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1 Introduction

A periodic drive is one of the simplest, yet most fascinating, ways of taking a many-body

quantum system out of equilibrium. The discrete time-translational invariance retained by

the drive has crucial consequences for the description of the unitary evolution of the system;

in particular, at stroboscopic times, the dynamics is controlled by an emergent, time-

independent hermitian operator: the Floquet Hamiltonian. This observation opens the

possibility of driving otherwise autonomous systems to manufacture Floquet hamiltonians

of physical relevance. The topic, which goes under the name of Floquet engineering, has

been under intense scrutiny in recent years (see [1–4] for reviews). At the same time,

fundamental questions regarding the late-time behavior of periodically driven, many-body

quantum systems have also been thoroughly studied [5–7].

At the QFT level, less is known in comparison, although remarkable results have been

obtained for scalar field theories with O(N) symmetry at large N [8, 9]. In the large N

limit, Holography is firmly established as a first-principles framework to deal with real-time

physical problems in strongly coupled CFTs. Therefore, it provides an interesting starting

point to increase our knowledge about periodically driven QFTs, a possibility that has not

gone unnoticed [10–16].

In [17] the problem of periodically driven, finite-size systems in the holographic context

was explored. The construction involved a CFT placed on a two-sphere, where the drive

was implemented by turning on a spatially homogeneous and time-harmonic coupling to

a marginal scalar operator. The main reason for considering such a setup was to address

the effect of the periodic excitation on a pure state, searching in particular for nontrivial

late-time dynamics. Several phenomena were found, such as the existence of exactly time-

periodic geometries, dynamical phase transitions, or hysteresis loops.
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The present paper aims at furthering this subject. One of the important questions that

will guide our work is elucidating whether the physics uncovered in [17] is specific to that

particular context or, on the other hand, displays some degree of universality. To this end,

we will consider another example of a finite-sized, two-dimensional system: a holographic

CFT placed on a two-torus. When imposing supersymmetry-breaking boundary conditions

along each cycle of the torus, the ground state of these theories is known to be dual to the

AdS-soliton geometry [18, 19], which is nothing but the double analytical continuation of

a planar AdS-Schwarzschild black hole.

Our playground will be the four-dimensional instance of this geometry, which will be

subjected to a time-periodic shear deformation of its boundary metric. The reason for con-

sidering this particular setup is two-fold. On the one hand, it allows us to remain confined

to a universal subsector of the AdS/CFT correspondence involving the dynamics of the

metric/energy-momentum tensor alone; in this way, the results we will obtain pertain to

any holographic CFT that respects our boundary conditions. On the other, this setup can

be viewed as a toy-model of the response of a table-top quantum system to the passage

of a gravitational wave [20–22]. The toroidal topology accounts for the periodic bound-

ary conditions in a rectangular-shaped, strongly coupled quantum system, pierced by a

gravitational wave propagating in the perpendicular direction. Related work, studying the

evolution of the AdS-soliton geometry after quantum quenches, can be found in [23, 24].

This paper is organized as follows. In section 2 we describe our model. Then, in

section 3, we demonstrate the existence of exactly time-periodic geometries by construction.

We chart out their phase diagram and discuss their linear and nonlinear stability properties

in detail. Section 4 is devoted to the study of modulated driving protocols. These are

processes in which the parameters determining the driving become themselves nontrivial

functions of time. Thus, they allow for a dynamical interpolation between the undriven

ground state of our system and a time-periodic geometry. First, we discuss the system

response to such boundary conditions in the quasi-static limit, studying in detail under

which circumstances the response is adiabatic. Then, we illustrate what happens away

from the quasi-static limit, showing that specific kinds of dynamical phase transitions

might take place. The manuscript closes down in section 5 with a summary of our main

results, their possible implications for gravitational wave detection, and the suggestion of

future avenues worth exploring.

2 The setup

In this paper, we consider pure Einstein gravity in four-dimensions with a negative cos-

mological constant and study the behavior of an AdS-soliton background under a time-

dependent strained boundary metric. The metric ansatz,

ds2 =
L2

z2

(
− f(t, z)e−2δ(t,z)dt2 +

dz2(
1− z3

z30

)
f(t, z)

+

(
1− z3

z30

)
eb(t,z)dx2 + e−b(t,z)dy2

)
,

(2.1)
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generalizes the AdS-soliton geometry, which is recovered for b(t, z) = δ(t, z) = 0, f(t, z) = 1.

A nonzero b(t, z) introduces an anisotropy in the boundary geometry; for small amplitudes,

it acts like the h+ strain of a gravitational wave propagating along the direction perpen-

dicular to the dual quantum system.

L is the AdS radius and we set it to 1 by using it as our length stick. The holographic

coordinate z ranges from z = 0 at the asymptotic boundary to z = z0 at the tip of the cigar,

where the proper length along the x direction vanishes and spacetime ends. Regularity at

this tip requires x to be a compact coordinate with periodicity Lx = 4πz0/3. It is a very

satisfactory feature of this solution to see the deep bulk bound z ≤ z0 reflecting itself

as an IR cutoff in the boundary (x < Lx), much in the spirit of the holographic UV/IR

correspondence [25]. It would be nice to have similar arguments at work for the other

coordinate y, enforcing on it a periodicity Ly by singularity avoidance at a deeper bulk

scale z1 ≥ z0. Unfortunately, no such solution is known.1 In our setup, the coordinate y can

be compactified for free, as long as its period Ly is longer than Lx. Thus, we will envisage

the geometry (2.1) as being dual to a strongly coupled CFT placed on a rectangular region

with sides Ly > Lx and periodic/antiperiodic boundary conditions for bosonic/fermionic

fields. It is on this setup that our investigations aim at unveiling detectable effects of the

gravitational driving parametrized by the strain field b(t, z).

The equations of motion and boundary conditions to be imposed at the tip can be

found in appendix A. Here, we will focus solely on reviewing some relevant aspects of the

model. First, close to the asymptotic boundary, z = 0, the ultraviolet expansion of the

metric reads

δ(t, z) =
1

8
ḃ0(t)

2z2 +O(z4),

f(t, z) = 1− 1

4
ḃ0(t)

2z2 + f3(t)z
3 +O(z4),

b(t, z) = b0(t)−
1

2
b̈0(t)z

2 + b3(t)z
3 +O(z4), (2.2)

where we have selected the boundary proper time gauge δ(t, 0) = 0. We observe that there

are three boundary functions left free in the Frobenius expansion: b0(t), f3(t) and b3(t).

They are linked by the momentum constraint equation (A.6)

ḟ3(t) =
3

2
b3(t)ḃ0(t)−

3

4z30
ḃ0(t). (2.3)

The holographic dictionary relates these quantities to field theory data as follows

hab = diag
[
−1, eb0(t), e−b0(t)

]
(2.4)

〈Tab〉=
1

16πG4
diag

[
−z−30 −2f3(t), e

b0(t)(−2z−30 −f3(t)+3b3(t)), e
−b0(t)(z−30 −f3(t)−3b3(t))

]
,

1See however [26] for a discussion on a singular geometry that has some of the desired ingredients. The

first order phase transition upon exchange of periodicities have been discussed in several places, see for

example [27–29].
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where hab is the induced metric of the boundary theory and Tab its energy-momentum

tensor. Under this perspective, equation (2.3) is nothing but the statement of energy-

momentum conservation, ∇a〈T ab〉 = 0, which follows from the reparametrization invariance

of the bulk theory [30].2

From 〈T00〉, we see that f3 controls the energy density of the dual CFT. Hence, (2.3)

states that, as soon as ḃ0 6= 0, there is energy exchange across the boundary and we

are dealing with an open system. In this paper, we will focus on a harmonic driving of

frequency ωb measured with respect to the proper time coordinate at the boundary3

b0(t) = ρ cos(ωbt). (2.5)

Looking again at equation (2.3), we notice that the last term, which only contains ḃ0(t),

averages to zero over a driving period. The fate of the mixed product ḃ0(t)b3(t) is, on the

other hand, unpredictable. Since it does not have a definite sign, the system can undergo

energy exchanges of both signs. The late-time evolution of the system is linked to this

term, whose knowledge demands an integration over the radial domain in order to extract

b3(t) at each instant of time.

Let us close this section by pointing out that, despite the fact that z0 will show up

in the main body of the paper when referring to the position of the tip of the cigar in

the holographic direction, numerical results and plots are given for z0 = 1 without loss of

generality. This is, as usual, not a choice of scale, that one being fixed once and for all by

setting L = 1, or else, by measuring all lengths in units of L. It rather comes from the

residual symmetry of the ansatz (2.1) under rescaling xA → λxA, where xA = (t, z, x, y),

together with z0 → λz0. Solutions can be mapped to one another by this scaling, and

distinct families are labeled by invariant quotients of the form t/z0, etc. Inequivalent

drivings, henceforth, are parametrized by the dimensionless frequency ω = ωbz0, as follows

from writing cos(ωbt) = cos(ωt/z0).

3 Time-periodic solutions

It is natural to start looking for solutions that inherit the exact periodicity of the harmonic

driving (2.5). We will refer to these geometries as time-periodic solutions (TPSs). The nu-

merical procedure needed to construct them follows the methods developed for a scalar field

in global AdS [17, 31–33]. The strategy starts by first elucidating, through a perturbative

analysis, the expected content of Fourier harmonics of a TPS. Inserting the ansatz

b(t, z) =
∞∑
n=1

εnbn(t, z) , P (t, z) =
∞∑
n=1

εnPn(t, z) , ω = ω0 +
∞∑
i=1

εiωi (3.1)

into the equations of motion (A.1)–(A.5), the system can be solved in a power series in ε,

with boundary conditions bn(t, 0) = δn,1ρ cosωt and Pn(t, 0) = −δn,1ωρ sinωt. The upshot

2The covariant derivative ∇a is to be understood as defined with respect to the time-dependent boundary

metric hab.
3The boundary-time gauge choice δ(t.z = 0) = 0 is precisely ensuring this fact.
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is that, at n-th order, b(t, z) contains all cosine functions cos(kωt) with k = 1, 2, . . . n.

In other words, all multiples of the driving frequency ω give rise to Fourier modes of the

nonlinear solutions branching off a linearized mode b1(t, z). This is in sharp contrast with

the case of a real massless scalar field, and follows from the lack of reflection symmetry

b→ −b of our problem. Armed with this result, we can infer the general structure of a TPS

b(t, z) =

∞∑
k=1

cos(kωt)bk(z), P (t, z) =

∞∑
k=1

sin(kωt)pk(z), (3.2)

where the asymptotic boundary conditions are bk(0) = ρδk,1 and pk(0) = −ωρδk,1. Finally,

a version of the ansatz (3.2) — truncated to k ≤ K ∈ N — can be solved numerically by

a pseudospectral method in a spacetime rectangular domain.

The TPSs with vanishing driving amplitude, ρ = 0, are of particular interest. At first

order in ε, nontrivial solutions for b1(z) only exist for a discrete set of frequencies ω, yielding

the normal mode spectrum Ωn ≈ 2.149, 4.790, 7.116, 9.389 . . . [23]. For finite amplitudes,

these solutions can be uplifted to nonlinear gravitational normal modes. These sourceless

oscillating solutions, termed oscillons (boson stars) in the context of a real (complex) scalar

field in AdS, appear as important landmarks in the phase diagram of solutions.

From the dual field theory perspective, it is natural to conjecture that TPSs correspond

to Floquet condensates [14]. This concept was introduced in the context of the periodically

driven two-site Bose-Hubbard model [34], where they are defined as many-body states

that share the coherence properties of a mesoscopically occupied, single-particle state of

an effective (Floquet) Hamiltonian. Pursuing the analogy, we will envisage our exactly

periodic geometries as providing the holographic dual of such Floquet condensates, since

these horizonless time-periodic solutions correspond to pure excited states in dual CFT

with a macroscopic energy density that are perfectly synchronized with the drive.

After constructing the fully nonlinear TPSs, we can employ them to explore the phase

space of our system. To see where to expect a transition to other type of solutions we

begin by inspecting the linear stability of the TPSs. Consider the following ansatz for the

linearized fluctuations

ψ(t, z) = ψp(t, z) + ε ψ̃(t, z) (3.3)

where ψ = {b, P, f, δ} and ψp(t, z) stands for an exact TPS solution en each case. Insert-

ing (3.3) in (A.1)–(A.5) and expanding in ε, we obtain the equations of motion for the

linear perturbations. The fluctuations are chosen to vanish at the boundary, ψ̃(t, 0) = 0, in

order not to modify the asymptotic structure of the spacetime, nor the driving. Since the

background solution is periodic in time we have to resort to Floquet theory to investigate

the linear stability. We choose

b̃(t, z) = eiλt

( ∞∑
n=0

cos(nωt)b̃(1)n (z) +

∞∑
n=1

sin(nωt)b̃(2)n (z)

)
, (3.4)

P̃ (t, z) = eiλt

( ∞∑
n=1

sin(nωt)P̃ (1)
n (z) +

∞∑
n=0

cos(nωt)P̃ (2)
n (z)

)
, (3.5)

– 5 –
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Figure 1. Points in the shaded region correspond to linearly stable TPSs. Solutions in the white

region are linearly unstable; once perturbed, they evolve either to multiperiodic (even chaotic)

geometries or black holes. Red points signal the data constructed through quasistatic quenches

needed to determine the thresholds of shaded areas. Solid lines are level curves of constant ρ.

Emerging from Ω0, we see the first line of nonlinear gravitational normal modes (solid black),

which corresponds to TPSs with ρ = 0. Finally, dashed lines indicate zones where the frequency

of the source, ω, resonates with some of the frequencies of the normal modes, Ωn, the orange

one ω = Ω0/2 and the brown ones from left to right ω = Ω0/3,Ω1/3. Around these resonances

(yellow regions), no TPSs were found. More resonances are expected at ω = Ωn/k, for n, k ∈ N,

nevertheless, they are so narrow that are difficult to determine.

as an ansatz, where ω is the frequency of the background TPS, and b̃(1), P̃ (1), b̃(2), P̃ (2) and

λ are unknown. The spectrum {λn(ω), n ∈ N} of perturbations is obtained by solving the

linear system subjected to the mentioned Dirichlet boundary conditions. This is performed

through the same pseudospectral method used to find the TPSs themselves (see appendix

D in [17] for details). Solutions always come in pairs (±λn, b̃(1), P̃ (1),±b̃(2),±P̃ (2)). This

entails that, as soon as Im λn 6= 0 for some n, there is a linearized fluctuation that grows

exponentially with time, i.e., a linear instability. On the contrary, if λn ∈ R for all n, the

perturbations remain bounded and the TPS is linearly stable.

After a brief introduction to the required techniques, we are ready to present the main

results we have obtained. The TPSs we have constructed conform a surface in the three-

dimensional space spanned by the driving frequency ω and the amplitudes of the gravita-

tional squeezing at the asymptotic boundary, ρ = maxt|b(t, 0)|, and tip, ρt = maxt|b(t, z0)|.
In figure 1 we summarize our results as a plot in the (ω, ρt) plane. This figure shows

the level curves ω(ρt) of constant ρ (in green), the regions of linear stability (shaded) and

instability (white), as well as wedges where TPSs were not found (yellow). Solutions for

moderate values of ρt (> 0.25) are very difficult to obtain. While solutions below ρt < 0.25

can be obtained reliably with pseudospectral methods, above this value, construction via

a quasistatically modulated driving is needed (see next section).

– 6 –
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Figure 2. Left: line of TPSs with ρ = 0.001. In the inset, purple, cyan and red dots mark

solutions below, on and above the turning point respectively. Right: Floquet exponents λ20, . . . , λ
2
3

for the TPSs shown in the left plot. Solutions above the turning point become linearly unstable

(Im(λ0) 6= 0). In the inset, we zoom in this behavior. The color coding is the same as for the left

inset.

On the right-hand side of figure 1, the black line signals the nonlinear gravitational

normal (sourceless) modes. Similarly to the case of a scalar field, this line branches off

from a linearized normal mode frequency, Ω0, and tilts toward lower values of ω. It also

corresponds to the right boundary of an instability region (the white wedge). The solutions

on the line are themselves linearly stable, and their energy density increases monotonically

as we move upward. It is expected that this linear stability is lost when the energy den-

sity reaches an extremum, a point that would correspond to a Chandrasekar-like limit.4

Unfortunately, this region has remained unreachable to our pseudospectral codes.

The other place where we have found a linear instability to set in is the turning point

of the frequency in the level curves, ω(ρt), of constant ρ. In figure 1 the locus of such

points gives the left boundary of the instability region represented by the white wedge. In

figure 2 we illustrate this phenomenon by tracking the lowest values of λn for the curve of

constant ρ = 0.001.

The endpoint of the linear instability of the TPSs belonging to the white region of

figure 1 can be explored numerically, by evolving the perturbed TPSs. When there is a

single exponentially growing Floquet mode (b̃0(t, z), P̃0(t, z)), we prepare the initial data

at t = 0 as follows

b(0, z) = bp(0, z) + ε b̃0(0, z) , P (0, z) = Pp(0, z) + ε P̃0(0, z). (3.6)

If the unstable TPS is sufficiently close to the stability region, the evolution does

not necessarily lead to gravitational collapse. In general, and as the example provided in

figure 3 illustrates, the final outcome depends on the sign of ε. As we can see in this figure,

the endpoint of the linear instability corresponds to a geometry that, in addition to the

modulation associated with the external driving, develops additional long-time pulsations.

We shall refer to these regular geometries as time-modulated soutions (TMSs). In the case

4This is in line with previous observations for nonlinear normal modes of massless scalar fields in global

AdS [32], boson stars [17], and solitonic solutions in Einstein-Maxwell-scalar theory [35].
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Figure 3. Numerical simulations of the initial data (3.6) for the TPS: ρ = 10−4, ρt = 0.14 and

ω = 2.137. The upper plots correspond to ε = 10−3 and the lower ones to ε = −10−3. The plots on

the left show the evolution of the energy density, the middle ones the evolution of b(t, z0). On the

right, we compare the difference ∆b(t, z0) = b(t, z0)− bp(t, z0) (in blue) with the linearized unstable

normal mode b̃0(t, z0) (in dashed red), showing full agreeement.

at hand, the sign of ε determines which particular kind of TMS the system relaxes to:

for ε > 0, the TMS pulsations increase the energy density while, for ε < 0, they decrease

it. The fact that in this example the system does not undergo gravitational collapse is

probably related to the weakness of the external driving. For unstable TPSs associated

with higher driving amplitudes, the ε > 0 perturbation is expected to lead to black hole

formation.

As of now, our findings are in perfect agreement with the results obtained in [17]. How-

ever, there is one particular phenomenon which was overlooked there. For specific driving

frequencies, the TPS resonates with higher normal modes, and this resonance triggers a

new kind of behavior. In the limit of weak nonlinearities, ρt � 1, a straightforward argu-

ment for the existence of these resonances is as follows. Recall that, from the perturbative

analysis, all multiples of the driving frequency ω are excited. If this sequence hits some

normal mode frequency, i.e, if kω = Ωn, then the forcing term will contain a solution to the

homogeneous equation, ρ = 0, leading, as usual, to the appearance of secular terms that

may drive the system far away from the original TPS.5 In figure 1 the leading resonances

are plotted, along with the narrow wedges emerging from them (in yellow); in these regions,

we have been unable to find TPSs. For the part where the spectral code works properly, we

have observed that the width of the wedges decreases with increasing n and k, the widest

one being at ω = Ω0/2.

5This argument can also be applied to a massless real scalar field in global AdS4. In this case, the normal

mode frequencies are given by Ωn = 3 + 2n, and the Fourier modes of TPSs are restricted to odd multiples

of ω, so we expect the strongest resonance at ω = Ω0/3 = 1, which is outside the region studied in [17] (see

figure33 in this reference).
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4 Modulated drivings

In this section, the original motivation was to explore the transition to decoherence. In the

meantime, we unraveled another transition that occurs at lower amplitudes. Decoherence is

dual to the formation of a black hole, whose horizon zh covers the tip of the cigar, zh < z0.

Taking this fact into account, we will consider a periodic driving of frequency ω, for which

we will try to determine what is the maximum amplitude ρ that the system can support

without undergoing gravitational collapse. As discussed in section 2, if this transition takes

place for ρ� 1, we may think of it as caused by the passage of a gravitational wave.

The search, in this and the following subsection, is carried out numerically, by imple-

menting a protocol that, starting from the static AdS-soliton, slowly amplifies a harmonic

driving with a fixed boundary frequency ω. The particular amplitude modulation we will

employ is given by the following function interpolating between ρ = 0 and ρ = ρf :6

ρ(t) =
ρf
2

(
1− tanh

(
β

t
+

β

t− β

))
, 0 ≤ t < β,

ρ(t) = ρf t ≥ β (4.1)

This corresponds to the upper envelope of the top left plot in figure 4, where b0(t) =

ρ(t) cosωt is shown. The oscillations are so dense that they fill the shaded blue area.

The ramping parameter β sets the time scale for reaching the final amplitude ρf . In

our numerical searches, β will be taken large as compared with the driving period, e.g.,

β = O(103/ω). We will refer to these build-up processes of the final driving as quasi-static.

For them, the system initially follows the increase in driving amplitude adiabatically, i.e.,

by going through a succession of TPSs. After reaching some amplitude, this adiabatic

response might stop holding, and our task will be to map out when this occurs. In order to

so, we will fix ω to a given value and take ρf large enough so as to ensure that the system

undergoes gravitational collapse at a given ρcol < ρf . The reader can find an example of

one such quasi-static build-up protocol in figures 4 and 5.

In figure 6 we explore the threshold for collapse. The blue area contains the TPSs that

are accessible from the AdS-soliton by the build-up protocol we have described. The blue

line signals the loss of adiabaticity through a strong mixing with higher harmonics of the

drive. This leads to a non-periodic and even chaotic response. Remarkably, the system

does not undergo gravitational collapse and resists an increasingly intense driving until the

red curve is crossed. The resonance wedges in this plot are in precise correspondence with

the ones shown in yellow in figure 1.

In figure 7 we can see the evolution of several magnitudes as the amplitude ramps up

from zero with ω = 2.375 and crosses the blue line. When ρ(t) reaches 0.013, the geometry

shows a strong modulation, as illustrated by the behavior of b at the tip, b(t, z0), and the

minimum of the emblackening factor, minzf(t, z). This is a clear signal of interference

among two or more frequencies. In figure 8 we plot the time evolution of two quantities

associated with the bulk interior, b(t, z0) and minz[f(t, z)], in the last time lapse before

6The non-analiticity at the origin, namely the fact that ρ(n)(0) = 0 ∀n, is essential to fulfill the boundary

conditions at t = 0 and, therefore, avoid introducing noise.
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Figure 4. Numerical simulation of a quasi-static build-up protocol with ω = 1.6 and time span

β = 1.5 × 104. In the upper two plots b(t, 0) = b0(t) at the boundary and b(t, z0) at the tip

are shown. The oscillations are so dense that they cannot be appreciated. All magnitudes evolve

adiabatically following a series of TPSs until a sharp threshold at b0(tcol) = 0.117 is reached. There

the instability sets in, as reflected in the sharp gain of net energy density m, and the formation

of an apparent horizon, signalled by the function minzf(t, z) approaching zero. The momentum

constraint is satisfied to a part in 10−4 throughout the whole process.

Figure 5. The same scenario depicted in figure 4, where the final part of the evolution is

shown. The extreme slowness of the amplitude increase contrasts with the abruptness of the sudden

collapse that occurs in a few oscillations. The anharmonicity of the oscillation, as well as the lack

of symmetry b→ −b, can be seen in the plot of b(t, z0) at the tip.

collapse. As compared with the TPS case in figure 5, we see the interior evolution becoming

chaotic. This, however, has been sustained without horizon formation since t ∼ 8000 at

least,7 corresponding to a sizeable window in driving amplitude.

In order to make this statement more precise, we show four snapshots of the fields b and

f in figure 9; to the right, we represent the Fourier transform of a sequence containing 400

seconds of the driving. In the first row, at t = 4295 , i.e. for low amplitude, the TPS Fourier

content is solely given by the driving frequency. At t = 5882 a clear resonant enhancement

7By t we will hereafter implicitely imply the pure number t/z0.
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Figure 6. In blue, regions where TPSs are reached adiabatically from the AdS-soliton (at the

bottom) by means of a slow build-up of the driving amplitude (vertical path). Traversing the blue

curve the solution stops being a TPS. Points in the white region correspond either to multiperiodic

or chaotic solutions. The vertical dashed lines indicate the frequencies of the linearized normal

modes. Their halves, Ωn/2, are signaled by dotted vertical orange segments. In brown, Ω0/3 and

Ω1/3 (see figure 1). In green, the build-up protocol shown in figure 7 with the snapshots of in

figure 9. The red dotted diagonal is a fit to the highest values and decreases as ρ ∼ 10−ω/5.

of the higher normal modes is observed. Indeed, normal modes Ω2 = 4.790 ∼ 2ω and

Ω3 = 7.11 ∼ 3ω are natural higher harmonics of the driving frequency.8 In the third

row, at t = 8412 , the dynamics looks again dominated by the (now more intense) driving.

However it starts populating all frequencies, the shape becomes irregular, and the motion

chaotic, as seen in figure 8. Finally, at t = 8902 , an apparent horizon starts forming.

Past this point, and since the external driving remains active, the system is expected to

keep absorbing energy while the apparent horizon grows without bound. Following [12],

a set of different regimes will take over as for the inexorable temperature growth of the

quantum system.

Before moving on to the next subsection, let us discuss briefly the numerical methods

we have employed to perform the simulations. The radial direction has been discretized by

a finite-difference scheme that employs fourth-order accurate centered stencils; typically,

our grid contains 210 + 1 points on the interval 0 ≤ z ≤ 1. Likewise, the time evolution

has been performed with an explicit fourth-order Runge-Kutta method. At the origin,

the only regularity condition imposed is f(t, z0) = exp(−b(t, z0)), which avoids a conical

8This situation bears a strong resemblance with the multioscillator solution in [36]. Here this solution

lives on top of a sourced TPS, which triggers it resonantly at a concrete frequency and amplitude window.
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Figure 7. Numerical simulation of a quasi-static build-up protocol with ω = 2.375 and a time

span β = 1.5 × 104 (see green dotted line in figure 6). All magnitudes evolve smoothly until an

abrupt change is observed at t ≈ 5800 with b0 ≈ 0.013. This transition signals the coupling to

higher normal modes. The momentum constraint is always satisfied within one part in 10−4.

Figure 8. The same scenario depicted in figure 5, now for the protocol at ω = 2.375 of figure 7.

The evolution for t>8000 becomes chaotic, as shown by the time evolution of the b(t, z0) at the tip.

singularity. For the radial coordinate, following [23, 24], a convenient change of variables

r =
√
z0 − z has been employed to treat correctly the vicinity of the tip r = 0. Despite

the rather low resolution used, the need for high computational resources came from the

long duration of the build-up protocols studied. Therefore, we have employed two different

parallel codes to allow cross-check: one in Fortran 90 (parallelized with MPI) and another

one in C (parallelized in CUDA, and run on the Nvidia TeslaK80 GPU). Both codes have

been run at CESGA.9

9Centro de Supercomputación de Galicia, http://www.cesga.es/.
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green dots in figure 6). The abscisa has been taken to be
√
z0 − z with z0 = 1 in order for the

profiles to range from the tip (on the left, z = 1) to the asymptotic boundary (on the right, z = 0).

The Fourier transform of b(t, z0) at the tip, over a time span of ∆t = 400, is shown on the right.

The resonant coupling to the higher normal modes is apparent at t = 8412 . For higher driving

amplitudes a cascade towards higher frequencies is behind a wiggly, yet regular, profile for b(t, z).

Finally, the apparent horizon starts forming near z = 0.3 as seen in the last plot of f(t, z).

4.1 The non-quasi-static case

In the previous subsection, we have focused on build-up protocols with β � 1/ω, for which

the driving amplitude increases very slowly toward its final value. This was motivated by

the observation that, for such quasi-static processes, the system responds adiabatically,

passing through a succession of time-periodic solutions with the correct instantaneous

boundary conditions. Conversely, if we depart from this limit, the response of the system

stops being adiabatic, and other time-dependent geometries are excited.

In our previous work [17], the same situation was explored for massless scalar fields

in global AdS4. It was found that, for driving frequencies ω sufficiently close to the linear

instability line, a remarkable phenomenon took place. Specifically, there existed a critical
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build-up time span, βc, at which the system underwent a sharp transition between two

radically different late-time regimes. On the one hand, for β > βc, a regular solution with

a sharply pulsated periodic modulation was reached, which was termed time modulated

solution (TMS). Being horizonless, TMSs are dual to quantum coherent excited states. On

the other hand, for β < βc, gravitational collapse took place. The most surprising aspect

of this transition is that as β → β±c (and at times t > β), the system spent a progressively

longer time around an intermediate attractor, which turned out to be nothing but the

linearly unstable TPS associated with the final driving. This observation allowed us to

identify this transition as a type I critical phenomenon in gravitational collapse [37]. In

this context, the novelty of this transition stems from the fact that it is not triggered by

varying smoothly a one-parameter family of initial data [38, 39]; instead, it appears upon

varying a one-parameter family of time-dependent boundary conditions for the scalar field.

This fact justifies employing the adjective dynamical to describe it.

The purpose of this subsection is to demonstrate that type I critical phenomena also

show up in the present setup. We will discuss two transitions in detail: one between

two different kinds of TMSs, another between a TMS and a collapsing geometry.10 The

averaged mass per period,

〈m〉T (t) ≡ 1

T

∫ t+T
2

t−T
2

dt′m(t′), (4.2)

will be a central quantity in our analysis.

For the first case, we consider a family of build-up protocols that interpolate between

the AdS-soliton vacuum at t = 0 and a driving amplitude ρf = 0.001 at t = β at fixed

frequency ω = 2.11. As figure 10 (left) shows, for β > βc the system flows to a TMS

whose trademark property is having an averaged energy density per period 〈m〉T that, as

β → β+c , develops extended plateaux separated by fast downward beats. On the other

hand, as illustrated in figure 10 (right), for β → β−c the TMS is characterized by a 〈m〉T
that has the same plateau value, but starts beating upward.11 By looking at figure 11, it

becomes obvious that, as β → β±c , the duration of the initial plateau after the build-up

phase gets progressively longer.

If the transition between the two kinds of TMSs we have found is to be interpreted as

a type I critical phenomenon, the following relation must hold [17]

∆t = − 1

λ
log |β − βc|+ a, (4.3)

where ∆t is the permanence time around the unstable TPS, λ is the norm of the purely

imaginary eigenfrequency of this TPS, and a ∈ R. The permanence time ∆t is best thought

of as the length of the plateau; however, note that a shift in ∆t can be compensated by a

change in a, leaving the values of βc and λ invariant. This implies that, strictly speaking,

there is no preferred definition of ∆t: any two choices related by a shift are equivalent

10The simulations to be discussed next have been performed on a grid with 211 + 1 points.
11It turns out that, as β → β−

c , the system goes from TMSs that beat alternative upward and downward

to TMSs that only beat upward. Figure 10 shows an example only of the latter situation.
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Figure 10. Left: for β = 142.4117050 > βc, we obtain a TMS that beats downward. Right: for

β = 142.4116974 < βc, we obtain a TMS that beats upward.
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200 400 600 800 1000 1200 1400
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-0.95
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<m>T

Figure 11. Build-up processes leading to a TMS that starts pulsating upward (dashed) and

downward (solid) as β → βc. Dashed simulations have been stopped when 〈m〉T = −0.95 for the

first time. On the other hand, solid simulations have been cut when 〈m〉T reaches its first minimum

after the build-up phase.

at the level of extracting βc and λ. Taking advantage of this freedom, for simplicity we

define ∆t as follows.12 First, for build-up processes that end in a TMS that starts beating

upward, we define ∆t as the smallest time at which 〈m〉T equals a particular predefined

value m0 above the plateau. In this example, we have chosen m0 = −0.95. On the other

hand, for build-up processes that end in a TMS that beats downward, we define ∆t as the

time at which 〈m〉T reaches its first minimum after the build-up phase.

Applying the relationship (4.3) to simulations with β > βc, we get that13

βc = 142.4116999± 1× 10−7, λ = 0.0225± 0.0002. (4.4)

12We have checked that other possible definitions lead to compatible results.
13A word of caution is in order. While it can be argued that the value of λ obtained by this procedure

is resolution-independent, this is not the case for βc. A precise determination of βc requires us to take the

double scaling limit β − βc → 0, r →∞, where r is the number of discretization points.
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Figure 12. Left: for β = 296.1971924 > βc, we obtain a TMS. Right: for β = 296.1971680 < βc,

the system undergoes gravitational collapse.
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Figure 13. Build-up processes leading to gravitational collapse (dashed) and a TMS (solid).

Dashed simulations are only plotted until 〈m〉T first reaches −0.75; solid ones until 〈m〉T reaches

its first minimum after the build-up phase.

For β < βc, we obtain

βc = 142.4117002± 3× 10−7, λ = 0.0220± 0.0002. (4.5)

Both values of βc and λ are perfectly compatible with each other.

For our second example, we set the driving frequency to ω = 2 and the final amplitude

to ρf = 0.0114. In this case, the system transitions from a collapsing geometry to a TMS

as β crosses βc from below. Relevant examples of such solutions are plotted in figure 12.

Again, for β → β±c , the length of the initial plateau gets progressively longer (see figure 13).

Repeating the fitting procedure described before,14 we get that, for simulations with

β > βc,

βc = 296.1971707± 9× 10−7, λ = 0.0460± 0.0004. (4.6)

14For the collapsing branch, we define ∆t as the time for which 〈m〉T first reaches −0.75.
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On the other hand, for β < βc, we obtain

βc = 296.197173± 2× 10−6, λ = 0.04535± 0.00005. (4.7)

Again, both values of βc and λ are compatible with each other.

As a final consistency check, we would need to establish that the values of λ extracted

from these numerical simulations match the ones coming out of the pseudospectral code

that computes the eigenfrequency spectrum of the unstable TPS. Unfortunately, both TPSs

have remained outside the reach of our numerical construction methods. In this way, the

values of λ that we have quoted above have to be viewed as independent predictions that

a yet-to-be-performed pseudospectral analysis would need to reproduce.

5 Conclusions and outlook

In this work, we have pushed a step further the study of periodically driven quantum

systems in the context of Holography. We have considered holographic CFTs with toroidal

boundary conditions, where the periodic driving has been implemented by turning on

a particular time-dependent shear deformation of the background metric in which these

CFTs live.

Our findings show that, for low amplitudes, the system allows for time-periodic solu-

tions. We have uncovered the phase space of these geometries and discussed their stability,

both at the linear and the nonlinear level. Globally, there is an overall limit to the ampli-

tude of such periodic solutions, beyond which the system loses coherence, as signaled by

the prompt collapse to a black hole. This threshold amplitude is an irregular function of

the frequency decreasing on average as 10−ω/5.

As compared with the case of a scalar field in global AdS4 presented in [17], the

threshold amplitude here is lower, hence TPSs are now more fragile, something probably

tied to the lack of reflection symmetry b → −b in the present case. Apart from this,

there are spiky wedges of instability at several discrete frequencies. For instance, close

to the normal modes of the AdS-soliton, these instabilities can be seen to appear at the

linearized fluctuation level. At frequencies that exactly divide the normal mode frequencies

(dotted lines in figure 1 and 6) they are intrinsically of nonlinear nature, originating from

the resonant coupling to these modes. Inside the white wedges in figure 6 this leads to

modulated solutions and, for even higher amplitudes, multi-oscillator bound states (see the

second line in figure 9) and even chaotic evolutions.

We have also studied the response of the system to modulated driving protocols outside

the adiabatic regime, finding that, away from the quasi-static limit, the loss of adiabaticity

can result in the same kind of dynamical type I gravitational phase transition found in

other setups.

Overall, the similarities between the results we have found and those presented in [17]

suggest that periodically driven, finite-sized holographic systems feature several universal

behaviors.

In the early days of the AdS/CFT correspondence, the AdS-soliton posed a puzzle due

to its energy density being lower than that of AdS itself. This fact, instead of signaling
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an instability, was interpreted later as a Casimir energy, adding support to the picture of

this geometry as being dual to a QFT on a compact domain (a torus). This raises the

challenge of interpreting our results in the light of a Dynamical Casimir Effect [40]. At

particular values of the driving frequency and amplitude, the response becomes populated

with the normal modes of the cavity. These modes are the poles that appear in the spectral

function and would be the particles excited from the vacuum by the time-periodic boundary

conditions.

Let us add some speculative remarks about the possibility of envisaging the studied

process as the response of a two-dimensional strongly coupled quantum system of rectan-

gular shape to the perpendicular passage of a gravitational wave. Resonant classical detec-

tors are characterized by sharply peaked sensitivities around the normal mode frequencies.

When cryogenized, at resonance they can detect strains as low as 10−21 [41]. In contrast,

interferometers have a much wider u-shaped sensitivity curve. The possibility of detecting

resonantly via quantum effects has been discussed recently in different setups [20–22, 42].

Interpreting our results in a similar context, of quantum induced transitions, we would like

to extract some gross features and generic lessons. The gravitational wave expected from

binary coalescences has a similar amplification in amplitude as the modulated drivings we

have used in section 4. At low amplitudes, the response of the quantum system is an ex-

cited time-periodic coherent state (Floquet condensate). At some (frequency-dependent)

threshold there is a sharp decoherence transition to a thermal state, as signaled by black

hole formation in the bulk (see figure 4). In the absolute confidence that this transition

has not been triggered by any other source (perfectly isolated system), we would term

this transitions a “decohering detection”. At certain discrete frequencies, an intermediate

transition to a regime of excited non-periodic coherent states populated by higher modes is

seen (see figure 6). This takes place at much lower values of the amplitude, and we would

call these “resonant detections”. Led by this reasoning, we can assign to the plot in figure

figure 6 the meaning of a sensitivity plot, where the red and blue lines would correspond to

the sensitivity curves for decohering and resonant detections respectively. Our first generic

conclusion would state that in a gravitational wave detector based on a strongly coupled

quantum system, the intrinsic nonlinearity introduces additional resonances at fractions of

the natural normal mode frequencies, Ωn/k, which are thinner for higher k. We believe

this is a model-independent statement. Another nontrivial outcome is that, at least for

the range of frequencies examined, there is an overall exponential increase in the sensi-

tivity with frequency. Still within the range explored numerically, the minimum strains

are too large, ρ > 10−4, compared with the relevant strains of interest. It would require

more computational effort to see whether this increase continues for higher frequencies or

slows down. This observation is likely to be model dependent, hence calling for some holo-

graphic system that enjoys an enhanced sensitivity. A straightforward suggestion would

be to explore the gravitational driving of a coherent Bose-Einstein condensate, like the one

proposed in [43], aimed at modeling an insulator-superconductor phase transition at zero

temperature.
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A Equations of motion

In terms of the following variables15

B(t, z) = b′(t, z), P (t, z) =
eδ

f
ḃ , (A.1)

the equations of motion can be casted in the form

Ḃ =
(
fe−δP

)′
, (A.2)

Ṗ =
z2

2

((
−3 + 2

(1− z3)
z2

B

)
fe−δ

)′
, (A.3)

f ′ =
12

z(4− z3)
(1− f) + δ′f, (A.4)

δ′ =
z

4− z3
(
−3z2B + (1− z3)B2 + P 2

)
. (A.5)

From (A.2)–(A.5) it can be seen that, at the linearized level, the squashing field b(t, z) acts

like a massless scalar field. There is yet one additional equation given by the momentum

constraint

ḟ =
z

z3 − 4

(
(3z2 + 2(z3 − 1)B)P

)
f2e−δ, (A.6)

which is not independent from (A.2)–(A.5). It’s main purpose will be to provide a consis-

tency check of our numerical results.

Near the tip of the cigar, z ∼ z0 = 1, we have the following infrared series expansion

f(t, z) = e−b̃0(t) + f̃2(t)(1− z) +O((1− z)2),

b(t, z) = b̃0(t) + b̃2(t)(1− z) +O((1− z)2),

δ(t, z) = δ̃0(t) + δ̃2(t)(1− z) +O((1− z)2), (A.7)

The boundary condition f(t, 1) = exp(−b(t, 1)) has to be imposed in order to avoid a

conical singularity at the tip.

15Here, primes correspond to ∂z and dots to ∂t.
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