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Exponential resummation of the QCD finite-density Taylor series has been recently introduced as an
alternative way of resumming the finite-density lattice QCD Taylor series. Unfortunately the usual
exponential resummation formula suffers from stochastic bias which must be subtracted before identifying
genuine higher-order contributions. In this paper, we present a new way of subtracting the stochastic bias at
the level of each individual gauge configuration, up to a certain order of either the Taylor series or the
cumulant expansion, by modifying the argument of the exponential. Retaining the exponential form of the
resummation allows us to also calculate the phase factor of the fermion determinant on each gauge
configuration. We present our results for the excess pressure, number density, and the average phase factor
and show that the new results contain less stochastic bias and are in better agreement with the QCD Taylor
series compared to the previous exponential resummation.
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I. INTRODUCTION

The phase diagram of strongly interacting matter as a
function of the temperature T and baryochemical potential
μB is of interest to theorists and experimentalists alike [1,2].
Since the system is nonperturbative except at very large
temperatures and chemical potentials, a reliable non-
perturbative approach is required for its study. At
μB ¼ 0, such an approach is provided by lattice QCD.
In recent years, lattice calculations have provided increas-
ingly precise determinations of several properties of the
quark-gluon plasma [3–8]. Unfortunately however, lattice
QCD breaks down at μB ≠ 0 due to the well-known sign
problem [9–12]. Despite recent progress [13–18], currently
the two most successful approaches in the QCD case are
analytical continuation from imaginary to real μB [19,20]
and Taylor expansion of the QCD partition function in the
chemical potential μB [4,6]. Despite their successes how-
ever, both methods need to be supplemented in order to
obtain reliable results beyond μ̂B ≡ μB=T ≃ 1–2 e.g. by
combining the results at imaginary μB with an alternative
expansion scheme [21] or by resumming the QCD Taylor
series through the use of Padé resummation [7,8,22,23].

An alternative way of resumming the QCD Taylor series
was recently proposed in Ref. [24]. The calculation of the
Taylor coefficients requires the nth μ̂B derivative DB

n of
ln detM, where μ̂B ≡ μB=T and detM is the fermion
matrix determinant. The contribution of DB

n to all orders
of the Taylor series can be shown to be expðDB

n μ̂
n
B=n!Þ.

Resumming the first N derivatives in this way leads
to an improved estimate for the QCD equation of state
(QEOS)which is equal to theNth-order Taylor estimate plus
all the higher-order contributions coming from DB

1 ;…; DB
N .

In this way, one captures some of the higher-order
contributions to the QEOS. Exponential resummation, as
we will call it, has been shown to have several advantages
over the original Taylor series [25]. Despite its advantages
however, one drawback of exponential resummation in the
lattice QCD case is the presence of stochastic bias in the
calculation of the exponential factor. Given N independent
random estimates W1;…;WN of an observable W, the
unbiased estimate of Wn is given by

UE½Wn� ¼
X

i1≠i2≠…≠in

Wi1 � � �Win

NðN − 1Þ � � � ðN − nþ 1Þ : ð1Þ

That is, an unbiased estimate is formed by averaging over
products of independent estimates. The contribution of
products of the same estimate is the stochastic bias, as in
the biased estimate of Wn e.g.

BE½Wn� ¼
�
1

N

XN
i¼1

Wi

�n
: ð2Þ
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Although stochastic bias vanishes in the limit N → ∞, for
finite N it can be comparable to the true value and hence
lead to a wrong estimate in some cases. We shall see in
Sec. II that the usual formula for the exponential factor
in exponential resummation contains stochastic bias.
Subtracting this bias therefore becomes necessary, espe-
cially at higher orders and for large values of μ̂B.
Unlike exponential resummation, stochastic bias is not a

problem in the Taylor coefficient calculations because there
exist efficient formulas for evaluating the unbiased product
of n operators inOðNÞ, rather thanOðNnÞ, time. Therefore
one way to avoid stochastic bias, while still going beyond
the Taylor series approach, is to replace exponential
resummation by a finite-order cumulant expansion [26].
This approach corrects for stochastic bias but at the expense
of all-orders resummation.1 Additionally, a knowledge of
the phase factor is also lost. Lastly, knowledge of the
analytic structure of the QCD partition function is also lost
since the cumulant expansion is a finite polynomial and is
hence analytic over the entire complex μB plane.
At present, we know of no way of obtaining a fully

unbiased estimate of a transcendental function such as the
exponential. Nevertheless, in this paper we will present a
way of subtracting the stochastic bias to a finite-order of
either the Taylor or the cumulant expansion while also
simultaneously retaining the exponential form of the
resummation. The formalism presented here thus manages
to preserve all-orders resummation. Moreover, depending
upon the order of the calculation and the value of μ̂B, it
may be sufficient if the bias is eliminated up to some finite
order N. In that case, our formalism yields results that are
close to fully unbiased resummation.
Our paper is organized as follows: In Sec. II, we will

outline the construction of the unbiased exponential. We
will begin by discussing Taylor expansion, simple (biased)
exponential resummation and the cumulant expansion.
We will then show how to modify the argument of the
exponential so that the stochastic bias is subtracted either to
order N of the Taylor series expansion or to some order M
of the cumulant expansion. The corresponding formulas are
Eqs. (13)–(16), respectively. However, we defer a proof of
the unbiasedness of the former to Appendix. After present-
ing the formalism, in Sec. III we will present results for the
excess pressure and number density for both finite isospin
as well as baryochemical potential up to fourth order in the
Taylor, biased resummation and unbiased resummation
approaches. We will also present results for the average
phase factor calculated using biased as well as unbiased
resummation. Finally, in Sec. IV, we will summarize our
results and conclusions.

II. UNBIASED EXPONENTIAL RESUMMATION

Consider lattice QCD with 2þ 1 flavors of rooted
staggered quarks defined on an N3

σ × Nτ lattice. The
partition function ZðT; μYÞ at temperature T and finite
chemical potential μY is given by

ZðT; μYÞ ¼
Z

DUe−SGðTÞ detMðT; μYÞ; ð3Þ

where SGðTÞ is the gauge action. The finite baryochemical
potential μB case corresponds to Y ¼ B whereas the finite
isospin chemical potential case corresponds to Y ¼ I. The
fermion determinant detMðT; μYÞ is given by

detMðT; μYÞ ¼
Y

f¼u;d;s

½detMfðmf; T; μfÞ�1=4; ð4Þ

with mu ¼ md and μu, μd and μs chosen appropriately
according to Y ¼ B, I.2 The excess pressure ΔPðT; μYÞ≡
PðT; μYÞ − PðT; 0Þ is given by

ΔPðT; μYÞ
T4

¼ 1

VT3
ln

�
ZðT; μYÞ
ZðT; 0Þ

�
; ð5Þ

where V is the volume of the system. From the
excess pressure, the net baryon or isospin density can be
calculated as

N ðT; μYÞ
T3

¼ ∂

∂ðμY=TÞ
�
ΔPðT; μYÞ

T4

�
: ð6Þ

Owing to the sign problem of lattice QCD, it is only
possible to evaluate Eq. (5) approximately e.g. by expand-
ing the right hand side in a Taylor series in μY and retaining
terms up to some (even) order N viz.

ΔPT
NðT; μYÞ
T4

¼
XN=2

n¼1

χY2nðTÞ
ð2nÞ!

�
μY
T

�
2n
: ð7Þ

This is the Nth-order Taylor estimate of ΔPðT; μYÞ. Only
even powers of μY appear in the expansion due to the
particle-antiparticle symmetry of the system. The calcu-
lation of the Taylor coefficient χY2n requires the calculation
of terms such as hðDY

1 ÞaðDY
2 ÞbðDY

3 Þc � � �i where

DY
nðTÞ ¼

∂
n ln detMðT; μYÞ

∂ðμY=TÞn
����
μY¼0

; ð8Þ

aþ 2bþ 3cþ… ¼ 2n, and the angular brackets h·i
denote the expectation value with respect to an ensemble

1It is also possible to avoid stochastic bias by calculating the
DB

n exactly [27]. However straightforward diagonalization is
expensive, even with the reduced matrix formalism, and one is
therefore constrained to work with lattices having a smaller aspect
ratio than the lattices considered here.

2μu ¼ μd ¼ μs ¼ 3μB for Y ¼ B. For Y ¼ I, μu ¼ −μd ¼ μI
and μs ¼ 0.
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of gauge configurations generated at the same temperature
T but at μY ¼ 0 [28,29]:

hOðTÞi ¼
R
DUOðTÞe−SGðTÞ detMðT; 0ÞR

DUe−SGðTÞ detMðT; 0Þ : ð9Þ

A typical lattice QCD calculation starts by calculating
the first N derivatives DY

1 ;…; DY
N stochastically using

Nrv ∼Oð102–103Þ random volume sources per gauge
configuration. With these derivatives, it is possible to
calculate all the Taylor coefficients up to χYN . The same
derivatives however also contribute to higher-order Taylor
coefficients through products such as DY

ND
Y
1 , ðDY

NÞ2, etc.
In fact, as already mentioned in Sec. I, the contribution of
DY

1 ;…; DY
N to all orders in μY can be resummed into an

exponential factor. One can thus write a resummed estimate
for ΔPðT; μYÞ as

ΔPR
NðT; μYÞ
T4

¼ N3
τ

N3
σ
ln

�
Re

�
exp

�XN
n¼1

DY
nðTÞ
n!

�
μY
T

�
n
���

:

ð10Þ

The symbol Re in the above equation stands for the real part
of a complex number. It can be proved that the DY

n are real
(imaginary) for n even (n odd). Hence the exponential in
Eq. (10) is a complex quantity. For real μY , the partition
function is real and the imaginary part vanishes when
averaged over all gauge configurations. For finite ensem-
bles, the imaginary part can be discarded provided that it is
zero within error.
The overline over DY

n denotes the average of the Nrv

stochastic estimates of DY
n . As Nrv → ∞, DY

n → DY
n and

Eq. (10) becomes exact. For finite Nrv however the expo-
nential factor contains stochastic bias, which can be seen
as follows: If we expand the exponential in a Taylor series,
then we get terms such as ðDY

mÞpðDY
nÞq � � � which contain

products of estimates coming from the same random vector
and are hence not truly independent estimates. Although
stochastic bias can be shown to be suppressed by powers of
N−1

rv , it can still be significant depending upon the observable
and the value of μY=T. It therefore needs to be subtracted in
order to obtain a better estimate of ΔPðT; μYÞ.
Stochastic bias is not an issue in the calculation

of the Taylor coefficients, although such products also

appear there, because there exist formulas for efficiently
evaluating the unbiased estimate of finite products
of the derivatives [26,30]. Taking advantage of this,
one way of avoiding stochastic bias is by expanding
Eq. (10) in a cumulant expansion and retaining the first M
terms viz.

ΔPC
N;MðT; μYÞ
T4

¼ N3
τ

N3
σ

XM
m¼1

Re

�
KmðXY

NðT; μYÞÞ
m!

�
;

XY
NðT; μYÞ ¼

XN
n¼1

DY
nðTÞ
n!

�
μY
T

�
n
: ð11Þ

The first four cumulants are given by

K1ðXY
NÞ ¼ hXY

Ni;
K2ðXY

NÞ ¼ hðXY
NÞ2i − hXY

Ni2;
K3ðXY

NÞ ¼ hðXY
NÞ3i − 3hXY

NihðXY
NÞ2i þ 2hXY

Ni3;
K4ðXY

NÞ ¼ hðXY
NÞ4i − 4hXY

NihðXY
NÞ3i − 3hðXY

NÞ2i2
þ 12hðXY

NÞ2ihXY
Ni2 − 6hXY

Ni4: ð12Þ

However, as we have already noted, with this approach
both all-orders resummation as well as knowledge of the
phase factor are lost. Therefore in this paper, instead of
expanding the resummed pressure we propose to modify
the argument of the exponential factor so that the
stochastic bias is subtracted up to a certain order of either
the Taylor or the cumulant expansion. Although the bias is
subtracted on a configuration-by-configuration basis, the
resulting expression for ΔPðT; μYÞ too can be shown
to be free of stochastic bias up to the same order
(Appendix).
We begin with the Taylor series case first. The analog of

Eq. (10), but with the exponential unbiased to OðμNY Þ, is
achieved by replacing DY

nðTÞ by CYnðTÞ i.e.

ΔPRðunbÞ
N ðT;μYÞ

T4
¼N3

τ

N3
σ
ln
�
Re

�
exp

�XN
n¼1

CYnðTÞ
n!

�
μY
T

�
n
���

;

ð13Þ

where the CYnðTÞ for 1 ≤ n ≤ 4 are given by

CY1 ¼ DY
1 ;

CY2 ¼ DY
2 þ ððDY

1 Þ2 − ðDY
1 Þ2Þ;

CY3 ¼ DY
3 þ 3ðDY

2D
Y
1 −DY

2 D
Y
1 Þ þ ððDY

1 Þ3 − 3ðDY
1 Þ2DY

1 þ2ðDY
1 Þ3Þ;

CY4 ¼ DY
4 þ 3ððDY

2 Þ2 − ðDY
2 Þ2Þ þ 4ðDY

3D
Y
1 −DY

3 D
Y
1 Þ þ 6ðDY

2 ðDY
1 Þ2 −DY

2 ðDY
1 Þ2Þ − 3ððDY

1 Þ2Þ2

− 12ðDY
2D

Y
1 D

Y
1 −DY

2 ðDY
1 Þ2Þ þ ðDY

1 Þ4 − 4ðDY
1 Þ3 DY

1 þ12ðDY
1 Þ2ðDY

1 Þ2 − 6ðDY
1 Þ4; etc: ð14Þ

QCD EQUATION OF STATE AT FINITE CHEMICAL … PHYS. REV. D 108, 034502 (2023)

034502-3



The first term in each equation is just DY
n . The remaining

terms are the “counterterms” that are added to subtract
the stochastic bias. A term such as DY

2D
Y
1 in the above

equations stands for the unbiased product of DY
2 and DY

1 .

Similarly, ðDY
1 Þ2 represents the unbiased square of DY

1 . By

contrast, a term such as ðDY
1 Þ2 represents the biased square

i.e. the square of the average of DY
1 . The exponential

constructed in this way is unbiased toOðμNY Þ. Wewill prove
in the Appendix that both the Taylor expansion of the
exponential as well as the excess pressure calculated from it
[Eq. (13)] are free of stochastic bias up to the same order.
As already noted, the first term in each CYn is simply DY

n.
In the limit Nrv → ∞, this term approaches the correct
value of DY

n . The rest of the terms for each CYn also cancel
each other out as Nrv → ∞, since in that limit the
distinction between biased and unbiased products vanishes.
Thus CYn → DY

n as Nrv → ∞ and hence Eq. (13) too
represents an all-orders resummation of the derivatives
DY

1 ;…; DY
N , the only difference this time being that the

stochastic bias is eliminated to OðμNY Þ.
Although Eq. (13) is an improvement over Eq. (10),

it is possible to do still better. In a typical lattice QCD
calculation, each stochastic estimate of DY

1 ;…; DY
N is

constructed using the same random source. Therefore,
the different stochastic estimates can be actually thought
of as different estimates of the operator XY

NðT; μYÞ, where
XY
NðT; μYÞ is as given in Eq. (11). It is possible to write a

version of Eq. (10) in which the bias is eliminated up to a
certain power of XY

N itself, by writing

ΔPRðunbÞ
N;M ðT; μYÞ

T4

¼ N3
τ

N3
σ
ln

�
Re

�
exp

�XM
m¼1

LmðXY
NðT; μYÞÞ
m!

���
; ð15Þ

where

L1 ¼ XY
N;

L2 ¼ ðXY
NÞ2 − ðXY

NÞ2;
L3 ¼ ðXY

NÞ3 − 3ðXY
NÞððXY

NÞ2Þ þ 2ðXY
NÞ3;

L4 ¼ ðXY
NÞ4 − 4ððXY

NÞ3ÞðXY
NÞ − 3ððXY

NÞ2Þ2

þ 12ðXY
NÞ2ððXY

NÞ2Þ − 6ðXY
NÞ4; etc: ð16Þ

We note that Eqs. (16) resemble the cumulant formulas
Eqs. (12), but with two differences:

(i) The expansion is in the space of all random
estimates for a single gauge configuration rather
than in the space of all gauge configurations.

(ii) The powers ðXY
NÞp are replaced by their respective

unbiased estimates ðXY
NÞp.

In the limit Nrv → ∞, the difference between biased and
unbiased estimates vanishes. Then the Lm are just the
cumulants of XY

N over the set of all random estimates for a
single gauge configuration. In the double limitM → ∞ and
Nrv → ∞ therefore, the argument of the exponential in

Eq. (15) is just the cumulant expansion of eX
Y
N . This

observation helps to clarify the meaning of bias subtraction;
It is the systematic (order-by-order) replacement of the

incorrect (biased) estimate eX
Y
N of the exponential factor by

the correct estimate eX
Y
N .

In addition to the excess pressure and the number density,
we have also presented results for the average phase factor.
As alreadymentioned, theDY

n are real (imaginary) for evenn
(for odd n) and hence the exponential factor is complex even
when μB is real.3 Although its imaginary part vanishes, the
real part still receives a contribution cosΘðT; μBÞ at μB ≠ 0
from the phase of the exponential. The average phase factor
hcosΘðT; μBÞi is a measure of the difficulty of the calcu-
lation at finite μB.

4 As μB is increased, hcosΘðT; μBÞi → 0
and the rapid fluctuations of the phase factor cause the
calculation to break down. Unlike a finite Taylor series
therefore, the resummation calculation cannot be carried out
to arbitrarily large μB.
Similar to the DY

n , it can be shown that the CYn [Eq. (13)]
too are real (imaginary) for even (odd) n. Similarly, the Lm
[Eq. (15)] too are real (imaginary) for even (odd) m when
μY is real. Hence, in each case we can define an average
phase factor hcosΘðT; μYÞi, where ΘðT; μYÞ is defined as

ΘR
NðT; μYÞ ¼ Im

�XN
n¼1

DY
nðTÞ
n!

�
μY
T

�
n
�
; ð17aÞ

ΘRðunbÞ
N ðT; μYÞ ¼ Im

�XN
n¼1

CYnðTÞ
n!

�
μY
T

�
n
�
; ð17bÞ

ΘRðunbÞ
N;M ðT; μYÞ ¼ Im

�XM
n¼1

LnðXY
NðT; μYÞÞ
n!

�
; ð17cÞ

where Im stands for the imaginary part of the argument. For
real μY , this is simply the sum over odd n. However, when
written as above, the formulas are also valid for the more
general case of complex μY . Note that it is not possible
to define a phase factor for the Taylor series. An approxi-
mation to the phase factor may be constructed by Taylor-
expanding Eqs. (17) to a particular order. However, the
approximation diverges as μY is increased and hence it

3For finite isospin, the odd DY
n are identically zero and hence

the exponential is real for both real and imaginary μI. For
complex μI however, the phase factor will also be complex for
the isospin case.

4This is true not just for the baryochemical potential μB but for
any chemical potential for which there is a sign problem e.g. μS.
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cannot be used to determine the breakdown of the
calculation.

III. RESULTS

To verify our formalism, we made use of the data
generated by the HotQCD Collaboration5 for its ongoing
Taylor expansion calculations of the finite density QEOS,
chiral crossover temperature and conserved charge cumu-
lants at finite density [4–6,8,31]. For these calculations,
Oð104–106Þ 2þ 1-flavor gauge configurations were gen-
erated in the temperature range 135 MeV≲ T ≲ 176 MeV
using a Symanzik-improved gauge action and the highly
improved staggered quark (HISQ) fermion action with
Nτ ¼ 8, 12 and 16 and Nσ ¼ 4Nτ [32,33]. The temperature
for each Nτ was varied by varying the lattice spacing a
through the gauge coupling β, and for each lattice spacing
the bare light and strange quark masses mlðaÞ and msðaÞ
were also tuned so that the pseudo-Goldstone pion and
kaon masses were equal to the physical pion and kaon
masses, respectively. The scale was determined using both
the Sommer parameter r1 and the kaon decay constant fK .
The temperature values quoted in this paper are from the
fK scale.
To calculate the Taylor coefficients, on each gauge

configuration the first eight derivatives Df
1 ;…; Df

8 for each
quark flavor f were estimated stochastically using 2000
Gaussian random volume sources for Df

1 and 500 sources
for the higher derivatives for both μB and μI . The
exponential-μ formalism [34] was used to calculate the
first four derivatives while the linear-μ formalism [35,36]
was used to calculate the higher derivatives. Using
this data, we calculated the excess pressure and number
density for both real and imaginary baryon as well as
isospin chemical potentials μB and μI , in the range
0 ≤ jμB;I=Tj ≤ 2, using 100,000 (20,000) configurations
per temperature for the baryon (isospin) case. Our results
were obtained onNτ ¼ 8 lattices for three temperatures viz.
T ∼ 157, 176 and 135 MeV. These temperatures were
chosen as being approximately equal to Tpc and
Tpc � 20 MeV, where Tpc ¼ 156.5ð1.5Þ MeV is the chiral
crossover temperature at μB ¼ 0 [5].

A. Results for finite isospin chemical potential

Before considering the finite μB case, we shall first
present our results for the simpler case of finite isospin
chemical potential μI . For finite μI , the fermion determinant
is real and hence there is no sign problem [37–39]. Hence
direct simulations of the system are possible unlike in the
μB case. As a result, both Taylor expansion of observables
as well as resummation of the Taylor series are unnecessary.

Our reason for studying the isospin case is that the absence
of the sign problem makes it possible to calculate observ-
ables up to much larger values of μ̂I compared to the μB
case, and it is precisely for these values that bias can
become significant. The isospin calculations thus allow for
a more stringent test of the formalism.
We present our results for ΔP=T4 and N =T3 for

T ¼ 157 MeV, resummed to second (fourth) order using
the different resummation formulas: Eq. (10) (red bands),
Eq. (13) (orange circles) and Eq. (15) (black squares), in the
top (bottom) two plots of Fig. 1. In each of the plots, we
also plot the Taylor expansion results (blue and green
bands) for purposes of comparison.
We find that the fourth-order Taylor results differ from

the second-order results for jμ̂2I j≳ 1. Turning next to the
resummation results, we find that the biased resummation
results agree well overall with the fourth-order Taylor
results for both real as well as imaginary chemical
potentials. The resummation results were obtained by
resumming the derivative DI

2 while the fourth-order
Taylor results also contain contributions from DI

4.
6 The

agreement between these two results would therefore
suggest that the latter two derivatives do not contribute
significantly for 0 ≤ jμ̂2I j ≤ 4. Before arriving at this con-
clusion however, it is necessary to account for the stochas-
tic bias that is present in the results of Eq. (10). In fact, the
unbiased resummation results, obtained using either
Eq. (13) or Eq. (15), lie in between the second- and
fourth-order Taylor results. Moreover the results from
Eqs. (13) and (15) are practically identical, which means
that it is sufficient to eliminate bias to Oðμ2I Þ for the range
of chemical potentials considered here. We conclude that
the derivatives DI

3 and DI
4 do in fact contribute at fourth

order, and that the biased resummation results will
approach the unbiased results in the limit Nrv → ∞.
Subtracting bias becomes important at higher orders

because the lower-order derivatives contribute through
higher powers e.g. the derivative DI

2 contributes at sixth
order via ðDI

2Þ3 respectively. In the lower two plots of
Fig. 1, we compare results from fourth-order resummations
with fourth- and sixth-order Taylor expansion results. The
sixth-order results differ only slightly from the fourth-order
results for both ΔP=T4 as well as N =T3 over the entire
range −4 ≤ μ̂2I ≤ 4. By contrast, the biased resummation
results differ significantly from both fourth- and sixth-order
Taylor results and are in fact nonmonotonic for N =T3 for
imaginary μI. Subtracting the bias to Oðμ4I Þ yields results
that are in very good agreement with the sixth-order
Taylor result. No further changes result if the bias is
further subtracted up to fourth order of the cumulant
expansion.

5A complete description of the gauge ensembles and scale
setting can be found in Ref. [6]. 6Note that DI

1 and DI
3 are identically zero.
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B. Results for finite baryon chemical potential

The resummed results for the QEOS at finite baryo-
chemical potential μB have been previously presented in
Ref. [24]. Those results were obtained using the biased
formula Eq. (10), but using the full set of 2000 independent
random estimates for DB

1 . The use of 2000 stochastic
estimates instead of the usual 500 does decrease the
stochastic bias, however it does not subtract the contribu-
tion to the bias coming from the higher-order derivatives.
By contrast, the unbiased exponential formulas treat all N
derivatives on an equal footing and subtract all contribu-
tions to the bias up to a certain order. The results we will
present here will show that the unbiased exponential is able
to achieve a greater reduction of the stochastic bias despite
working with only Nrv ¼ 500 stochastic estimates of the
derivatives DB

1 ;…; DB
N .

We present our results for ΔPðT; μBÞ and N ðT; μBÞ for
T ¼ 157 MeV in Fig. 2. The resummation results were
calculated using both the biased [Eq. (10)] as well as the
unbiased exponential [Eqs. (13) and (15)] (green diamonds
and black inverted triangles, respectively). Furthermore,
the biased resummation results were calculated using both
Nrv ¼ 500 (red squares) and Nrv ¼ 2000 (blue triangles)
for the operator DB

1 . In all four plots, we have also
compared the resummation results to Taylor expansion
results (purple and orange bands) as well.
In the upper two plots of Fig. 2, we compare the second-

order resummation results with second- and fourth-order
Taylor expansion results. We find that although the biased
resummation results calculated using Nrv ¼ 500 random

sources agree with the second-order Taylor results for
ΔPðT; μBÞ for real μB, in all other cases they differ from
the second and even from the fourth-order Taylor results.
When the same biased results are recalculated using Nrv ¼
2000 random estimates for DB

1 this difference decreases,
proving that the discrepancy is in fact due to stochastic bias.
In fact, even for ΔPR

2 ðT; μBÞ for real μB, the results
recalculated this way move away from the second-order
results and instead agreewith the fourth-order Taylor results.
By contrast the unbiased resummation results always agree
with the fourth-order Taylor expansion results, even though
the resummation was only carried out for the derivativeDB

2 .
Also, the agreement between the results of Eqs. (13) and (15)
prove that it is sufficient to eliminate bias to Oðμ̂2BÞ for the
two observables and for the range of chemical potentials
considered here. It is also clear from the figures that the
biased results will approach the unbiased results as Nrv is
increased. Note however that the latter were calculated using
only Nrv ¼ 500 stochastic estimates. Hence the unbiased
results clearly converge faster to the Nrv → ∞ limit as
compared to the biased results. The fourth-order resumma-
tion results too present a similar picture, as can be seen from
the lower two plots of Fig. 2.
The difference between biased and unbiased resumma-

tion becomes significant as one goes to lower temperatures.
In Fig. 3, we present the resummation results forΔPðT; μBÞ
and N BðT; μBÞ for T ¼ 135 MeV. The red squares are the
biased results obtained using Eq. (10) with 500 stochastic
estimates for DB

1 . The blue triangles were obtained using
the same approach but with 2000 stochastic estimates for

FIG. 1. ΔPðT; μIÞ=T4 andN ðT; μIÞ=T3, calculated for T ¼ 157 MeV using second- and fourth-order biased (red bands) and unbiased
resummations. Unbiased resummation results in cumulant (chemical potential) bases are plotted as black squares (orange circles);
different ordered Taylor expansion results are plotted in green and blue bands, respectively.
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DB
1 . We see that the former results are close to zero while

the latter are clearly nonzero and closer to the Taylor
expansion results. The results thus indicate the presence of
stochastic bias which needs to be subtracted before genuine
higher-order contributions can be identified.

We note that the fourth-order Taylor expansion results
only slightly correct the second-order results over the entire
range of μ̂B. The higher-order contributions of the operator
DB

2 are thus expected to be small. Indeed, the unbiased
resummation results, whether obtained using Eq. (13) or

FIG. 2. ΔPðT; μBÞ=T4 and N ðT; μBÞ=T3, calculated for T ¼ 157 MeV using second and fourth-order biased and unbiased
resummations and second-, fourth- and sixth-order Taylor expansions. The Taylor expansion results are plotted as purple and orange
bands, whereas unbiased resummation results for cumulant (chemical potential) bases are presented as black inverted triangles (green
diamonds). The biased results for 500 and 2000 random sources are shown as red squares and blue triangles, respectively.

FIG. 3. ΔPðT; μBÞ=T4 andN ðT; μBÞ=T3 for T ¼ 135 MeV using Taylor expansion and biased and unbiased resummation. All colors
and symbols are the same as in Fig. 2.
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Eq. (15), are in very good agreement with the fourth-order
Taylor series for all chemical potentials. Moreover, the
good agreement between the two approaches suggests that
it suffices to subtract the bias to Oðμ̂2BÞ for jμ̂2Bj ≤ 1.5.
We also note that the unbiased results were obtained

using only 500 stochastic estimates for DB
1 and DB

2 . While
Eqs. (13) or (15) are more complicated to evaluate than
Eq. (10), this calculational cost must be compared to the
cost of calculating and storing several extra random volume
source estimates of DB

1 for each of Oð105–106Þ gauge
configurations. Similarly, while it is also possible to avoid
stochastic bias by computing the DB

n exactly [27], the
method is expensive and does not scale easily to the lattice
volumes considered in this study. For these reasons, we
believe that it is advantageous to always use the unbiased
exponential for exponential resummation of the Taylor
series.
In Fig. 4, we plot the fourth-order Taylor expansion and

unbiased resummation results for ΔP=T4 and N =T3 as
functions of μ̂B ≡ μB=T for all three temperatures viz.
T ¼ 135, 157 and 176 MeV. The unbiased resummation
results agree quite well with the Taylor series results for
μ̂B ≲ 1.1–1.2. As μ̂B is increased however, the resummation
calculation breaks down at a value μ̂B ¼ μ̂cB that depends
upon the temperature. The breakdown happens because the
fluctuations of the phase factor cosΘðT; μBÞ of the expo-
nential increase rapidly, both in magnitude and sign, as μ̂B
approaches μ̂cB. The increase in fluctuations manifests as a
sudden increase in the error bars in the case of the number

density, while the pressure becomes indeterminate as the
argument of the logarithm [Eq. (5)] can become negative
during bootstrap resampling.
Owing to this increase in fluctuations, the expectation

value hcosΘðT; μBÞi of the phase factor vanishes for all
μ̂B ≥ μ̂cB. In Fig. 5, we plot our fourth-order results for
hcosΘðT; μBÞi, obtained using Eqs. (17a), (17b) and (17c)
with N ¼ 4, as a function of μ̂B for all three tempera-
tures. We find differences in the biased and unbiased
calculations that increase with decreasing temperature
and result in different values for μ̂cB. Especially at
T ¼ 135 MeV, we see that the unbiased results go to
zero around μ̂B ∼ 1.2, while the biased results vanish later,
around μ̂B ∼ 1.5.

IV. DISCUSSION AND OUTLOOK

Exponential resummation has been previously intro-
duced as a new way of resumming the finite-density
QCD Taylor series [24]. The contribution of the nth μ̂Y
derivative DY

nðTÞ of ln detMðT; μYÞ, whereMðT; μYÞ is the
fermion matrix, to all orders in μY is equal to
expðDY

nðTÞμ̂nY=n!Þ. In this way, the contribution of the first
N derivatives DY

1 ;…; DY
N that are calculated during the

Nth-order Taylor series calculation can be obtained to all
orders in μ̂Y . However as the DY

n are calculated stochas-
tically, the exponential contains stochastic bias which needs
to be subtracted before genuine higher-order contributions
can be identified.

FIG. 4. ΔPðT; μBÞ=T4 and N ðT; μBÞ=T3 calculated at fourth order in μB for all the three working temperatures T ¼ 135, 157 and
176 MeV presented in red, blue and black colors, respectively.

FIG. 5. Average phase factor hcosΘðT; μBÞi calculated according to Eq. (17) with N ¼ 4 for T ¼ 135, 157 and 176 MeV. The second
and fourth-order Taylor expansion results of hcosΘðT; μBÞi are shown as purple and orange bands, respectively.
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In this paper, we presented a new way of carrying out the
exponential resummation in which the stochastic bias was
subtracted, at the level of each individual gauge configu-
ration, up to a finite order in μ̂Y or the cumulant expansion.
We applied our formalism to calculate the excess pressure
and number density at finite isospin as well as finite baryon
chemical potential. Our results were in good agreement
with the Taylor series results, both for real as well as
imaginary chemical potentials, up to jμ̂2I j ≤ 4 (up to
jμ̂2Bj ≤ 2). We also calculated the average phase factor as
a function of μ̂B using both biased and unbiased resum-
mations. As observed previously [24], the vanishing of the
phase factor is accompanied by a breakdown of the
calculation. The value μ̂B ¼ μ̂cB at which the breakdown
occurs differs between the biased and unbiased resumma-
tions, with the differences increasing as the temperature is
decreased.
We also note that with exponential resummation, it is

possible to calculate the QCD partition function ZðT; μBÞ
itself. By comparison, the QCD Taylor series is an
expansion of lnZðT; μBÞ. The finite Taylor series is
analytic over the entire complex μ̂B plane, whereas our
resummation should make it possible to determine the
analytic structure of ZðT; μBÞ, which in turn could have
something to say about the location of the much sought
after QCD critical point [40–42]. There have already been
preliminary studies of the same [24,25], but we hope to
repeat these calculations in the future using our new
formalism in order to obtain more reliable estimates of
these important observables.
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APPENDIX: PROOF OF THE UNBIASEDNESS
OF EQ. (13) TO Oðμ4YÞ

In Sec. II, we stated without proof that Eqs. (13) and (14)
(with N ¼ 4) resum the first four derivatives DY

1 ;…; DY
4 in

such a way that the resulting exponential as well as the
excess pressure are both unbiased toOðμ4YÞwhere Y ≡ B, I.
To see why this is so, we start by Taylor-expanding the
exponential in Eq. (13). To Oðμ4YÞ, one obtains (with
μ̂Y ≡ μY=T):

exp

�X4
n¼1

CYnðTÞ
n!

�
μY
T

�
n
�
¼

X∞
k¼0

1

k!

�X4
n¼1

CYnðTÞ
n!

�
μY
T

�
n
�k

¼ 1þ
X4
k¼1

AY
k ðTÞ

μ̂kY
k!

þOðμ̂5YÞ;

ðA1Þ

where the AY
k , k ¼ 1;…; 4 are given by

AY
1 ðTÞ ¼ DY

1 ;

AY
2 ðTÞ ¼ DY

2 þ ðDY
1 Þ2;

AY
3 ðTÞ ¼ DY

3 þ 3DY
2D

Y
1 þ ðDY

1 Þ3;
AY

4 ðTÞ ¼ DY
4 þ 3ðDY

2 Þ2 þ 4DY
3D

Y
1 þ 6DY

2 ðDY
1 Þ2 þ ðDY

1 Þ4:
ðA2Þ

We note that the AY
k are just the derivatives of detM

w.r.t. μ̂Y [28]

AY
k ðTÞ≡ ∂

k

∂μ̂kY
½detMðT; μYÞ�μY¼0; ðA3Þ

but with the terms appearing in the derivative evaluated in an
unbiased manner. Now, as per Eq. (13), we need to extract
the real part of the exponential. This means that the above
series becomes an even series in μ̂Y , since the coefficients of
even (odd) powers of μY are purely real (imaginary). We
therefore have:

ΔPRðunbÞ
4

T4
¼N3

τ

N3
σ
ln

�
1þ

X2
k¼1

AY
2kðTÞ

μ̂2kY
ð2kÞ!þOðμ̂6YÞ

�
: ðA4Þ

We compute ΔPRðunbÞðT;μYÞ
4 =T4 in the above equation by

using the well-known formula for lnð1þ xÞ, namely

lnð1þ xÞ ¼ x −
x2

2
þOðx3Þ: ðA5Þ

Collecting coefficients upto Oðμ4YÞ, we find the following:

ΔPRðunbÞ
4

T4
¼ N3

τ

N3
σ

�hAY
2 i

2!
þ hAY

4 i− 3hAY
2 i2

4!

�
þOðμ6YÞ: ðA6Þ

This is just the Taylor series expansion ΔPT
4 ðT; μBÞ of the

excess pressure to fourth order i.e.

ΔPRðunbÞ
4

T4
¼ χY2 ðTÞ

2!

�
μY
T

�
2

þ χY4 ðTÞ
4!

�
μY
T

�
4

þOðμ6YÞ; ðA7Þ
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with the Taylor coefficients given by the usual
formulas [28]

χY2 ¼ N3
τ

N3
σ
hAY

2 i and χY4 ¼ N3
τ

N3
σ
ðhAY

4 i − 3hAY
2 i2Þ: ðA8Þ

Thuswe find that Eq. (13) reproduces the usual Taylor series
expansion of the excess pressure toOðμ4YÞ. Since the Taylor
coefficients are calculated in an unbiased manner, we
conclude that the exponential in Eq. (13) too is unbiased
to Oðμ4YÞ.
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Phys. Rev. D 105, 034513 (2022).

[8] D. Bollweg, J. Goswami, O. Kaczmarek, F. Karsch, Swagato
Mukherjee, P. Petreczky, C. Schmidt, and P. Scior (HotQCD
Collaboration), Phys. Rev. D 105, 074511 (2022).

[9] P. de Forcrand, Proc. Sci., LAT2009 (2009) 010
[arXiv:1005.0539].

[10] G. Aarts, F. Attanasio, B. Jäger, E. Seiler, D. Sexty, and I. O.
Stamatescu, AIP Conf. Proc. 1701, 020001 (2016).

[11] G. Aarts, Proc. Sci. CPOD2014 (2015) 012.
[12] K. Nagata, Prog. Part. Nucl. Phys. 127, 103991 (2022).
[13] G. Aarts, Proc. Sci. LAT2009 (2009) 024.
[14] M. Cristoforetti, F. D. Renzo, and L. Scorzato (Aurora-

Science Collaboration), Phys. Rev. D 86, 074506 (2012).
[15] G. Aarts, L. Bongiovanni, E. Seiler, D. Sexty, and I. O.

Stamatescu, Eur. Phys. J. A 49, 89 (2013).
[16] D. Sexty, Phys. Lett. B 729, 108 (2014).
[17] M. Fukuma, N. Matsumoto, and N. Umeda, arXiv:1912.

13303.
[18] M. Giordano, K. Kapas, S. D. Katz, D. Nogradi, and A.

Pasztor, J. High Energy Phys. 05 (2020) 088.
[19] S. Borsanyi, Z. Fodor, J. N. Guenther, S. K. Katz, K. K.

Szabo, A. Pasztor, I. Portillo, and C. Ratti, J. High Energy
Phys. 10 (2018) 205.

[20] C. Ratti, Rep. Prog. Phys. 81, 084301 (2018).
[21] S. Borsányi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz, P.

Parotto, A. Pásztor, C. Ratti, and K. K. Szabó, Phys. Rev.
Lett. 126, 232001 (2021).

[22] S. Datta, R. V. Gavai, and S. Gupta, Phys. Rev. D 95,
054512 (2017).

[23] M. Giordano and A. Pásztor, Phys. Rev. D 99, 114510
(2019).

[24] S. Mondal, S. Mukherjee, and P. Hegde, Phys. Rev. Lett.
128, 022001 (2022).

[25] S. Mukherjee, F. Rennecke, and V. V. Skokov, Phys. Rev. D
105, 014026 (2022).

[26] S. Mitra, P. Hegde, and C. Schmidt, Phys. Rev. D 106,
034504 (2022).

[27] S. Borsanyi, Z. Fodor, M. Giordano, J. N. Guenther, S. D.
Katz, A. Pasztor, and C. H. Wong, Phys. Rev. D 107,
L091503 (2023).

[28] C. R. Allton, M. Doring, S. Ejiri, S. J. Hands, O.
Kaczmarek, F. Karsch, E. Laermann, and K. Redlich, Phys.
Rev. D 71, 054508 (2005).

[29] R. V. Gavai and S. Gupta, Phys. Rev. D 71, 114014 (2005).
[30] P. Steinbrecher, The QCD crossover up to Oðμ6BÞ from

lattice QCD, https://pub.uni-bielefeld.de/download/2919977/
2920377/qcd-crossover.pdf.

[31] D. Bollweg, D. A. Clarke, J. Goswami, O. Kaczmarek, F.
Karsch, S. Mukherjee, P. Petreczky, C. Schmidt, and S.
Sharma, Phys. Rev. D 108, 014510 (2023).

[32] E. Follana et al. (HPQCD and UKQCD Collaborations),
Phys. Rev. D 75, 054502 (2007).

[33] A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H. T.
Ding, S. Gottlieb, R. Gupta, P. Hegde, U. M. Heller, F.
Karsch et al., Phys. Rev. D 85, 054503 (2012).

[34] P. Hasenfratz and F. Karsch, Phys. Lett. B 125, 308
(1983).

[35] R. V. Gavai and S. Sharma, Phys. Lett. B 749, 8 (2015).
[36] R. V. Gavai and S. Sharma, Phys. Rev. D 85, 054508 (2012).
[37] D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 86, 592

(2001).
[38] B. B. Brandt, G. Endrodi, and S. Schmalzbauer, Phys. Rev.

D 97, 054514 (2018).
[39] P. Adhikari, J. O. Andersen, and M. A. Mojahed, Eur. Phys.

J. C 81, 173 (2021).
[40] M. A. Stephanov, Phys. Rev. D 73, 094508 (2006).
[41] K. Fukushima and T. Hatsuda, Rep. Prog. Phys. 74, 014001

(2011).
[42] S. Mukherjee and V. Skokov, Phys. Rev. D 103, L071501

(2021).

SABARNYA MITRA and PRASAD HEGDE PHYS. REV. D 108, 034502 (2023)

034502-10

https://arXiv.org/abs/1007.2613
https://arXiv.org/abs/1007.2613
https://doi.org/10.1140/epja/s10050-021-00354-6
https://doi.org/10.1103/PhysRevD.90.094503
https://doi.org/10.1103/PhysRevD.90.094503
https://doi.org/10.1103/PhysRevD.95.054504
https://doi.org/10.1016/j.physletb.2019.05.013
https://doi.org/10.1016/j.physletb.2019.05.013
https://doi.org/10.1103/PhysRevD.104.074512
https://doi.org/10.1103/PhysRevD.104.074512
https://doi.org/10.1103/PhysRevD.105.034513
https://doi.org/10.1103/PhysRevD.105.074511
https://arXiv.org/abs/1005.0539
https://doi.org/10.1063/1.4938590
https://doi.org/10.22323/1.217.0012
https://doi.org/10.1016/j.ppnp.2022.103991
https://doi.org/10.22323/1.091.0024
https://doi.org/10.1103/PhysRevD.86.074506
https://doi.org/10.1140/epja/i2013-13089-4
https://doi.org/10.1016/j.physletb.2014.01.019
https://arXiv.org/abs/1912.13303
https://arXiv.org/abs/1912.13303
https://doi.org/10.1007/JHEP05(2020)088
https://doi.org/10.1007/JHEP10(2018)205
https://doi.org/10.1007/JHEP10(2018)205
https://doi.org/10.1088/1361-6633/aabb97
https://doi.org/10.1103/PhysRevLett.126.232001
https://doi.org/10.1103/PhysRevLett.126.232001
https://doi.org/10.1103/PhysRevD.95.054512
https://doi.org/10.1103/PhysRevD.95.054512
https://doi.org/10.1103/PhysRevD.99.114510
https://doi.org/10.1103/PhysRevD.99.114510
https://doi.org/10.1103/PhysRevLett.128.022001
https://doi.org/10.1103/PhysRevLett.128.022001
https://doi.org/10.1103/PhysRevD.105.014026
https://doi.org/10.1103/PhysRevD.105.014026
https://doi.org/10.1103/PhysRevD.106.034504
https://doi.org/10.1103/PhysRevD.106.034504
https://doi.org/10.1103/PhysRevD.107.L091503
https://doi.org/10.1103/PhysRevD.107.L091503
https://doi.org/10.1103/PhysRevD.71.054508
https://doi.org/10.1103/PhysRevD.71.054508
https://doi.org/10.1103/PhysRevD.71.114014
https://pub.uni-bielefeld.de/download/2919977/2920377/qcd-crossover.pdf
https://pub.uni-bielefeld.de/download/2919977/2920377/qcd-crossover.pdf
https://pub.uni-bielefeld.de/download/2919977/2920377/qcd-crossover.pdf
https://pub.uni-bielefeld.de/download/2919977/2920377/qcd-crossover.pdf
https://pub.uni-bielefeld.de/download/2919977/2920377/qcd-crossover.pdf
https://doi.org/10.1103/PhysRevD.108.014510
https://doi.org/10.1103/PhysRevD.75.054502
https://doi.org/10.1103/PhysRevD.85.054503
https://doi.org/10.1016/0370-2693(83)91290-X
https://doi.org/10.1016/0370-2693(83)91290-X
https://doi.org/10.1016/j.physletb.2015.07.036
https://doi.org/10.1103/PhysRevD.85.054508
https://doi.org/10.1103/PhysRevLett.86.592
https://doi.org/10.1103/PhysRevLett.86.592
https://doi.org/10.1103/PhysRevD.97.054514
https://doi.org/10.1103/PhysRevD.97.054514
https://doi.org/10.1140/epjc/s10052-021-08948-6
https://doi.org/10.1140/epjc/s10052-021-08948-6
https://doi.org/10.1103/PhysRevD.73.094508
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1103/PhysRevD.103.L071501
https://doi.org/10.1103/PhysRevD.103.L071501

