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Abstract We define jet transition values for the anti-k⊥
algorithm for both hadron and e+e− colliders. We show how
these transition values can be computed and how they can be
used to improve the performance of clusterization when jet
resolution parameters are varied over a larger set of values.
Finally we present a simple performance test to illustrate the
behavior of the new method compared to the original one.

1 Introduction

The production of hadronic jets is a common feature of par-
ticle collisions. Jets are widely studied, as they can be used
to test the standard model and measure its parameters, they
can signal new physics, and provide important background
for new physics searches as well.

Jets are defined through jet clustering algorithms: they take
final state particles as an input and combine them accord-
ing to their prescription into larger objects, what we then
call jets. The algorithms have a set of resolution parame-
ters, which defines the jet structure: fixing the values of jet
algorithm parameters determines what happens in each step
of the clusterization, what particles get combined into jets
eventually. Although jet algorithms are required in all kind
of jet analysis, one particularly important observable is the
so-called jet rate. The jet rate, as a function of its parameters,
directly connects to the clustering algorithm, as it provides
useful information about how the number of jets depends on
the choice of parameters.

Jet rate measures the relative production rate of n-jets com-
pared to all hadronic events. It is given by the ratio of the n-jet
cross section σn-jet and the total hadronic cross section σtot

at center-of-mass energy Q2:

Rn(a) = σn-jet(a)

σtot
, (1)

a e-mail: zoltanszoer@uni-mainz.de (corresponding author)

where a denotes the set of jet resolution parameters charac-
teristic to a given jet algorithm. Jet rates are mostly studied
as a function of one or more of their resolution parameters.
This means clustering the same set of momenta with a wide
range of chosen values of the jet resolution parameters. This
set of momenta might represent a point in the phase space of
final state particles or a physical event, but the actual repre-
sentation is not important in the scope of the paper. Thereby
we use the umbrella term ‘partonic event’.

Since repeated clusterization is usually computationally
inefficient, in practice one tries to exploit the properties of
the algorithm to enhance performance in computations. This
is also important on the theory side, since making higher
order predictions in perturbation theory typically requires
the generation of millions of phase space points, which all
need to be clustered individually. Although the bulk of com-
putational cost is coming from the calculation of amplitudes
and subtraction terms, slow clusterization might add a non-
negligible time contribution as well.

In the case of e+e− colliders the most common jet cluster-
ing algorithm is the k⊥ (or Durham) algorithm [1], which has
auspicious properties to do computations efficiently, illus-
trated in the next section. Today, in the LHC era, the com-
monly used jet algorithm is the anti-k⊥ algorithm [2]. Though
jet rate studies similar to k⊥ ones are not prevalent, they are
also hampered by the lack of properties that the k⊥ has. Hence
computations can be slowed down significantly due to clus-
terization only.

In this paper we present a reformulation of the anti-k⊥
algorithm equivalent to the original, which makes it possible
to define transition values in a similar fashion to the k⊥ algo-
rithm. Furthermore we show how these transition values can
be computed and used to speed up calculations. Our method
can be used for both hadron and e+e− colliders.
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2 The k⊥ algorithm

We start with a short review of the k⊥ algorithm, and dis-
cuss how it is used in calculations in practice. The algorithm
depends on a single jet resolution parameter ycut and the dis-
tance measure is defined as

yi j = 2min(E2
i , E

2
j )(1 − cos θi j )

Q2 . (2)

Ei and E j denote the energy of particle i and j respectively,
while θi j labels the angle between the three-momenta pi and
p j . During clusterization we compute yi j for each pair of
particles and find the smallest one ykl = min yi j . If ykl < ycut

holds we combine particles k and l, then start the procedure
again with the new list of objects. Otherwise we stop the
clusterization and the resulting objects are considered jets.

In the case of the k⊥ algorithm one can uniquely define
transition values. Transition values yi−1←i are certain val-
ues of ycut, where the number of jets changes from i into
i − 1 for a given final state configuration. The distribution
of the transition value behaves as an event shape observable.
Using the k⊥ algorithm every transition value yi−1←i can
be computed performing the clusterization only once inde-
pendently of ycut, such that in every clusterization step the
smallest ykl value provides the corresponding yi−1←i transi-
tion value. We repeat the steps until all particles are clustered
into two jets. When jets are defined through the k⊥ algorithm
the number of jets is a monotonically decreasing function of
ycut for every possible partonic event.

These two properties of the algorithm described previ-
ously make possible to connect the dσ/dyi−1←i differential
distributions and the σn-jet(ycut) cross section. For example
the three-jet cross section can be computed as

σ3− jet (ycut) =
∫ 1

ycut

dy2←3
dσ

dy2←3
−

∫ 1

ycut

dy3←4
dσ

dy3←4
.

(3)

The meaning of the two terms are the following: the three-jet
cross section for a chosen ycut gets contributions from the
dσ/dy2←3 differential cross section for every y2←3 value
which is greater than ycut. This gives the first term in Eq. (3).
However the resulting quantity in itself would include all
events with y3←4 ∈ [0, 1]. Events with y3←4 ∈ [0, ycut]
are indeed events which cluster into three-jets, however for
events with y3←4 ∈ [ycut, 1] clustering stops at four-jets.
Thus we need to subtract the integrated dσ/dy3←4 distribu-
tion to get the correct three-jet cross section, which gives
the second term. Equation (3) provides a very useful relation
to speed up numerical calculations. One has to perform the
clusterization only once per partonic event, calculate the dif-
ferential cross sections, then do a simple integration with the
desired ycut according to the formula to obtain the n-jet cross
section.

3 The anti-k⊥ algorithm

Now we turn our interest towards the anti-k⊥ algorithm and
discuss its shortcomings in computational time compared to
the k⊥ algorithm. The anti-k⊥ algorithm uses two different
measures: a two-particle measure di j and a beam jet measure
di B . They are defined as

di j = min(k2p
⊥,i , k

2p
⊥, j )

(yi − y j )2 + (φi − φ j )
2

R2 ,

di B = k2p
⊥,i , (4)

for hadron colliders, where k⊥,i , yi and φi denote the trans-
verse momentum, rapidity and azimuth of particle i respec-
tively. In the case of e+e− colliders we have

di j = min(E2p
i , E2p

j )
(1 − cos θi j )

1 − cos R
,

di B = E2p
i , (5)

with the notation being identical to the one introduced in the
previous section. Choosing p = −1, 0, 1 we obtain the anti-
k⊥ [2], the Cambridge/Aachen [3] and the inclusive k⊥ [1]
algorithms respectively. Collectively they are named as the
general inclusive k⊥ algorithm.

The anti-k⊥ algorithm has two jet resolution parameters:
R and Ecut. During clustering we calculate di B for every
particle i and di j for every particle pair i, j . If dkl is the
smallest measure, we combine particle k, l, but if dkB is the
smallest one, particle k is considered a jet candidate, and we
remove it from the list of objects. We repeat these steps until
every particle becomes part of a jet candidate. Finally we
apply energy cut(s), and every jet candidate with Ei > Ecut

is a resolved jet.
The anti-k⊥ algorithm has characteristics and properties,

which makes it preferable for experimental use [2], for exam-
ple cone-like jet shapes. However the algorithm has certain
other properties, which unfortunately make computational
shortcuts like Eq. (3) absent, therefore making clusterization
more expensive in the study of the jet rate observable. This
is due to the fact that in general the number of jets is not
a monotonic function of R2 or 1 − cos R as it can be seen
in Fig. 1. The reason is partially the presence of the addi-
tional Ecut parameter. Although we obtain more and more
jet candidates when we increase the spatial resolution, many
of them would not survive the last cut on the energy. Further-
more the presence of the beam jet measure, di B prevents the
same definition of jet transition values as in the case of the
k⊥ algorithm.

This would leave us in an unfortunate situation where clus-
tering would need to be done for each different choice of
the jet resolution parameters, in particular when we vary R.
We note that this still can be an issue, even if one uses the
improved version of the anti-k⊥ algorithm [4], which scales
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O(N log N ) compared to the O(N 3) cost of the original for-
mulation. The choice of the efficient method depends on the
number of histogram bins and the number of partons to be
clustered.

Fortunately we can still define jet transition values, which
can be used in calculations.

4 Transition values

We start with an equivalent reformulation of the anti-k⊥ algo-
rithm, which is more suitable to define and find transition
values. First we combine the two measures di j and di B the
following way

yi jk ≡ ycut
mini, j di j
mink dkB

, (6)

where we define ycut ≡ R2 and ycut ≡ 1 − cos R for hadron
and e+e− colliders respectively. Note that yi jk is independent
of ycut.

Now clusterization is done as it follows: first we calculate
yi jk . If yi jk < ycut, we combine particle i, j ; otherwise we
consider particle k to be a jet candidate and remove it from
the list. We repeat the procedure until the list is empty. Finally
we apply the energy cuts on our jet candidates.

The clustering procedure is now similar to the k⊥ algo-
rithm, hence we can define jet transition values in a similar
fashion. We call yt ≡ ycut a transition value when the clus-
tered particle configuration changes. It is important to notice
that it does not necessarily imply a change in the number
of jet candidates. Two different ycut values can result in the
same number of jet candidates, but these candidates may dif-
fer in their momenta configuration. As an illustration let us
consider the following: we have 4 partons such that they can
be separated into two hemispheres and we cluster them into
3 jets. The parton in the first hemisphere is the hardest and is
widely separated in angle from the other three, we label it by
H . In the second hemisphere one parton is soft and two are
hard, labeled as s, h and h′ respectively, with the following
angle separation 1− cos θsh ∼ 1− cos θsh′ > 1− cos θhh′ . If
we choose ycut such that 1 − cos θsh > ycut > 1 − cos θhh′ ,
then in the clustering process we first remove the soft parton
s from the list, then combine partons h and h′ together and
finally obtain (s), (hh′), (H) as jet candidates. In an other
case with ycut > 1 − cos θsh we first combine partons s and
h, and obtain (sh), (h′), (H) as jet candidates. Both config-
urations have the same number of jet candidates, but the way
each parton is associated to a jet is different, hence they are
in two different regions separated by a transition value. This
behavior is due to the presence of the beam jet measure di B .
Then the final number of resolved jets depends on the chosen
value of Ecut as well.

Using this definition is convenient in practice. The transi-
tion values must be calculated only once, then one can apply
as many different energy cuts as wanted without repeating the
clusterization again. Nevertheless the calculation of yt val-
ues is not straightforward. For the k⊥ algorithm the sequence
of clustering is independent of ycut and relevant information
can be fully retrieved for any ycut value from one complete
clusterization. In contrast, the clusterization sequence of the
anti-k⊥ algorithm depends on the actual choice of ycut, due
to the presence of the two different distance measures.

It was shown that in the Cambridge algorithm one faces
a similar problem, but transition values can still be found
systematically [5]. Here we can adopt the method of Ref. [5]
as well to find transition values for the anti-k⊥ algorithm in
the following way:

1. First set an initial value for yini and set ycut = yini.
2. If ycut is less than some preset lower limit ystop, stop the

algorithm.
3. Perform clusterization with the chosen ycut, and find the

maximum value of yi jk during the process.
4. Store the transition value yt = ymax

i jk and apply energy
cuts to obtain the corresponding number of jets.

5. Set ycut = ymax
i jk and go to Step 2.

Clusterization between two transition values is completely
determined, choosing two different ycut in this set will lead
to the same jet configuration. This leads to an improvement
in speed in the calculation of jet rates. We can fill histograms
more easily between two transition values, we do not have to
consider each bin separately and perform clusterization over
and over again.

It is worth to mention that the method is independent of
the definition of di j and di B and also independent of how
di j and di B are calculated, given that the maximum value
of yi jk can be obtained during clusterization. Therefore the
transition method can be used both in the hadron and e+e−
collider version of the anti-k⊥ algorithm and in fact for any
version of the general inclusive k⊥ algorithm, that being the
original O(N 3) or the improved O(N log N ) version.

On Fig. 1 we show the number of jets as a function of
ycut. We used a randomly generated partonic event with 10
particles in the final state at

√
Q2 = 100 GeV center-of-

mass energy. Ecut was chosen 8 GeV. The 10 particle config-
uration was clustered with the e+e− version of the anti-k⊥
algorithm using both approaches: bin-by-bin with 30 ycut

values denoted by blue dots and via the transition values
method denoted by the red line. Both methods produce iden-
tical results, but while the bin-by-bin method required 30
repeated full clusterizations, the red curve was reproduced
from 14 transition values. Figure 1 also illustrates the general
non-monotonic behavior of the number of jets as a function
of ycut.
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Fig. 1 The number of jets as function of ycut obtained from clustering
a randomly generated partonic event with 10 particles in two differ-
ent ways. The two approaches provide identical results and the non-
monotonic behavior of function is also visible

5 Performance

Finally we explore the performance of the new method com-
pared to the traditional approach. We employ three differ-
ent methods: we name the method computing the number
of jets over a wide range of ycut through transition val-
ues as transition, while the bin-by-bin version is dubbed
as direct. Both the transition and the direct method are
based on the original formulation of anti-k⊥, which scales
as O(N 3). As third we include the FJcore version of the
anti-k⊥ algorithm from the FastJet package [6], and per-
form bin-by-bin clustering with it. We call this method fjcore.
We note that the FJcore package provides only a O(N 2)

scaling in contrast to the full FastJet version scaling as
O(N log N ). In exchange FJcore is easier to integrate and
is more likely to be used in cases, where the whole apparatus
of FastJet is not required. We implemented the transi-
tion and the direct methods in a Fortran90 program and
included the FJcore algorithm through the provided wrap-
per. For simplicity we chose the e+e− collider version of
the anti-k⊥ algorithm. Using RAMBO [7] we generated 1000
partonic events with 5, 10, 15 and 20 particles in the final
state, and clustered them with all three methods. We checked
that the three methods give the same results, as it is illus-
trated in Fig. 1. To perform clusterization with the direct and
fjcore methods we selected 30, 60, 90 and 120 bins for ycut,
the first number of bins being closer to experimental setups,
while the last one is more typical for theoretical predictions.
In the transition method yini was always set to the largest
value of ycut of the histogram, while ystop was chosen to be
the smallest. This way we ensured that the range of search for
transition values coincides with the range of the histograms.

We summarize our results in Table 1.

The computations were performed on a simple everyday
laptop. We emphasize that our numbers in Table 1 are shown
just to illustrate the behavior of the new method compared to
the usual one, it is not an exhaustive study on performance.
For example fluctuations in computational time were not
taken into account. Nevertheless Table 1 still provides useful
information about how the transition method performs.

As we can see the timing of the direct and the fjcore meth-
ods scale with the number of bins, as one would expect it.
The numbers indicate a linear relation. The transitionmethod
depends non-linearly on the number of particles, as more
particles introduce more and more possible final jet con-
figurations, hence more transition values to compute. This
method also depends on the range of ycut values. Although
a large number of particles would mean plenty of transition
values, many of them could fall outside of the range of inter-
est, hence they would be not computed in the end. For large
number of partons the fjcore method is the best, however
there is a turnover at 10 partons, where the transition method
starts to take over and for 5 partons it clearly outperforms the
other two methods, an order of magnitude speed up can be
achieved. It is even more obvious when the number of bins is
larger. Interestingly at low multiplicities fjcore is the slowest,
which is probably due to the complexity of the algorithm.

Table 1 clearly shows that the transition method can be
used to improve the speed of clustering in the calculation
of fixed order parton level distributions, like jet rates. The
calculation of fixed order predictions typically involve only
a small number of strongly interacting final state particles,
but a large number of bins in order to produce smooth his-
togram curves. In addition, millions of phase space points are
generated, which all require clusterization, therefore faster
methods are preferred.

We note that according to Table 1, the transition method
is always faster than the direct method, when the number
of bins is large and the multiplicity is moderate or small.
As mentioned earlier both methods employ a ‘naive’ O(N 3)

clusterization. Our new method does not depend on whether
the clusterization is done via a ‘naive’O(N 3) or an improved
O(N log N ) algorithm, given that the value of ymax

i jk can be
tracked during repeated clustering. Hence we expect the inte-
gration of the transition method into the FastJet frame-
work to be possible.

6 Summary

In this paper we defined transition values for the anti-k⊥
algorithm and we presented a way to compute them. The
knowledge of these values can speed up computations, which
involve large number of variations of the ycut jet parame-
ter. Our simple performance test shows that the new method
could be applied best to improve performance significantly in
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Table 1 Required time to perform clusterization of 1000 partonic events using the three different methods. Time values are shown is seconds.
Various number of particles and bins were used to illustrate performance behavior

Partons Method 30 bins (s) 60 bins (s) 90 bins (s) 120 bins (s)

5 direct 0.103 0.203 0.285 0.369

fjcore 0.167 0.287 0.406 0.532

transition 0.021 0.023 0.023 0.023

10 direct 0.548 1.062 1.578 2.091

fjcore 0.234 0.421 0.580 0.777

transition 0.296 0.304 0.299 0.307

15 direct 1.635 3.134 4.532 6.161

fjcore 0.313 0.601 0.887 1.220

transition 1.458 1.740 1.722 1.746

20 direct 3.878 6.930 10.219 13.548

fjcore 0.455 0.896 1.376 1.927

transition 5.357 5.986 5.924 5.900

the calculation of fixed order predictions for jet rates with the
anti-k⊥ algorithm, which might regain interest in the upcom-
ing precision era and future electron-positron colliders. The
definition of transition values could also serve as starting
point for the development of new observables. Our method
can be used both for the hadron and the e+e− collider version
of the anti-k⊥ algorithm, in fact for any version of the gen-
eral inclusive k⊥ algorithm. Furthermore the new transition
method can be combined either with the ‘naive’ O(N 3) or
the improved O(N log N ) clusterization method, hence it is
compatible with the FastJet framework.
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