Off-shell Yang-Mills amplitude in the Cachazo-He-Yuan formalism

C. S. Lam ${ }^{*}$
Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8, Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1 and CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 13 May 2019; published 12 August 2019)

Abstract

Möbius invariance is used to construct gluon tree amplitudes in the Cachazo, He, and Yuan (CHY) formalism. If it is equally effective in steering the construction of off-shell tree amplitudes, then the S-matrix CHY theory can be used to replace the Lagrangian Yang-Mills theory. Unfortunately that is not possible. We find that the CHY formula can indeed be modified to obtain a Möbius-invariant off-shell amplitude M_{P}, but this modified amplitude lacks local gauge invariance, which can be restored to give the correct Yang-Mills amplitude only by the addition of a complementary amplitude M_{Q}. Although neither M_{P} nor M_{Q} is fully gauge invariant, both are partially gauge invariant in a sense to be explained.

DOI: 10.1103/PhysRevD.100.045009

I. INTRODUCTION

S-matrix theory popular in the 1960s failed to take off because there was no way to incorporate interaction without a Lagrangian. This situation changed in 2014 when Cachazo, He, and Yuan (CHY) [1-5] came up with an S-matrix theory which can reproduce tree-level scattering of gluons, gravitons, and many others, with the additional advantage that double-copy relations appear naturally. These refer to relations that are very difficult to understand in the Lagrangian approach, linking together pairs of amplitudes such as graviton amplitude and the square of Yang-Mills amplitude. See [6-29] for some of the subsequent developments.
n-body CHY amplitudes are given by a complex integral with Möbius invariance, an invariance crucial in steering the construction of these amplitudes. Such construction enables local interaction and local propagation to appear in an S-matrix theory, a very remarkable feat because S-matrix a priori knows nothing about a local structure of spacetime. This success raises the hope that maybe Möbius invariance is also able to simulate fully local space-time interaction, to reproduce off-shell tree amplitudes and hence loops without a Lagrangian.

In the case of ϕ^{3} interaction, this is indeed possible. A simple modification of the scattering function enables all

[^0]correct scalar Feynman tree diagrams to be reproduced, including those with off-shell external legs [30,31].

In the case of off-shell Yang-Mills kinematics, Möbius invariance forces not only a modification of the scattering function, as in the ϕ^{3} case, but also a modification of the Pfaffian. This modified M_{P} describes an amplitude with a local interaction and local propagation, but unfortunately it is not the correct Yang-Mills amplitude for $n>3$. The original on-shell M_{P} is gauge invariant, but the modified off-shell M_{P} retains only a partial gauge invariance. To restore full local gauge invariance, the hallmark of the Yang-Mills theory, an additional term M_{Q} must be added, which by itself also has partial but not full gauge invariance.

Unfortunately Möbius invariance is no longer a useful guide to the construction of M_{Q} when $n \geq 4$. Its appearance is related to the emergence of ghosts in Yang-Mills loops and off-shell Yang-Mills tree amplitudes, so it is unavoidable.

On-shell Yang-Mills amplitude in the CHY formalism is reviewed in Sec. II, to show the power of Möbius invariance, and to see what modification is required to maintain the invariance for off-shell kinematics. The details of such modifications will be discussed in Secs. III and IV. This modification does enable M_{P} to retain Möbius invariance off shell, but an additional term M_{Q} is needed to match the Feynman amplitude M_{F}. In Sec. V, we show how M_{Q} can be constructed and illustrate the procedure with the explicit construction for $n=4$. The reason behind the necessary appearance of M_{Q} can be traced back to local gauge invariance, a topic which is discussed in Sec. VI. Amplitudes for $n \geq 5$ are discussed in Sec. VII, to illustrate how the Feynman amplitude can be simplified by its split into M_{P} and M_{Q} and to show how partial gauge invariance
can be used to check calculations for a larger n. Section VIII provides a conclusion.

II. MÖBIUS-INVARIANT AMPLITUDE

A color-stripped n-gluon scattering amplitude in the natural order $(12 \ldots n)$ is given by the CHY formula [2]

$$
\begin{equation*}
M_{P}=\left(-\frac{2 g}{2 \pi i}\right)^{n-3} \oint_{\Gamma} \frac{\sigma_{(p q r)}^{2}}{\sigma_{(12 \ldots n)}}\left(\prod_{i=1, i \neq p, q, r}^{n} \frac{d \sigma_{i}}{f_{i}}\right) P \tag{1}
\end{equation*}
$$

where g is the coupling constant henceforth taken to be 1 , $\sigma_{(p q r)}=\sigma_{p q} \sigma_{q r} \sigma_{r p}, \sigma_{(12 \ldots n)}=\prod_{i=1}^{n} \sigma_{i, i+1}$ with $\sigma_{n+1} \equiv \sigma_{1}$, and $\sigma_{i j}=\sigma_{i}-\sigma_{j}$. The scattering functions f_{i} are defined by

$$
\begin{equation*}
f_{i}=\sum_{j=1, j \neq i}^{n} \frac{2 a_{i j}}{\sigma_{i j}}(1 \leq i \leq n) \tag{2}
\end{equation*}
$$

with k_{i} being the outgoing momentum of the i th gluon. The quantity $a_{i j}=a_{j i}$ is a linear function of scalar products of momenta whose explicit form will be discussed later. The reduced Pfaffian $P=\operatorname{Pf}^{\prime}(\Psi)$ is related to the Pfaffian of a matrix $\Psi_{\lambda \nu}^{\lambda_{\nu}}$ by

$$
\begin{equation*}
P=\operatorname{Pf}^{\prime}(\Psi)=\frac{(-1)^{\lambda+\nu+n+1}}{\sigma_{\lambda \nu}} \operatorname{Pf}\left(\Psi_{\lambda \nu}^{\lambda \nu}\right) \quad(\lambda<\nu) \tag{3}
\end{equation*}
$$

where $\Psi_{\lambda \nu}^{\lambda \nu}$ is obtained from the matrix Ψ with its λ th and ν th columns and rows removed. The antisymmetric matrix Ψ is made up of three $n \times n$ matrices A, B, C :

$$
\Psi=\left(\begin{array}{cc}
A & -C^{T} \tag{4}\\
C & B
\end{array}\right)
$$

The nondiagonal elements of these three submatrices are

$$
\begin{array}{ll}
A_{i j}=\frac{a_{i j}}{\sigma_{i j}}, & B_{i j}=\frac{\epsilon_{i} \cdot \epsilon_{j}}{\sigma_{i j}}:=\frac{b_{i j}}{\sigma_{i j}}, \\
C_{i j}=\frac{c_{i j}}{\sigma_{i j}}, & -C_{i j}^{T}=\frac{c_{j i}}{\sigma_{i j}} \quad(1 \leq i \neq j \leq n), \tag{5}
\end{array}
$$

where $c_{i j}$ is a linear function of the scalar products $\epsilon \cdot k$ whose exact form will be decided later and ϵ_{i} is the polarization of the i th gluon. The diagonal elements of A and B are zero, and that of C is defined by

$$
\begin{equation*}
C_{i i}=-\sum_{j=1}^{n} C_{i j} \tag{6}
\end{equation*}
$$

so that $\sum_{j} C_{i j}=0$ for all i. A similar property is true for A if the scattering equations $f_{i}=0$ are obeyed. This is the case because the integration contour Γ encloses these zeros anticlockwise.

The factors in Eq. (1) are designed to transform covariantly under the Möbius transformation

$$
\begin{equation*}
\sigma_{i} \rightarrow \frac{\alpha \sigma_{i}+\beta}{\gamma \sigma_{i}+\delta} \quad(\alpha \delta-\beta \gamma=1) \tag{7}
\end{equation*}
$$

in such a way that the total weight of the integrand is zero, thus resulting in a Möbius-invariant integrand. Specifically, under the Möbius transformation, if we let $\lambda_{i}=1 /\left(\gamma \sigma_{i}+\delta\right)$, then

$$
\begin{align*}
d \sigma_{i} & \rightarrow \lambda_{i}^{2} d \sigma_{i} \\
\sigma_{i j} & \rightarrow \lambda_{i} \lambda_{j} \sigma_{i j} \\
\sigma_{(p, q, r)} & \rightarrow\left(\lambda_{p} \lambda_{q} \lambda_{r}\right)^{2} \sigma_{(p, q, r)}, \\
\sigma_{(12 \ldots n)} & \rightarrow\left(\prod_{i=1}^{n} \lambda_{i}^{2}\right) \sigma_{(12 \ldots n)} . \tag{8}
\end{align*}
$$

The scattering function transforms covariantly like

$$
\begin{equation*}
f_{i} \rightarrow \lambda_{i}^{-2} f_{i} \tag{9}
\end{equation*}
$$

as long as

$$
\begin{equation*}
\sum_{j=1, j \neq i}^{n} a_{i j}=0 \tag{10}
\end{equation*}
$$

Thus the integrand of Eq. (1) is Möbius invariant as long as

$$
\begin{equation*}
P \rightarrow\left(\prod_{i=1}^{n} \lambda_{i}^{-2}\right) P \tag{11}
\end{equation*}
$$

whatever p, q, r are.
Using Eq. (8), as well as Eqs. (4)-(6), we see that $P=$ $\mathrm{Pf}^{\prime}(\Psi)$ in Eq. (3) does transform that way, whatever λ, ν are, provided

$$
\begin{equation*}
C_{i i} \rightarrow \lambda_{i}^{-2} C_{i i} \tag{12}
\end{equation*}
$$

which is the case if

$$
\begin{equation*}
\sum_{j=1, j \neq i}^{n} c_{i j}=0 \tag{13}
\end{equation*}
$$

As long as Eq. (1) is Möbius invariant, the integral M_{P} can be shown to be independent of the choice of p, q, r, as well as the choice of λ, ν. To be invariant, $a_{i j}$ and $c_{i j}$ must be chosen to satisfy Eqs. (10) and (13).

For on-shell gluons with transverse polarization, $k_{i}^{2}=0$ and $\epsilon_{i} \cdot k_{i}=0$, momentum conservation guarantees these conditions to be satisfied if

$$
\begin{align*}
a_{i j} & =k_{i} \cdot k_{j}:=a_{i j}^{\prime} \\
c_{i j} & =\epsilon_{i} \cdot k_{j}:=c_{i j}^{\prime} \tag{14}
\end{align*}
$$

which is the choice in the CHY theory. For off-shell kinematics with possibly longitudinal and timelike polarizations, $k_{i}^{2} \neq 0$ and $\epsilon_{i} \cdot k_{i}:=d_{i} \neq 0$, Eq. (14) no longer satisfies Eqs. (10) and (13), so the expression for $a_{i j}$ and $c_{i j}$ must be modified. How this can be done will be discussed in the next two sections.

III. $a_{i j}$ DETERMINED BY THE PROPAGATORS

Let

$$
\begin{align*}
a_{i j} & =a_{i j}^{\prime}+\rho_{i j}, \\
c_{i j} & =c_{i j}^{\prime}+\eta_{i j} . \tag{15}
\end{align*}
$$

The constraints Eqs. (10) and (13) restrict the additional terms to satisfy

$$
\begin{gather*}
\sum_{j \neq i, j=1}^{n} \rho_{i j}=k_{i}^{2}, \tag{16}\\
\sum_{j \neq i, j=1}^{n} \eta_{i j}=\epsilon_{i} \cdot k_{i}:=d_{i} . \tag{17}
\end{gather*}
$$

In this section we will discuss how to obtain $\rho_{i j}=\rho_{j i}$, leaving the determination of $\eta_{i j}$ to the next section.

Equation (16) alone is not sufficient to determine all $\rho_{i j}$. Since we want to retain local propagation for off-shell amplitudes, we demand Eq. (1) to yield correct propagators in the Feynman gauge. For the color-stripped amplitude M_{P} in natural order, this requires $\sum_{i \neq j ; i, j \in \mathcal{D}} a_{i j}=\left(\sum_{i \in \mathcal{D}} k_{i}\right)^{2}:=$ $s_{\mathcal{D}}$ for every consecutive set of numbers \mathcal{D}. This requirement has a unique solution for ρ given by [30,31]

$$
\begin{align*}
\rho_{i, i \pm 1} & =+\frac{1}{2}\left(k_{i}^{2}+k_{i \pm 1}^{2}\right), \\
\rho_{i \mp 1, i \pm 1} & =-\frac{1}{2} k_{i}^{2}, \\
\rho_{i j} & =0 \quad \text { otherwise }, \tag{18}
\end{align*}
$$

where all indices are understood to be $\bmod n$.
There is another way to retain Möbius covariance of f_{i} off shell without modifying $a_{i j}=a_{i j}^{\prime}$: one can add an extra dimension and use the extra momentum component
to simulate k_{i}^{2}. However, this does not retain local propagation as the resulting propagators turn out to be incorrect.

IV. $c_{i j}$ DETERMINED BY THE TRIPLE-GLUON VERTEX

There are also many solutions of $\eta_{i j}$ to satisfy Eq. (17), but unlike $\rho_{i j}$, which can be fixed by the local propagation requirement, there is no obvious way to settle what $\eta_{i j}$ should be.

One of the many solutions of Eq. (17) is

$$
\begin{align*}
c_{i, i \pm 1} & =c_{i, i \pm 1}^{\prime}+\frac{1}{2} d_{i} \\
c_{i j} & =c_{i j}^{\prime} \quad \text { otherwise } \tag{19}
\end{align*}
$$

We shall adopt this solution throughout because it is the simplest and because it yields the correct $n=3$ off-shell amplitude.

To see that, recall that the triple-gluon vertex (with a unit coupling constant, and the color factor stripped) depicted in Fig. 1 is

$$
\begin{align*}
V= & \epsilon_{1} \cdot \epsilon_{2} \epsilon_{3} \cdot\left(k_{1}-k_{2}\right)+\epsilon_{2} \cdot \epsilon_{3} \epsilon_{1} \cdot\left(k_{2}-k_{3}\right) \\
& +\epsilon_{3} \cdot \epsilon_{1} \epsilon_{2} \cdot\left(k_{3}-k_{1}\right) \\
= & b_{12}\left(c_{31}^{\prime}-c_{32}^{\prime}\right)+b_{23}\left(c_{12}^{\prime}-c_{13}^{\prime}\right) \\
& +b_{31}\left(c_{23}^{\prime}-c_{21}^{\prime}\right) . \tag{20}
\end{align*}
$$

Using Eq. (19), this becomes

$$
\begin{align*}
V & =b_{12}\left(c_{31}-c_{32}\right)+b_{23}\left(c_{12}-c_{13}\right)+b_{31}\left(c_{23}-c_{21}\right) \\
& =2\left(-b_{12} c_{32}+b_{23} c_{12}-b_{31} c_{21}\right), \tag{21}
\end{align*}
$$

which is precisely what Eq. (1) yields when $n=3$. Therefore, the choice of Eq. (19) enables the triple-gluon vertex to be reproduced correctly by M_{P} in Eq. (1) for $n=3$.

It is convenient to represent each of the three terms in Eq. (20) by a separate subdiagram, as shown on the right of Fig. 1. This pictorial representation makes it easier to distinguish different terms in a Feynman diagram.

The reason to use Eq. (19) also for $n>3$ is the following. It turns out that no matter how $\eta_{i j}$ is chosen, there is no way to convert all $c_{i j}^{\prime}$ into $c_{i j}$ when $n>3$, thereby enabling M_{P} to be the off-shell Feynman amplitude. For that reason any choice of $\eta_{i j}$ is equally good, so we might as well use Eq. (19), which not only reproduces

FIG. 1. Triple-gluon vertex and its three subdiagrams.

FIG. 2. Four $n=4$ Feynman subdiagrams.
the triple-gluon vertex, but is also the simplest solution of Eq. (17).

To show that there is no way to convert all $c_{i j}^{\prime}$ into $c_{i j}$, consider $n=4$. There are many Feynman subdiagrams but let us just look at the four shown in Fig. 2.

All four contain a factor involving some combination of $c_{1 j}^{\prime}$. That factor is $c_{13}^{\prime}-c_{14}^{\prime}$ in Fig. 2(a), $c_{12}^{\prime}-\left(c_{13}^{\prime}+c_{14}^{\prime}\right)$ in Fig. 2(b), $c_{12}^{\prime}-c_{13}^{\prime}$ in Fig. 2(c), and $\left(c_{12}^{\prime}+c_{13}^{\prime}\right)-c_{14}^{\prime}$ in Fig. 2(d). To convert all these combinations of c^{\prime} into the corresponding combinations of c, we must require

$$
\begin{align*}
\eta_{13}-\eta_{14} & =0 \\
\eta_{12}-\left(\eta_{13}+\eta_{14}\right) & =0 \\
\eta_{12}-\eta_{13} & =0 \\
\left(\eta_{12}+\eta_{13}\right)-\eta_{14} & =0 . \tag{22}
\end{align*}
$$

Moreover, Eq. (17) also requires $\eta_{12}+\eta_{13}+\eta_{14}=d_{1}$. There are just too many equations for $\eta_{1 j}$ to have a solution. Thus it is not possible to convert all the $c_{i j}^{\prime}$ appearing in all the $n=4$ Feynman diagrams into $c_{i j}$, no matter now $\eta_{i j}$ are chosen. For a larger n, it is even worse because there will be more equations to satisfy.
M_{P} in Eq. (1) contains only $a_{i j}, b_{i j}, c_{i j}$, but no d_{i}; it clearly cannot be equal to the Feynman amplitude M_{F} for Yang-Mills theory which is a function of $a_{i j}^{\prime}, b_{i j}, c_{i j}^{\prime}$, unless all a^{\prime} and c^{\prime} can be converted into a and c without the appearance of k_{i}^{2} and d_{i}. Since this is impossible for $n \geq 4$, an additional term $M_{Q}=M_{F}-M_{P}$ must be present.

V. METHOD TO COMPUTE M_{Q} ILLUSTRATED WITH $\boldsymbol{n}=\mathbf{4}$

$M_{Q}=M_{F}\left(a^{\prime}, b, c^{\prime}\right)-M_{P}(a, b, c)$ can be obtained by using Feynman rules to compute M_{F} and Eq. (1) to compute M_{P}. Since there are many terms in M_{F} and many terms in M_{P}, this computation turns out to be quite tedious even for $n=4$. It is much worse for larger n.

Fortunately, with the following observation there is a much simpler way to compute M_{Q}. For on-shell gluons with transverse polarization, where $a=a^{\prime}$ and $c=c^{\prime}$, we know that M_{P} gives the correct Yang-Mills amplitude:

$$
\begin{equation*}
M_{F}\left(a^{\prime}, b, c^{\prime}\right)=M_{P}\left(a^{\prime}, b, c^{\prime}\right) \tag{23}
\end{equation*}
$$

For off-shell kinematics, the Feynman rules remain the same, so M_{F} is not changed. If we use Eq. (15) to convert a^{\prime} and c^{\prime} in M_{F} into a and c, then Eq. (23) implies that those terms without the presence of any off-shell parameter k_{i}^{2}, d_{i} must add up to give $M_{P}(a, b, c)$. The remaining terms which contain at least one off-shell parameter must add up to give M_{Q}. Thus M_{Q} can be computed just by extracting those terms in M_{F} that contain off-shell parameters.

Let us illustrate how to do that for $n=4$. The Feynman amplitude M_{F} has an s-channel diagram with nine terms, a t-channel diagram with nine terms, and a four-gluon diagram with three terms. The four-gluon terms consist of products $b_{i j} b_{k l}$, where $(i j k l)$ is a permutation of (1234). Since neither a^{\prime} nor c^{\prime} enters, it cannot contribute to M_{Q}, so we will ignore it from now on.

The $18 s$-channel and t-channel subdiagrams are given in Fig. 3.

Using the recipe given above, M_{Q} turns out to be

$$
\begin{align*}
M_{Q}= & \left(\sum_{i=1}^{4} k_{i}^{2}\right)\left(\frac{b_{12} b_{34}}{s}+\frac{b_{41} b_{23}}{t}\right) \\
& -\left[\frac{b_{12}}{s}\left(d_{3} c_{43}+d_{4} c_{34}\right)+\frac{b_{41}}{t}\left(d_{2} c_{32}+d_{3} c_{23}\right)\right. \\
& \left.+\frac{b_{23}}{t}\left(d_{1} c_{41}+d_{4} c_{14}\right)+\frac{b_{34}}{s}\left(d_{1} c_{21}+d_{2} c_{12}\right)\right] \tag{24}
\end{align*}
$$

where $s=s_{12}=\left(k_{1}+k_{2}\right)^{2}=s_{34}=\left(k_{3}+k_{4}\right)^{2}$ and $t=$ $s_{41}=\left(k_{4}+k_{1}\right)^{2}=s_{23}=\left(k_{2}+k_{3}\right)^{2}$.

Note that there are ten terms in Eq. (24) but 18 diagrams in Fig. 3, so some of those diagrams must not contribute to M_{Q}. To identify the diagrams that do not contribute to M_{Q}, let us first recall the meaning of the graphical components in subdiagrams. A line ending with a heavy dot (which we shall refer to as a "hammer") represents $c_{i l}^{\prime}-c_{i r}^{\prime}$, with i on the handle and l and r to the left and right, respectively, of the hammer head (the heavy dot). If k_{l} or k_{r} is an internal momentum, it must be converted into the appropriate sum of external momenta, and $c_{i l}^{\prime}, c_{i r}^{\prime}$ are then the corresponding sum of c^{\prime} between i and these external momenta. With a similar notation, a heavy dot at both ends of a line (which we shall call a "dumbbell") represents the factor $a_{l_{1} l_{2}}^{\prime}-a_{l_{1} r_{2}}^{\prime}-a_{r_{1} l_{1}}^{\prime}+a_{r_{1} r_{2}}^{\prime}$, where l_{i} and r_{i} represent the

(g)

FIG. 3. The $18 s$ - and t-channel Feynman subdiagrams for $n=4$. Line numbers enclosed by a box contribute to d_{i}, and line numbers enclosed by a circle contribute to k_{i}^{2} in M_{Q}.
lines to the left and to the right, respectively, of the two dumbbells (heavy dots) $i=1,2$.

Graphically, the conversion equations (15), (18), and (19) say that $d_{i} / 2$ appears at a hammer handle either when one and only one of its two neighboring lines appears in the hammer strike region, or, when both appear, they appear on the same side of the hammer head. For example, there are two hammers in Fig. 3(c), one at line 3 and one at line 4. The neighboring lines of 3 are 4 and 2 ; only one of them appears in the hammer strike region of 3 , so d_{3} appears. This is indicated in the diagram with a box around the number 3. The neighboring lines of 4 are 2 and 3; they appear in the hammer strike region of 4 on different sides, so d_{4} does not enter, which is indicated in the diagram by the absence of a square box around the number 4. The emergence of k_{i}^{2} in the dumbbell region, indicated by a circle around the line number, can be obtained similarly.

In this way we can see where d_{i} and k_{i}^{2} appear in all the diagrams in Fig. 3. In particular, no d_{i} is present in Figs. 3(d), 3(f), 3(g), 3(h), 3(k), 3(n), 3(o), and 3(q), so these diagrams do not contribute to M_{Q}. The eight d_{i} terms in Eq. (24) come, respectively, from diagrams 3(c), 3(e), 3(j), 3(i), 3(l), 3(m), 3(p), and 3(r). Similar considerations applied to the dumbbell regions tell us where to put a circle to indicate the appearance of k_{i}^{2}.

Note that b_{13} comes from diagrams 3(f) and 3(g) and b_{24} comes from diagrams 3(n) and 3(o). The absence of these diagrams in M_{Q} is the reason why neither b_{13} nor b_{24} appears in Eq. (24).

Note also that M_{Q} is invariant under cyclic permutation. This should be the case because both M_{F} and M_{P} are invariant. When we permute Eq. (24) from (1234) to (2341), we get, for example,

$$
\begin{aligned}
\frac{b_{12} b_{34}}{s_{12}} & \leftrightarrow \frac{b_{23} b_{41}}{s_{23}} \\
\frac{b_{12}}{s_{12}}\left(d_{3} c_{43}+d_{4} c_{34}\right) & \rightarrow \frac{b_{23}}{s_{23}}\left(d_{4} c_{14}+d_{1} c_{41}\right), \\
\frac{b_{41}}{s_{41}}\left(d_{2} c_{32}+d_{3} c_{23}\right) & \rightarrow \frac{b_{12}}{s_{12}}\left(d_{3} c_{43}+d_{4} c_{34}\right), \text { etc., }
\end{aligned}
$$

showing explicitly that Eq. (24) is cyclic permutation invariant.

It is amusing to find out whether M_{Q} can be written in the form of Eq. (1). Namely, whether there exists a Möbius covariant function $Q=Q\left(A_{i j}, B_{i j}, C_{i j}, d_{i}, k_{i}^{2}\right)$ which transforms with a weight factor $\left(\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}\right)^{-2}$, such that
$M_{Q}=\left(-\frac{2 g}{2 \pi i}\right)^{n-3} \oint_{\Gamma} \frac{\sigma_{(p q r)}^{2}}{\sigma_{(12 \ldots n)}}\left(\prod_{i=1, i \neq p, q, r}^{n} \frac{d \sigma_{i}}{f_{i}}\right) Q$.
Since the dependence of M_{Q} on a, b, c is assumed to arise from the dependence of Q on A, B, C, it is clear from Eq. (24) that, if such a Q exists, it must be

$$
\begin{align*}
Q & =\left[\left(\sum_{i=1}^{4} k_{i}^{2}\right)\left(\frac{b_{12} b_{34}}{\sigma_{12} \sigma_{34}}+\frac{b_{14} b_{23}}{\sigma_{14} \sigma_{23}}\right)-\frac{b_{12}}{\sigma_{12}}\left(-d_{3} \frac{c_{43}}{\sigma_{43}}+d_{4} \frac{c_{34}}{\sigma_{34}}\right)\right. \\
& -\frac{b_{14}}{\sigma_{14}}\left(-d_{2} \frac{c_{32}}{\sigma_{32}}+d_{3} \frac{c_{23}}{\sigma_{23}}\right)-\frac{b_{23}}{\sigma_{23}}\left(-d_{4} \frac{c_{14}}{\sigma_{14}}+d_{1} \frac{c_{41}}{\sigma_{41}}\right) \\
& \left.-\frac{b_{34}}{\sigma_{34}}\left(-d_{1} \frac{c_{21}}{\sigma_{21}}+d_{2} \frac{c_{12}}{\sigma_{12}}\right)\right] \frac{1}{\sigma_{31} \sigma_{24}} . \tag{26}
\end{align*}
$$

The extra factor $1 / \sigma_{31} \sigma_{24}$ outside of the square brackets is there to enable Q to transform with the correct covariant
weight, and the signs of the various terms are needed to ensure M_{Q} to be reproduced after the σ integrations. With this Q, it turns out that M_{Q} computed using Eq. (25) is indeed the correct M_{Q} given by Eq. (24).

Although Q exists for $n=4$, Möbius invariance cannot determine its form nor that of M_{Q}, so its existence is merely of academic interest. Unlike P, where Möbius invariance, permutation symmetry, and dimensional analysis largely determine what it should be, nothing similar is available for Q. For example, without the Feynman diagrams and the discussion earlier in this section, there is no way even to know that neither B_{13} nor B_{24} is present in Q. For that reason we shall no longer discuss Q from now on.

VI. LOCAL GAUGE INVARIANCE

A. Slavnov-Taylor identity

The emergence of M_{Q} can be traced back to local gauge invariance, the hallmark of Yang-Mills theory. An amplitude possessing local gauge invariance must satisfy the Slavnov-Taylor identity [32,33], which relates the divergence of an n-gluon Green's function to the Green's function with $(n-2)$ gluons and a ghost-antighost pair:

$$
\begin{align*}
& -\frac{\partial}{\partial x_{i}^{\mu_{i}}}\left\langle A_{\mu_{1}}^{a_{1}}\left(x_{1}\right) A_{\mu_{2}}^{a_{2}}\left(x_{2}\right) \ldots A_{\mu_{n}}^{a_{n}}\left(x_{n}\right)\right\rangle \\
& \quad=\sum_{k \neq i}\left\langle\bar{\omega}^{a_{i}}\left(x_{i}\right) A_{\mu_{2}}^{a_{2}}\left(x_{2}\right) \ldots D_{\mu_{k}} \omega^{a_{k}}\left(x_{k}\right) \ldots A_{\mu_{n}}^{a_{n}}\left(x_{n}\right)\right\rangle . \tag{27}
\end{align*}
$$

A is the gluon field, ω and $\bar{\omega}$ are the ghost and antighost fields, respectively, and $\left(D_{\mu} \omega\right)^{a}=\partial_{\mu} \omega^{a}+g f_{a b c} A_{\mu}^{b} \omega^{c}$ is the covariant derivative of the ghost field. The corresponding relation for color-stripped amplitudes is shown in

Fig. 4, where solid lines are gluons and dotted lines are ghosts. A cross (\times) at line j represents the factor $d_{j}=\epsilon_{j} \cdot k_{j}$, and a box (■) at line j represents the factor k_{j}^{2}. The cross comes from the derivative of the ghost field, and the box is there to amputate the external leg in the $A \omega$ term of $D \omega$.

In tree order, this relation can be derived directly from the gluon tree amplitude by replacing ϵ_{i} in a gluon line by k_{i} [34]. Let us illustrate how that is done for $n=3$ and $i=2$.

Using the notation $\delta_{i}(\mathcal{O})$ to indicate replacing ϵ_{i} in \mathcal{O} by k_{i}, we get from Eq. (20) that

$$
\begin{align*}
\delta_{2}(V)= & \epsilon_{1} \cdot k_{2} \epsilon_{3} \cdot\left(k_{1}-k_{2}\right)+k_{2} \cdot \epsilon_{3} \epsilon_{1} \cdot\left(k_{2}-k_{3}\right) \\
& +\epsilon_{3} \cdot \epsilon_{1} k_{2} \cdot\left(k_{3}-k_{1}\right) \\
= & -\epsilon_{1} \cdot k_{1} \epsilon_{3} \cdot k_{1}+\epsilon_{1} \cdot k_{3} \epsilon_{3} \cdot k_{3}+k_{1}^{2} \epsilon_{1} \cdot \epsilon_{3} \\
& -k_{3}^{2} \epsilon_{1} \cdot \epsilon_{3}, \tag{28}
\end{align*}
$$

where momentum conservation has been used to obtain the second line. These four terms are depicted by the four diagrams in Fig. 5, where Figs. 5(a) and 5(b) correspond to the first diagram on the right of Fig. 4, respectively, for $j=1$ and $j=3$, and Figs. 5(c) and 5(d) correspond to the second diagram. The $\epsilon_{3} \cdot k_{1}$ factor in the first term comes from the gluon-ghost vertex in 5(a). The minus signs came from color ordering before color is stripped.

What is important for our subsequent discussion is that $\delta_{i}(M)$ for a local gauge-invariant amplitude M consists of terms proportional to d_{j} and k_{j}^{2} for all $j \neq i$, but it does not contain terms involving k_{i}^{2} in leading order of the off-shell parameters. We shall refer to this absence of k_{i}^{2} as partial gauge invariance. It turns out that neither M_{P} nor M_{Q} is

FIG. 4. The Slavnov-Taylor relation relating the divergence of a gluon amplitude to the covariant derivative on the ghost lines of gluon-ghost amplitudes.

FIG. 5. The Slavnov-Taylor identity for $n=3$.
locally gauge invariant, though their sum is, but both have partial gauge invariance. This property is useful in checking the calculations of M_{P} and M_{Q} and puts a constraint on the allowed forms of M_{P} and M_{Q}.

B. M_{P} does not have local gauge invariance but it is partially gauge invariant

Let us compute $\delta_{2}\left(\Psi_{13}^{13}\right)$ to see whether $\delta_{2}\left(M_{P}\right)$ satisfies the Slavnov-Taylor identity. The change $\epsilon_{2} \rightarrow k_{2}$ leads to $c_{2 j}^{\prime} \rightarrow a_{2 j}^{\prime}, b_{2 j}=b_{j 2} \rightarrow c_{j 2}^{\prime}$, which in turn leads to a change of Ψ_{13}^{13} in the (n th) row and column containing $C_{2 j}$ and $B_{2 j}$. These changes are given by

$$
\begin{align*}
\delta_{2} d_{2} & =k_{2}^{2} \\
\delta_{2} b_{2 j} & =\delta_{2} b_{j 2}=c_{j 2}^{\prime}=c_{j 2}-\frac{1}{2} d_{j} \quad(j=1,3) \\
\delta_{2} b_{2 j} & =\delta_{2} b_{j 2}=c_{j 2}^{\prime}=c_{j 2} \quad(j \neq 1,2,3) \\
\delta_{2} c_{2 j} & =\delta_{2} c_{2 j}^{\prime}+\frac{1}{2} d_{2}=a_{2 j}^{\prime}+\frac{1}{2} d_{2}=a_{2 j}-\frac{1}{2} k_{j}^{2} \quad(j=1,3), \\
\delta_{2} c_{24} & =\delta_{2} c_{24}^{\prime}=a_{24}^{\prime}=a_{24}+\frac{1}{2} k_{3}^{2} \\
\delta_{2} c_{2 n} & =c_{2 n}^{\prime}=a_{2 n}^{\prime}=a_{2 n}+\frac{1}{2} k_{1}^{2} \\
\delta_{2} c_{2 j} & =\delta_{2} c_{2 j}^{\prime}=a_{2 j}^{\prime}=a_{2 j} \quad(j \neq 1,2,3,4, n) \tag{29}
\end{align*}
$$

All other elements of $b_{i j}, c_{i j}, d_{i}$, and all elements of $a_{i j}$ remain the same.

We shall compute $\delta_{2}\left(M_{P}\right)$ using the property that subtracting the nth row (column) from the first row (column) of $\delta_{2}\left(\Psi_{13}^{13}\right)$ does not change its Pfaffian. The first row of Ψ_{13}^{13} consists of

$$
\begin{aligned}
& \left(0, A_{24}, A_{25}, \ldots, A_{2, n-1}, A_{2 n},-C_{12},-C_{22},-C_{32}\right. \\
& \left.\quad-C_{42}, \ldots,-C_{n 2}\right)
\end{aligned}
$$

none of which is affected by δ_{2} except $-C_{22}$,

$$
\begin{align*}
-\delta_{2} C_{22}= & \sum_{j \neq 2} \frac{\delta_{2} c_{2 j}}{\sigma_{2 j}}=\left(\sum_{j \neq 2} A_{2 j}\right)-\frac{1}{2} k_{1}^{2}\left(\frac{1}{\sigma_{21}}-\frac{1}{\sigma_{2 n}}\right) \\
& -\frac{1}{2} k_{3}^{2}\left(\frac{1}{\sigma_{23}}-\frac{1}{\sigma_{24}}\right) . \tag{30}
\end{align*}
$$

The nth row of Ψ_{13}^{13} consists of

$$
\left(C_{22}, C_{24}, C_{25}, \ldots, C_{2, n-1}, C_{2 n}, B_{21}, 0, B_{23}, B_{24}, \ldots, B_{2 n}\right),
$$

which under δ_{2} is changed into

$$
\begin{align*}
& \left(\delta_{2} C_{22}, \frac{\delta_{2} c_{24}}{\sigma_{24}}, \frac{\delta_{2} c_{25}}{\sigma_{25}}, \ldots, \frac{\delta_{2} c_{2, n-1}}{\sigma_{2, n-1}}, \frac{\delta_{2} c_{2 n}}{\sigma_{2 n}}, \frac{\delta_{2} b_{21}}{\sigma_{21}}, 0, \frac{\delta_{2} b_{23}}{\sigma_{23}},\right. \\
& \left.\frac{\delta_{2} b_{24}}{\sigma_{24}}, \ldots, \frac{\delta_{2} b_{2 n}}{\sigma_{2 n}}\right) \\
& =\left(\delta_{2} C_{22}, \hat{A}_{24}, A_{25}, \ldots, A_{2, n-1}, \hat{A}_{2 n}, 0,-\hat{C}_{12}, 0,-\hat{C}_{32},\right. \\
& \left.\quad-C_{42}, \ldots,-C_{n 2}\right), \tag{31}
\end{align*}
$$

where

$$
\begin{align*}
& \hat{A}_{24}=A_{24}+\frac{1}{2} \frac{k_{3}^{2}}{\sigma_{24}} \\
& \hat{A}_{2 n}=A_{2 n}+\frac{1}{2} \frac{k_{1}^{2}}{\sigma_{2 n}} \\
& \hat{C}_{12}=C_{12}-\frac{1}{2} \frac{d_{1}}{\sigma_{12}} \\
& \hat{C}_{32}=C_{32}-\frac{1}{2} \frac{d_{3}}{\sigma_{32}} \tag{32}
\end{align*}
$$

Subtracting the nth row (column) from the first row (column) changes the first row into
$-\frac{1}{2}\left(0, \frac{k_{3}^{2}}{\sigma_{24}}, 0, \ldots, 0, \frac{k_{1}^{2}}{\sigma_{2 n}}, \frac{d_{1}}{\sigma_{21}}, 2 \delta_{2} C_{22}, \frac{d_{3}}{\sigma_{23}}, 0, \ldots, 0\right)$,
and the first column into the same thing with a minus sign, leaving the rest of $\delta_{2}\left(\Psi_{13}^{13}\right)$ unchanged. The modified matrix contains only off-shell parameters d_{j}, k_{j}^{2} in the first row (column), so every term in $\operatorname{Pf}\left(\delta_{2}\left(\Psi_{13}^{13}\right)\right)$, and thus every term in $\delta_{2}\left(M_{P}\right)$, must be proportional to an off-shell parameter. Thus
(1) $\delta_{2}\left(M_{P}\right)=0$ for on-shell gluons with transverse polarization, as we already know;
(2) k_{2}^{2} and all d_{j}, k_{j}^{2} for $j \geq 4$ are missing from $\delta_{2}\left(M_{P}\right)$, and hence M_{P} cannot satisfy the Slavnov-Taylor identity in which all k_{j}^{2} and d_{j} for $j \neq 2$ must be present. This is why M_{Q} is needed to restore local gauge invariance of the amplitude;
(3) M_{P} is invariant under permutation of the particles, and thus if k_{2}^{2} is absent from $\delta_{2}\left(M_{P}\right), k_{i}^{2}$ must be absent from $\delta_{i}\left(M_{P}\right)$. By definition, M_{P} has partial gauge invariance;
(4) since both M_{F} and M_{P} have partial gauge invariance, M_{Q} must also have partial gauge invariance.

C. Partial gauge invariance of \boldsymbol{M}_{Q} for $\boldsymbol{n}=\mathbf{4}$

Partial gauge invariance is a useful tool for verifying calculations. Together with cyclic permutation invariance, it provides a nontrivial constraint on the allowed forms of M_{Q}. Let us illustrate these points with $n=4$.

For convenience, Eq. (24) of M_{Q} for $n=4$ is reproduced below:

$$
\begin{aligned}
M_{Q}= & \left(\sum_{i=1}^{4} k_{i}^{2}\right)\left(\frac{b_{12} b_{34}}{s}+\frac{b_{41} b_{23}}{t}\right) \\
& -\left[\frac{b_{12}}{s}\left(d_{3} c_{43}+d_{4} c_{34}\right)+\frac{b_{41}}{t}\left(d_{2} c_{32}+d_{3} c_{23}\right)\right. \\
& \left.+\frac{b_{23}}{t}\left(d_{1} c_{41}+d_{4} c_{14}\right)+\frac{b_{34}}{s}\left(d_{1} c_{21}+d_{2} c_{12}\right)\right]
\end{aligned}
$$

Let us use it to verify partial gauge invariance. Since $\delta_{2}\left(d_{2}\right)=k_{2}^{2}$,

$$
\begin{aligned}
\delta_{2}\left(M_{Q}\right)= & k_{2}^{2}\left[\left(\frac{c_{12}^{\prime} b_{34}}{s}+\frac{c_{32}^{\prime} b_{41}}{t}\right)-\left(\frac{b_{41} c_{32}}{t}+\frac{b_{34} c_{12}}{s}\right)\right] \\
& +\cdots \\
= & -\frac{1}{2} k_{2}^{2}\left[\frac{d_{1} b_{34}}{s}+\frac{d_{3} b_{41}}{t}\right]+\cdots,
\end{aligned}
$$

where the ellipses represent terms without k_{2}^{2}. Thus the k_{2}^{2} coefficient of $\delta_{2}\left(M_{Q}\right)$ vanishes in the zeroth order of the off-shell parameters. Similarly, the k_{i}^{2} coefficients of the other $\delta_{i}\left(M_{Q}\right)$ also vanish in the zeroth order, thereby verifying that M_{Q} possesses partial gauge invariance.

Next, to illustrate the power of partial gauge invariance, we will use it to constrain the possible dependence of M_{Q}. For simplicity, let us assume the absence of b_{13} and b_{24}. On dimensional grounds, each term of M_{Q} must
contain $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4}$ once and k twice in the numerator. The denominator could be either $s=s_{12}=s_{34}$ or $t=$ $s_{41}=s_{23}$. The numerator must also contain at least one off-shell parameter; therefore, its allowed forms are confined to $b_{i j} b_{k l} k_{m}^{2}$ and $b_{i j} c_{k p} d_{l}$, with $(i j k l)$ being a permutation of (1234).

With b_{13} and b_{24} absent, $(i j)$ in these terms must be either (12) or (34). First consider the term $b_{12} b_{34} k_{m}^{2} / s_{12}$. Since M_{Q} is cyclic permutation invariant, M_{Q} must consist of the combination

$$
\begin{gather*}
\alpha\left[\frac{b_{12} b_{34}}{s_{12}} k_{m}^{2}+\frac{b_{23} b_{41}}{s_{23}} k_{m+1}^{2}+\frac{b_{34} b_{12}}{s_{34}} k_{m+2}^{2}+\frac{b_{41} b_{23}}{s_{41}} k_{m+3}^{2}\right] \\
\quad=\alpha\left[\frac{b_{12} b_{34}}{s}\left(k_{m}^{2}+k_{m+2}^{2}\right)+\frac{b_{23} b_{41}}{t}\left(k_{m+1}^{2}+k_{m+3}^{2}\right)\right] . \tag{34}
\end{gather*}
$$

Under δ_{i}, to leading order $b_{i j}$ turns into $c_{j i}$, so in order to have partial gauge invariance, the $b c d$ terms in M_{Q} must be the following if $m=1$ or 3 :

$$
-\frac{\alpha}{s}\left[b_{34} c_{21} d_{1}+c_{43} b_{12} d_{3}\right]-\frac{\alpha}{t}\left[b_{41} c_{32} d_{2}+b_{23} c_{14} d_{4}\right] .
$$

Applying a similar argument to the case when $m=2$ or 4 , and to the situations when the starting denominator is t rather than s, we conclude that M_{Q} must be equal to

$$
\begin{aligned}
M_{Q}= & \frac{\alpha_{1}}{s}\left[b_{12} b_{34}\left(k_{1}^{2}+k_{3}^{2}\right)-b_{34} c_{21} d_{1}-c_{43} b_{12} d_{3}\right]+\frac{\alpha_{1}}{t}\left[b_{23} b_{41}\left(k_{2}^{2}+k_{4}^{2}\right)-b_{41} c_{32} d_{2}-b_{23} c_{14} d_{4}\right] \\
& +\frac{\alpha_{2}}{s}\left[b_{12} b_{34}\left(k_{2}^{2}+k_{4}^{2}\right)-b_{34} c_{21} d_{1}-c_{43} b_{12} d_{3}\right]+\frac{\alpha_{2}}{t}\left[b_{23} b_{41}\left(k_{1}^{2}+k_{3}^{2}\right)-b_{41} c_{32} d_{2}-b_{23} c_{14} d_{4}\right] \\
& +\frac{\alpha_{3}}{t}\left[b_{12} b_{34}\left(k_{1}^{2}+k_{3}^{2}\right)-b_{34} c_{21} d_{1}-c_{43} b_{12} d_{3}\right]+\frac{\alpha_{3}}{s}\left[b_{23} b_{41}\left(k_{2}^{2}+k_{4}^{2}\right)-b_{41} c_{32} d_{2}-b_{23} c_{14} d_{4}\right] \\
& +\frac{\alpha_{4}}{t}\left[b_{12} b_{34}\left(k_{2}^{2}+k_{4}^{2}\right)-b_{34} c_{21} d_{1}-c_{43} b_{12} d_{3}\right]+\frac{\alpha_{4}}{s}\left[b_{23} b_{41}\left(k_{1}^{2}+k_{3}^{2}\right)-b_{41} c_{32} d_{2}-b_{23} c_{14} d_{4}\right]
\end{aligned}
$$

The result agrees with Eq. (24) if we set $\alpha_{1}=\alpha_{2}=1$ and $\alpha_{3}=\alpha_{4}=0$.

VII. $n \geq 5$ AMPLITUDES

A. Organization of Feynman diagrams

Amplitudes of large n contain many Feynman diagrams, and each contains many terms. These terms can be organized in the following way.

A Feynman diagram without a four-gluon vertex contains n polarization vectors, $(n-2)$ triple-gluon vertices, and $(n-3)$ propagators, giving rise to a numerator of the form $b_{i_{1} i_{2}} b_{i_{3} i_{4}} \ldots b_{i_{2 k-1}, i_{2 k}} c_{i_{2 k+1} j_{2 k+1}}^{\prime} \ldots c_{i_{n} j_{n}}^{\prime} a_{j_{1} j_{2}}^{\prime} \ldots a_{j_{2 k-3} j_{2 k-2}}^{\prime}$,
where $I=\left(i_{1} i_{2} \ldots i_{n}\right)$ is a permutation of $(12 \ldots n)$. Terms with different j_{m} 's can mix through momentum conservation, but there is no way to combine terms with different k or different I; thus, it is useful to group together terms with the same k and I. A Feynman diagram contains terms with different k 's and I's, but each of its subdiagrams contains a fixed k and a fixed I.

If four gluon vertices are present, each vertex simply eliminates a propagator and a pair of k^{\prime} s in the numerator.

For on-shell amplitudes, $M_{F}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=M_{P}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$. Instead of using Feynman rules and Feynman diagrams, the amplitude can also be computed using Pfaffian diagrams obtained from Eq. (1) [35,36]. Like the Feynman subdiagrams, each Pfaffian diagram has a fixed k and a unique I

FIG. 6. Subdiagrams contributing to $b_{12} / s_{12} s_{45}$ terms of M_{Q} for $n=5$.
structure, but unlike Feynman subdiagrams, Pfaffian diagrams do not contain internal momenta, so the necessity of expanding internal momenta into sums of external momenta is avoided, thereby resulting in fewer terms at the end $[35,36]$.

For off-shell amplitudes, the decomposition $M_{F}=M_{P}+$ M_{Q} again results in fewer terms. M_{P} can be computed using Pfaffian diagrams as before, simply by replacing a^{\prime} with a and c^{\prime} with c. The computation of M_{Q} is relatively simple because many Feynman diagrams do not contribute to M_{Q}, and for those that do only some off-shell parameters appears. Furthermore, partial gauge invariance can be used to check the calculation. Thus both on shell and off shell, there is an advantage to use the CHY formalism to compute Yang-Mills amplitudes. It results in having fewer terms at the end.

We now illustrate the computation of part of M_{Q} for $n=5$ and how partial gauge invariance can be used to check this calculation.

B. M_{Q} for $\boldsymbol{n}=\mathbf{5}$

Figure 6 shows all the subdiagrams that contribute to terms proportional to $b_{12} / s_{12} s_{45}$. When d_{i} appears in a subdiagram, its i is surrounded by a square. When k_{i}^{2} appears, its i is surrounded by a circle. For example, no line in subdiagram (h) has a square or a circle, so that diagram carries no offshell parameter and does not contribute to M_{Q}. Lines 4 and 5 in Figs. 6(d) and 6(e) are not surrounded by a circle so k_{4}^{2} and k_{5}^{2} are not present in the M_{Q} of these diagrams.

The contributions to M_{Q} from diagrams 6(a)-6(c) are

$$
\begin{align*}
- & \frac{1}{2} b_{12} b_{45}\left[\left(a_{13}-2 a_{14}-a_{23}+2 a_{25}+a_{34}-a_{35}\right) d_{3}\right. \\
& +\left(-6 c_{34}-2 c_{35}+d_{3}\right) k_{1}^{2}+\left(-2 c_{34}+2 c_{35}+d_{3}\right) k_{2}^{2} \\
& +\left(4 c_{32}+2 c_{34}+6 c_{35}\right) k_{3}^{2}+\left(4 c_{32}+2 c_{34}+2 c_{35}-d_{3}\right) k_{4}^{2} \\
& \left.+\left(4 c_{32}-2 c_{34}-2 c_{35}-d_{3}\right) k_{5}^{2}\right] \tag{35}
\end{align*}
$$

and the contributions from diagrams 6(f), 6(g), and 6(i) are

$$
\begin{align*}
& \frac{1}{2} b_{12}\left[4\left(c_{54} c_{43}-c_{45} c_{53}\right) d_{3}+c_{54}\left(-2 c_{31}+2 c_{32}-d_{3}\right) d_{4}\right. \\
& \left.\quad+c_{45}\left(2 c_{31}+6 c_{32}-d_{3}\right) d_{5}\right] \tag{36}
\end{align*}
$$

Let us use these expressions to verify partial gauge invariance, which demands $\delta_{i}\left(M_{Q}\right)$ to contain no k_{i}^{2} term in the zeroth order. This means that after we make the replacements $b_{i j} \rightarrow c_{j i}, c_{i j} \rightarrow a_{j i}, d_{i} \rightarrow k_{i}^{2}$, the coefficient of k_{i}^{2} in M_{Q} without any off-shell parameters must be identically zero. This is true for all $b_{i j}$ and all propagators, so those terms proportional to the same product of b with the same propagator in $\delta_{i}(Q)$ must be identically zero in the zeroth order as well.

The factor b_{12} in Fig. 6 will not be altered by $\delta_{i}\left(M_{Q}\right)$ only for $i=3,4,5$, so without including more diagrams, we can only verify partial gauge invariance from Fig. 6 for $i=3,4,5$. Diagrams 6(d) and 6(e) do not contain k_{4}^{2} and k_{5}^{2}, so they can be ignored for the verification of $i=4$ and $i=5$. It is then easy to see from Eqs. (35) and (36) that partial gauge invariance is indeed valid for these two i 's.

If we concentrate on terms of M_{Q} proportional to $b_{12} b_{45} / s_{12} s_{45}$, only diagrams 6(a)-6(c) contribute and only Eq. (35) is relevant. After applying δ_{3} to it, the leading coefficient of $-\frac{1}{2} k_{3}^{2} b_{12} b_{45} / s_{12} s_{45}$ is seen to be

$$
\begin{aligned}
& \left(a_{13}-2 a_{14}-a_{23}+2 a_{25}+a_{34}-a_{35}\right)+\left(4 a_{23}+2 a_{43}+6 a_{53}\right) \\
& \quad=2\left(a_{12}-a_{45}\right)=s_{12}-s_{45}
\end{aligned}
$$

where $\sum_{j \neq i} a_{i j}=0$ of Eq. (10), and the relations $2 a_{12}=$ $s_{12}, 2 a_{45}=s_{45}$, have been used. Since the propagator for this term is $1 / s_{12} s_{45}$, the resulting numerator above cancels one factor of the propagator, leaving the coefficient of the
double pole to be zero, so the leading coefficient of $k_{3}^{2} b_{12} b_{45} / s_{12} s_{45}$ is indeed zero, as demanded by partial gauge invariance.

VIII. CONCLUSION

It is difficult for an S-matrix theory to incorporate interaction because it knows nothing about the local space-time structure. An exception is the CHY theory, which with the guide of Möbius invariance is able to reproduce massless tree amplitudes for ϕ^{3}, Yang-Mills, gravity, and many other theories. In this article we investigated whether this invariance can also guide us to construct the correct
off-shell amplitudes. For ϕ^{3} interaction, we know that it is possible. For the Yang-Mills theory considered here, it turns out that the modified off-shell CHY amplitude M_{P} with Möbius invariance is not locally gauge invariant and therefore is not the correct Yang-Mills amplitude. A complementary amplitude M_{Q} must be added to restore local gauge invariance, but Möbius invariance is no longer a useful guide to its construction. Although neither M_{P} nor M_{Q} is locally gauge invariant, both are partially gauge invariant, a useful property that can be used to verify calculations and to simplify the Yang-Mills amplitude in the way discussed in the last section.
[1] F. Cachazo, S. He, and E. Y. Yuan, Phys. Rev. D 90, 065001 (2014).
[2] F. Cachazo, S. He, and E. Y. Yuan, Phys. Rev. Lett. 113, 171601 (2014).
[3] F. Cachazo, S. He, and E. Y. Yuan, J. High Energy Phys. 07 (2014) 033.
[4] F. Cachazo, S. He, and E. Y. Yuan, J. High Energy Phys. 01 (2015) 121.
[5] F. Cachazo, S. He, and E. Y. Yuan, J. High Energy Phys. 07 (2015) 149.
[6] L. Mason and D. Skinner, J. High Energy Phys. 07 (2014) 048.
[7] N. E. J. Bjerrum-Bohr, P. H. Damgaard, P. Tourkine, and P. Vanhove, Phys. Rev. D 90, 106002 (2014).
[8] C. Baadsgaard, N. E. J. Bjerrum-Bohr, J. L. Bourjaily, and P. H. Damgaard, J. High Energy Phys. 09 (2015) 136.
[9] T. Adamo, E. Casali, and D. Skinner, J. High Energy Phys. 04 (2014) 104.
[10] E. Casali and P. Tourkine, J. High Energy Phys. 04 (2015) 013.
[11] T. Adamo and E. Casali, J. High Energy Phys. 05 (2015) 120.
[12] K. Ohmori, J. High Energy Phys. 06 (2015) 075.
[13] Y. Geyer, L. Mason, R. Monteiro, and P. Tourkine, Phys. Rev. Lett. 115, 121603 (2015).
[14] S. He and E. Y. Yuan, Phys. Rev. D 92, 105004 (2015).
[15] C. Baadsgaard, N. E. J. Bjerrum-Bohr, J. L. Bourjaily, P. H. Damgaard, and B. Feng, J. High Energy Phys. 11 (2015) 080.
[16] B. Feng, J. High Energy Phys. 05 (2016) 061.
[17] L. Dolan and P. Goddard, J. High Energy Phys. 07 (2014) 029.
[18] L. Dolan and P. Goddard, arXiv:1511.09441.
[19] B. U. W. Schwab and A. Volovich, Phys. Rev. Lett. 113, 101601 (2014).
[20] S. G. Naculich, J. High Energy Phys. 09 (2015) 122.
[21] S. Weinzierl, J. High Energy Phys. 03 (2015) 141.
[22] R. Huang, Y.-J. Du, and B. Feng, J. High Energy Phys. 06 (2017) 133.
[23] F. Teng and B. Feng, J. High Energy Phys. 05 (2017) 075.
[24] Y.-J. Du and F. Teng, J. High Energy Phys. 04 (2017) 033.
[25] S. He, O. Schlotterer, and Y. Zhang, Nucl. Phys. B930, 328 (2018).
[26] X. Gao, S. He, and Y. Zhang, J. High Energy Phys. 11 (2017) 144.
[27] F. Cachazo and H. Gomez, J. High Energy Phys. 04 (2016) 108.
[28] C. Baadsgaard, N. E. J. Bjerrum-Bohr, J. L. Bourjaily, and P. H. Damgaard, J. High Energy Phys. 09 (2015) 129.
[29] Y. Zhang, J. High Energy Phys. 07 (2017) 069.
[30] C. S. Lam and Y-P. Yao, Nucl. Phys. B907, 678 (2016).
[31] C. S. Lam and Y-P. Yao, Phys. Rev. D 93, 105004 (2016).
[32] A. A. Slavnov, Theor. Math. Phys. 10, 99 (1972).
[33] J. C. Taylor, Nucl. Phys. 33, 436 (1971).
[34] Y. J. Feng and C. S. Lam, Phys. Rev. D 53, 2115 (1996).
[35] C. S. Lam and Y-P. Yao, Phys. Rev. D 93, 105008 (2016).
[36] C. S. Lam, Phys. Rev. D 98, 076002 (2018).

[^0]: *Lam@ physics.mcgill.ca
 Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP ${ }^{3}$.

