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Abstract In the present work, we investigate the effects
of dark matter (DM) on hybrid star properties. We assume
that dark matter is mixed with both hadronic and quark mat-
ter and interacts with them through the exchange of a Higgs
boson. The hybrid star properties are obtained from equa-
tions of state calculated with a Maxwell prescription. For the
hadronic matter, we use the NL3* parameter set, and for the
quark matter, the MIT bag model with a vector interaction.
We see that dark matter does not influence the phase tran-
sition points (pressure and chemical potential) but shifts the
discontinuity on the energy density, which ultimately reduces
the minimum mass star that contains a quark core. Moreover,
it changes considerably the star family mass-radius diagrams
and moves the merger polarizability curves inside the con-
fidence lines. Another interesting feature is the influence of
DM in the quark core of the hybrid stars constructed. Our
results show an increase of the core radius for higher values
of the dark particle Fermi momentum.

1 Introduction

Cosmological and astrophysical data suggest that ordinary
baryonic matter comprises only 5% of the constituents of
the Universe, the remainder is dark matter (approximately
23%) and dark energy (approximately 72%). Dark matter
(DM) is called dark because it does not absorb, reflect or emit
electromagnetic radiation and hence, it is very difficult to be
detected, but it certainly feels the gravitational force. There
are different candidates for dark matter, but its true nature
and origin are a mystery. Among the candidates, some are of
baryonic origin and others are non-baryonic. Strong candi-
dates are the weakly interacting massive particles (WIMPS).

a e-mail: chlenzi@ita.br (corresponding author)

For a review on the subject, the interested reader can look at
[1,2], among many other recent publications.

In recent years, many studies on the possibility that DM
can be a part of compact objects, such as neutron stars, and
affect their macroscopic properties, such as masses and radii,
have been considered. An admixture of DM with the hadronic
matter has been extensively discussed in the literature [3–21].
Along the same line, dark matter effects have been studied
in quark stars [22].

However, a recent study with a model-independent anal-
ysis based on the calculation of the sound velocity in dif-
ferent media suggests that quark cores are expected inside
massive neutron stars [23], as the ones detected in the last
years [24–26]. The idea of hybrid stars containing a hadronic
and a quark core is not a novelty and was first proposed in
1965 [27]. To build the equation of state (EoS) that describes
hybrid stars, two constructions are commonly used: the sim-
pler one considers that the hadronic and the quark phases are
in direct contact and just one of the two independent chemi-
cal potentials is continuous during the phase transition. It is
commonly named Maxwell construction. The other prescrip-
tion considers that both chemical potentials are continuous
and a mixed phase containing hadrons and deconfined quarks
has to be constructed. For a discussion on the differences
between stellar structures obtained with both constructions
and a review of the three above-mentioned types of neutron
stars (hadronic, quark, and hybrid), please refer to [28].

In the present work, we revisit the idea of hybrid stars
based on a Maxwell construction and include an admixture
of dark matter. For the hadronic phase, we use a relativis-
tic mean field model (RMF) within the NL3* parameter set
[29], for the quark phase the MIT bag model with a vec-
tor interaction, as proposed in [30] and DM is taken into
account by considering the kinetic terms only for different
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Fermi momenta and the neutralino mass equal to 200 GeV.
Details are given in the following section.

In the next sections, we introduce the formalism, present
our results and conclusions and finish with useful remarks.
Furthermore, in order to clarify the text, we remark that we
use natural units along the paper unless stated otherwise.

2 Formalism

In the next two subsections, we present the basic expressions
used to describe first hadronic matter and then quark matter
coupled to dark matter. We leave the construction of hybrid
stars with a mixture of dark matter for the Sect. 3.

2.1 Hadronic model coupled to dark matter

Higgs-portal models [31,32] are, between other ones regis-
tered in the literature, some of the approaches used to describe
dark matter. In this picture, the DM state is assumed to inter-
act with the Standard Model particles through the media-
tion of the Higgs boson. A possible and very simple way of
adopting this scenario is to consider DM particles and nucle-
ons simultaneously exchanging Higgs bosons, with the entire
system being described by an unique Lagrangian density. In
that sense, our study is based on a way of describing the
coupling between DM and strongly interacting particles by
exploring the Higgs sector of the theory. Recently, this pre-
scription has been widely applied [3–21], with the advantage
of being easily implemented and treated in hadronic relativis-
tic mean-field models. By following this method, we take for
the hadronic part of the hadron-quark model, the Lagrangian
density given by

LHAD = ψ(iγ μ∂μ − Mnuc)ψ + gσ σψψ − gωψγ μωμψ

− gρ

2
ψγ μ �ρμ �τψ + 1

2
(∂μσ∂μσ − m2

σ σ 2) − A

3
σ 3 − B

4
σ 4

− 1

4
FμνFμν + 1

2
m2

ωωμωμ − 1

4
�Bμν �Bμν + 1

2
m2

ρ �ρμ �ρμ, (1)

in which ψ , σ , ωμ, and �ρμ, represent, respectively, the
nucleon and the exchanged mesons σ , ω, and ρ. The masses
of such particles are denoted by Mnuc, mσ , mω, and mρ , and
the coupling constants are gσ , gω, gρ , A, and B. Further-
more, the tensors read Fμν = ∂μων − ∂νωμ and �Bμν =
∂μ �ρν − ∂ν �ρμ.

The coupling with dark matter is done as in Refs. [14–16],
i.e., we use the total Lagrangian density as follows

L = χ(iγ μ∂μ − Mχ )χ + ξhχχ + 1

2
(∂μh∂μh − m2

hh
2)

+ f
Mnuc

v
hψψ + LHAD, (2)

with the dark fermion given by the Dirac field χ with related
mass Mχ . In this approach, the interaction between χ and
ψ is due to the Higgs boson whose mass is mh = 125 GeV.
The strength of this interaction is controlled by the constant
f Mnuc/v, where v = 246 GeV is the Higgs vacuum expecta-
tion value. The constant ξ is the Higgs-dark particle coupling.
The mean-field approximation is used to compute the field
equations, in this case, given by

m2
σ σ = gσ ρs − Aσ 2 − Bσ 3 (3)

m2
ω ω0 = gωρ, (4)

m2
ρ ρ̄0(3) = gρ

2
ρ3, (5)

[γ μ(i∂μ − gωω0 − gρρ̄0(3)τ3/2) − M∗]ψ = 0, (6)

m2
h h = ξρDM

s + f
Mnuc

v
ρs (7)

(γ μi∂μ − M∗
χ )χ = 0, (8)

with τ3 = 1 for protons and −1 for neutrons. The effective
nucleon and dark particle masses are

M∗ = Mnuc − gσ σ − f
Mnuc

v
h (9)

and

M∗
χ = Mχ − ξh, (10)

respectively.
Proton and neutron vector densities are explicitly given by

ρp,n =
〈
ψ p,nγ

0ψp,n

〉
= γ

2π2

∫ kFp,n

0
k2 dk =

γ k3
F p,n

6π2 ,

(11)

with the total vector density being ρ = ρp+ρn . Furthermore,
one also has that the difference between these vector densities
(subindex 3) is

ρ3 =
〈
ψγ 0τ3ψ

〉
= ρp − ρn = (2yp − 1)ρ, (12)

with the proton fraction of the system denoted by yp = ρp/ρ.
Concerning the scalar densities (subindex s) of protons and
neutrons, they read

ρsp,n = 〈
ψ p,nψp,n

〉 = γ M∗

2π2

∫ kFp,n

0

k2dk

(k2 + M∗2)1/2 , (13)

where ρs = ρs p +ρsn is the total scalar density. With regard
to the dark matter sector, one has an analog definition for the
scalar density, namely,

ρDM
s = 〈χχ〉 = γ M∗

χ

2π2

∫ kDM
F

0

k2dk

(k2 + M∗2
χ )1/2 . (14)
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In the above expressions, γ = 2 is the degeneracy factor.
The Fermi momenta related to protons, neutrons, and dark
particles are, respectively, kF p,n and kDM

F .
The main thermodynamical quantities related to this

hadron-DM system, namely, energy density and pressure,
are obtained from the energy-momentum tensor Tμν . In our
case, Eq. (2) is used to calculate EHAD−DM = 〈T00〉 and
PHAD−DM = 〈Tii 〉 /3. This procedure gives rise to the fol-
lowing expressions,

EHAD−DM = m2
σ σ 2

2
+ Aσ 3

3
+ Bσ 4

4
− m2

ωω2
0

2
− m2

ρρ̄2
0(3)

2

+ gωω0ρ + gρ

2
ρ̄0(3)ρ3 + m2

hh
2

2
+ E p

kin + En
kin + EDM

kin ,

(15)

and

PHAD−DM = −m2
σ σ 2

2
− Aσ 3

3
− Bσ 4

4
+ m2

ωω2
0

2
+ m2

ρρ̄2
0(3)

2

− m2
hh

2

2
+ P p

kin + Pn
kin + PDM

kin , (16)

with the kinetic terms related to the dark particle given by

EDM
kin = γ

2π2

∫ kDM
F

0
k2(k2 + M∗2

χ )1/2dk, (17)

and

PDM
kin = γ

6π2

∫ kDM
F

0

k4dk

(k2 + M∗2
χ )1/2 . (18)

Proton and neutron kinetic terms are defined as in Eqs. (17)–
(18) by taking into account the following replacements:
kDM
F → kF p,n and M∗

χ → M∗.
In Ref. [14], the authors investigated the influence of f

and ξ by using the values of 0.001 � ξ � 0.1 [33] and
f = 0.3 ± 0.015 [34,35] and concluded that such values
do not play any significant role due to the following: the
dimensionless quantities f h/v and ξh/Mχ are shown to be
of order 10−13 and 10−14, respectively, as a function of the
density, as one can see in Fig. 2 of Ref. [14]. Since these
ratios explicitly appear in the definitions of M∗/Mnuc and
M∗

χ/Mχ , Eqs. (9) and (10), one verifies that M∗ and M∗
χ

are not affected by the respective contributions coming from
the Higgs boson, regardless the values used for f and ξ .
As shown in Ref. [14], the formulation used to couple dark
matter to the hadronic one leads to the modification in the
energy density and pressure only by adding the dark particle
kinetic terms. Therefore, it is totally safe to rewrite Eqs. (15)–
(16) as

EHAD−DM = m2
σ σ 2

2
+ Aσ 3

3
+ Bσ 4

4
− m2

ωω2
0

2
− m2

ρρ̄2
0(3)

2

+ gωω0ρ + gρ

2
ρ̄0(3)ρ3 + E p

kin + En
kin + EDM

kin , (19)

and

PHAD−DM = −m2
σ σ 2

2
− Aσ 3

3
− Bσ 4

4
+ m2

ωω2
0

2
+ m2

ρρ̄2
0(3)

2
+ P p

kin + Pn
kin + PDM

kin . (20)

The procedure we adopt in the present paper follows
Ref. [14], and it is based on the comparison between the
term involving the Higgs field Eh = m2

hh
2/2 and the term

Eσ = m2
σ σ 2/2, present in both energy density and pressure,

see Eqs. (15) and (16). Since Eh/Eσ ∼ 10−12 for a large
density range (see Fig. 3 of Ref. [14]), it is suitable to dis-
regard Eh in the equations of state, as we did in Eqs. (19)
and (20). Actually, this result comes from the smallness of
the scalar field h obtained from the solution of the field equa-
tion given in Eq. (7). The typical values for the ratio h/σ are
of order of 10−9. As a consequence of these numbers, one
has that the nucleon effective mass takes its traditional form
M∗ = Mnuc − gσ σ , and the dark particle remains constant,
i.e., M∗

χ = Mχ = 200 GeV (we also use here the lightest
neutralino as the dark particle candidate [36,37]). We use the
Fermi momentum to fix the DM content by using different
values for this quantity, namely, kDM

F = 0 (no DM included),
0.02 GeV, 0.04 GeV, and 0.06 GeV. This implies in constant
contributions to the energy density and pressure as well. We
remark that the particular value of kDM

F = 0.03 GeV ensures
that the ratio between the DM mass and the total neutron star
mass is around 1/6, according to Refs. [6,33]. However, it
is of interest to know how the DM content affects compact
stars properties, specially when compared with recent astro-
physical observations. In that sense, we treat this quantity as
a free parameter and investigate how the model reproduces,
as a function of kDM

F , these recent data.
As a last remark of this section, we emphasize that the

parametrization used in the hadronic part of the system is
the NL3* parameter set [29]. It was recently selected in a
systematic study in which finite nuclei properties were ana-
lyzed, as well as neutron stars ones [38]. This particular
parametrization, among other ones, reproduce experimen-
tal data of ground state binding energies, charge radii, and
giant monopole resonances of a set of spherical nuclei and it
is also in agreement with some stellar matter constraints.

2.2 Effective quark model: vector MIT bag model coupled
to dark matter

We use the thermodynamic consistent vector MIT bag model
introduced in Ref. [30,39] to describe the quark matter. In
this model, the quark interaction is mediated by the vector
channel Vμ, analogous to the ω meson in QHD [40]. Indeed,
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in this work, we consider that the vector channel is the ω

meson itself. Its Lagrangian density reads:

LvMIT =
{
ψ̄q

[
γ μ(i∂μ − gqV Vμ) − mq

]
ψq

−B + 1

2
m2

V V
μVμ

}
(ψ̄qψq), (21)

where mq is the mass of the quark q of flavor u, d or s, ψq

is the Dirac quark field, B is the constant vacuum pressure,
and (ψ̄qψq) is the Heaviside step function and reads:

(ψ̄qψq) =
{

1 if (ψ̄qψq) > 0,

0 if (ψ̄qψq) ≤ 0.
(22)

Therefore, inside the bag we have a Dirac field coupled to a
vector channel, while outside there is nothing, assuring that
the quarks exist only confined to the bag [41]. Applying the
Euler–Lagrange equations, we obtain the energy eigenvalue,
which at T = 0 K, is also the chemical potential:

Eq = μq =
√
m2

q + k2 + gqV Vμ, (23)

now, using Fermi–Dirac statistics, we are able to obtain the
EoS in mean field approximation. The energy density of the
quarks is:

εq = Nc

π2

∫ kFq

0
Eqk

2d3k, (24)

where Nc = 3 is the number of colors and kFq is the Fermi
momentum of the quark q. The contribution of the bag, as
well as the mesonic mass term, is obtained with the Hamilto-
nian: H = −〈L〉. The total quark energy density now reads:

Equarks =
∑
q

εq + B − 1

2
m2

vV
2
0 . (25)

The pressure is obtained via the relation

Pquarks =
∑
q

μqnq − Equarks (26)

where the sum runs over all the quarks.
The parameters utilized in this work are the same as pre-

sented in Ref. [30]. We use mu = md = 4 MeV, and
ms = 95 MeV. We also assume a universal coupling of quarks
with the vector meson, i.e., guV = gdV = gsV = gV , and
use some values of GV ; as defined below

GV =
(
gV
mV

)2

, (27)

in units of fm2. The value of the bag is taken as B1/4 =
158 MeV. The coupling of quark matter to dark matter is
done by considering the result presented in the last section,
namely, the modification in the equations of state is only due

Fig. 1 a Pressure as a function of the energy density of hybrid EoSs
for different values of kDM

F using one fixed value for the vector coupling
constant GV . b Squared sound velocity, v2

s = ∂P/∂ε. Full and dashed
lines indicate hadronic and quark sectors, respectively

to the inclusion of the DM kinetic terms in the energy density
and pressure, which leads to

EQ−DM = Equarks + EDM
kin (28)

and

PQ−DM = Pquarks + PDM
kin . (29)

3 Results

Next, we first explain how the hybrid star equation of state
is built and then discuss its main astrophysical properties.

3.1 Hybrid star equations of state

In this work we assume that the phase transition between
hadrons and quarks is described by the Maxwell construction,
thereby the pressure and baryonic chemical potential have the
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same value at the interface. The hybrid EoSs are constructed
by combining some different values of the dark matter con-
tribution, kDM

F associated with different vector coupling con-
stants, GV . The hadronic and quark models are described in
Sect. 2. As already pointed out in previous works, the larger
the dark matter Fermi momentum, the softer, the resulting
EoS [5–11]. This effect is due to the values chosen for kDM

F
and Mχ in our approach. Since the neutralino mass is fixed
as 200 GeV, and its Fermi momentum is around 104 times
smaller, the contribution of the DM pressure to the system
vanishes, see Eq. (18). The same does not occur to the DM
energy density, Eq. (17). Therefore, the resulting relation
between total pressure and total energy density is typical of a
system that is becoming less hard, i.e., the increasing of the
DM content softens the equation of state.

Figure 1a shows the hybrid EoSs for different values of
kDM
F when GV = 0.38 fm2 (beta-equilibrated matter on both

sides).
The “gaps” in the energy density are due to the Maxwell

construction. It is possible to note that in our formalism, the
dark matter contribution has no effect on the transition points
defined by the Gibbs conditions, Pt andμt . On the other hand,
the starting value, εi , of the phase transition is very sensitive
to kDM

F . In Table 1 we display some of the values associ-
ated with the first order phase transition, namely, Pt , �ε,
the chemical potential, μt , and εi for different dark matter
momentum, kDM

F and six values of the vector coupling con-
stant, GV . One well-known feature is that the transition point
moves to higher chemical potentials and pressures when GV

increases [39] and this fact can be easily observed in Table 1.
For the sake of completeness, we plot in Fig. 1b the

squared sound velocity for the models used in this work, from
where we can see the typical behaviour of the appearence of
kinks related to the onset of new degrees of freedom.

3.2 The mass-radius relation

To construct hydrostatic stellar configurations, we use the
Tolman–Oppenheimer–Volkoff (TOV) equations [42,43]
given by

dP

dr
= −m(r)ε(r)

r2

[1 + P(r)/ε(r)] [1 + 4πr3P(r)/m(r)
]

g(r)
,

(30)

dm

dr
= 4πr2ε, (31)

where g(r) = 1 − 2m(r)/r , m(r) is the gravitational mass
enclosed within the radial coordinate r , P(r) and ε(r) are the
pressure and energy density at a r , and we consider G = c =
1. To solve the TOV equations we need boundary conditions
at the stellar center and at the surface of the star and we take
m(r = 0) = 0 and P(r = R) = 0, respectively.

An important aspect to be considered when analyzing the
hybrid star stability is its response to small radial perturba-
tions, see for instance Refs. [44–50] for details. According
to radial oscillations theory, stars are considered stable when
the oscillations due to radial perturbations are well defined.
On the other hand, if the amplitude of the radial perturbations
presents an indefinite increase, an unstable star is character-
ized.

Hence, when we analyze radial oscillations in a hybrid
star scenario we have to take into account the kind of phase
transition that takes place. In stars whose EoSs are built
with a Maxwell construction, based on a first order phase
transition, the phase transition can be classified as “fast” or
“slow” [51]. The slow transitions occur when the timescale
of the reactions near the interface is much larger than radial
oscillations. As a consequence, the fluids on both sides of the
interface maintain their compositions and co-move with the
interface of phase transition. Such implications are encoded
in the junction conditions [51] and the consequences can be
seen in the mass-radius diagram, where it is possible to note
that the region of stable stars can be found beyond the max-
imum mass point [45–47]. On the other hand, in the case of
a fast phase transition, the timescale of reactions transform-
ing one phase into another near the interface is much smaller
than the one associated with radial perturbations. Thus, in this
scenario the mass flow through the interface occurs and, as
a consequence, all stars beyond maximum mass are unstable
[45]. In this point, it is important to mention that “fast” and
“slow” conversions represent the extreme limits of compar-
ison between timescales. However, there are other junction
conditions for intermediate timescales, which allow other
channels of stability, as we can see in Ref. [52] and refer-
ences therein.

In this work, we compute the frequency of the funda-
mental mode of radial perturbations in the same way as in
Refs. [45,53] and references therein. In general, in the stable
star configurations, this frequency verifies, ω2

0 > 0. In this
sense, for stars with one phase, the last stable star (when ω2

0
gets closer to zero) coincides with the point where the deriva-
tive ∂M/∂ρ changes its sign. However, in the case of stellar
configurations with a first-order phase transition with slow
conversions at the interface, fundamental modes can, gener-
ally, have values higher than zero after the point of maximum
mass. The star for which ω2

0 is closest to zero will be called
the last stable star, and the corresponding parameters such as
mass and radii will be called Mlast and Rlast , respectively.

The mass-radius diagram for the hybrid EoSs shown in
Fig. 1 can be seen in Fig. 2.

In all cases, we compute our results until the last stable
star in the light of radial perturbation taking into account slow
phase transitions. From the results, it is clear that the increase
of the dark matter contribution, represented in our model by
increasing values of kDM

F , decreases both radius and maxi-
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Table 1 Chemical potential (μt ), pressure (Pt ), energy density gap
(�ε) and initial value where the phase transition begins, εi , related to
the transition for different coupling constants of the vector MIT bag

model, GV , and dark matter Fermi momentum, kDM
F . Note that the dark

matter contribution is relevant only for the initial energy density, εi

GV (fm2) μt (MeV) Pt (MeV/fm3) �ε (MeV/fm3) kDM
F (GeV)

0.00 0.02 0.04 0.06

εi (MeV.fm−3)

0.20 1004.75 7.12 137.0 170.4 175.9 225.2 358.8

0.32 1128.79 37.28 84.4 292.4 297.8 348.7 482.4

0.35 1184.25 54.14 78.0 328.8 335.9 385.1 518.7

0.38 1252.91 77.93 79.8 372.6 379.6 428.8 562.4

0.50 1649.65 256.84 139.5 630.6 637.6 686.9 820.5

0.60 2141.42 574.19 245.3 1036.9 1044.0 1093.2 1226.8

Fig. 2 Mass as a function of
the radii for the hybrid EoSs for
different values of kDM

F and GV .
Full and dashed lines indicate
the hadronic and hybrid sectors
in the sequences, respectively. In
all diagrams are shown
constraints from the ∼ 2 M	
pulsars and NICER observations

mum mass of the star in all cases ofGV analyzed. This feature
is to due to the softening of the EoS, previously discussed,
imposed by the increase of the DM content in the system.
Note also that all models in Fig. 2 are in agreement with
constraints from the 2M	 pulsars and NICER observations
[24,25,54,55]. In particular, when GV = (0.2, 0.32) fm2 we
can see that the hybrid star sectors (dashed lines) are predom-
inant in the observable regions.

In Fig. 3 we show the pressure as a function of the radial
coordinate of a star with 2M	, for GV = 0.35 fm2 and three
different values of kDM

F , in order to study the impact of the
DM content in the quark cores of the hybrid star.

We mark the radial point where the interface between the
hadronic and the quark phases takes place. Notice that the
quark core increases with the increase of dark matter momen-
tum, i.e., DM favors the emergence of larger quark cores. This
is a direct consequence of the increase of εi as a function

of kDM
F , namely, the initial value where the phase transition

begins, as one can see in Table 1. In this sense, the results
shown in Table 2 confirm that the quark core size increases
with kDM

F . We remark that in our approach, transition pres-
sure, energy density gap, the format of the EoS for hadrons,
and the format of the EoS for quarks are exactly the same if
we compare the cases kDM

F = 0, and kDM
F 
= 0. The global

change due to the inclusion of DM is the shift of the entire
EoS, as we shown in Fig. 1a, i.e., the increasing of εi .

3.3 Tidal deformability parameter

Another important astrophysical constraint comes from the
GW170817 event, detected by the LIGO/Virgo gravita-
tional wave telescopes: the dimensionless tidal deformability
parameter �. The tidal deformability of a compact object is
a single parameter that quantifies how easily the object is

123



Eur. Phys. J. C (2023) 83 :266 Page 7 of 11 266

Fig. 3 Pressure as a function of the radial coordinate of a star with
2M	 for different contributions of dark matter. The red dots mark the
radial coordinate point where occurs the phase transition between quark
and hadronic phases

deformed when subjected to an external gravitational field.
Larger tidal deformability indicates that the object is easily
deformable. On the opposite side, a compact object with a
smaller tidal deformability parameter is smaller, more com-
pact, and it is more difficult to deform. It is defined as

� = 2k2

3C5
, (32)

where C = M/R is the compactness of the star. The param-
eter k2 is called the Love number and is related to the metric
perturbation. It is given by

k2 = 8C5

5
(1 − 2C)2[2 + 2C(yR − 1) − yR]

×
{

2C[6 − 3yR + 3C(5yR − 8)]
+4C3[13 − 11yR + C(3yR − 2) + 2C2(1 + yR)]
+3(1 − 2C)2[2 − yR + 2C(yR − 1)]ln(1 − 2C)

}−1
,

(33)

with yR ≡ y(R). The function y(r) is obtained through the
solution of r(dy/dr) + y2 + yF(r) + r2Q(r) = 0, solved
together with TOV equations. The quantities F(r) and Q(r)

read

F(r) = 1 − 4πr2[ε(r) − P(r)]
g(r)

, (34)

Q(r) = 4π

g(r)

[
5ε(r) + 9P(r) + ε(r) + P(r)

v2
s (r)

− 6

4πr2

]

−4

[
m(r) + 4πr3P(r)

r2g(r)

]2

, (35)

respectively, where the squared sound velocity is v2
s (r) =

∂P(r)/∂ε(r). We address Refs. [45,56–59], and references
therein, to the interested reader for a more complete discus-
sion about the Love number and its calculation procedure.
Regarding the calculation of y(r) for hybrid stars [45], we
emphasize that this quantity presents a singularity due to the
energy density discontinuity. In order to avoid this problem,
the following junction conditions must be imposed

y(rd + ε′) = y(rd − ε′) − �ε

m(rd)/(4πr3
d ) + P(rd)

, (36)

where rd represents the point inside the star where the phase
transition occurs. More details about the junction condition
can be found in [45,60] and references therein.

In Fig. 4, we show the dimensionless deformability param-
eter � as a function of the mass.

The first aspect that we can note is a decrease in � with
an increase in kDM

F for the same mass, result also verified
for purely hadronic stars [15]. This effect is a consequence
of the reduction of the star radius induced by DM. Since R
decreases as kDM

F increases, for a fixed mass M , it is expected
that � also decreases with kDM

F due to the relation given by
� ∼ Rα (between two stars with equal masses, the one with
large radius is more easily distorted by the tidal field). In par-
ticular, for a 1.4 M	 star, this relation was verified for differ-
ent hadronic models [61,62]. On the other hand, the opposite
is verified for � and GV , i.e., an empirical positive correla-
tion between � and GV is observed, in this case because GV

is the strength of a repulsive vector channel that increases the
pressure and, consequently, stiffens the EoS, and increases
the star radius [30]. The same results were observed in [57],
in which authors studied strange stars formed by quark matter
in the color-flavor-locked phase of color superconductivity,
described by a Nambu–Jona-Lasinio type model with gluon

Table 2 Quark core size, rcore,
the maximum radii and the
fraction, rcore/R for different
coupling constants of the vector
MIT bag model, GV , and dark
matter Fermi momentum, kDM

F .
Note that the dark matter
contribution increases the core
size

GV (fm2) kDM
F (GeV) rcore (km) R (km) rcore/R (%)

0.32 0.00 8.24 13.80 59.7

0.32 0.02 8.44 13.23 63.8

0.32 0.04 8.48 10.62 79.8

0.35 0.00 6.14 14.54 42.2

0.35 0.02 6.73 13.92 48.3

0.35 0.04 7.99 11.29 70.9

123



266 Page 8 of 11 Eur. Phys. J. C (2023) 83 :266

Fig. 4 Dimensionless tidal
deformability � as a function of
the gravitational mass for the
hybrid EoSs shown in Fig. 1. In
the cases where Gv = 0.2 fm2

and Gv = 0.32 fm2 we can see
that the hybrid branch fulfills the
constraint from the GW170817
event. On the other hand, the
cases where Gv = 0.38 fm2 and
Gv = 0.5 fm2 only hadronic
branch, when k f = 0.04, fulfills
the GW170817 event

contribution and vector interaction. In Fig. 4, notice that for
the cases GV = 0.2 fm2 and GV = 0.32 fm2 the hybrid
sector satisfies the GW170817 constraint, while in the other
diagrams, we see that only hadronic stars present this feature.

Furthermore, it is important to say that in compact stars
with just one phase, the larger the mass the smaller the tidal
deformability for mechanically stable stars [58]. However,
from Fig. 4 we see that � can change its behavior at larger
masses because when we consider a slow phase-transition
between hadronic and quark matters, we can find stable stars
beyond the maximum mass. This behavior is more evident
in case GV = 0.5 fm2.

In Fig. 5, we can see the relationship between tidal
deformability parameters, �1–�2, for binary compact star
mergers computed using the chirp mass of the GW170817
event:

MC = (M1M2)
3/5/(M1 + M2)

1/5 = 1.188 M	, (37)

and the ratio q = M1/M2 in the range (0.7–1.0). In this way
we can determine that the masses of the binary system vary
in the ranges 1.36 M	 < M1 < 1.64 M	 and 1.14 M	 <

M2 < 1.36 M	.
As it can be seen in Fig. 5 there are three different situa-

tions, namely:

(i) Mergers composed of two purely hadronic stars (Had-
Had);

(ii) Mergers composed of pairs of hybrid stars (Hyb-Hyb);
(iii) Mergers composed of a hybrid star and a hadronic star

(Hyb-Had).

Fig. 5 Dimensionless tidal deformability parameters, �1–�2, for
binary compact star mergers computed using the chirp mass of the
GW170817 event. The diagonal red line indicates the �1 = �2 bound-
ary and the other red lines denote the 50% and 90% confidence levels
determined by the event GW170817. Different colors mean different
values of kDM

F , and for each kind of line we find a value of GV (dashed
or dash-dotted lines), or pure hadronic modes (full line)

Note that only one merger with two purely hadronic stars
lies inside the 90% confidence region of GW170817. Fur-
thermore, it is possible to see that there are three cases where
the binary systems are composed of a pair of hybrid-hadronic
stars. However, only the case with GV = 0.35 fm2 is found
inside the observable region of LIGO/Virgo. In the same dia-
gram, we find four mergers with two hybrid stars inside the
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Table 3 Values of the maximum mass, Mmax , radii of the maximum
mass, R, the mass and radii of the last stable star, Mlast and Rlast , the
mass of the first hybrid star in the sequence, Mmin , and the values of

the radii and tidal deformability, R1.4 and �1.4, for different coupling
constants of the vector MIT bag model, GV , and dark matter Fermi
momentum, kDM

F

GV (fm2) kDM
F (GeV) Mmax (M	) R (km) Mlast (M	) Rlast (km) Mmin (M	) R1.4 (km) �1.4

0.2 0.00 2.15 11.47 2.15 10.25 0.64 12.91 201

0.2 0.02 2.12 11.17 2.12 11.17 0.57 12.43 170

0.2 0.04 1.97 10.05 1.97 10.05 0.33 10.72 96

0.32 0.00 2.21 12.35 2.20 12.14 1.53 15.44 1250

0.32 0.02 2.18 12.00 2.17 11.83 1.44 14.76 1059

0.32 0.04 2.00 10.45 2.00 9.58 1.10 11.74 332

0.35 0.00 2.28 12.73 2.27 12.40 1.81 15.44 1250

0.35 0.02 2.24 12.36 2.23 12.09 1.74 14.76 1059

0.35 0.04 2.05 10.45 2.04 9.58 1.38 12.08 458

0.38 0.00 2.35 13.04 2.34 12.65 2.07 15.44 1250

0.38 0.02 2.31 12.76 2.30 12.33 2.01 14.76 1059

0.38 0.04 2.10 11.02 2.09 10.81 1.64 12.17 483

0.5 0.00 2.68 13.99 2.62 13.20 2.68 15.44 1250

0.5 0.02 2.64 13.58 2.57 12.90 2.63 14.76 1059

0.5 0.04 2.36 11.97 2.32 11.33 2.34 12.17 483

90% confidence region, three of which lie inside the 50%
region. Finally, it is important to emphasize that the increase
of kDM

F tends to move the curves inside the confidence regions
of LIGO/Virgo. That is clear in all cases shown in Fig. 5. Note
also that all models analyzed in the �1 − �2 diagram result
in mass-radius sequences in agreement with constraints from
the NICER observations.

Finally, in Table 3, we can see a compilation of some of the
most relevant results that we have obtained with this work.

As it is clear in Table 3 the radii and tidal deformability of
the canonical stars, R1.4 and �1.4, decrease with kDM

F and,
with few exceptions – discussed next, increase with GV . In
some cases, the stars satisfy the GW170817 constraint. Note
also that for some parametrizations the values of R1.4 and
�1.4 are repeated. That occurs because in most cases the star
with 1.4M	 appears in the hadronic sector. It is important to
mention that the last stable star mass values, Mlast , computed
considering slow phase transitions, remained close to the
maximum mass, Mmax , except in the case of GV = 0.5 fm2,
where we can see the greatest differences between those val-
ues. This fact is directly related to the value of the gap, �ε,
in Table 1. The greater the gap, the greater the sequence of
the stable stars beyond the maximum mass [45].

4 Summary and concluding remarks

In this paper, we have studied hybrid stars by consider-
ing hadrons and quarks admixed with dark matter. On the
hadronic side, we have used a particular parametrization

(NL3*) consistent with some finite nuclei quantities, and for
the effective quark model, we have considered a version of the
MIT bag model in which a vector channel type interaction is
taken into account. As a consequence, we have investigated
how star properties vary by changing both, the strength of
this vector interaction as well as the Fermi momentum of
the dark particle assumed as the DM candidate, namely, the
lightest neutralino. Regarding this investigation, our main
conclusions are the following,

• Dark matter does not influence the phase transition point,
i.e., the (μt , Pt ) pair. Furthermore, the already known
feature [39] is again obtained: the strength of the vec-
tor interaction influences the transition from hadronic to
quark matter such that the larger the value of GV , the
higher the pressure and chemical potential at the transi-
tion point. However, as it always shifts the energy density
towards higher values and does not change the pressure,
the energy density gap is shifted with the increase of the
dark matter Fermi momentum.

• Dark matter makes the maximum stellar mass smaller
and deviates the radii of the whole star family to smaller
values, in agreement with previous studies [5–11], but
values compatible with recent NICER observational data
are easily obtained. In summary, we show that this par-
ticular effect is also verified for hybrid stars, constructed
with an admixture of DM on both sides.

• The observational data predicted by LIGO/Virgo Col-
laboration concerning the GW170817 event are more
easily attained with the inclusion of dark matter. This
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feature was also observed in the construction of purely
hadronic stars with DM included, as the reader can ver-
ify in [6,15,63]. Furthermore, we found hybrid-hybrid,
hybrid-hadronic, and hadronic-hadronic configurations
for the stars of the binary system, both containing DM,
consistent with the �1 × �2 region.

• Dark matter favours the appearance of large quark cores
and reduces the mass of the first hybrid star (Mmin).
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