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Möbius invariance is used to construct gluon tree amplitudes in the Cachazo, He, and Yuan (CHY)
formalism. If it is equally effective in steering the construction of off-shell tree amplitudes, then the
S-matrix CHY theory can be used to replace the Lagrangian Yang-Mills theory. Unfortunately that is not
possible. We find that the CHY formula can indeed be modified to obtain a Möbius-invariant off-shell
amplitude MP, but this modified amplitude lacks local gauge invariance, which can be restored to give the
correct Yang-Mills amplitude only by the addition of a complementary amplitude MQ. Although neither
MP nor MQ is fully gauge invariant, both are partially gauge invariant in a sense to be explained.
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I. INTRODUCTION

S-matrix theory popular in the 1960s failed to take off
because therewas noway to incorporate interactionwithout a
Lagrangian. This situation changed in 2014 when Cachazo,
He, and Yuan (CHY) [1–5] came up with an S-matrix theory
which can reproduce tree-level scattering of gluons, grav-
itons, and many others, with the additional advantage that
double-copy relations appear naturally. These refer to rela-
tions that are very difficult to understand in the Lagrangian
approach, linking together pairs of amplitudes such as
graviton amplitude and the square of Yang-Mills amplitude.
See [6–29] for some of the subsequent developments.
n-body CHYamplitudes are given by a complex integral

with Möbius invariance, an invariance crucial in steering
the construction of these amplitudes. Such construction
enables local interaction and local propagation to appear in
an S-matrix theory, a very remarkable feat because S-matrix
a priori knows nothing about a local structure of space-
time. This success raises the hope that maybe Möbius
invariance is also able to simulate fully local space-time
interaction, to reproduce off-shell tree amplitudes and
hence loops without a Lagrangian.
In the case of ϕ3 interaction, this is indeed possible.

A simple modification of the scattering function enables all

correct scalar Feynman tree diagrams to be reproduced,
including those with off-shell external legs [30,31].
In the case of off-shell Yang-Mills kinematics, Möbius

invariance forces not only a modification of the scattering
function, as in the ϕ3 case, but also a modification of the
Pfaffian. This modified MP describes an amplitude with a
local interaction and local propagation, but unfortunately it is
not the correct Yang-Mills amplitude for n > 3. The original
on-shell MP is gauge invariant, but the modified off-shell
MP retains only a partial gauge invariance. To restore full
local gauge invariance, the hallmark of the Yang-Mills
theory, an additional term MQ must be added, which by
itself also has partial but not full gauge invariance.
Unfortunately Möbius invariance is no longer a useful

guide to the construction ofMQ when n ≥ 4. Its appearance
is related to the emergence of ghosts in Yang-Mills loops and
off-shell Yang-Mills tree amplitudes, so it is unavoidable.
On-shell Yang-Mills amplitude in the CHY formalism

is reviewed in Sec. II, to show the power of Möbius
invariance, and to see what modification is required to
maintain the invariance for off-shell kinematics. The details
of such modifications will be discussed in Secs. III and IV.
This modification does enable MP to retain Möbius
invariance off shell, but an additional term MQ is needed
to match the Feynman amplitude MF. In Sec. V, we show
how MQ can be constructed and illustrate the procedure
with the explicit construction for n ¼ 4. The reason behind
the necessary appearance ofMQ can be traced back to local
gauge invariance, a topic which is discussed in Sec. VI.
Amplitudes for n ≥ 5 are discussed in Sec. VII, to illustrate
how the Feynman amplitude can be simplified by its split
into MP and MQ and to show how partial gauge invariance
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can be used to check calculations for a larger n.
Section VIII provides a conclusion.

II. MÖBIUS-INVARIANT AMPLITUDE

A color-stripped n-gluon scattering amplitude in the
natural order ð12…nÞ is given by the CHY formula [2]

MP ¼
�
−

2g
2πi

�
n−3 I

Γ

σ2ðpqrÞ
σð12…nÞ

� Yn
i¼1;i≠p;q;r

dσi
fi

�
P; ð1Þ

where g is the coupling constant henceforth taken to be 1,
σðpqrÞ ¼ σpqσqrσrp; σð12…nÞ ¼

Q
n
i¼1 σi;iþ1 with σnþ1 ≡ σ1,

and σij ¼ σi − σj. The scattering functions fi are defined by

fi ¼
Xn

j¼1;j≠i

2aij
σij

ð1 ≤ i ≤ nÞ; ð2Þ

with ki being the outgoing momentum of the ith gluon.
The quantity aij ¼ aji is a linear function of scalar
products of momenta whose explicit form will be dis-
cussed later. The reduced Pfaffian P ¼ Pf 0ðΨÞ is related to
the Pfaffian of a matrix Ψλν

λν by

P ¼ Pf 0ðΨÞ ¼ ð−1Þλþνþnþ1

σλν
PfðΨλν

λνÞ ðλ < νÞ; ð3Þ

where Ψλν
λν is obtained from the matrix Ψ with its λth and

νth columns and rows removed. The antisymmetric matrix
Ψ is made up of three n × n matrices A, B, C:

Ψ ¼
�
A −CT

C B

�
: ð4Þ

The nondiagonal elements of these three submatrices are

Aij ¼
aij
σij

; Bij ¼
ϵi · ϵj
σij

≔
bij
σij

;

Cij ¼
cij
σij

; −CT
ij ¼

cji
σij

ð1 ≤ i ≠ j ≤ nÞ; ð5Þ

where cij is a linear function of the scalar products ϵ · k
whose exact form will be decided later and ϵi is the
polarization of the ith gluon. The diagonal elements of A
and B are zero, and that of C is defined by

Cii ¼ −
Xn
j¼1

Cij; ð6Þ

so that
P

jCij ¼ 0 for all i. A similar property is true for A
if the scattering equations fi ¼ 0 are obeyed. This is the
case because the integration contour Γ encloses these
zeros anticlockwise.

The factors in Eq. (1) are designed to transform
covariantly under the Möbius transformation

σi →
ασi þ β

γσi þ δ
ðαδ − βγ ¼ 1Þ; ð7Þ

in such a way that the total weight of the integrand is
zero, thus resulting in a Möbius-invariant integrand.
Specifically, under the Möbius transformation, if we let
λi ¼ 1=ðγσi þ δÞ, then

dσi → λ2i dσi;

σij → λiλjσij;

σðp;q;rÞ → ðλpλqλrÞ2σðp;q;rÞ;

σð12…nÞ →
�Yn

i¼1

λ2i

�
σð12…nÞ: ð8Þ

The scattering function transforms covariantly like

fi → λ−2i fi; ð9Þ

as long as

Xn
j¼1;j≠i

aij ¼ 0: ð10Þ

Thus the integrand of Eq. (1) is Möbius invariant as long as

P →

�Yn
i¼1

λ−2i

�
P ð11Þ

whatever p, q, r are.
Using Eq. (8), as well as Eqs. (4)–(6), we see that P ¼

Pf 0ðΨÞ in Eq. (3) does transform that way, whatever λ, ν are,
provided

Cii → λ−2i Cii; ð12Þ

which is the case if

Xn
j¼1;j≠i

cij ¼ 0: ð13Þ

As long as Eq. (1) is Möbius invariant, the integral MP
can be shown to be independent of the choice of p, q, r, as
well as the choice of λ, ν. To be invariant, aij and cij must
be chosen to satisfy Eqs. (10) and (13).
For on-shell gluons with transverse polarization, k2i ¼ 0

and ϵi · ki ¼ 0, momentum conservation guarantees these
conditions to be satisfied if
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aij ¼ ki · kj ≔ a0ij;

cij ¼ ϵi · kj ≔ c0ij; ð14Þ

which is the choice in the CHY theory. For off-shell
kinematics with possibly longitudinal and timelike polar-
izations, k2i ≠ 0 and ϵi · ki ≔ di ≠ 0, Eq. (14) no longer
satisfies Eqs. (10) and (13), so the expression for aij and cij
must be modified. How this can be done will be discussed
in the next two sections.

III. aij DETERMINED BY THE PROPAGATORS

Let

aij ¼ a0ij þ ρij;

cij ¼ c0ij þ ηij: ð15Þ

The constraints Eqs. (10) and (13) restrict the additional
terms to satisfy

Xn
j≠i;j¼1

ρij ¼ k2i ; ð16Þ

Xn
j≠i;j¼1

ηij ¼ ϵi · ki ≔ di: ð17Þ

In this section we will discuss how to obtain ρij ¼ ρji,
leaving the determination of ηij to the next section.
Equation (16) alone is not sufficient to determine all ρij.

Since we want to retain local propagation for off-shell
amplitudes, we demand Eq. (1) to yield correct propagators
in the Feynman gauge. For the color-stripped amplitudeMP

in natural order, this requires
P

i≠j;i;j∈Daij ¼ ðPi∈DkiÞ2 ≔
sD for every consecutive set of numbers D. This require-
ment has a unique solution for ρ given by [30,31]

ρi;i�1 ¼ þ 1

2
ðk2i þ k2i�1Þ;

ρi∓1;i�1 ¼ −
1

2
k2i ;

ρij ¼ 0 otherwise; ð18Þ

where all indices are understood to be mod n.
There is another way to retain Möbius covariance of

fi off shell without modifying aij ¼ a0ij: one can add an
extra dimension and use the extra momentum component

to simulate k2i . However, this does not retain local propa-
gation as the resulting propagators turn out to be incorrect.

IV. cij DETERMINED BY THE TRIPLE-GLUON
VERTEX

There are also many solutions of ηij to satisfy Eq. (17),
but unlike ρij, which can be fixed by the local propagation
requirement, there is no obvious way to settle what ηij
should be.
One of the many solutions of Eq. (17) is

ci;i�1 ¼ c0i;i�1 þ
1

2
di;

cij ¼ c0ij otherwise: ð19Þ

We shall adopt this solution throughout because it is the
simplest and because it yields the correct n ¼ 3 off-shell
amplitude.
To see that, recall that the triple-gluon vertex (with a unit

coupling constant, and the color factor stripped) depicted in
Fig. 1 is

V ¼ ϵ1 · ϵ2ϵ3 · ðk1 − k2Þ þ ϵ2 · ϵ3ϵ1 · ðk2 − k3Þ
þ ϵ3 · ϵ1ϵ2 · ðk3 − k1Þ

¼ b12ðc031 − c032Þ þ b23ðc012 − c013Þ
þ b31ðc023 − c021Þ: ð20Þ

Using Eq. (19), this becomes

V ¼ b12ðc31 − c32Þ þ b23ðc12 − c13Þ þ b31ðc23 − c21Þ
¼ 2ð−b12c32 þ b23c12 − b31c21Þ; ð21Þ

which is precisely what Eq. (1) yields when n ¼ 3.
Therefore, the choice of Eq. (19) enables the triple-gluon
vertex to be reproduced correctly by MP in Eq. (1) for
n ¼ 3.
It is convenient to represent each of the three terms in

Eq. (20) by a separate subdiagram, as shown on the right of
Fig. 1. This pictorial representation makes it easier to
distinguish different terms in a Feynman diagram.
The reason to use Eq. (19) also for n > 3 is the

following. It turns out that no matter how ηij is chosen,
there is no way to convert all c0ij into cij when n > 3,
thereby enabling MP to be the off-shell Feynman ampli-
tude. For that reason any choice of ηij is equally good, so
we might as well use Eq. (19), which not only reproduces

FIG. 1. Triple-gluon vertex and its three subdiagrams.
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the triple-gluon vertex, but is also the simplest solution
of Eq. (17).
To show that there is no way to convert all c0ij into cij,

consider n ¼ 4. There are many Feynman subdiagrams but
let us just look at the four shown in Fig. 2.
All four contain a factor involving some combination of

c01j. That factor is c
0
13 − c014 in Fig. 2(a), c

0
12 − ðc013 þ c014Þ in

Fig. 2(b), c012 − c013 in Fig. 2(c), and ðc012 þ c013Þ − c014 in
Fig. 2(d). To convert all these combinations of c0 into the
corresponding combinations of c, we must require

η13 − η14 ¼ 0;

η12 − ðη13 þ η14Þ ¼ 0;

η12 − η13 ¼ 0;

ðη12 þ η13Þ − η14 ¼ 0: ð22Þ
Moreover, Eq. (17) also requires η12 þ η13 þ η14 ¼ d1.
There are just too many equations for η1j to have a solution.
Thus it is not possible to convert all the c0ij appearing in all
the n ¼ 4 Feynman diagrams into cij, no matter now ηij are
chosen. For a larger n, it is even worse because there will be
more equations to satisfy.
MP in Eq. (1) contains only aij; bij; cij, but no di; it

clearly cannot be equal to the Feynman amplitude MF for
Yang-Mills theory which is a function of a0ij; bij; c

0
ij, unless

all a0 and c0 can be converted into a and c without the
appearance of k2i and di. Since this is impossible for n ≥ 4,
an additional term MQ ¼ MF −MP must be present.

V. METHOD TO COMPUTE MQ
ILLUSTRATED WITH n= 4

MQ ¼ MFða0; b; c0Þ −MPða; b; cÞ can be obtained by
using Feynman rules to compute MF and Eq. (1) to
compute MP. Since there are many terms in MF and many
terms in MP, this computation turns out to be quite tedious
even for n ¼ 4. It is much worse for larger n.
Fortunately, with the following observation there is a

much simpler way to compute MQ. For on-shell gluons
with transverse polarization, where a ¼ a0 and c ¼ c0, we
know that MP gives the correct Yang-Mills amplitude:

MFða0; b; c0Þ ¼ MPða0; b; c0Þ: ð23Þ

For off-shell kinematics, the Feynman rules remain the
same, soMF is not changed. If we use Eq. (15) to convert a0
and c0 in MF into a and c, then Eq. (23) implies that those
terms without the presence of any off-shell parameter k2i ; di
must add up to give MPða; b; cÞ. The remaining terms
which contain at least one off-shell parameter must add up
to give MQ. Thus MQ can be computed just by extracting
those terms in MF that contain off-shell parameters.
Let us illustrate how to do that for n ¼ 4. The Feynman

amplitude MF has an s-channel diagram with nine terms, a
t-channel diagram with nine terms, and a four-gluon
diagram with three terms. The four-gluon terms consist
of products bijbkl, where ðijklÞ is a permutation of (1234).
Since neither a0 nor c0 enters, it cannot contribute toMQ, so
we will ignore it from now on.
The 18 s-channel and t-channel subdiagrams are given

in Fig. 3.
Using the recipe given above, MQ turns out to be

MQ ¼
�X4

i¼1

k2i

��
b12b34

s
þ b41b23

t

�

−
�
b12
s

ðd3c43 þ d4c34Þ þ
b41
t
ðd2c32 þ d3c23Þ

þ b23
t
ðd1c41 þ d4c14Þ þ

b34
s

ðd1c21 þ d2c12Þ
�
;

ð24Þ
where s ¼ s12 ¼ ðk1 þ k2Þ2 ¼ s34 ¼ ðk3 þ k4Þ2 and t ¼
s41 ¼ ðk4 þ k1Þ2 ¼ s23 ¼ ðk2 þ k3Þ2.
Note that there are ten terms in Eq. (24) but 18 diagrams

in Fig. 3, so some of those diagrams must not contribute to
MQ. To identify the diagrams that do not contribute toMQ,
let us first recall the meaning of the graphical components
in subdiagrams. A line ending with a heavy dot (which we
shall refer to as a “hammer”) represents c0il − c0ir, with i on
the handle and l and r to the left and right, respectively, of
the hammer head (the heavy dot). If kl or kr is an internal
momentum, it must be converted into the appropriate sum
of external momenta, and c0il; c

0
ir are then the correspond-

ing sum of c0 between i and these external momenta. With
a similar notation, a heavy dot at both ends of a line
(which we shall call a “dumbbell”) represents the factor
a0l1l2 − a0l1r2 − a0r1l1 þ a0r1r2 , where li and ri represent the

FIG. 2. Four n ¼ 4 Feynman subdiagrams.
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lines to the left and to the right, respectively, of the two
dumbbells (heavy dots) i ¼ 1, 2.
Graphically, the conversion equations (15), (18), and

(19) say that di=2 appears at a hammer handle either when
one and only one of its two neighboring lines appears in the
hammer strike region, or, when both appear, they appear on
the same side of the hammer head. For example, there are
two hammers in Fig. 3(c), one at line 3 and one at line 4.
The neighboring lines of 3 are 4 and 2; only one of them
appears in the hammer strike region of 3, so d3 appears.
This is indicated in the diagram with a box around the
number 3. The neighboring lines of 4 are 2 and 3; they
appear in the hammer strike region of 4 on different sides,
so d4 does not enter, which is indicated in the diagram by
the absence of a square box around the number 4. The
emergence of k2i in the dumbbell region, indicated by a
circle around the line number, can be obtained similarly.
In this way we can see where di and k2i appear in all

the diagrams in Fig. 3. In particular, no di is present in
Figs. 3(d), 3(f), 3(g), 3(h), 3(k), 3(n), 3(o), and 3(q), so
these diagrams do not contribute toMQ. The eight di terms
in Eq. (24) come, respectively, from diagrams 3(c), 3(e),
3(j), 3(i), 3(l), 3(m), 3(p), and 3(r). Similar considerations
applied to the dumbbell regions tell us where to put a circle
to indicate the appearance of k2i .
Note that b13 comes from diagrams 3(f) and 3(g) and b24

comes from diagrams 3(n) and 3(o). The absence of these
diagrams in MQ is the reason why neither b13 nor b24
appears in Eq. (24).
Note also that MQ is invariant under cyclic permutation.

This should be the case because both MF and MP
are invariant. When we permute Eq. (24) from (1234) to
(2341), we get, for example,

b12b34
s12

↔
b23b41
s23

;

b12
s12

ðd3c43 þ d4c34Þ →
b23
s23

ðd4c14 þ d1c41Þ;
b41
s41

ðd2c32 þ d3c23Þ →
b12
s12

ðd3c43 þ d4c34Þ; etc:;

showing explicitly that Eq. (24) is cyclic permutation
invariant.
It is amusing to find out whether MQ can be written in

the form of Eq. (1). Namely, whether there exists a Möbius
covariant function Q ¼ QðAij; Bij; Cij; di; k2i Þ which trans-
forms with a weight factor ðλ1λ2λ3λ4Þ−2, such that

MQ ¼
�
−

2g
2πi

�
n−3 I

Γ

σ2ðpqrÞ
σð12…nÞ

� Yn
i¼1;i≠p;q;r

dσi
fi

�
Q: ð25Þ

Since the dependence of MQ on a, b, c is assumed to arise
from the dependence of Q on A, B, C, it is clear from
Eq. (24) that, if such a Q exists, it must be

Q¼
��X4

i¼1

k2i

��
b12b34
σ12σ34

þb14b23
σ14σ23

�
−
b12
σ12

�
−d3

c43
σ43

þd4
c34
σ34

�

−
b14
σ14

�
−d2

c32
σ32

þd3
c23
σ23

�
−
b23
σ23

�
−d4

c14
σ14

þd1
c41
σ41

�

−
b34
σ34

�
−d1

c21
σ21

þd2
c12
σ12

��
1

σ31σ24
: ð26Þ

The extra factor 1=σ31σ24 outside of the square brackets is
there to enable Q to transform with the correct covariant

FIG. 3. The 18 s- and t-channel Feynman subdiagrams for n ¼ 4. Line numbers enclosed by a box contribute to di, and line numbers
enclosed by a circle contribute to k2i in MQ.
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weight, and the signs of the various terms are needed to
ensure MQ to be reproduced after the σ integrations. With
this Q, it turns out that MQ computed using Eq. (25) is
indeed the correct MQ given by Eq. (24).
Although Q exists for n ¼ 4, Möbius invariance cannot

determine its form nor that ofMQ, so its existence is merely
of academic interest. Unlike P, where Möbius invariance,
permutation symmetry, and dimensional analysis largely
determine what it should be, nothing similar is available for
Q. For example, without the Feynman diagrams and the
discussion earlier in this section, there is no way even to
know that neither B13 nor B24 is present in Q. For that
reason we shall no longer discuss Q from now on.

VI. LOCAL GAUGE INVARIANCE

A. Slavnov-Taylor identity

The emergence of MQ can be traced back to local gauge
invariance, the hallmark of Yang-Mills theory. An ampli-
tude possessing local gauge invariance must satisfy the
Slavnov-Taylor identity [32,33], which relates the diver-
gence of an n-gluon Green’s function to the Green’s
function with (n − 2) gluons and a ghost-antighost pair:

−
∂

∂xμii hAa1
μ1ðx1ÞAa2

μ2ðx2Þ…Aan
μnðxnÞi

¼
X
k≠i

hω̄aiðxiÞAa2
μ2ðx2Þ…Dμkω

akðxkÞ…Aan
μnðxnÞi: ð27Þ

A is the gluon field, ω and ω̄ are the ghost and antighost
fields, respectively, and ðDμωÞa ¼ ∂μω

a þ gfabcAb
μω

c is
the covariant derivative of the ghost field. The correspond-
ing relation for color-stripped amplitudes is shown in

Fig. 4, where solid lines are gluons and dotted lines are
ghosts. A cross (×) at line j represents the factor
dj ¼ ϵj · kj, and a box (▪) at line j represents the factor
k2j . The cross comes from the derivative of the ghost field,
and the box is there to amputate the external leg in the Aω
term of Dω.
In tree order, this relation can be derived directly from

the gluon tree amplitude by replacing ϵi in a gluon line by
ki [34]. Let us illustrate how that is done for n ¼ 3
and i ¼ 2.
Using the notation δiðOÞ to indicate replacing ϵi in O by

ki, we get from Eq. (20) that

δ2ðVÞ ¼ ϵ1 · k2ϵ3 · ðk1 − k2Þ þ k2 · ϵ3ϵ1 · ðk2 − k3Þ
þ ϵ3 · ϵ1k2 · ðk3 − k1Þ

¼ −ϵ1 · k1ϵ3 · k1 þ ϵ1 · k3ϵ3 · k3 þ k21ϵ1 · ϵ3

− k23ϵ1 · ϵ3; ð28Þ

where momentum conservation has been used to obtain the
second line. These four terms are depicted by the four
diagrams in Fig. 5, where Figs. 5(a) and 5(b) correspond to
the first diagram on the right of Fig. 4, respectively, for
j ¼ 1 and j ¼ 3, and Figs. 5(c) and 5(d) correspond to the
second diagram. The ϵ3 · k1 factor in the first term comes
from the gluon-ghost vertex in 5(a). The minus signs came
from color ordering before color is stripped.
What is important for our subsequent discussion is that

δiðMÞ for a local gauge-invariant amplitude M consists of
terms proportional to dj and k2j for all j ≠ i, but it does not
contain terms involving k2i in leading order of the off-shell
parameters. We shall refer to this absence of k2i as partial
gauge invariance. It turns out that neither MP nor MQ is

FIG. 4. The Slavnov-Taylor relation relating the divergence of a gluon amplitude to the covariant derivative on the ghost lines of
gluon-ghost amplitudes.

FIG. 5. The Slavnov-Taylor identity for n ¼ 3.
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locally gauge invariant, though their sum is, but both have
partial gauge invariance. This property is useful in checking
the calculations ofMP andMQ and puts a constraint on the
allowed forms of MP and MQ.

B. MP does not have local gauge invariance but
it is partially gauge invariant

Let us compute δ2ðΨ13
13Þ to see whether δ2ðMPÞ satisfies

the Slavnov-Taylor identity. The change ϵ2 → k2 leads to
c02j → a02j; b2j ¼ bj2 → c0j2, which in turn leads to a change
of Ψ13

13 in the (nth) row and column containing C2j and B2j.
These changes are given by

δ2d2 ¼ k22;

δ2b2j ¼ δ2bj2 ¼ c0j2 ¼ cj2 −
1

2
dj ðj ¼ 1; 3Þ;

δ2b2j ¼ δ2bj2 ¼ c0j2 ¼ cj2 ðj ≠ 1;2; 3Þ;

δ2c2j ¼ δ2c02j þ
1

2
d2 ¼ a02j þ

1

2
d2 ¼ a2j −

1

2
k2j ðj ¼ 1; 3Þ;

δ2c24 ¼ δ2c024 ¼ a024 ¼ a24 þ
1

2
k23;

δ2c2n ¼ c02n ¼ a02n ¼ a2n þ
1

2
k21;

δ2c2j ¼ δ2c02j ¼ a02j ¼ a2j ðj ≠ 1; 2; 3;4; nÞ: ð29Þ

All other elements of bij; cij; di, and all elements of aij
remain the same.
We shall compute δ2ðMPÞ using the property that

subtracting the nth row (column) from the first row
(column) of δ2ðΨ13

13Þ does not change its Pfaffian. The first
row of Ψ13

13 consists of

ð0; A24; A25;…; A2;n−1; A2n;−C12;−C22;−C32;

− C42;…;−Cn2Þ;

none of which is affected by δ2 except −C22,

−δ2C22 ¼
X
j≠2

δ2c2j
σ2j

¼
�X

j≠2
A2j

�
−
1

2
k21

�
1

σ21
−

1

σ2n

�

−
1

2
k23

�
1

σ23
−

1

σ24

�
: ð30Þ

The nth row of Ψ13
13 consists of

ðC22; C24; C25;…; C2;n−1; C2n; B21; 0; B23; B24;…; B2nÞ;

which under δ2 is changed into

�
δ2C22;

δ2c24
σ24

;
δ2c25
σ25

;…;
δ2c2;n−1
σ2;n−1

;
δ2c2n
σ2n

;
δ2b21
σ21

; 0;
δ2b23
σ23

;

δ2b24
σ24

;…;
δ2b2n
σ2n

�

¼ ðδ2C22; Â24; A25;…; A2;n−1; Â2n; 0;−Ĉ12; 0;−Ĉ32;

− C42;…;−Cn2Þ; ð31Þ

where

Â24 ¼ A24 þ
1

2

k23
σ24

;

Â2n ¼ A2n þ
1

2

k21
σ2n

;

Ĉ12 ¼ C12 −
1

2

d1
σ12

;

Ĉ32 ¼ C32 −
1

2

d3
σ32

: ð32Þ

Subtracting the nth row (column) from the first row
(column) changes the first row into

−
1

2

�
0;

k23
σ24

; 0;…; 0;
k21
σ2n

;
d1
σ21

; 2δ2C22;
d3
σ23

; 0;…; 0

�
;

ð33Þ

and the first column into the same thing with a minus sign,
leaving the rest of δ2ðΨ13

13Þ unchanged. The modified matrix
contains only off-shell parameters dj, k2j in the first row
(column), so every term in Pfðδ2ðΨ13

13ÞÞ, and thus every
term in δ2ðMPÞ, must be proportional to an off-shell
parameter. Thus
(1) δ2ðMPÞ ¼ 0 for on-shell gluons with transverse

polarization, as we already know;
(2) k22 and all dj, k2j for j ≥ 4 are missing from δ2ðMPÞ,

and hence MP cannot satisfy the Slavnov-Taylor
identity in which all k2j and dj for j ≠ 2 must be
present. This is why MQ is needed to restore local
gauge invariance of the amplitude;

(3) MP is invariant under permutation of the particles,
and thus if k22 is absent from δ2ðMPÞ, k2i must be
absent from δiðMPÞ. By definition, MP has partial
gauge invariance;

(4) since both MF and MP have partial gauge invari-
ance, MQ must also have partial gauge invariance.

C. Partial gauge invariance of MQ for n= 4

Partial gauge invariance is a useful tool for verifying
calculations. Together with cyclic permutation invariance,
it provides a nontrivial constraint on the allowed forms of
MQ. Let us illustrate these points with n ¼ 4.
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For convenience, Eq. (24) ofMQ for n ¼ 4 is reproduced
below:

MQ ¼
�X4

i¼1

k2i

��
b12b34

s
þ b41b23

t

�

−
�
b12
s

ðd3c43 þ d4c34Þ þ
b41
t
ðd2c32 þ d3c23Þ

þ b23
t
ðd1c41 þ d4c14Þ þ

b34
s

ðd1c21 þ d2c12Þ
�
:

Let us use it to verify partial gauge invariance. Since
δ2ðd2Þ ¼ k22,

δ2ðMQÞ ¼ k22

��
c012b34

s
þ c032b41

t

�
−
�
b41c32

t
þ b34c12

s

��

þ � � �

¼ −
1

2
k22

�
d1b34
s

þ d3b41
t

�
þ � � � ;

where the ellipses represent terms without k22. Thus the k
2
2

coefficient of δ2ðMQÞ vanishes in the zeroth order of the
off-shell parameters. Similarly, the k2i coefficients of the
other δiðMQÞ also vanish in the zeroth order, thereby
verifying that MQ possesses partial gauge invariance.
Next, to illustrate the power of partial gauge invariance,

we will use it to constrain the possible dependence of
MQ. For simplicity, let us assume the absence of b13 and
b24. On dimensional grounds, each term of MQ must

contain ϵ1, ϵ2, ϵ3, ϵ4 once and k twice in the numerator.
The denominator could be either s ¼ s12 ¼ s34 or t ¼
s41 ¼ s23. The numerator must also contain at least one
off-shell parameter; therefore, its allowed forms are
confined to bijbklk2m and bijckpdl, with ðijklÞ being a
permutation of (1234).
With b13 and b24 absent, ðijÞ in these terms must be

either (12) or (34). First consider the term b12b34k2m=s12.
SinceMQ is cyclic permutation invariant, MQ must consist
of the combination

α

�
b12b34
s12

k2m þ b23b41
s23

k2mþ1 þ
b34b12
s34

k2mþ2 þ
b41b23
s41

k2mþ3

�

¼ α

�
b12b34

s
ðk2m þ k2mþ2Þ þ

b23b41
t

ðk2mþ1 þ k2mþ3Þ
�
:

ð34Þ

Under δi, to leading order bij turns into cji, so in order to
have partial gauge invariance, the bcd terms inMQ must be
the following if m ¼ 1 or 3:

−
α

s
½b34c21d1 þ c43b12d3� −

α

t
½b41c32d2 þ b23c14d4�:

Applying a similar argument to the case when m ¼ 2 or
4, and to the situations when the starting denominator is t
rather than s, we conclude that MQ must be equal to

MQ ¼ α1
s
½b12b34ðk21 þ k23Þ − b34c21d1 − c43b12d3� þ

α1
t
½b23b41ðk22 þ k24Þ − b41c32d2 − b23c14d4�

þ α2
s
½b12b34ðk22 þ k24Þ − b34c21d1 − c43b12d3� þ

α2
t
½b23b41ðk21 þ k23Þ − b41c32d2 − b23c14d4�

þ α3
t
½b12b34ðk21 þ k23Þ − b34c21d1 − c43b12d3� þ

α3
s
½b23b41ðk22 þ k24Þ − b41c32d2 − b23c14d4�

þ α4
t
½b12b34ðk22 þ k24Þ − b34c21d1 − c43b12d3� þ

α4
s
½b23b41ðk21 þ k23Þ − b41c32d2 − b23c14d4�:

The result agrees with Eq. (24) if we set α1 ¼ α2 ¼ 1 and
α3 ¼ α4 ¼ 0.

VII. n ≥ 5 AMPLITUDES

A. Organization of Feynman diagrams

Amplitudes of large n contain many Feynman diagrams,
and each contains many terms. These terms can be
organized in the following way.
A Feynman diagram without a four-gluon vertex con-

tains n polarization vectors, (n − 2) triple-gluon vertices,
and (n − 3) propagators, giving rise to a numerator of
the form bi1i2bi3i4…bi2k−1;i2kc

0
i2kþ1j2kþ1

…c0injna
0
j1j2

…a0j2k−3j2k−2 ,

where I ¼ ði1i2…inÞ is a permutation of ð12…nÞ. Terms
with different jm’s can mix through momentum conserva-
tion, but there is no way to combine terms with different k
or different I; thus, it is useful to group together terms with
the same k and I. A Feynman diagram contains terms with
different k’s and I’s, but each of its subdiagrams contains a
fixed k and a fixed I.
If four gluon vertices are present, each vertex simply

eliminates a propagator and a pair of k’s in the numerator.
For on-shell amplitudes, MFða0; b0; c0Þ ¼ MPða0; b0; c0Þ.

Instead of using Feynman rules and Feynman diagrams, the
amplitude can also be computed using Pfaffian diagrams
obtained from Eq. (1) [35,36]. Like the Feynman subdia-
grams, each Pfaffian diagram has a fixed k and a unique I
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structure, but unlike Feynman subdiagrams, Pfaffian dia-
grams do not contain internal momenta, so the necessity of
expanding internal momenta into sums of external momenta
is avoided, thereby resulting in fewer terms at the end [35,36].
For off-shell amplitudes, the decompositionMF ¼ MP þ

MQ again results in fewer terms.MP can be computed using
Pfaffian diagrams as before, simply by replacing a0 with a
and c0 with c. The computation of MQ is relatively simple
because many Feynman diagrams do not contribute to MQ,
and for those that do only some off-shell parameters appears.
Furthermore, partial gauge invariance can be used to check
the calculation. Thus both on shell and off shell, there is an
advantage to use the CHY formalism to compute Yang-Mills
amplitudes. It results in having fewer terms at the end.
We now illustrate the computation of part of MQ for

n ¼ 5 and how partial gauge invariance can be used to
check this calculation.

B. MQ for n= 5

Figure 6 shows all the subdiagrams that contribute to terms
proportional to b12=s12s45. When di appears in a subdia-
gram, its i is surrounded by a square.When k2i appears, its i is
surrounded by a circle. For example, no line in subdiagram
(h) has a square or a circle, so that diagram carries no off-
shell parameter and does not contribute toMQ. Lines 4 and 5
in Figs. 6(d) and 6(e) are not surrounded by a circle so k24 and
k25 are not present in the MQ of these diagrams.
The contributions to MQ from diagrams 6(a)–6(c) are

−
1

2
b12b45½ða13−2a14−a23þ2a25þa34−a35Þd3

þð−6c34−2c35þd3Þk21þð−2c34þ2c35þd3Þk22
þð4c32þ2c34þ6c35Þk23þð4c32þ2c34þ2c35−d3Þk24
þð4c32−2c34−2c35−d3Þk25�; ð35Þ

and the contributions from diagrams 6(f), 6(g), and 6(i) are

1

2
b12½4ðc54c43 − c45c53Þd3 þ c54ð−2c31 þ 2c32 − d3Þd4
þ c45ð2c31 þ 6c32 − d3Þd5�: ð36Þ

Let us use these expressions to verify partial gauge
invariance, which demands δiðMQÞ to contain no k2i term
in the zeroth order. This means that after we make the
replacements bij → cji; cij → aji; di → k2i , the coefficient
of k2i in MQ without any off-shell parameters must be
identically zero. This is true for all bij and all propagators,
so those terms proportional to the same product of b with
the same propagator in δiðQÞmust be identically zero in the
zeroth order as well.
The factor b12 in Fig. 6 will not be altered by δiðMQÞ

only for i ¼ 3, 4, 5, so without including more diagrams,
we can only verify partial gauge invariance from Fig. 6 for
i ¼ 3, 4, 5. Diagrams 6(d) and 6(e) do not contain k24 and
k25, so they can be ignored for the verification of i ¼ 4 and
i ¼ 5. It is then easy to see from Eqs. (35) and (36) that
partial gauge invariance is indeed valid for these two i’s.
If we concentrate on terms of MQ proportional to

b12b45=s12s45, only diagrams 6(a)–6(c) contribute and only
Eq. (35) is relevant. After applying δ3 to it, the leading
coefficient of − 1

2
k23b12b45=s12s45 is seen to be

ða13−2a14−a23þ2a25þa34−a35Þþð4a23þ2a43þ6a53Þ
¼2ða12−a45Þ¼ s12−s45;

where
P

j≠iaij ¼ 0 of Eq. (10), and the relations 2a12 ¼
s12; 2a45 ¼ s45, have been used. Since the propagator for
this term is 1=s12s45, the resulting numerator above cancels
one factor of the propagator, leaving the coefficient of the

FIG. 6. Subdiagrams contributing to b12=s12s45 terms of MQ for n ¼ 5.
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double pole to be zero, so the leading coefficient of
k23b12b45=s12s45 is indeed zero, as demanded by partial
gauge invariance.

VIII. CONCLUSION

It is difficult for an S-matrix theory to incorporate
interaction because it knows nothing about the local
space-time structure. An exception is the CHY theory, which
with the guide of Möbius invariance is able to reproduce
massless tree amplitudes for ϕ3, Yang-Mills, gravity, and
many other theories. In this article we investigated whether
this invariance can also guide us to construct the correct

off-shell amplitudes. For ϕ3 interaction, we know that it is
possible. For the Yang-Mills theory considered here, it turns
out that the modified off-shell CHY amplitude MP with
Möbius invariance is not locally gauge invariant and there-
fore is not the correct Yang-Mills amplitude. A complemen-
tary amplitude MQ must be added to restore local gauge
invariance, butMöbius invariance is no longer a useful guide
to its construction. Although neither MP nor MQ is locally
gauge invariant, both are partially gauge invariant, a useful
property that can be used to verify calculations and to
simplify the Yang-Mills amplitude in the way discussed in
the last section.
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