8) so that β can be obtained in terms of the fundamental
parameters:

β = rz

√

− �6

40M4 (3.5)

which, like (3.3), expectedly mimicks the flat brane result
and requires �6 < 0 to be physically meaningful, i.e., the
bulk should be AdS6.

We can now substitute the warp factors directly in (2.4),
use (2.7) and (2.8) to eliminate the bulk part, and integrate
over infinitesimal ε-intervals across each boundary point to
obtain the corresponding brane tension. Owing to Z2 sym-
metry of the orbifolds, one must take care to replace y with
|y| in the expression of a(y) once the boundaries are taken
into account.

V1(z) = 24M2

√

−�6

40

(
1 − ω2

1

)
sech(βz) (3.6)

V2(z) = 24M2

√

−�6

40
tanh

(
ln

ω1

c1
+ απ

)
sech(βz)

(3.7)

V3(y) = 0 (3.8)

V4(y) = 32M2

√

−�6

40
tanh(βπ) (3.9)

where we have exploited the normalization a(0) = 1 (along-
side the fact ω1 < c1) and the α − β relation from (3.3) to
simplify. The explicitly coordinate-dependent term of each
brane tension is essentially the same as that of the flat case.
Only the constant coefficients are modified due to the pres-
ence of non-zero brane curvature. It is obvious that in the
limit ω1 → 0, the entire set (3.6)−(3.9) reduces to the results
derived in [40] for the flat doubly warped model.

Owing to the relation between α and β in (3.3), it can
be argued that α and β cannot both be large if, based on
naturalness, one assumes Ry ∼ rz , i.e., there is no consid-
erable hierarchy between the two extra dimensional moduli.
Instead, one must have either α > β or α � β, which
respectively correspond to warping predominantly along the
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primary orbifold (y) or the secondary orbifold (z). The maxi-
mally warped 3-brane is the {y = π, z = 0} brane, which we
identify as the visible brane for now, based on the conserva-
tive assumption that no other brane has a physical mass scale
lower than that of the visible brane. The total warp factor is
given by a(π)b(0), which can be factorized as

a(π) = ω1cosh

(
ln

ω1

c1
+ x1

)
= 10−n1 ,

b(0) = sech(x2) = 10−n2 (3.10)

where x1 = απ and x2 = βπ , and n1 and n2 are positive
constants quantifying the extents of warping along the y and z
direction respectively. For successful resolution of the gauge
hierarchy problem, one requires n1 +n2 
 16. We show that
in absence of a large hierarchy between Ry and rz , n1 and
n2 cannot be of similar magnitudes. The exact solutions of
(3.10) are

e−x1 = 10−n1

c1

(
1 ±
√

1 − ω2
1102n1

)
(3.11)

ex2 = 10n2
(

1 ±
√

1 − 10−2n2

)
(3.12)

from which one immediately obtains the constraint ω2
1 ≤

10−2n1 . Now, if possible, let n1 and n2 both be large, e.g.
n1 ∼ n2 ∼ 8. Then ω2

1 is extremely small and renders c1 ≈ 2.
We can write ω2

1 = 10−N , with the minimum allowed value
of N being Nmin = 2n1. For N → ∞, the solution of (3.11)
reduces to the familiar flat result x1 = n1ln10, whereas for
N = Nmin = 2n1 we have x1 ≈ n1ln10 + ln2, i.e., the
flat result plus a minor correction due to the brane curvature.
However, for N � Nmin , one obtains two distinct values of
x1 corresponding to the two roots of (3.11), both of which
are physically valid solutions

x (1)
1 ≈ n1ln10 + 1

4
10−(N−2n1) ,

x (2)
1 ≈ (N − n1)ln10 + ln4 (3.13)

where x (1)
1 is practically the flat result, and x (2)

1 is slightly

larger than x (1)
1 . Hence, in presence of brane curvature, a

given degree of large warping along y direction can owe its
origin to two distinct values of α. Being of similar magni-
tudes, these two values do not give rise to any new hierarchy
that we need to worry about. On the other hand, (3.12) admits
only one solution for large n2:

x2 ≈ n2ln10 + ln2 (3.14)

For close values of n1 and n2 (e.g. n1 ∼ n2 ∼ 8), it is clear
that α and β must be of similar magnitudes (e.g. α ∼ β ∼ 6),
which leads back to the large Ry/rz hierarchy that we are
trying to avoid. The only way out is to consider dominant
warping along either y or z, corresponding to either α > β

or α � β, as studied separately in the following sections.

3.1 Dominant warping along primary orbifold (α > β)

It suffices to consider α ∼ 10 and β ∼ 0.1 to avoid a signif-
icantly large Ry/rz ratio. These values correspond roughly
to n1 ∼ 15 and n2 ∼ 1. The largeness of n1 makes the two
solutions of α given in (3.13) valid in this regime. As n2 is
not quite as large, the approximate solution from (3.14) does
not hold as good, and one needs to consider the exact version
in (3.12) instead for a precise value of β corresponding to a
given n2.

Thus, for � < 0 and dominant warping along the direc-
tion of the first orbifold, the gauge hierarchy problem can
be resolved for two distinct values of the orbifold modulus,
one of which (x (1)

1 ) is very close to the value obtained in the

flat brane scenario and the other one (x (2)
1 ) slightly larger.

As noted earlier, n1 ∼ 15 puts a very small upper bound on
the induced cosmological constant by ensuring ω2

1 � 10−30.
For α ∼ 10, (3.1) implies that this bound corresponds to
|�|R2

y � 10−28.
In Fig. 1a, using the equation a(π) = 10−n1 from (3.10),

we have plotted N as a function of x1 for a few representative
values of n1 which result in no large radius hierarchy. The
analytical form of N (x1) near Nmin corresponds to the first
solution x (1)

1 from (3.13), which is the dominant solution
near the minimum. For each value of n1, N diverges and we
obtain ω2

1 = 0 at the limiting value of x1 = n1ln10, and a
global minimum exists at Nmin = 2n1. The linear relation
between Nmin and n1 is also evident from the set of curves
shown in the plots. Figure 1b shows the behaviour far from
the minimum, i.e., for N � Nmin , where the second solution
x (2)

1 from (3.13) dominates and makes N (x1) approximately
linear.

Of particular interest in this regime are the 3-brane ten-
sions, which are given by pairwise algebraic sums of the
4-brane tensions at the corresponding boundary points. As
ω1 < c1, the forms of (3.6)−(3.9) imply that all the 4-brane
tensions are decidedly non-negative except V2(z), which is
difficult to tell at first glance. IfV2(z) is positive, all the corner
branes have positive tensions, which is a satisfactory feature
as negative tension branes are often intrinsically unstable.
The crucial sign-determining term of V2(z) is

tanh

(
ln

ω1

c1
+ απ

)
≈

1 − 4
ω2

1
e−2x1

1 + 4
ω2

1
e−2x1

(3.15)

which tends to −1 for x1 = x (1)
1 , and to +1 for x1 = x (2)

1 .
Consequently, one ends up with two possible tensions of the
y = π brane, corresponding to the two allowed values of the
modulus x1 that solve the hierarchy problem:

V (1)
2 (z) ≈ −24M2

√

−�6

40
sech(kz) ,
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Fig. 1 Plots of N versus x1 for a few representative values of n1 =
14 − 15, for negative brane cosmological constant and α > β. Plot a)
shows the behaviour near the global minimum Nmin = 2n1 alongside

the divergence at x1 = n1ln10. Plot b shows the approximately linear
continuation of the curves far from Nmin

for x1 = x (1)
1 = n1ln10 + 1

4
10−(N−2n1) (3.16)

V (2)
2 (z) ≈ + 24M2

√

−�6

40
sech(kz) ,

for x1 = x (2)
1 = (N − n1)ln10 + ln4 (3.17)

On the other hand, the tension V1(z) of the y = 0 brane
is independent of x1, and is approximately equal to V (2)

2 (z)

for small ω1. For x1 = x (2)
1 , all the 4-brane tensions are

thus positive, with the sole exception of V3 = 0. The ten-
sions of the four 3-branes at the corners are therefore strictly
positive. Importantly, if we identify the maximally warped
(y = π, z = 0) brane as the visible brane, then its tension
is simply equal to V2(0). This demonstrates that the second
solution x (2)

1 , which arises solely in the context of non-flat
geometry, is of key importance in giving us a positive tension
visible brane—a feature impossible in the flat case.

3.2 Dominant warping along secondary orbifold (α � β)

In the opposite regime, we have β � 10, which implies an
extremely tiny upper bound of say α ∼ 10−12 so as to elimi-
nate the unwanted Ry/rz hierarchy. Thus, the contribution of
α becomes negligibly small in the warp factor a(π), which
approaches unity and corresponds to an infinitesimally small
n1 � 1. Hence, warping occurs predominantly along z, with
the extent of shared warping between the two directions being
many orders of magnitude smaller than the α > β case.

This regime is less interesting than the previous one, as it
effectively reduces to a singly warped six-dimensional geom-
etry with a nearly unwarped five-dimensional submanifold.
However, it still allows the possibility that all 3-brane ten-
sions can be positive. As before, the determining feature is

the positivity of the hyperbolic term in V2(z), for which we
require

ln
ω1

c1
+ απ ≥ 0 �⇒

(
Ry

rz

)
βπ

cosh(βπ)
≥ ln

c1

ω1

(3.18)

where we have used (3.3) to arrive at the second inequality.
As the contribution of α is negligible, we need β 
 12 for an
overall warping of order 10−17 which can resolve the hierar-
chy problem. This leads to the following minimum value of
the Ry/rz ratio compatible with the condition that V2(z) is
positive.

(
Ry

rz

)

min
∼ ln

⎛

⎝
1 +
√

1 − ω2
1

ω1

⎞

⎠× 1014 (3.19)

First, note that a small value of n1 allows ω1 to be corre-
spondingly close to unity according to the constraint placed
by (3.11). Conversely, for a negligibly small α, one can treat
ω2

1 as a free parameter and tune it sufficiently close to 1 to
generate a very small warpingn1 along y. According to (3.18)
and (3.19), such a fine tuning can render V2(z) positive while
simultaneously ensuring no large hierarchy comes into play
between Ry and rz . In Fig. 2, we have shown the roughly lin-
ear dependence of (Ry/rz)min on the tuning of |ω1| close to
unity. As an example, for (Ry/rz)min to be no larger than 102,
this tuning has to be very delicate with (1 − |ω1|) � 10−23.
This reintroduces the fine tuning problem in a new guise, and
renders the prospect of having a positive tension (π, 0) brane
in this regime problematic, albeit theoretically possible. Note
that although ω2

1 needs to be tuned very close to 1, the small-
ness of α nonetheless manages to keep �R2

y bounded above
by a very small value. For example, α ∼ 10−14 roughly gives
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Fig. 2 For negative brane cosmological constant and α � β, loga-
rithmic plot of the magnitude of the minimum admissible radius ratio
(Ry/rz)min consistent with positive tension of the y = π brane, versus
the required degree of fine tuning of ω2

1 close to unity

|�|R2
y � 10−28, which is similar to the upper bound obtained

earlier for α > β.
In the small α regime, the curved braneworld scenario

exhibits another interesting property. Due to unequal warp-
ings along y and z, a salient feature of the doubly warped
model (both curved and flat) is the clustering of pairs of
3-branes around the fundamental scale and the maximally
warped scale, e.g. for α � β, the (0, π) and (π, π) branes
cluster around the fundamental scale M , while the (0, 0) and
(π, 0) branes cluster around the maximally warped (TeV)
scale (see [40]). As the effect of the induced cosmological
constant shows up only through the subdominant warp factor
a(y), we expect � to directly affect the degree of cluster-
ing between the mass scales of the (0, 0) and (π, 0) branes.
The total warp factors are a(0)b(0) and a(π)b(0) respec-
tively. Since a(0) = 1, the ratio of the maximally and near-
maximally warped scales is simply equal to a(π). Owing to
the smallness of α, we can expand a(π) up to first order in
α to obtain its dependence on ω2

1.

Mass scale of maximally warped (π, 0) brane

Mass scale of near-maximally warped (0, 0) brane

= a(π) ≈ 1 − απ

√
1 − ω2

1 (3.20)

For all 0 < ω2
1 ≤ 1, this ratio is larger than (1 − απ) as

obtained for the flat case with ω1 = 0. In other words, the
scales of the TeV-branes are clustered more closely when they
are negatively curved than when they are flat. For α ∼ 10−14,
the ratio virtually tends to unity for the aforementioned tun-
ing of ω2

1 close to 1 which is necessary for a positive tension
(π, 0) brane. If the latter condition is relaxed, the ratio can be
comparatively smaller than unity. For all the cases though,
deviations from the flat limit are imperceptibly small from a
practical point of view, as the smallness of α allows any dif-
ference to show up only at the 14th decimal place or beyond.

Table 1 A few representative combinations of α and ω1 which are
shown to considerably affect the clustering of the TeV scale (0, 0) and
(π, 0) branes, as compared to the flat limit result. However, they are all
accompanied by dangerously large radii ratios which spoil naturalness
and introduce a new hierarchy in the model. For all the combinations,
β 
 12 has been fixed beforehand to obtain the desired amount of
dominant warping along z

α a(π) in flat limit ∼ Ry/rz ω1 a(π) for given ω1

10−6 0.9999968584 ∼ 109 0.3 0.9999970031

0.6 0.9999974867

0.9 0.9999986306

10−4 0.9996858901 ∼ 1011 0.3 0.9997003605

0.6 0.9997487219

0.9 0.9998631105

10−2 0.9690724263 ∼ 1013 0.3 0.9705197070

0.6 0.9753566452

0.9 0.9867973832

It should be emphasized, however, that these results
depend crucially on how stringently we wish to avoid a hier-
archy between Ry and rz , which, in turn, dictates how small
an α needs to be chosen. For example, if one ceases to bother
about the former, one can choose significantly larger val-
ues of α instead, leading to larger differences from the cor-
responding flat results. Of course, such choices are largely
not compatible with the naturalness assumption and simply
bring back the hierarchy problem in a new avatar, hence are
not helpful from a physical point of view. To drive home the
point, we tabulate in Table 1 a few combinations of α and ω1

which affect TeV scale clustering in a pronounced manner,
alongside the orders of corresponding Ry/rz ratios.

4 Case II: de Sitter 3-branes (� > 0)

We now consider an effective dS 3-brane whose analysis will
be more relevant to our presently observed Universe. In this
regime, the general solutions of (2.10) and (2.11) are given
by

a(y) = ω2 sinh

(
ln

c2

ω2
− αy

)
, with ω2

2 = �R2
y

3α2 (4.1)

b(z) = ω̄2

cosh
(

ln ω̄2
c̄2

+ βz
)

cosh
(

ln ω̄2
c̄2

+ βπ
) ,

with ω̄2
2 = r2

z α
2

R2
yβ

2 cosh2
(

ln
ω̄2

c̄2
+ βπ

)
(4.2)

As before, the usual normalization ofb(π) = 1 yields ω̄2 = 1
and renders c̄2 a superfluous constant which can be set to
unity. This makes (3.3) hold good. Further, normalizing with
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a(0) = 1 gives the following solution of c2

a(0) = ω2sinh

(
ln

c2

ω2

)
= 1 �⇒ c2 = 1 +

√
1 + ω2

2

(4.3)

where we consider only the solution which allows c2 → 2
so that a(y) → e−αy in the limit ω2 → 0. Unlike the AdS
case, (4.3) itself does not require ω2

2 to be bounded above by
unity. However, in order to ensure positivity of the warp factor
a(π), the relation ω2/c2 < e−απ needs to hold, furnishing
an upper limit for ω2 corresponding to any given value of α.
The relation between β and rz remains the same as in (3.5).
Evaluating the brane tensions proceeds in the same manner
as described earlier and yields:

V1(z) = 24M2

√

−�6

40

(
1 + ω2

2

)
sech(βz) (4.4)

V2(z) = −24M2

√

−�6

40
coth

(
ln

c2

ω2
− απ

)
sech(βz)

(4.5)

V3(y) = 0 (4.6)

V4(y) = 32M2

√

−�6

40
tanh(βπ) (4.7)

Like in the AdS regime, one cannot have large simultaneous
warping along both directions if one precludes a large Ry/rz
hierarchy. This can be shown by setting a(π) = 10−n1 and
b(0) = 10−n2 as before, and solving for α and β provided
n1 ∼ n2 and n1 + n2 
 16. The allowed regimes remain
the same, i.e., either n1 ∼ 15 corresponding to α ∼ 10 and
β ∼ 0.1, or n2 ≈ 16 with β ∼ 12 and α ∼ 10−16. The
analysis is not repeated here as it is exactly the same as in the
AdS case. Instead, we move directly on to the two possible
scenarios.

4.1 Dominant warping along primary orbifold (α > β)

The crucial difference with the AdS case is the fact that for
α > β, the large warping n1 ∼ 15 along y can be gener-
ated only by a unique value of α, unlike the two degenerate
solutions found in (3.13). This can be seen by simply solving
a(π) = 10−n1 explicitly, which gives the solution

c2

2

(

e−x1 − ω2
2

c2
2

ex1

)

= 10−n1

�⇒ e−x1 = 10−n1

c2

(
1 +
√

1 + ω2
2102n1

)
(4.8)

where x1 = απ as defined earlier. The other solution with
a negative discriminant renders e−x1 < 0, hence must be
discarded.

It is straightforward to see that all the brane tensions from
(4.4)−(4.7) are strictly non-negative, with the sole exception

of V2(z) whose nature depends on the sign of the constant
hyperbolic coefficient as follows.

coth

(
ln

c2

ω2
− απ

)
=

1 + ω2
2

c2
2
e2x1

1 − ω2
2

c2
2
e2x1

(4.9)

The numerator is clearly positive, and so is the denominator
by virtue of the positivity of the warp factor and (4.8). This
makes the coth term positive, which renders V2(z) from (4.5)
negative. Thus, it is impossible to have a positive tension
(π, 0) brane in this case.

An interesting feature that generalizes readily from the
singly warped counterpart is the variation of N (defined here
via ω2

2 = 10−N ) with x1. Away from the divergence at the
flat limit x1 = n1ln10, the value of N decreases sharply as
shown in Fig. 3, leading to rapid increase of ω2

2. Thus, the
observed tiny value of the cosmological constant requires
x1 (hence α) to be very close to the flat limit. Based on the
relation between α and β from (3.3) and that between β and
rz from (3.5), this naturally explains the tuning of rz close to
the Planck length when the bulk cosmological constant � is
of order −M6.

4.2 Dominant warping along secondary orbifold (α � β)

Like its AdS counterpart, this regime admits a vanishingly
small α ∼ 10−14 − 10−12 and a unique β 
 12 to generate
the large mass hierarchy without any unnaturally large Ry/rz
ratio. Consequently, the metric of the five-dimensional sub-
manifold is left almost unwarped along y.

In accordance with (4.5), the criterion for V2(z) to be pos-
itive is given by

coth

(
ln

c2

ω2
− απ

)
≤ 0 �⇒ ω2

2

c2
2

ex1 ≥ e−x1 (4.10)

Owing to the positivity of the warp factor a(π), this condition
cannot be satisfied by any value of ω2

2 or x1. So it is not
possible to have a positive tension (π, 0) brane in this case
either.

Similar to the AdS case, here also one can figure out
how the clustering of the O(TeV) mass scales depends on
�. The ratio between the scales of the maximally and near-
maximally warped 3-branes remains equal to a(π), which in
this case yields the following result:

Mass scale of maximally warped (π, 0) brane

Mass scale of near-maximally warped (0, 0) brane

= a(π) ≈ 1 − απ

√
1 + ω2

2 (4.11)

For ω2 = 0 this boils down to (1 − απ) as expected. To
arrive at non-trivial results, let us first recall that ω2 in this
regime can be safely larger than unity as long as it satisfies
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Fig. 3 Plot of N versus x1 for a
few representative values of
n1 = 14 − 15, for positive brane
cosmological constant. For
small departure from the
limiting value x1 = n1ln10, the
magnitude of N falls sharply,
leading to corresponding power
law increase in the value of the
cosmological constant
ω2

2 = 10−N

ω2/c2 < e−απ as meant to ensure the positivity of a(π).
This gives rise to three distinct possibilities:

1. One may choose α ∼ 10−12 and 0 < ω2 ≤ 1, for which
the deviation of the ratio from its flat limit is too minute
to be phenomenologically significant.

2. As in the � < 0 case, the deviation in case of the previous
possibility is more pronounced for larger values of α,
but they are all accompanied by extremely large Ry/rz
ratios which render them unappealing from a physical
standpoint.

3. Even for a conservative α ∼ 10−12 which results in no
large Ry/rz hierarchy, choosing ω2 � 1 (which still sat-
isfies the inequality written above) can produce a signif-
icantly smaller value of a(π) compared to its flat coun-
terpart.

The first two possibilities are shared by the AdS case as seen
earlier, while the third is unique to dS 3-branes and hinges on
the possibility that ω2 can be larger than unity. In Table 2, we
list a few representative combinations of α and ω2 for both
cases (2) and (3). The latter case implies 10−6 � �R2

y �
10−2 for the values that have been chosen, but this magnitude
can be lowered for lesser values of ω2 (i.e. at the cost of
closer clustering). Note that the second and third columns
are the same as those of Table 1, as the same flat limit is
recovered for both ω1 = 0 and ω2 = 0, and the functional
dependence of the Ry/rz ratio on α and β is the same in
the � > 0 case as for � < 0. Furthermore, the clustering
ratio a(π) is smaller than its flat limit for any non-zero ω2,
i.e. the scales of the maximally and near-maximally warped
branes are farther apart from each other when the branes
are positively curved than when they are flat—which is the
opposite of the corresponding AdS behaviour.

The clustering ratio a(π) can be readily related to the
mass splitting ratio (r ) of two fermions localized on the
proximal branes, which is an interesting feature of multi-
ply warped models. Following the method shown in [42], it
is easy to see that in our case r = a(π)3/2. The fact that the
degree of clustering, hence the proximity of fermion masses,
increases with decreasing ω2 is interesting from a cosmolog-
ical standpoint. First, let us consider the case of any two SM
fermions located on the proximal O(TeV) branes. Depend-
ing on the choice of SM fermions, the observed magnitude
of r can range from 10−2 (between the 172 GeV top quark
and the 4.2 GeV bottom quark) to 10−12 (between the top
quark and the ∼ 1 eV neutrino mass scale). Now, we firstly
need α � 10−10 to preclude any Ry/rz hierarchy larger
than 104. Even this threshold value leads to the requirement
of a large ω2 of order at least 109 if we wish to generate
r ∼ 0.01 (smaller values of r require even larger values of
ω2 tuned sufficiently close to its allowed maximum value).
Assuming rz ∼ M−1 and hence Ry ∼ 104M−1, one ends
up with �/M2 ∼ 10−10 for such a high value of ω2 (it
can easily be shown that w2 ∼ 10n roughly corresponds to
�/M2 ∼ 102n−30 in the small α regime), which is far too
large compared to its observed value of about 10−120. At first
glance, this rules out using ω2 as a regulator to consistently
generate the presently observed mass hierarchy between any
two distinct SM fermions on the clustered branes. However,
in conjunction with other independent mechanisms (see for
example [63–68]) which attempt to resolve the discrepancy
between the theoretically predicted large value of � and its
observed small value, the cosmological constant could still
be made to function as a tuning parameter for r . However, the
need to invoke such external mechanisms renders the entire
set-up non-minimal in nature and less appealing.

Alternatively and perhaps more interestingly, instead of
readily generating such a hierarchy, the model offers room
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for an intriguing hypothesis. Conventional wisdom suggests
that a much larger cosmological constant may have prevailed
during the very early stages of the universe, with the end of
inflation marking its switchover to the present scale. As we
have just seen, such a large value of � can produce r � 0.1
without difficulty. On the other hand, when the inflaton has
started decaying into the SM spectrum during the process of
preheating, and the cosmological constant has not yet been
reduced all the way down (say �/M2 ∼ 10−12), the num-
ber of degrees of freedom is naturally expected to be quite
high. Among the particles produced under such conditions,
one may hypothesize the existence of multiple species of
fermions with nearly identical physical properties but masses
separated by orders of 10−1 or 10−2. In our model, such a
mass splitting can be interpreted as a result of the large value
of �, providing an unified framework for both ideas. By the
end of the reheating period, when � has reached its currently
observed value, this hierarchy becomes extremely close to
unity (up to O(10−x ) for α ∼ 10−x with x ∼ O(10)), and
the different species can effectively appear as a single species
to low energy observers for the rest of cosmic history. Thus,
an SM fermion observed today could actually be a family
of distinct but nearly-identical fermions with an extremely
close-knit mass spectrum which may be probed directly only
at the GUT scale or beyond, whereas in the early universe they
might have had a far more pronounced splitting induced by
the larger cosmological constant. In the doubly warped set-
ting, this works for only two fermions, while higher dimen-
sional extensions allow the inclusion of more species due to
a larger number of near-maximally warped 3-branes. A full
treatment of this idea requires a study of the cosmological
dynamics of the curved doubly-warped braneworld model,
which falls outside our current scope. So we mention this
here only as an interesting possibility offered by this model,
and defer such a treatment to a future work.

5 Prospect of near-maximally warped visible brane

So far we have identified the maximally warped (π, 0) brane
as the visible brane, based on the conservative assumption
that the latter should have the least possible mass scale among
all the existing 3-branes. As shown in the preceding sections,
this identification allows a positive tension visible brane only
for � < 0. Relaxing this assumption, we may identify the
near-maximally warped (π, π) brane as the visible brane
instead, but only at the cost of allowing a brane with a slightly
lower physical mass scale to exist in our system. In this sec-
tion, we briefly focus on the implications of such a possibility
for the visible brane tension, for each of the four cases con-
sidered so far.

Table 2 A few representative combinations of α and ω2 which are
shown to considerably affect the clustering of the TeV-branes in the
α � β regime, as compared to the flat limit result. The first three
sets of α, corresponding to case (2) from Sect. 4.2, are accompanied by
dangerously large radii ratios which introduce a new hierarchy in the
model. The last three sets, corresponding to case (3), are free from this
issue and make use of ω2 � 1 allowed in the dS regime. For all the
combinations, β 
 12 has been fixed beforehand to obtain the desired
amount of dominant warping along z

α a(π) in flat limit ∼ Ry/rz ω2 a(π) for given ω2

10−6 0.9999968584 ∼ 109 0.3 0.9999967201

0.6 0.9999963363

0.9 0.9999957734

10−4 0.9996858901 ∼ 1011 0.3 0.9996720574

0.6 0.9996336798

0.9 0.9995773913

10−2 0.9690724263 ∼ 1013 0.3 0.9676889351

0.6 0.9638505427

0.9 0.9582207615

10−14 ∼ 1 − 10−14 ∼ 101 1011 0.9968643188

1012 0.9687500000

1013 0.6865234375

10−13 ∼ 1 − 10−13 ∼ 102 1010 0.9968585968

1011 0.9685821533

1012 0.6858520508

10−12 ∼ 1 − 10−12 ∼ 103 109 0.9968584776

1010 0.9685850143

1011 0.6858444214

5.1 Anti-de Sitter case (� < 0)

For α � β, the near-maximally warped brane lies at (0, 0).
Its tension is equal to V1(0) from (3.6), which is positive
by default for all values of ω1. Thus, its positivity does not
require any fine tuning of ω1, unlike that of the (π, 0) brane.
This aspect makes it preferable to choose the (0, 0) brane
as the visible brane in this case, which of course comes at
the cost of allowing a slightly lower mass-scale (π, 0) brane
that can have negative tension in absence of such fine tuning.
Also, to resolve the hierarchy problem at (0, 0), we must have
n2 
 16 (corresponding to β 
 12), as a(0) = 1 contributes
nothing to the warping along y. The upper bound on |�|R2

y
from Sect. 3.2 holds good, and in fact, is allowed to be even
smaller as ω1 does not need to be tuned close to 1 anymore.

For α > β, the near-maximally warped brane is the (π, π)

brane. Its tension is equal to V2(π) + V4(π), which is given
explicitly by
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V2(π) + V4(π) = 8M2

√

−�6

40

[
4 tanh(x2) + 3 tanh

×
(

ln
ω1

c1
+ x1

)
sech(x2)

]
(5.1)

For the second solution x (2)
1 from (3.14), the coefficient term

of sech(x2) approaches +1 as shown in (3.15), which renders
the tension of this brane positive. For the other solution x (1)

1 ,
it approaches −1 and the set-up mimicks the flat limit. In that
case, the tension can still be positive for any x2 > x2r , where
x2r is the root of the equation 4tanh(x2r ) = 3sech(x2r ), given
by x2r ≈ 0.694 (or equivalently βr ≈ 0.221). On the other
hand, in order to steer clear of a large Ry/rz ratio, x2 cannot
be arbitrarily larger than this lower limit. For example, x2

can comfortably range from 0.69 to 2.50 (say), where the
latter is an upper limit assumed to be set by some modulus
stabilization mechanism. The key takeaway is the fact that a
near-maximally warped visible brane can have positive ten-
sion for both the solutions of x1 that resolve the hierarchy
problem, unlike only the second solution x (2)

1 as in Sect. 3.1.

5.2 de Sitter case (� > 0)

As before, for α � β, the tension of the near-maximally
warped (0, 0) brane is given by V1(0) which is unambigu-
ously positive. This marks a notable departure from Sect. 4.2,
where it was impossible to have a positive tension visible
brane.

For α > β, the near-maximally warped (π, π) brane has
tension

V2(π) + V4(π) = 8M2

√

−�6

40

[
4 tanh(x2) − 3 coth

×
(

ln
c2

ω2
− x1

)
sech(x2)

]
(5.2)

Using (4.1) along with a(π) = 10−n1 and exploiting the
positivity of the warp factor, the condition for the positivity
of the tension can be recast as

4 tanh(x2) − 3

(√
1 + ω2

2102n1

)
sech(x2) > 0

�⇒ ω2 <
1

3

√
16 sinh2(x2) − 9 × 10−n1 (5.3)

This sets an upper bound to the magnitude of ω2. Firstly, for a
real value of this upper bound, one needs x2 � 0.694. This is
quite expectedly identical to the value of x2r calculated ear-
lier, as in the � → 0 limit (5.1) and (5.2) become identical,
and any x2 > x2r can satisfy (5.3) trivially and give a positive
tension. But x2 cannot be arbitrarily large as argued earlier,
and needs to be bounded above by an O(1) upper limit as
well. This, in turn, safely ensures that the scales of the max-
imally warped (π, 0) brane and (π, π) are sufficiently close.

Secondly, to resolve the hierarchy problem on (π, π), we
require n1 = 16, as b(π) = 1 gives zero warping along z.
Together, these conditions furnish a small upper bound of
roughly ω2 � 10−15. Note that this is consistent with the
ω2/c2 < e−απ criterion necessary for the positivity of a(π),
which was observed earlier in Sect. 4.

Thus, in the � > 0 regime, the tension of the near-
maximally warped brane can be positive for both α � β

and α > β, with the latter case additionally entailing a small
upper bound on the magnitude of the brane cosmological
constant as a requisite criterion. These features differ sub-
stantially from the results obtained in Sects. 4.1 and 4.2, and
render the possibility of a near-maximally warped visible
brane in this regime far more interesting.

6 Higher dimensional extensions

The analysis so far can be readily extended to spacetimes
with n-fold warping over a series of nested S1/Z2 orbifolds,
equipped with (n + 4)-dimensional metrics of the form

ds2 = an(yn)
2 [an−1(yn−1)

2 . . .
[
a1(y1)

2gμνdx
μdxν + R2

1dy
2
1

]

+ · · · + R2
n−1dy

2
n−1

]+ R2
ndy

2
n (6.1)

where Ri s are the orbifold radii, yi s are the compact angu-
lar coordinates, and ai s are the corresponding warp factors.
Evidently, the metric elements g̃AB are of the forms:

g̃μν = gμν

n∏

i=1

ai (yi )
2 , g̃ j j = R2

j

n∏

i= j+1

ai (yi )
2 ,

g̃nn = R2
n (6.2)

where g̃ j j are the extra dimensional components. The bulk
cosmological constant is denoted by �n+4. The set-up con-
sists of 2n number of p-branes where p = n + 2, with one
pair of branes at every set of fixed points yi = {0, π}. The
intersections of these branes produce 2n number of 3-branes
at the vertices of the resulting “brane-box” configuration.
Since the effect of curvature enters principally through the
first level of warping, we expect the geometric properties of
these extended models to closely mimick those of the curved
doubly warped scenario. We demonstrate the validity of this
claim by first analyzing the triply warped case, i.e., n = 3,
for which the EFEs take the following forms (where primes
denote derivatives wrt respective variables):
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μν − component:

Gμν + gμν

(
3a1a′′

1

R2
1

+ 3a′2
1

R2
1

+ 4a2
1a2a′′

2

R2
2

+ 6a2
1a

′2
2

R2
2

+5a2
1a

2
2a3a′′

3

R2
3

+ 10a2
1a

2
2a

′2
3

R2
3

)

= − �7

4M5
a2

1a
2
2a

2
3gμν − a2

1a2a3

4M5
gμν

[
1

R1

{
V1(y2, y3)δ(y1)

+ V2(y2, y3)δ(y1 − π)
}

+ a2

R2

{
V3(y1, y3)δ(y2) + V4(y1, y3)δ(y2 − π)

}

+ a2a3

R3

{
V5(y1, y2)δ(y3) + V6(y1, y2)δ(y3 − π)

}]

(6.3)

y1y1 − component:

2M5

[

R − 12a′2
1

R2
1

− 4a2
1

R2
2

(
2a2a

′′
2 + 3a′2

2

)− 10a2
1a

2
2

R2
3

× (a3a
′′
3 + 2a′2

3

)]

= a2
1a

2
2a

2
3

[
�7 + V3(y1, y3)δ(y2) + V4(y1, y3)δ(y2 − π)

a3R2

+V5(y1, y2)δ(y3) + V6(y1, y2)δ(y3 − π)

R3

]

(6.4)

y2y2 − component:

2M5

[

R − 20a2
1a

′2
2

R2
2

− 4

R2
1

(
2a1a

′′
1 + 3a′2

1

)− 10a2
1a

2
2

R2
3

× (a3a
′′
3 + 2a′2

3

)]

= a2
1a

2
2a

2
3

[
�7 + V1(y2, y3)δ(y1) + V2(y2, y3)δ(y1 − π)

a2a3R1

+V5(y1, y2)δ(y3) + V6(y1, y2)δ(y3 − π)

R3

]

(6.5)

y3y3 − component:

2M5

[

R − 30a2
1a

2
2a

′2
3

R2
3

− 4

R2
1

(
2a1a

′′
1 + 3a′2

1

)− 10a2
1

R2
2

× (a2a
′′
2 + 2a′2

2

)]

= a2
1a

2
2a

2
3

[
�7 + V1(y2, y3)δ(y1) + V2(y2, y3)δ(y1 − π)

a2a3R1

+V3(y1, y3)δ(y2) + V4(y1, y3)δ(y2 − π)

R3

]

(6.6)

In the bulk, we can separate the μν and extra dimensional
variables from (6.3) and write Gμν + �gμν = 0, where the
effective cosmological constant (�) is defined as

3

R2
1

(
a1a

′′
1 + a′2

1

)
+ 2a2

1

R2
2

(
2a2a

′′
2 + 3a′2

2

)

+5a2
1a

2
2

R2
3

(
a3a

′′
3 + 2a′2

3

)
+ �7

4M5
a2

1a
2
2a

2
3 = � (6.7)

Using R = 4� from the 4D equation and plugging (6.7) for
� in (6.4), the bulk cosmological constant can be expressed
as
(
a2

1a
2
2a

2
3

4M5

)

�7 = −6a1a′′
1

R2
1

− 2a2
1

R2
2

(
2a2a

′′
2 + 3a′2

2

)

−5a2
1a

2
2

R2
3

(
a3a

′′
3 + 2a′2

3

)
(6.8)

The steps to uncouple the warp factors are similar to the
doubly warped case: (i) Plug (6.8) into (6.6) to eliminate
�7. (ii) Compare (6.4) and (6.6) to express a3a′′

3 − a′2
3 in

terms of a1 and a2—a result which when inserted into the
previous equation gives the first uncoupled ODE for a1(y1).
(iii) Now compare (6.5) and (6.6) to eliminate a3 in terms
of a2 alone, and insert into the same equation to obtain the
second uncoupled ODE for a2(y2). (iv) In the eliminating
relation found and used in the previous step, rearrange terms
to construct the final ODE for a3(y3). The equations thus
obtained have remarkably simple forms.

a′2
1 − a1a

′′
1 = �R2

1

3
; a′′

1 − α2
1a1 = 0 (6.9)

a′2
2 − a2a

′′
2 = −α2

1 R
2
2

R2
1

; a′′
2 − α2

2a2 = 0 (6.10)

a′2
3 − a3a

′′
3 = −α2

2 R
2
3

R2
2

(6.11)

where α1 and α2 are two dimensionless constants of sep-
aration. With appropriate normalization, the final solu-
tions of the warp factors are given by: where α3/R3 =

� < 0 � > 0

a1(y1) = ω1cosh

(
ln

ω1

c1
+ α1|y1|

)
a1(y1) =

ω2sinh

(
ln

c2

ω2
− α1|y1|

)

ω2
1 = − �R2

1

3α2
1

, c1 = 1 +
√

1 − ω2
1 ω2

2 = �R2
1

3α2
1

,

c2 = 1 +
√

1 + ω2
2

a2(y2) = cosh(α2 y2)

cosh(α2π)
, α1 = R1α2

R2cosh(α2π)
a2(y2) = cosh(α2 y2)

cosh(α2π)
,

α1 = R1α2

R2cosh(α2π)

a3(y3) = cosh(α3 y3)

cosh(α3π)
, α2 = R2α3

R3cosh(α3π)
a3(y3) = cosh(α3 y3)

cosh(α3π)
,

α2 = R2α3

R3cosh(α3π)

√−�7/(60M5) analogous to (3.5). Once again, it is clear
that the effect of � appears explicitly only in a1(y1). The
equations (and solutions) of the other warp factors appear
thereafter in a hierarchical manner, with nested functional
relations among the warping parameters and the orbifold
radii. Equipped with these solutions, the brane tensions can
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be found by integrating (6.3) across each fixed point. The
non-zero tensions are:

� < 0 �⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1 = 24M
5
2

√

−�7

60

(
1 − ω2

1

)

sech(α2y2) sech(α3y3)

V2 = 24M
5
2

√

−�7

60

tanh

(
ln

ω1

c1
+ α1π

)
sech(α2y2)

sech(α3y3)

(6.12)

� > 0 �⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1 = 24M
5
2

√

−�7

60

(
1 + ω2

2

)

sech(α2y2) sech(α3y3)

V2 = −24M
5
2

√

−�7

60

coth

(
ln

c2

ω2
− α1π

)
sech(α2y2)

sech(α3y3)

(6.13)

V4 = 32M
5
2

√

−�7

60
tanh(α2π) sech(α3y3) ,

V6 = 40M
5
2

√

−�7

60
tanh(α3π) (6.14)

Note that only the compact coordinates of higher orbifolds
contribute to the coordinate dependence of each brane ten-
sion, which is a consequence of nested warping.

In order to avoid a large hierarchy among the radii, the
regimes allowed are either α1 ∼ 10 alongside α2 ∼ α3 ∼
0.1, or any one of α2 or α3 close to 12 with the other
two being vanishingly small (∼ 10−15). Regardless of the
choice of regime, maximum possible warping always occurs
at {y1 = π, y2 = 0, y3 = 0}. Identifying it with the visible
brane leads to visible brane tension equal to V2(π), which,
owing to its form, gives nothing quantitatively different from
Sects. 3 and 4. The case of a non-maximally warped visi-
ble brane is arguably more interesting, for which one can
proceed as in Sect. 5 and analyze various possible configura-
tions. As an example, consider the case � < 0 and α1 ∼ 10,
for which (π, π, π) is a near-maximally warped brane with
tension V2(π, π) + V4(π) + V6. Recall that the hierarchy
problem can be resolved for two distinct values α

(1)
1 and

α
(2)
1 (refer back to (3.13)), which render the tanh term in V2

respectively −1 and +1. The latter identically makes the ten-
sion positive for all α2 and α3, whereas for the former, the
positivity condition can be written explicitly as

−3 sech(α2π) sech(α3π) + 4tanh(α2π) sech(α3π)

+5 tanh(α3π) > 0

�⇒ 4 tanh(α2π) − 3 sech(α2π) > −5 sinh(α3π)

(6.15)

Clearly, for any given α3 > 0, the lower bound on α2 is
smaller than the value of 0.221 obtained in Sect. 5.1. In fact,
it can be readily checked that for α3 � 0.182, any α2 > 0 can
satisfy (6.15). The triply warped model thus allows greater
flexibility over the doubly warped one in rendering the ten-
sion positive. The cases of the other near-maximally warped
branes can be analyzed individually in a similar fashion,
thereby opening up different regions of parameter space con-
sistent with a positive tension visible brane. In Fig. 4, we show
the allowed regions in the {α2, α3} parameter space leading to
positive tensions of each of the four near-maximally warped
branes for � < 0 and α1 ∼ 10, corresponding to the first
solution α

(1)
1 from (3.13) that resolves the gauge hierarchy

problem.
The generalization to n extra dimensions for the metric in

(6.1) is straightforward at this point, for which the governing
set of equations turns out to be

a′2
1 − a1a

′′
1 = �R2

1

3
, a′′

j − α2
j a j = 0 (6.16)

a′2
j+1 − a j+1a

′′
j+1 = −α2

j R
2
j+1

R2
j

(6.17)

where j ranges from 1 to n − 1. Depending on the sign of
�, the corresponding solutions of a1(y1) are identical to the
doubly (and triply) warped results. All the subsequent warp
factors are independent of � and take the forms

a j (y j ) = cosh(α j y j )

cosh(α jπ)
, α j−1

= R j−1α j

R jcosh(α jπ)
(6.18)

for j = 2 to n, with αn/Rn = √−�n+4/(20nMn+2). The
odd-labeled p-branes (with p = n+2) located at each y j = 0
for j = 2 to n have vanishing tension V2 j−1 = 0, while the
remaining branes at y1 = {0, π} and y j = π have tensions
as follows:

� < 0 �⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1 = 24M
n+2

2

√

−�n+4

20n

(
1 − ω2

1

)∏n
i=2

sech(αi yi )

V2 = 24M
n+2

2

√

−�n+4

20n

tanh

(
ln

ω1

c1
+ α1π

)
∏n

i=2

sech(αi yi )

(6.19)

� > 0 �⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1 = 24M
n+2

2

√

−�n+4

20n

(
1 + ω2

2

)∏n
i=2

sech(αi yi )

V2 = −24M
n+2

2

√

−�n+4

20n

coth

(
ln

c2

ω2
− α1π

)
∏n

i=2 sech(αi yi )

(6.20)
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Fig. 4 For � < 0 and α1 ∼ 10, partition of the {α2, α3} parameter
space of the curved triply warped model corresponding to the signs of
the tension of each near-maximally warped 3-brane, for the first solu-
tion α1 = α

(1)
1 from (3.13). The red (bounded) and blue (unbounded)

regions in the first three cases correspond to negative and positive ten-
sions respectively. Note that for the maximally warped (π, 0, 0) brane,
there is no blue region for α1 = α

(1)
1 as the tension is identically nega-

tive, whereas for α1 = α
(2)
1 the reverse situation arises

V2 j = 8( j + 2)M
n+2

2

√

−�n+4

20n
tanh(α jπ)

n∏

i= j+1

sech(αi yi )

(6.21)

where ω1, c1, ω2, and c2 are as defined earlier. To avoid a large
hierarchy among the R j s, the allowed regimes are either α1 ∼
12 with α j ∼ 0.1 for all j = 2 to n, or any particular α j ∼
12 with all the others (including α1) vanishingly small (∼
10−15). Maximum warping occurs uniquely at (π, 0, . . . , 0),
with 2n−1 number of near-maximally warped 3-branes (with
a closely spaced cluster of mass scales) arising in each of
the allowed regimes. Proceeding as earlier, a case-by-case
analysis of the tension of each near-maximal brane can be
done for any given n. For example, in the � < 0 and α1 ∼ 10
regime with α1 = α

(1)
1 , there exists a non-trivial region in

the (n − 1)-dimensional {α2, . . . , αn} parameter space for

which the tension of the (π, π, . . . , π) brane can be rendered
positive (analogous to the top-left plot from Fig. 4). Using
(6.19) and (6.21), one can deduce that this region corresponds
to the following inequality:

−3
n∏

i=2

sech(αiπ) +
n∑

j=2

( j + 2) tanh(α jπ)

×
⎛

⎝
n∏

i= j+1

sech(αiπ)

⎞

⎠ > 0 (6.22)

Constraints for the other branes can be obtained similarly.
SinceV2 j−1 = 0 for all odd j > 1, note that the inequality for
a 3-brane produced by the intersection of any y j = 0 p-brane
will be independent of α j . While in principle unbounded
above, such regions in the parameter space cannot be arbitrar-
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ily large if we are to avoid—as noted earlier—an unnaturally
large hierarchy among the various Ri s. An upper bound might
be established, for instance, via some higher-dimensional
analogue of the modulus stabilization mechanism explored
in [58], a rigorous discussion of which lies beyond the scope
of this work. This is an interesting question that we plan to
address separately in near future.

As for the dependence of the clustering of scales between
the maximally warped and any near-maximally warped brane
on the induced cosmological constant, the results for an arbi-
trary n-fold warped metric should not differ appreciably from
the six-dimensional case as � makes its appearance solely
through a1(y1) and in the same functional form. So the values
of a1(π) from Tables 1 and 2 continue to hold, with other rel-
evant a j (0) terms (independent of �) appearing multiplica-
tively and providing subleading corrections to the overall
scale ratio.

7 Conclusion

In summary, we have generalized six and higher-dimensional
braneworld models with nested warping to include the effects
of a non-zero cosmological constant (�) induced on the cor-
ner 3-branes, which results in global brane curvature. We
have first analyzed the doubly warped case in detail, for
which the solutions of the warp factors from the Einstein
field equations permit both negative and positive values of
�, corresponding respectively to AdS and dS geometries for
the 3-branes. An important consequence of nested warping is
that the effect of � appears explicitly only in the warp factor
associated with the first orbifold. On the other hand, simul-
taneous large warping along both orbifolds is forbidden if
the radii Ry and rz of the compact spaces are of close magni-
tudes, which is a natural assumption to make. This is a salient
feature of nested warped braneworld models that is seen to
hold for both flat and curved scenarios. Together, these two
properties result in 2 × 2 = 4 distinct possibilites which we
have analyzed in detail, for which we have first assumed the
maximally warped (y = π, z = 0) brane to be the visible
brane accommodating our four-dimensional universe.

• For � < 0, dominant warping along the primary orbifold
(y) imposes a small upper bound of order 10−32 on the
value of |�|R2

y , which is interesting from a cosmological
perspective. For values of the cosmological constant suf-
ficiently smaller than this allowed maximum, the gauge
hierarchy problem can be resolved for two distinct val-
ues of the warp factor α associated with this orbifold (as
opposed to a unique value in the flat case). One of these
solutions effectively reproduces the flat result, while the
other one is distinct and non-trivial. Unlike the former,
the latter can render the tension of the maximally warped

3-brane positive. On the other hand, dominant warping
along the secondary orbifold (z) requires an extreme fine
tuning of the cosmological constant if one wishes to
simultaneously avoid a large Ry/rz hierarchy and have
a positive tension (π, 0) brane. One also observes that
the physical mass scales of the maximally warped (0, 0)

brane and the near-maximally warped (π, 0) brane are
clustered more closely in this regime than in the case of
flat branes. If one strictly chooses Ry/rz � 102, this dif-
ference is imperceptibly small and unlikely to play any
significant phenomenological role.

• For � > 0, positivity of the warp factor along y imposes
a similar upper bound to the magnitude of �. Assuming
dominant warping along y further renders it quite small.
But unlike the AdS case, there is only one solution of α

that can generate the desired large mass hierarchy on the
visible brane. The magnitude of � rises exponentially
for small deviations of the warping parameter from its
flat value, thereby justifying a flat braneworld approx-
imation from a physical perspective. Furthermore, the
tension of the (π, 0) brane cannot be rendered positive
for any set of values of the model parameters. Domi-
nant warping along z cannot provide a positive tension
visible brane either. As for the clustering of the (0, 0)

and (π, 0) branes’ scales, they are found to be compar-
atively farther apart than their flat limit counterparts—
which is opposite of the analogous AdS behaviour. More-
over, unlike the AdS case, large allowed values of the
cosmological constant (e.g. 10−6 � �R2

y � 10−2) can
significantly modify the clustering ratio without jeop-
ardizing a conservative Ry/rz ratio. This, however, is
inconsistent with the much smaller value of � measured
today, and prevents explaining the currently observed SM
fermion mass hierarchy (along the lines of [40] and [42])
by using the induced cosmological constant as a regu-
lator, unless some separate mechanism (e.g. [63–68]) to
resolve the discrepancy between the theoretically pre-
dicted and observed values of � is invoked. Alternatively,
one might hypothesize that end-of-inflation (p)reheating
could have naturally led to the production of families of
nearly-identical fermions each with such closely-spaced
mass spectra as associated with a large cosmological con-
stant (consistent with inflationary dynamics). Thereafter,
the lowered value of � could have greatly reduced this
mass hierarchy and rendered it extremely close to unity
(up to O(10−12) or even smaller for conservative Ry/rz
ratios), practically removing the distinction between dif-
ferent species to any low energy observer throughout the
rest of cosmic history. This implies that any SM fermion
observed today could actually be a tuple of two (for the
doubly warped model) or more (for higher dimensional
extensions) nearly-identical, fundamental fermions with
extremely close masses that might only be distinguished
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at the GUT scale or higher. From a theoretical stand-
point, this provides a unified framework which poten-
tially accommodates both the natural consideration of
additional degrees of freedom in the post-inflationary
period (besides explaining why they are no longer dis-
tinctly detectable today) and the large cosmological con-
stant briefly dominant during that period. In order to fully
address this question however, one needs to study the cos-
mological aspects of this braneworld model in detail. This
falls outside the scope of the present work, and we plan
to address it in a future one.

A few of these features strikingly resemble those of the
curved singly warped scenario analyzed in [57]. As men-
tioned earlier, this is but a consequence of secondary warp-
ing of the already-warped 5D metric from [1] along a higher
S1/Z2 orbifold. Some further novelties concerning the vis-
ible brane tension can emerge by identifying, instead of the
conventionally chosen maximally warped brane, the near-
maximally warped 3-brane with our 4D universe. Recall that
such a choice is possible only in nested braneworld models
with at least two levels of warping. In the � < 0 regime, dom-
inant warping along z gives the near-maximal (0, 0) brane a
positive tension by default. Dominant warping along y, on the
other hand, can potentially render the tension of the (π, π)

brane positive for both solutions of α that generate the desired
large mass hierarchy, as opposed to only the second solution
which works for the maximally warped brane. In the opposite
� > 0 regime, dominant warping along z similarly results in
a tension which is always positive. Dominant warping along
y can do the same as long as there is a small upper threshold
to the value of �. As readily apparent, these features differ
significantly from what one obtains for a maximally warped
visible brane.

The curved doubly warped model can be readily general-
ized to seven and higher dimensions with a series of nested
warpings over successive orbifolds. The equations for the
warp factors, together with the relations among the warping
parameters and the orbifold radii, follow a definite hierarchi-
cal pattern as seen from (6.16)−(6.18). Since the effect of the
induced cosmological constant enters only through the first
level of warping, the dependence of scale-clustering between
the maximal and any near-maximally warped brane on �

remains virtually identical to the 6D case. Moreover, identi-
fying near-maximal TeV-branes (instead of the convention-
ally chosen maximal one) as the visible brane can potentially
open up non-trivial regions in the warping parameter space
that can render the corresponding brane tension positive.

Based on the results derived in this work, one can explore
various phenomenological aspects of multiply warped non-
flat braneworld models. The issue of moduli stabilization in
curved higher dimensional scenarios is a particularly interest-
ing avenue. Previously, the authors of the present work have

demonstrated stabilization of the two moduli of the 6D flat
warped braneworld model via a straightforward extension
of the Goldberger-Wise mechanism [48]. While a non-flat
generalization of such a bulk field approach is expected to
work well, it is tempting to check if modified gravity effects
and/or non-zero brane curvature alone can produce a stabi-
lizing potential without the need for any external field. This
can indeed be realized in the non-flat 5D model, where the
resulting radion has interesting phenomenological properties
and cosmological implications [9,11,58]. If such effective
potentials governed solely by the gravitational sector can
be shown to exist in multiply warped geometries as well,
the phenomenology of the associated 4D scalar radions and
their cosmological dynamics (e.g. their role in driving multi-
field inflation) would be an area of considerable interest—one
which we plan to explore in a future project. The inclusion
of higher curvature terms in the gravitational action at suffi-
ciently high energy scales (motivated here by the large bulk
cosmological constant �6 ∼ −M6) is also likely to result in
non-trivial modifications to the model. The effective dynam-
ics of bulk matter and gauge fields against a curved warped
brane background is another important area which needs to
be focused on in greater detail. The issue of the mass dis-
crepancy of the Standard Model W -boson [49], for example,
falls within the purview of this domain. These questions lie
beyond our current scope as well, and we plan to address
them separately in future works.
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