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1 Introduction

The conventional approach [1–4] to the computation of the mass of a quantum soliton is
as follows. One begins with a Hamiltonian which defines a theory and introduces a one-
soliton sector Hamiltonian that describes the same physics in terms of the field expanded
about the classical soliton solution. Both Hamiltonians are then regularized.1 One defines
the soliton mass to be the difference in the eigenvalues between a soliton ground state
computed using the one-soliton sector Hamiltonian and the vacuum computed using the
original vacuum Hamiltonian. This mass depends on the regulators of both Hamiltonians.
Then the regulators must both be taken to infinity. Unfortunately the mass found depends
on the choice of how these two regulators are matched as they are taken to infinity [6].

1In the canonical transformation approach of [5], one applies the transformation to a perturbative sector
Hamiltonian that includes counterterms. The Hamiltonian is not regularized, however, because it is not
expressed in terms of a regularized set of degrees of freedom — Fourier modes up to a cut-off momentum,
for example.
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Many prescriptions for this matching have been given in the literature, some leading to
the right or the wrong answer. In particular, a cut-off regularization of both Hamiltonians
with a matching of the cut-off energies leads to the wrong answer [6].

Several proposals for resolving this problem have appeared in the literature. The
dependence on the regulator matching condition arises because of the sharp dependence of
the energy on the regulator, which in turn is due to the quadratic ultraviolet divergence
in the one-loop energies. In ref. [7] the authors noted that this problem could be removed
by calculating not the energy itself, but rather its derivative with respect to an energy
scale, as its divergence will be suppressed by one power. In models simple enough for the
constant of integration to be fixed using dimensional analysis, this allows the kink mass to
become regulator independent and so one arrives at the right answer, even with the wrong
regulator matching condition. While this approach is sufficient for the calculation of the
mass in many models of interest, it is not applicable to models with multiple scales and it
cannot be used to calculate quantities with a steeper dependence on the energy scale.

These shortcomings motivated ref. [8] to try to design a prescription for an energy
cutoff that would reproduce the known one-loop kink mass. This led them to an appealing
physical principle, that normal modes sufficiently above the regulator scale should not be
affected by the soliton. Unfortunately this principle alone is not enough to fix the mass,
as one must also choose how the density of states scales at high energies and the mass
obtained depends on this choice.

The origin of the above difficulties is clear. In standard approaches, one transforms
an unregularized defining Hamiltonian to the soliton sector and then regularizes, whereas
one should apply the transformation directly to the regularized defining Hamiltonian. For
example, the original and accepted result for the one-loop correction to the soliton mass
in φ4 theory [1] was obtained using mode number regularization. Periodic boundary con-
ditions for a box of size L are applied to the relevant fluctuation operator in each sector,
and the same number of modes is kept in determining the contribution to the energy. This
procedure is motivated by the lattice, but the full Hamiltonian was not defined on a lattice
in [1]. If it had been, and the map between sectors given within this defining theory, then
there would be no ambiguity in determining how the perturbative and soliton sector reg-
ulators are related. While φ4-theory has certainly been studied on a finite spatial lattice
starting with [9], where the authors were interested in the phase structure of the vacuum,
a lattice version of the transformation from perturbative to soliton sectors has not been
developed.

A satisfactory resolution to the above issue, then, is to provide a finite-dimensional
lattice version of the soliton-sector canonical transformation given in [5, 10]. This is the
approach we will follow in a forthcoming paper. It is conceptually straightforward but
technically nontrivial, and one might ask if the same idea –transforming the regularized
Hamiltonian to the soliton sector– can be accomplished with a defining Hamiltonian regu-
larized by an energy (or momentum) cutoff. This paper answers in the affirmative.

Our work here follows in the footsteps of [8] in that we want to a obtain a consistent
energy cut-off regularization and renormalization for kinks in 1+1 dimensions. Like them,
we recognize that the kink profile and the normal modes will depend on the regulator and
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in a consistent treatment these dependencies should be considered, at least to be sure that
they do not affect the answer to any given question. However unlike them, we make no
conjectures. We derive our answer, as follows.

Consider a real scalar field φ(x, t). Let φ(x, t) = f(x) be the classical kink solution. The
quantum theory will be treated in the Schrodinger picture, and so fields will be considered
at a fixed t, and the t argument will be dropped from the notation. Now it is conventional
to expand φ(x) about the classical solution as

φ(x) = f(x) + η(x). (1.1)

In this case one could rewrite the Hamiltonian in terms of the quantum field η(x) [11].
We will choose a different approach. It is convenient to expand the field not about

f(x) but about a zero value of the field, so that higher moments of the field correspond to
interactions. This could be achieved using a passive transformation of the field φ → η =
φ − f . Instead, following [1], we will employ an active transformation of the Hamiltonian
and momentum functionals which act on the field. In particular we will transform the
Hamiltonian as

H[φ, π]→ H ′[φ, π] = H[φ+ f, π]. (1.2)

This definition of H ′ is sufficient for classical field theory, but in quantum field theory H
is regularized and we would like to define a regularized H ′.

The observation that underlies this paper is that (1.2) is a unitary equivalence. More
specifically, we construct a unitary operator Df which maps the vacuum sector to the kink
sector [12, 13]. We define the regularized kink sector Hamiltonian H ′ by conjugating the
defining, regularized vacuum-sector Hamiltonian H with this operator Df

H ′ = D†fHDf . (1.3)

In this sense, the momentum cutoff Λ in the kink sector is inherited from the vacuum sector.
Since the two Hamiltonians are similar, they will have the same eigenvalues and their
eigenvectors, which differ by the operator Df , represent the same states. The kink mass is
the difference between the eigenvalues of the eigenstates corresponding to the vacuum and
the kink ground state. These two eigenstates may be identified in either Hamiltonian, as
they have the same eigenvalues and states, however in perturbation theory we may only
find the vacuum as an eigenvector |Ω〉 of the vacuum Hamiltonian and the kink ground
state |K〉 as an eigenvector |0〉 of the kink Hamiltonian. In other words, once we have
used perturbation theory to find the kink ground state as an eigenstate |0〉 of H ′ then the
corresponding eigenstate of the defining Hamiltonian H is

|K〉 = Df |0〉. (1.4)

Note that this approach is not sensitive to the exact choice of Df . Any Df which allows
one to find the desired eigenvectors of H ′ is sufficient, since they all have the same eigen-
values and the eigenvectors are easily mapped between the various eigenspaces using Df .

The regulator Λ can then be taken to infinity unambiguously, using the renormaliza-
tion conditions, to arrive at the renormalized kink mass. This limit is unambiguous as
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there is only one regulator Λ which needs to be taken to infinity, not two. The similarity
transformation (1.3) guarantees the correct regulator for the kink Hamiltonian. Previous
approaches to an energy cutoff in these models failed2 because they regularized the kink
sector Hamiltonian by imposing an energy cutoff in the spectrum of normal modes, but we
will see that H ′ includes all normal modes.

In this work we only include an ultraviolet (UV) regulator since the computations
considered will not require infrared (IR) regularization. In forthcoming work we will present
a soliton-sector transformation for a finite-dimensional lattice regularization that uses both.

Infrared (IR) regularization via compactification or the inclusion of antisolitons is
common in the literature. However, such IR regularization is necessarily different for
the vacuum and soliton sectors, which makes it difficult to treat nonperturbative effects
which mix distinct sectors. Mixing may seem unimportant at weak coupling, but at strong
coupling it is responsible for the symmetry restoring phase transition in the φ4 theory. Also
the dual Thirring description for the Sine-Gordon model includes a mixing of two-fermion
and zero-fermion states.

We begin in section 2 by defining the regularized theory and the vacuum sector. Next
in section 3 we define the similarity transform which takes the defining Hamiltonian to
the kink sector Hamiltonian. Finally in section 4 we find the regularized kink sector
Hamiltonian and calculate its one-loop ground state and mass. When the regulator is
taken to infinity, we reproduce the known mass formula. Our notation is summarized in
table 1.

2 The vacuum sector

2.1 Classical theory

Let us consider a classical theory of a real scalar field φ̃(Λ)(x) and its conjugate π(Λ)(x) in
1+1 dimensions,

H =
∫
dxH, H = π(Λ)2(x) + ∂xφ̃

(Λ)(x)∂xφ̃(Λ)(x)
2 + Ṽ [gφ̃(Λ)]

g2 + δm2

2 φ̃(Λ)2 + γ̃ (2.1)

where we have included counterterms δm2 and γ̃ and a potential which in the case of the
φ4 double well theory is

Ṽ [gφ̃(Λ)] = 1
4
(
g2φ̃(Λ)2 − g2v2

)2
. (2.2)

The potential is always written as a function of gφ because this combination is dimension-
less. The notation (Λ) emphasizes that the quantity in question depends on the regulator
Λ. In this note we will focus on the φ4 theory, where renormalization conditions can be
chosen such that the coupling is not renormalized and the only required counterterms are
those proportional to δm2 and γ̃ [6]. However the strategy can be readily generalized to
other potentials by adding counterterms for the additional interactions and corresponding
renormalization conditions.

2In ref. [6] it was shown that they yield the wrong one-loop kink mass.
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Operator Description
φ(Λ)(x), π(Λ)(x) The real scalar field and its conjugate momentum
A‡

p, Ap Creation and annihilation operators in plane wave basis
B‡

k, Bk Creation and annihilation operators in normal mode basis
B‡

BO, BBO Creation/annihilation operators of odd shape modes
φB , πB Zero mode of φ(x) and π(x) in normal mode basis
::a Normal ordering with respect to A operators respectively
Hamiltonian Description
H The original Hamiltonian
H ′ H with φ(Λ)(x) shifted by regularized kink solution f (Λ)(x)
H ′

n The φ(Λ)n term in H ′

Symbol Description
Λ Momentum cutoff
f0(x) The unregularized classical kink solution
f1(x) First correction to the unregularized classical kink solution
f (Λ)(x) Regularized classical kink solution
Df Operator that translates φ(Λ)(x) by the regularized classical kink solution
gB(x) The kink linearized translation mode
gk(x) Normal modes including discrete modes
p Momentum
k Normal mode label
ωk, ωp The frequency corresponding to k or p
g̃ Inverse Fourier transform of g
State Description
|K〉, |Ω〉 Kink and vacuum sector ground states

Table 1. Summary of Notation.

We will be interested in cases in which V [gφ] has multiple minima, so that there is
a kink solution in the classical theory. To simplify the discussion below, we will shift the
field by the location of one of these minima, −v by defining

φ(Λ)(x) = φ̃(Λ)(x) + v, V [gφ(Λ)] = Ṽ [g(φ(Λ) − v)], γ = γ̃ + δm2

2 v2 (2.3)

leading to

H = π(Λ)2(x) + ∂xφ
(Λ)(x)∂xφ(Λ)(x)
2 + V [gφ(Λ)]

g2 + δm2

2 φ(Λ)2 − vδm2φ(Λ)(x) + γ. (2.4)

In the case of the φ4 double well one obtains

V [gφ(Λ)] = g2φ(Λ)2

4
(
gφ(Λ) − 2gv

)2
. (2.5)

2.2 Quantum theory

As the action has the dimensions of ~, the operator φ(Λ)(x) has dimensions O(~1/2) while
g has dimensions O(~−1/2). Therefore v also has dimensions O(~1/2). This means that in
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the quantum theory, they will appear in the dimensionless combinations g~1/2 and v~−1/2.
Thus in the semiclassical expansions below, each power of v will be treated as one power
of 1/g.

We will not directly quantize φ(Λ)(x) and π(Λ)(x). Instead we will decompose

φ(Λ)(x) =
∫ Λ

−Λ

dp

2πφpe
−ipx, π(Λ)(x) =

∫ Λ

−Λ

dp

2ππpe
−ipx (2.6)

and we will quantize φp and πp by imposing

[φp, πq] = 2πiδ(p+ q). (2.7)

This note will be entirely in the Schrodinger picture, and so (2.7) defines Schrodinger
operators φ(Λ)(x) and π(Λ)(x). They are not local fields; indeed they satisfy

[
φ(Λ)(x), π(Λ)(y)

]
= i

∫ Λ

−Λ

dp

2πe
−ip(x−y) = iα(x− y), α(x) = sin(Λx)

πx
. (2.8)

The nonlocality of the commutator arises from the fact that the integration in the mo-
mentum space is cut off by Λ. Note that locality is restored as the cutoff is removed
because

lim
Λ→∞ α(x) = δ(x). (2.9)

Interestingly, (2.8) are the same canonical commutation relations found in Pearson’s
thesis [14, 15] (see also [16]) for an infinite lattice regularization with lattice spacing 2π/Λ.
In this context, φ(Λ), π(Λ) are interpolating fields for underlying lattice degrees of freedom
that do satisfy canonical commutation relations. Using the interpolating fields to define
the regularized Hamiltonian, as we have done here, implies that our theory is equivalent to
the infinite lattice theory of Pearson. We do not utilize the lattice language in this paper
since it is not advantageous for the computations we perform. We will utilize it, however,
in forthcoming work when we construct a finite-dimensional version of the soliton-sector
canonical transformation.

Our problem is now well-defined. One can insert (2.6) into (2.4) to obtain the Hamil-
tonian as a function of the operators φp and πp. The vacuum and the kink ground state
will be eigenstates of this Hamiltonian, and the difference between their eigenvalues is the
kink mass. The Schrodinger picture is sufficient for determining the spectra and so we need
never introduce time, and the nonlocality of our operators will not impede our narrow task.

To do this concretely, we will choose the renormalization condition

H|Ω〉 = 0 (2.10)

and will expand

|Ω〉 =
∞∑
i=0
|Ω〉i, |Ω〉i = O(g2i), γ =

∞∑
i=0

γi, γi = O(g2i). (2.11)
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Let us begin with the case i = 0. We are interested in terms in H with no powers of g. Let
us assume for the moment that δm2 contains only terms of order at least O(g2). We will
see shortly that this choice is consistent. Then we are left with

H0 =
∫
dxH0, (2.12)

H0 = π(Λ)2(x) + ∂xφ
(Λ)(x)∂xφ(Λ)(x) +m2φ(Λ)2(x)

2 + γ0, m =
√
V ′′[0].

For the φ4 double well, m =
√

2vg. Define the linear combinations

A‡p = φp
2 − i

πp
2ωp

, A−p = ωpφp + iπp, ωp =
√
m2 + p2 (2.13)

where the Hermitian conjugate of Ap is 2ωpA‡p. The canonical commutation relations (2.7)
imply that these each satisfy a Heisenberg algebra

[Ap, A‡q] = 2πδ(p− q). (2.14)

To impose (2.10) at O(g0), it suffices to consider |Ω〉0 which is the free vacuum

Ap|Ω〉0 = 0. (2.15)

The definitions (2.13) are easily inverted

φp = A‡p + A−p
2ωp

, πp = i

(
ωpA

‡
p −

A−p
2

)
. (2.16)

Substituting this into (2.12) one finds

0 = H0|Ω〉0 =
∫
dx

(
γ0 +

∫ Λ

−Λ

dp

2π
ωp
2

)
|Ω〉0. (2.17)

and so the leading order counterterm is

γ0 = −
∫ Λ

−Λ

dp

2π
ωp
2 = − 1

4π

[
ΛωΛ +m2ln

(Λ + ωΛ
m

)]
(2.18)

where we have integrated by parts. We have now satisfied the renormalization condi-
tion (2.10) at order O(g0).

To fix δm2 we will impose another renormalization condition, that tadpoles vanish.
Recall that δm2 is a series in g beginning at order O(g2). For the computation of these
leading order terms, the no-tadpole condition is equivalent to imposing that H|Ω〉0 contains
no terms of the form A‡|Ω〉0 at O(g). The relevant O(g) terms in the Hamiltonian are

H1 =
∫
dxH1, H1 = g

V (3)[0]φ(Λ)3(x)
6 − vδm2φ(Λ)(x) (2.19)

where V (n)[0] is the nth derivative of V and we recall that v is of order O(1/g).
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Using the terms with a single A‡∫
dxφ(Λ)(x)|Ω〉0 = A‡0|Ω〉0,

∫
dxφ(Λ)3(x)|Ω〉0 ⊃ 3

∫ Λ

−Λ

dp

2π
1

2ωp
A‡0|Ω〉0 (2.20)

one obtains
δm2 = g

2vV
(3)[0]

∫ Λ

−Λ

dp

2π
1

2ωp
= g

4πvV
(3)[0]ln

(Λ + ωΛ
m

)
. (2.21)

In the case of the φ4 double well this is

δm2 = −3g2

2π ln
(Λ + ωΛ

m

)
. (2.22)

2.3 The relation to normal ordering

One may define a normal ordering on the operators A‡ and A by placing all of the former
on the left. We will denote this normal ordering : O :a for any operator O. It is easily
evaluated on the operators appearing in the Hamiltonian at the orders considered above

π(Λ)2(x) = : π(Λ)2(x) :a +
∫ Λ

−Λ

dp

2π
ωp
2 , (2.23)

φ(Λ)2(x) = : φ(Λ)2(x) :a +
∫ Λ

−Λ

dp

2π
1

2ωp
,

(
∂xφ

(Λ)(x)
)2

= :
(
∂xφ

(Λ)(x)
)2

:a +
∫ Λ

−Λ

dp

2π
p2

2ωp
,

φ(Λ)3(x) = : φ(Λ)3(x) :a +3φ(Λ)(x)
∫ Λ

−Λ

dp

2π
1

2ωp
.

Inserting these into (2.12) and (2.19) one finds

H0 = : π(Λ)2(x) + ∂xφ
(Λ)(x)∂xφ(Λ)(x) +m2φ(Λ)2(x) :a

2

H1 = g
V (3)[0] : φ(Λ)3(x) :a

6 . (2.24)

We see that order by order, properly chosen renormalization conditions are equivalent
to a Hamiltonian that is normal ordered from the beginning. More specifically, the required
renormalization condition sets to zero all diagrams with a loop involving a single vertex.
In the case of two-dimensional scalar field theories, normal ordering is sufficient to remove
all divergences (see for example ref. [17]). Thus it would be possible to take the limit
Λ→∞ now. This would reduce the problem to that solved already in refs. [18, 19] at one
loop and [20] at two loops where it was shown that one arrives at the correct kink mass.
However, we will not follow this approach as it will not generalize to theories with fermions
and theories in higher dimensions, which motivate this line of research.

In the case of the φ4 theory, with the renormalization conditions of subsection 2.2, the
total Hamiltonian density is then

H = : π(Λ)2(x) :a + : ∂xφ(Λ)(x)∂xφ(Λ)(x) :a
2 + : V [gφ(Λ)] :a

g2 + γ̃1 +
∞∑
i=2

γi. (2.25)
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Here we have shifted the subleading counterterm to absorb the contribution from Wick
contractions appearing in the normal ordering of the φ4 interaction

γ̃1 = γ1 −
3g2

4

(∫ Λ

−Λ

dp

2π
1

2ωp

)2

. (2.26)

In refs. [21, 22], the calculation of γ̃1 was reviewed and it played an essential role in the
elimination of IR divergences in the calculation of the two-loop kink mass. The shifted
counterterm and all successive terms are finite at Λ → ∞, with the first few given in
eq. (47) of ref. [23]. In the case of a general potential, normal ordering again leads to such
infinite shifts and finite remainders.

3 Defining the kink sector

3.1 The similarity transformation

Let f(x) be a real-valued function. Define the displacement operator

Df = exp
(
−i
∫
dxf(x)π(Λ)(x)

)
(3.1)

and
f̃(p) =

∫
dxf(x)eipx. (3.2)

This integral is often divergent. Our prescription for defining f̃(p) in this case is described
in A.

Exponentiating the commutators[∫
dxf(x)π(Λ)(x), Aq

]
= i

∫
dp

2πωpf̃(−p)
[
A‡p, Aq

]
= −iωqf̃(−q) (3.3)

and [∫
dxf(x)π(Λ)(x), A‡q

]
= −i

∫
dp

2π
1
2 f̃(−p)

[
A−p, A

‡
q

]
= − i2 f̃(q) (3.4)

one finds

[Df , Ap] = −ωpf̃(−p)Df ,
[
Df , A‡p

]
= − f̃(p)

2 Df . (3.5)

Therefore

[Df , φ(Λ)(x)] =
∫ Λ

−Λ

dp

2π

(
[Df , A‡p] + [Df , A−p]

2ωp

)
e−ipx = −f (Λ)(x)Df (3.6)

where
f (Λ)(x) =

∫ Λ

−Λ

dp

2π f̃(p)e−ipx (3.7)

satisfies f (Λ)(x) = f(x) if f̃(q) = 0 for all q with |q| > Λ. Note that Df commutes with
π(Λ) as [πp, πq] = 0.

– 9 –



J
H
E
P
0
1
(
2
0
2
3
)
0
7
3

Finally we are ready to introduce the similarity transformation at the heart of our
construction. The kink sector Hamiltonian H ′ is defined by

D†fH[φ(Λ)(x), π(Λ)(x)]Df = H ′[φ(Λ)(x), π(Λ)(x)] = H[φ(Λ)(x) + f (Λ)(x), π(Λ)(x)] (3.8)

for a suitable choice of f(x), which will be made momentarily. In the rest of this note we
will be concerned with H ′. As it is similar to H, it has the same spectrum. In particular if

H|K〉 = EK |K〉 (3.9)

then, using (1.4),
H ′|0〉 = EK |0〉 (3.10)

and so H ′ may be used to compute the energy of any state, and in particular the energy
EK of the kink ground state.

3.2 The kink-sector tadpole

Let us consider f (Λ)(x) to be of order O(1/g). Then the kink sector Hamiltonian H ′ can
be expanded order by order in the coupling g

H ′ =
∞∑
i=0

H ′i, H ′i =
∫
dxH′i (3.11)

where each H ′i and H′i is of order O(gi−2). At leading order one finds the classical energy
corresponding to the field configuration φ(Λ)(x) = f (Λ)(x)

H′0 =

(
∂xf

(Λ)(x)
)2

2 + V [gf (Λ)(x)]
g2 . (3.12)

The kink-sector tadpole appears at the next order:

H ′1 =
∫
dxφ(Λ)(x)

[
−∂2

xf
(Λ)(x) + V ′[gf (Λ)(x)]/g

]
. (3.13)

We will define f (Λ) by imposing that the expression in brackets vanishes at momenta below
the cutoff3 ∫

dx
[
−∂2

xf
(Λ)(x) + V ′[gf (Λ)(x)]/g

]
eipx = 0, |p| ≤ Λ (3.14)

which will automatically eliminate the kink sector tadpole as φΛ(x) satisfies the opposite
condition ∫

dxφ(Λ)(x)eipx = 0, |p| > Λ. (3.15)

In the case Λ → ∞ this condition corresponds to the classical equations of motion for a
time-independent configuration in the unregularized theory. Thus f (∞)(x) will be equal to
the classical kink solution f0(x) and H′0 will reduce to its classical mass density.

The definition (3.14) can be solved as an expansion in large Λ about the classical
solution f0(x). To illustrate this procedure, in A we find the leading correction in the case
of the φ4 double well and show that it is exponentially small in Λ/m.

3Note that, although the higher modes of f (Λ) vanish, those of the V ′ term do not vanish. However they
do not contribute to the tadpole in eq. (3.13) as the higher modes of φ(Λ) vanish.

– 10 –



J
H
E
P
0
1
(
2
0
2
3
)
0
7
3

4 The kink sector

4.1 The setup

In this section we will restrict our attention to the φ4 double well theory. As noted above,
an analogous treatment of models with other interactions generically requires additional
counterterms multiplying various powers of φ(Λ). Inserting (2.25) into (3.8) one finds that
the g-independent terms are

H ′2 =
∫
dx

: π(Λ)2(x) :a + : ∂xφ(Λ)(x)∂xφ(Λ)(x) :a +V ′′[gf (Λ)(x)] : φ(Λ)2(x) :a
2 . (4.1)

These are the only terms that contribute at one loop, as they are suppressed by a factor of g2

with respect to the leading terms inH ′0 and we have chosen f (Λ)(x) so thatH ′1 vanishes. The
term gf (Λ) is g-independent and becomes gf0 as Λ→∞. However, we argued in A that the
corrections f (Λ)−f0 are exponentially small in m/Λ. Since perturbative computations only
produce power-law divergences in Λ, such exponentially small corrections do not contribute
to any perturbative quantities. Therefore in the following we will replace V ′′[gf (Λ)(x)] with
V ′′[gf0(x)].

For completeness we note

H ′3 =
∫
dx
gV (3)[gf (Λ)(x)] : φ(Λ)2(x) :a

6 (4.2)

H ′4 =
∫
dx

[
g2V (4)[gf (Λ)(x)] : φ(Λ)2(x) :a

24 + γ̃1

]
.

In the rest of this note we will use (4.1) to study the one-loop kink spectrum. This
equation describes a theory which is free, as the Hamiltonian is quadratic in the field.
However the operators A and A‡ do not diagonalize the Hamiltonian as a result of the
x-dependent mass term. Our strategy will thus be to diagonalize H using a Bogoliubov
transformation from the basis of operators that create plane waves to a basis of operators
that create normal modes of the regularized kink.

First let us find these normal modes. Inserting the Ansatz4

φ(Λ)(x, t) = eiωktgk(x) (4.3)

into the classical equations of motion for (3.8) one finds

V ′′[gf0(x)]gk(x) = (ω2
k + ∂2

x)gk(x). (4.4)

The index k will include a continuous spectrum with energy

ωk =
√
m2 + k2 (4.5)

4This constant frequency Ansatz is inconsistent with the restriction that the higher Fourier modes of
φ(Λ) vanish. However, when we construct the quantum field φ(Λ) below, we will consider only those linear
combinations which satisfy the restriction. The key observation will be that these combinations do not
have constant frequency, and so our regularized kink Hamiltonian is not obtained by cutting off frequencies
above any sharp threshold.
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as well as discrete modes. In the case of the φ4 modes there are two discrete solutions, the
zero mode gB(x) corresponding to the translation symmetry with ωB = 0 and also an odd
shape gBO(x) with ωBO = m

√
3/2.

As V is real we may choose
g∗k(x) = gk(−x) (4.6)

and so gB(x) is real, gBO(x) is imaginary and in the case of continuum modes

g∗k(x) = g−k(x). (4.7)

We normalize the solutions such that∫
dx|gB(x)|2 =

∫
dx|gBO(x)|2 = 1 (4.8)

and in the case of continuum modes∫
dxgk1(x)gk2(x) = 2πδ(k1 + k2). (4.9)

These satisfy the completeness relation

gB(x)g∗B(y) + gBO(x)g∗BO(y) +
∫
dk

2πgk(x)g−k(y) = δ(x− y). (4.10)

From here on we will adopt the shorthand that
∫ dk

2π implicitly includes a sum over the
discrete modes gB and gBO. We also introduce the inverse Fourier transform

g̃k(p) =
∫
dxgk(x)eipx. (4.11)

The completeness relation (4.10) implies that the functions gk(x) are a basis of all
functions so we may decompose

φ(Λ)(x) =
∫ Λ

−Λ

dp

2πφpe
−ipx =

∫
dk

2πφ
(Λ)
k gk(x) π(Λ)(x) =

∫ Λ

−Λ

dp

2ππpe
−ipx =

∫
dk

2ππ
(Λ)
k gk(x).

(4.12)
Recall that the k integral implicitly sums over bound states, and so for example we have
also introduced φB and πB. Note that the k integrals are never cut off.

As the p integral is bounded, the field satisfies the constraint∫
dxφ(Λ)(x)eiqx =

∫
dxπ(Λ)(x)eiqx = 0, |q| > Λ. (4.13)

The k integral is not bounded, indeed including the discrete sums it runs over a complete
basis. Therefore (4.13) implies a constraint on the coefficients

0 =
∫
dk

2πφ
(Λ)
k g̃k(q) =

∫
dk

2ππ
(Λ)
k g̃k(q), |q| > Λ. (4.14)

Here we see the difference between our approach and the traditional mode matching [1]
or energy cut-off [6] regularization schemes. In the traditional approach, one limits the k
integration to include either the same number of modes as in the p integration or else an
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integral out to the same energy. Here instead we integrate over all k but with a constraint
on the coefficients φ(Λ)

k which leads these coefficients to be small5 at k > Λ but nonzero.
We claim that this is the correct way to regularize the kink Hamiltonian with a UV energy
cutoff because in this approach the regularized kink Hamiltonian is related by a similarity
transformation to the vacuum Hamiltonian, which defines the theory. In particular they
have the same spectrum, and thus the kink mass, which is the difference between two
eigenvalues, can be calculated using one eigenvalue from each Hamiltonian.

The decompositions lead to the Bogoliubov transformations

φp =
∫
dk

2πφ
(Λ)
k g̃k(p), πp =

∫
dk

2ππ
(Λ)
k g̃k(p). (4.15)

Integrating (4.12) over x with weight6 g−k(x) one finds the inverse transformations

φ
(Λ)
k =

∫ Λ

−Λ

dp

2πφpg̃−k(−p), π
(Λ)
k =

∫ Λ

−Λ

dp

2ππpg̃−k(−p). (4.16)

4.2 Finding the one-loop Hamiltonian

H ′2 consists of three terms
H ′2 = A+B + C. (4.17)

First consider the potential term

A =
∫
dx
V ′′[gf (Λ)(x)] : φ(Λ)2(x) :a

2 (4.18)

=
∫
dx

∫
dy
V ′′[gf (Λ)(x)]δ(x− y) : φ(Λ)(x)φ(Λ)(y) :a

2

=
∫
dx

∫
dy

∫
dk

2π
V ′′[gf (Λ)(x)]gk(x)g∗k(y) : φ(Λ)(x)φ(Λ)(y) :a

2

=
∫
dx

∫
dy

∫
dk

2π

[
(ω2
k + ∂2

x)gk(x)
]
g∗k(y) : φ(Λ)(x)φ(Λ)(y) :a

2 .

The derivative term cancels

B = −
∫
dx

: φ(Λ)(x)∂2
xφ

(Λ)(x) :a
2 (4.19)

= −
∫
dx

∫
dy

∫
dk

2π
gk(x)g∗k(y) : φ(Λ)(y)∂2

xφ
(Λ)(x) :a

2

after integrating x by parts twice, leaving

A+B =
∫
dx

∫
dy

∫
dk

2π
ω2
kgk(x)g∗k(y) : φ(Λ)(x)φ(Λ)(y) :a

2 (4.20)

=
∫
dk

2π

∫ Λ

−Λ

dp1
2π

∫ Λ

−Λ

dp2
2π

ω2
kg̃k(−p1)g̃∗k(p2) : φp1φp2 :a

2 = D + E

5The φ(Λ)
k are operators. They are small at large |k| in the sense that they are superpositions of φp with

small coefficients.
6If k is a discrete mode, g−k = (−1)P gk where P is the parity of the discrete mode k.
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where

D =
∫
dk

2π

∫ Λ

−Λ

dp1
2π

∫ Λ

−Λ

dp2
2π

ω2
kg̃k(−p1)g̃∗k(p2)φp1φp2

2 (4.21)

=
∫
dk

2πω
2
k

φ
(Λ)
k φ

(Λ)
−k

2 .

Here in the case of a discrete mode k with parity P , φ−k = (−1)Pφk. The contraction
term is

E = −
∫
dk

2π

∫ Λ

−Λ

dp1
2π

∫ Λ

−Λ

dp2
2π

ω2
kg̃k(−p1)g̃∗k(p2)

2
2πδ(p1 + p2)

2ωp1
(4.22)

= −
∫
dk

2π

∫ Λ

−Λ

dp

2π g̃k(p)g̃
∗
k(p)

ω2
k

4ωp
.

The last term in H ′2 is

C =
∫
dx

: π(Λ)2(x) :a
2 =

∫
dx

∫
dyδ(x− y) : π(Λ)(x)π(Λ)(y) :a

2 (4.23)

=
∫
dx

∫
dy

∫
dk

2π
gk(x)g∗k(y) : π(Λ)(x)π(Λ)(y) :a

2

=
∫
dx

∫
dy

∫
dk

2π

∫ Λ

−Λ

dp1
2π

∫ Λ

−Λ

dp2
2π

gk(x)g∗k(y)e−ip1x−ip2y : πp1πp2 :a
2

=
∫
dk

2π

∫ Λ

−Λ

dp1
2π

∫ Λ

−Λ

dp2
2π

g̃k(−p1)g̃∗k(p2) : πp1πp2 :a
2 = F +G

where

F =
∫
dk

2π

∫ Λ

−Λ

dp1
2π

∫ Λ

−Λ

dp2
2π

g̃k(−p1)g̃∗k(p2)πp1πp2

2 =
∫
dk

2π
π

(Λ)
k π

(Λ)
−k

2 (4.24)

and

G = −
∫
dk

2π

∫ Λ

−Λ

dp1
2π

∫ Λ

−Λ

dp2
2π

g̃k(−p1)g̃∗k(p2)ωp22πδ(p1 + p2)
4

= −
∫
dk

2π

∫ Λ

−Λ

dp

2π g̃k(p)g̃
∗
k(p)

ωp
4 . (4.25)

In all, we see that H ′2 is the sum of a scalar E +G plus an operator

D + F = 1
2

∫
dk

2π
[
π

(Λ)
k π

(Λ)
−k + ω2

kφ
(Λ)
k φ

(Λ)
−k

]
. (4.26)

This looks like an infinite sum of quantum harmonic oscillators, however φ(Λ)
k and π(Λ)

k are
not quite canonical variables in the regulated theory as

iβk1k2 = [φ(Λ)
k1
, π

(Λ)
k2

] =
∫ Λ

−Λ

dp1
2π g̃−k1(−p1)

∫ Λ

−Λ

dp2
2π g̃−k2(−p2)[φp1 , πp2 ] (4.27)

= i

∫ Λ

−Λ

dp

2π g̃−k1(p)g̃−k2(−p) = i

∫
dx

∫
dy

∫ Λ

−Λ

dp

2πg−k1(x)g−k2(y)eip(x−y)

= i

∫
dx

∫
dyg−k1(x)g−k2(y)α(x− y).
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Nonetheless let us try to solve it as if it were a sum of harmonic oscillators, by defining

B‡k = φ
(Λ)
k

2 − i
π

(Λ)
k

2ωk
, B−k = ωkφ

(Λ)
k + iπ

(Λ)
k (4.28)

so that

ωkB
‡
kBk =

ω2
kφ

(Λ)
k φ

(Λ)
−k + π

(Λ)
k π

(Λ)
−k

2 − ωk
2

∫ Λ

−Λ

dp

2π g̃−k(p)g̃k(−p). (4.29)

Then we can rewrite the operator part of H ′2 as

D + F = I + J, I =
∫
dk

2πωkB
‡
kBk, J =

∫
dk

2π

∫ Λ

−Λ

dp

2π g̃
∗
k(−p)g̃k(−p)

ωk
2 (4.30)

The operators B and B‡ operators automatically solve analogous constraints to (4.14)

0 =
∫
dk

2πB
‡
kg̃k(q) =

∫
dk

2πBkg̃k(q), |q| > Λ. (4.31)

Summarizing, we may write H ′2 as the sum of a scalar E +G+ J plus a term I which
is of the quantum harmonic oscillator form

H ′2 = −
∫
dk

2π

∫ Λ

−Λ

dp

2π g̃k(p)g̃
∗
k(p)

(ωp − ωk)2

4ωp
+
∫
dk

2πωkB
‡
kBk. (4.32)

We have argued that at one loop this Hamiltonian completely characterizes the kink sector.
In B we argue that the naive IR divergence in the c-number term at k = p vanishes.

If we now set the regulator to infinity, then substituting (2.9) into (4.27) one finds the
standard canonical commutation relations

lim
Λ→∞ [φ(Λ)

k1
, π

(Λ)
k2

] = i

∫
dxg−k1(x)g−k2(x) = iδ(k1 + k2). (4.33)

We can then easily read off the exact spectrum of the regularized Hamiltonian at one loop.
The leading order kink ground state |0〉0 is the state annihilated by all Bk and it has mass
given by the first term in (4.32), which, when Λ → ∞ indeed agrees with the formula in
refs. [11, 18, 19].

Using

[Bk1 , Bk2 ] = (ωk2 − ωk1)β−k1−k2 , [B‡k1
, B‡k2

] = ωk2 − ωk1

4ωk1ωk2

βk1k2

[Bk1 , B
‡
k2

] = ωk1 + ωk2

2ωk2

β−k1k2 (4.34)

one finds the excited states can be obtained by acting with B‡k, each of which increases the
energy by

∆E = ωk. (4.35)
Our compact notation, in which integrals over k included sums over discrete states,

hid the role of the zero mode. In the case of the zero mode, ωB = 0 and so the definition
of B‡B is singular. However in that case the oscillator (4.26) has no φ2 term and so its
contribution to H ′2 is simply the nonrelativistic center of mass kinetic energy π2

B/2. Thus
the spectrum therefore also includes various center of mass momenta for the kink. This,
together wth the shape and the continuum quantum harmonic oscillator spectrum, yield
the known one-loop spectrum of ref. [1].
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4.3 One-loop kink ground state of the regularized Hamiltonian

The nondiagonal nature of (4.34) means that the normal mode basis does not diagonalize
H ′2 when Λ is finite. Nevertheless, we will show that the ground state is still annihilated
by all Bk and hence, even at finite Λ, the one-loop kink mass is given by the first term
in (4.32).

Let us go back a few steps to (4.21) and (4.24)

D + F =
∫
dk

2π

∫ Λ

−Λ

dp1
2π

∫ Λ

−Λ

dp2
2π

g̃k(−p1)g̃∗k(p2)
2

(
πp1πp2 + ω2

kφp1φp2

)
. (4.36)

Define the eigenstates of the operators φp as

φp|ψ〉 = ψp|ψ〉 (4.37)

where ψ is a real-valued function on the interval [−Λ,Λ]. Let us write the arbitrary state
|Ψ〉 in the Schrodinger representation

|Ψ〉 =
∫
DψΨ[ψ]|ψ〉 (4.38)

where the integral is over all functions ψ and Ψ[ψ] is the Schrodinger wave functional. As
the eigenstates |ψ〉 are a complete basis, the state |Ψ〉 is arbitrary. It follows that

πp|ψ〉 = −2πi
∫
DψδΨ[ψ]

δψ−p
|ψ〉 . (4.39)

Inserting the Ansatz

Ψ[ψ] = exp
(
−1

2

∫ Λ

−Λ

dp1
2π

∫ Λ

−Λ

dp2
2π Ap1p2ψp1ψp2

)
(4.40)

into (4.36) one finds an expression of the form

(D + F )|Ψ〉 =
(
E +

∫ Λ

−Λ

dq1
2π

∫ Λ

−Λ

dq2
2π Bq1q2ψq1ψq2

)
|Ψ〉 (4.41)

where

Bq1q2 = 1
2

∫ Λ

−Λ

dp1
2π

∫ Λ

−Λ

dp2
2π

∫
dk

2π g̃k(p1)g̃−k(p2)
[
−Ap1,−q1Ap2,−q2 + ω2

kδ(p1 − q1)δ(p2 − q2)
]

= −1
2

∫ Λ

−Λ

dp1
2π

∫ Λ

−Λ

dp2
2π

∫
dk

2π g̃k(p1)g̃−k(p2)Ap1,−q1Ap2,−q2 + 1
2

∫
dk

2π g̃k(q1)g̃−k(q2)ω2
k

E = 1
2

∫ Λ

−Λ

dp1
2π

∫ Λ

−Λ

dp2
2π

∫
dk

2π g̃k(p1)g̃−k(p2)A−p1,−p2 . (4.42)

Our strategy will be to find the Ap1p2 such that Bq1q2 = 0 and use it to find E . A sufficient
condition for B to vanish is ∫ Λ

−Λ

dp

2π g̃k(p)Ap,−q = ωkg̃k(q) (4.43)
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for all k and q. Multiplying by g̃−k(−r) and integrating over k, using completeness of g,
one finds ∫

dk

2π g̃−k(−r)
∫ Λ

−Λ

dp

2π g̃k(p)Ap,−q = Ar,−q =
∫
dk

2π g̃−k(−r)ωkg̃k(q). (4.44)

We claim that this Apq, inserted into the Ansatz (4.40), is the kink ground state, or
more precisely D†f |K〉. To see this, note that it is annihilated by all Bk:

B−k|Ψ〉 =
∫ Λ

−Λ

dp

2π g̃−k(−p)(ωkφp + iπp)|Ψ〉

=
∫ Λ

−Λ

dp

2π g̃−k(−p)
(
ωkψp − 2π

∫ Λ

−Λ

dq

2πA−p,qψq

)
|Ψ〉

= 0, (4.45)

where the last step follows from (4.43). Hence |Ψ〉 is annihilated by the last term of (4.32)
and since this term is a positive operator |Ψ〉 must be the lowest energy state. As a check,
note that the corresponding energy E is

E = −1
2

∫ Λ

−Λ

dp1
2π

∫ Λ

−Λ

dp2
2π

∫
d2k

(2π)2 g̃k1(p1)g̃−k1(p2)g̃−k2(p1)ωk2 g̃k2(p2)

= 1
2

∫ Λ

−Λ

dp1
2π

∫ Λ

−Λ

dp2
2π

∫
dk2
2π 2πδ(p1 + p2)g̃−k2(p1)ωk2 g̃k2(p2)

= 1
2

∫ Λ

−Λ

dp

2π

∫
dk

2πωkg̃−k(−p)g̃k(p), (4.46)

which matches the J from eq. (4.30).
Therefore, even in the regularized theory, J is the energy contribution from D + F ,

or more precisely the eigenvalue of the operator D + F acting on the kink ground state.
Including the scalar terms in H ′2, one finds that the total ground state energy of the
regularized kink is

E +G+ J = −
∫
dk

2π

∫ Λ

−Λ

dp

2π g̃k(p)g̃
∗
k(p)

(ωp − ωk)2

4ωp
. (4.47)

This is the ground state energy for the unregularized kink found in ref. [11] using mode
matching, but now with the p integral cut off. Therefore the limit Λ→∞ agrees with the
known result.

5 Remarks

In this paper we have described a quantum model which is regularized by a cutoff from
the beginning. It exhibits a quantum kink and we found, at one-loop, its ground state
and mass. The results were almost trivial generalizations of the corresponding results in
the unregularized theory, in which one merely restricts the domain of integration of the
momentum p to the interval [−Λ,Λ]. This is in part because at one-loop, the theory is
free, although it is diagonal in the normal mode basis k and not the momentum p basis.
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However this was also suggested by the fact that two-dimensional scalar models can be
rendered finite by normal ordering without ever regularizing, and so all quantities may be
computed without recourse to regularization [2, 18]. Thus one may already suspect that
no sign of regularization may remain when the regulator is taken to infinity, as it could
have been avoided from the beginning.

In more interesting models, with fermions or more dimensions, normal ordering is not
sufficient to remove all divergences. Thus it is possible that the limit in which the regulator
is taken to infinity will leave some nonzero residue, indeed in the case of supersymmetric
kinks one may expect to arrive at the contribution from the one-loop anomaly [25].

In the supersymmetric case one may hope that sufficient supersymmetry will allow a
nonperturbative approach. However we saw here that the kink solution itself has correc-
tions of order e−Λ/m. In perturbation theory, we expect this to be always multiplied by
finite powers of Λ and so such contributions will vanish in the Λ → ∞ limit, but in the
nonperturbative regime, which is the relevant regime for applications to paradigms [26–28]
of QCD confinement, it is possible that these corrections will be physically relevant if not
dominant.

A Finding the shift: the φ4 double well

In this appendix we evaluate the leading correction to f (Λ)(x) in the case of the φ4 double
well. We show that it is exponentially small in Λ/m but nonzero. Here we consider the
φ4 double well without shifting φ̃(Λ) by v as in eq. (2.3). Recall that, in momentum space,
this corresponds a shift of the transformed field by 2πvδ(p) and in particular it only affects
the momentum space field at p = 0.

In this model the definition (3.14) is

Ṽ [gf ] = 1
4
(
g2f2 −m2/2

)2

Ṽ ′[gf ]/g = g2f3 −m2f/2

0 =
∫
dx
[
−∂2

xf
(Λ)(x)−m2f (Λ)(x)/2 + g2f (Λ)3(x)

]
eipx, |p| ≤ Λ. (A.1)

The basic approach is to insert the finite-Λ Fourier transform

f (Λ)(x) =−
∫ Λ

−Λ

dq

2π f̃(q)e−iqx , (A.2)

into (A.1). Our Ansatz for f̃ is the series expansion

f̃(q) =
∑
n=0

f̃n(q) , (A.3)

where f̃0(q) is just the Fourier transform of the classical solution f(x) and f̃n≥1(q) is
bounded, for all q, by a polynomial in Λ times e−πnΛ/m. We will then solve for the f̃n(q)
perturbatively, and along the way will see that our Ansatz is consistent. This will imply
the main result of this appendix, that f(x) can be expanded in a power series with the
leading Λ dependence suppressed by order O(e−πΛ/m).
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There are, however, two technical points that require explanation before proceeding.
First, we must define the −

∫
symbol in (A.2). Ordinary integration, for f(x) a classical

kink solution, would be ill-defined at q = 0. We are free to define the Fourier transform f̃

as we like, so long as we are able to use it to demonstrate the main result written above.
Therefore, we choose −

∫
to be a principal value integral, defined by

−
∫ Λ

−Λ
:= lim

ε→0+

(∫ −ε
−Λ

+
∫ Λ

ε

)
. (A.4)

This type of integral can be used to obtain the standard kink profile f (∞)(x)= m
2g tanh(mx/2)

from its Fourier transform f̃0(q) =
√

2πi
g csch(πq/m):

m

2g tanh(mx/2) = −
∫ ∞
−∞

dq

2π

(√
2πi
g

csch(πq/m)
)
e−iqx , (A.5)

The integral on the right would be undefined without the principle value prescription. More
generally, as a distribution the Fourier transform F [f (∞)] acts on any test function b(q) via
integration against f̃0(q) with the principle value prescription. Indeed, the proper setting
for the kink profile and its Fourier transform is to view both as tempered distributions.
The kink profile, f (∞), is a nonsingular distribution, meaning that it is defined globally
by a smooth function. The Fourier transform f̃0 = F [f (∞)] is singular, meaning that
it can only be represented locally by a smooth function (the csch above); its definition
as a distribution contains more information — namely the principal value prescription.
Although we do not a priori know the explicit finite-Λ analogs, f (Λ) and f̃ , we we expect
they have the same large-|x| asymptotics and the same singularity structure at q = 0 as the
leading order configurations f (∞), f̃0, respectively, hence the appearance of the principal
value integral in (A.2).

A second technical point is the following. The standard result for smooth functions
that the Fourier transform of the pointwise product is the convolution of Fourier transforms,

F [f · g] = 1
2πF [f ] ? F [g] , (A.6)

also holds for tempered distributions,7 where the factor of 2π is due to our Fourier trans-
form conventions. Here, if f, g are ordinary functions then (f · g)(x) = f(x)g(x) denotes
the pointwise product and (f ? g)(x) =

∫
dyf(y)g(x − y) denotes the convolution. The

convolution of two distributions is defined through the convolution of a distribution with
a smooth test function as follows. If f is a distribution defined locally by f(x) and b a
smooth function with compact support, then the convolution f ?b is a smooth function with
value (f ? b)(x) =

∫
dyf(y)b(x− y). The convolution of two distributions f, g, is then the

7It holds for distributions when the product is defined. In general this involves a condition on the wave
front sets of the distributions [29]. In the case of f (∞), which is defined globally by integration against a
smooth function, the wave front set is trivial. The product of this distribution with any other temprered
distribution is defined and the convolution theorem holds.
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unique distribution such that (f ? g) ? b = f ? (g ? b). This definition and the corresponding
convolution theorem can be extended to

F [f1 · . . . · fn] = 1
(2π)n−1 f̃1 ? . . . ? f̃n , (A.7)

where f̃j = F [fj ] and the distribution on the right is defined through sequential action on
a test function.

An instructive example is to show that (A.6) holds for the kink profile f = g = f (∞)

and its Fourier transform. Using tanh2 = 1− sech2, one finds that F [f (∞) · f (∞)] has

F [f (∞) · f (∞)](q) = πm2

g2 δ(q)− 2πq
g2sinh(πq/m) . (A.8)

Below, we will recover this result in the Λ → ∞ limit of a finite-Λ computation of the
convolution, f̃0 ? f̃0.

We can think of f (Λ) in (A.2) as the ordinary inverse Fourier transform of f̃ if we
define f̃ to vanish outside of [−Λ,Λ]. For example, if f̃0, initially defined on all of R, is
set to zero outside [−Λ,Λ], the resulting distribution is still a tempered distribution (now
with compact support). Henceforth we will write f̃ (Λ) for distributions with support on
[−Λ,Λ]. In particular, for any test function b we have

−
∫ Λ

−Λ

dq

2π f̃0(q)b(q) = −
∫ ∞
−∞

dq

2π f̃
(Λ)
0 (q)b(q) . (A.9)

The convolution theorem continues to hold for such distributions, so that for powers of
f (Λ) we have

F [(f (Λ))n] = 1
(2π)n−1 f̃

(Λ) ? . . . ? f̃ (Λ) . (A.10)

Note this means that the support of the n-? convolution must be [−nΛ, nΛ] such that∫ nΛ

−nΛ

(
f̃ (Λ) ? . . . ? f̃ (Λ)

)
(q)b(p− q) = −

∫ Λ

−Λ
dq1f̃(q1)−

∫ Λ

−Λ
dq2f̃(q2) · · · −

∫ Λ

−Λ
dqnf̃(qn)b(p− Σiqi) .

(A.11)

This reflects the fact that the pointwise product of n f (Λ)’s on the left of (A.10) contains
momentum modes up to |q| = nΛ.

With these preliminaries out of the way we can proceed with the perturbative solution
of (A.1). Inserting (A.2) into (A.1) gives

0 =
(
p2 − m2

2

)
f̃ (Λ)(p) + g2

(2π)2

(
f̃ (Λ) ? f̃ (Λ) ? f̃ (Λ)

)
(p) , |p| ≤ Λ . (A.12)

This is an integral equation for the local function f̃ (Λ)(p) on [−Λ,Λ]. We expect the
distribution f̃ (Λ) to be singular at p = 0 and defined via the principal value prescription as
discussed above. Therefore, we restrict attention in (A.12) to p 6= 0.
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Inserting the expansion (A.3) into (A.12), and assuming that f̃0 solves the equation
when Λ → ∞ (which we will check), we find the following linear equation for the first
correction, f̃1:((

p2 − m2

2

)
· f̃ (Λ)

1 + 3g2

(2π)2

(
f̃

(Λ)
0 ? f̃

(Λ)
0

)
? f̃

(Λ)
1

)
(p) = F1(p) , |p| < Λ , (A.13)

where F1(p) is the first finite-Λ correction from the non-linear term evaluated on the
leading-order solution:

F1(p) := − g2

(2π)2

(
f̃

(Λ)
0 ? f̃

(Λ)
0 ? f̃

(Λ)
0

)
(p)
∣∣∣∣
first subleading behavior in m/Λ

. (A.14)

Hence the main tasks now are to compute the finite-Λ convolutions of f̃ (Λ)
0 with itself

appearing in (A.13), (A.14), and to invert the linear operator in (A.13). In the following
we describe the approach and present the results but suppress all intermediate steps.8

The first convolution we need is 1
2π (f̃ (Λ)

0 ? f̃
(Λ)
0 ), given by

1
2π

∫ 2Λ

−2Λ
dq
(
f̃

(Λ)
0 ? f̃

(Λ)
0

)
(q)b(p− q) =

= − π
g2−
∫ Λ

−Λ
dq1csch(πq1/m)−

∫ Λ

−Λ
dq2csch(πq2/m)b(p− q1 − q2) , (A.15)

for any smooth test function b. We introduce infinitesimal parameters ε1,2 associated with
the principal value integrals over q1,2 respectively, and we can assume ε2 < ε1 since the
ε2 → 0 limit is to be taken first. The basic idea is to change integration variables in the
double integral from (q1, q2) to (q, q2), where q = q1 + q2, and carry out the q2 integral
to extract (f̃ (Λ)

0 ? f̃
(Λ)
0 )(q). This, however, is only valid away from q = 0, since it involves

exchanging the ε2 → 0 limit with the integral over q1. If q = 0 then the csch(πq1/m)
factor is not smooth at the q2 pole, and one must take ε2 → 0 limit first, before evaluating
the q1 integral. Therefore we divide the integration into two pieces: one over a region
Rε = {(q1, q2) ∈ [−Λ,Λ]2 : |q1 + q2| < ε} and the other over [−Λ,Λ]2 \ Rε. We take
ε > ε1 + ε2 and send ε→ 0 at the very end. See figure 1.

The integral over Rε gives a result for the right-hand side of (A.15) that is proportional
to b(p) in the limit ε → 0, and hence this corresponds to a delta function contribution to
(f̃ (Λ)

0 ? f̃
(Λ)
0 )(q). The coefficient can be evaluated and turns out to be Λ-independent, and

this term matches the δ-function term in (A.8). Meanwhile the integral over [−Λ,Λ]2 \Rε
gives a Λ-dependent contribution. In total we find

1
2π
(
f̃

(Λ)
0 ? f̃

(Λ)
0

)
(q) = πm2

g2 δ(q)− 2m
g2sinh(π|q|/m) ln

[ sinh(πΛ/m)
sinh(π|Λ− |q||/m)

]
. (A.16)

This agrees with the right-hand side of (A.8) in the Λ → ∞ limit for fixed q, as required
by the convolution theorem. It has integrable logarithmic singularities at |q| = Λ.

8A more detailed presentation of this calculation may appear elsewhere.
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Figure 1. Integration region for the right-hand side of (A.15). For the integral over the blue region
we change variables from (q1, q2) to (q, q2) where q = q1 + q2. The limits of integration on q2 then
become a function of q,Λ, ε1,2. For example, when ε < q < Λ − ε1, the integral over q2 covers
[q−Λ,−ε2]∪ [ε2, q− ε1]∪ [q+ ε1,Λ]. The test function does not depend on q2 and can be pulled out
of the q2 integral. For all cases ε < |q| < 2Λ, the result of the q2 integration, after taking the limits
ε2 → 0 followed by ε1 → 0, is captured by the second term on the right-hand side of (A.16). For the
integral over the pink region we instead expand the test function around q = 0 and compute leading
term in the resulting integrand. That computation requires first integrating over q2 for fixed q1
(where the limits of integration depend on q1, ε, ε2), then taking the ε2 → 0 limit, then integrating
over q1, and finally taking ε→ 0.

For the double convolution we use∫ 3Λ

−3Λ
dp
(
f̃

(Λ)
0 ? f̃

(Λ)
0 ? f̃

(Λ)
0

)
(p)b(k − p) =−

∫ Λ

−Λ
dq1f̃0(q1)−

∫ Λ

−Λ
f̃0(q2)−

∫ Λ

−Λ
dq3f̃0(q3)b(k − Σiqi)

=−
∫ Λ

−Λ
dq1f̃0(q1)

∫ 2Λ

−2Λ
dq(f̃ (Λ)

0 ? f̃
(Λ)
0 )(q)b(k − q1 − q) .

(A.17)

We apply (A.15) for (f̃0 ? f̃0)(q) and change variables in the remaining double integral from
(q1, q) to (p, q) where p = q1 +q. Integrating over q will then allow us to extract the double
convolution (f̃ (Λ)

0 ? f̃
(Λ)
0 ? f̃

(Λ)
0 )(p). Note there is no principal value prescription required

for the distribution (f̃ (Λ)
0 ? f̃

(Λ)
0 ) as it has no poles. Thus for all p 6= 0 it is possible to

obtain a local representation of the double convolution by carrying out the q integral only.
Furthermore, although the support of the double convolution is [−3Λ, 3Λ], we only require
it in the range [−Λ,Λ] for the solution to (A.12). For any p in this range, the integration
over q covers [p− Λ, p− ε1] ∪ [p+ ε1, p+ Λ]. Here the outer limits are due to |q1| ≤ Λ and
the inner limits are due to the principal value prescription on the q1 integration. Hence,
we have that

1
(2π)2

(
f̃

(Λ)
0 ? f̃

(Λ)
0 ? f̃ (Λ)

)
(p) = 1

(2π)2 lim
ε1→0

(∫ p−ε1

p−Λ
+
∫ p+Λ

p+ε1

)
dqf̃0(p− q)(f̃0 ?Λ f̃0)(q)

= m2

2g2 f̃0(p)− 1
g2F (p) , |p| < Λ , (A.18)
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where the first term arises from the Dirac delta term in (A.15) and we’ve defined

F (p) := (2m)
√

2πi
(2π)g lim

ε1→0

(∫ p−ε1

p−Λ
+
∫ p+Λ

p+ε1

)
dq csch(π(p− q)/m)csch(π|q|/m)×

× ln
[ sinh(πΛ/m)
sinh(π|Λ− |q||/m)

]
, (A.19)

as giving the contribution from the remaining piece of (A.15). We’ve pulled out an explicit
factor of −1/g2 from the definition of F so that F1(p) in (A.14) is precisely the first
subleading term (with respect to the exponential behavior) in the large Λ expansion of F (p).

By changing variables q → −q, one sees that the second integral in (A.19) is the
negative of the first with p→ −p. Thus F (p) is an odd function of p. The integral can be
evaluated in closed form in terms of logarithms and dilogarithms. We record the full result
here since it is important in demonstrating our claim that the perturbative expansion is
an expansion in e−2πΛ/m. Setting ε = e−πΛ/m and z = eπp/m for shorthand, we find

F (p) = i
√

2m2

πg sinh(πp/m)

{
π2p2

m2 + πp

m
ln
[

1− ε2z−2

1− ε2z2

]
+ 3πΛ

m
ln
[

(1− ε2z2)(1− ε2z−2)
(1− ε2)2

]
+

+ ln
[

(z − z−1)2

(1− ε2)2

]
ln
[

(1− ε2)2

(1− ε2z2)(1− ε2z−2)

]
+

+ ln
[
|z2 − 1|
1− ε2z2

]
ln
[

1− ε2

1− ε2z2

]
+ ln

[
|z−2 − 1|
1− ε2z−2

]
ln
[

1− ε2

1− ε2z−2

]
+

− 1
2li2(ε2z2)− 1

2li2(ε2z−2) + li2(ε2)− li2

(
1− z2

1− ε2

)
− li2

(
1− z−2

1− ε2

)
+

+ li2

(
1− z2

1− ε2z2

)
+ li2

(
1− z−2

1− ε2z−2

)
+ li2

(
ε2(1− z2)
(1− ε2z2)

)
+ li2

(
ε2(1− z−2)
(1− ε2z−2)

)}
,

(A.20)

and we have checked this result against numerical integration. Noting that li2(x) = x +
O(x2) for small x, it is easy to see that F (p) has a power series expansion in ε2, where
every term after the very first one in the curly brackets above begins at O(ε2):

F (p) = p2f̃0(p) +
∞∑
n=1

Fn(p) , (A.21)

where, for fixed p, Fn = O(e−2πnΛ/m) times a linear function in Λ. Inserting this result
back into the double convolution (A.18) gives

(
f̃

(Λ)
0 ? f̃

(Λ)
0 ? f̃

(Λ)
0

)
(p) = 1

g2

(
m2

2 − p
2
)
f̃0(p)− 1

g2

∞∑
n=1

Fn(p) . (A.22)

Therefore f̃0(p) is indeed the leading order solution to the integral equation, (A.12). Fur-
thermore, we find that the source term in the equation for the first correction, (A.13), is

F1(p) = −6i
√

2m2

πg

{2πΛ
m

+ 1− ln[4sinh2(πp/m)]
}
sinh(πp/m)e−2πΛ/m . (A.23)
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Notice that, while for fixed p the source term (A.23) is O(Λ · e−2πΛ/m), it is bounded
by a quantity of O(Λ · e−πΛ/m) for all p ∈ [−Λ,Λ]. In particular F1 vanishes at p = 0 as
do all of the Fn.

Now consider the integral operator on the left-hand side of the linearized equa-
tion (A.13), which we denote ∆̃(Λ)(p− q):

−
∫ Λ

−Λ
dq∆̃(Λ)(p− q)f̃ (Λ)

1 (q) =
((
p2 − m2

2

)
· f̃ (Λ)

1 + 3g2

(2π)2

(
f̃

(Λ)
0 ? f̃

(Λ)
0

)
? f̃

(Λ)
1

)
(p) . (A.24)

The double convolution can be written in the same form as (A.17), but with f̃
(Λ)
0 (q1)

replaced with f̃ (Λ)
1 (q1). The principal value integration from [−Λ,Λ] arises from changing

variables in the analog of (A.18) from q to q′ = p− q. Thus

∆̃(Λ)(p− q) =
(
p2 − m2

2

)
δ(p− q) + 3g2

(2π)2

(
f̃

(Λ)
0 ? f̃

(Λ)
0

)
(p− q)

= (p2 +m2)δ(p− q)− 3m
πsinh

(
π|p−q|
m

) ln

 sinh
(
πΛ
m

)
sinh

(
π|Λ−|p−q||

m

)
 . (A.25)

We would like to find an inverse for ∆̃(Λ), whose kernel is a Green function that we denote
G̃(Λ)(q, k), for q, k ∈ [−Λ,Λ]. In order to extract the leading behavior of f̃ (Λ)

1 , however, it
is sufficient to find an approximate inverse, whose kernel we denote G̃(q, k), such that∫ Λ

−Λ
dq

(∫ Λ

−Λ
dq′∆̃(Λ)(p− q′)G̃(q′, q)

)
Fn(q) = Fn(p)(1 +O((m/Λ)2)) , (A.26)

where we recall that Fn is bounded, odd, and O(Λ · e−2πnΛ/m) for fixed p with |p| < Λ.
A standard Neumann series for the inverse, based on the form of (A.25) as a diagonal

operator plus “correction,” where the correction is the second term, may not provide a
sufficiently good approximation demonstrate this, since the correction is O(1) in a neigh-
borhood of the diagonal. A natural ansatz for a better first approximation to G̃(Λ) is based
on its Λ→∞ counterpart, which we describe next.

We claim that the approximate Green function can be taken to be the Green function of
the standard Λ→∞ fluctuation operator, ∆̃(∞), which we denote by G̃(∞)(p, q), restricted
to p, q ∈ [−Λ,Λ]. We will discuss the error in this approximation after presenting ∆̃(∞)

and its Green function. We have

∆̃(∞)(p− q) = (p2 +m2)δ(p− q)− 3(p− q)
sinh(π(p− q)/m) , (A.27)

which can be obtained from the Fourier transform of the position space fluctuation operator
around the kink:

∆̃(∞)(p− q) =
∫
dxdyeipx−iqy∆(∞)(x− y) , with

∆(∞)(x− y) = δ(x− y)
(
−∂2

x −
m2

2 + 3g2f (∞)(x)2
)
, (A.28)
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for which the eigenmodes are the gk(x) in (4.4). ∆(∞) does not have an inverse due to the
zero-mode gB. It does have an inverse on the orthogonal complement of gB, whose integral
kernel is the Green function G(∞)(x, y) satisfying∫

dy∆(x− y)G(y, z) = δ(x− z)− gB(x)gB(z) . (A.29)

Imposing orthogonality to gB and exponential fall-off at large |x − y|, the solution
to (A.29) is

G(∞)(x, y) = e2mx< + e−2mx> + 8(emx< + e−mx>)− 6m(x> − x<)− 8
32m cosh2(mx>/2)cosh2(mx</2)

, (A.30)

where x> = max(x, y) and x< = min(x, y).
Then G̃(∞)(p, q) is the Fourier transform satisfying∫ ∞

−∞
dq′∆̃(p− q′)G̃(q′, q) = δ(p− q)− g̃B(p)g̃B(−q) , (A.31)

and we can compute it explicitly:

G̃(∞)(p, q) = 2π
(q2 +m2)δ(p− q) + G̃reg(p, q) , with

G̃reg(p, q) = π

sinh(π(p− q)/m)

{ 12p
(q2+m2)2 −

12q
(p2+m2)2 −

13p
m2(q2+m2) + 13q

m2(p2+m2)+

+ 6
m4 (p− q) + 11pq

m5 (coth(πp/m)− coth(πq/m)) +

− 6pq
m5 Im

(
ψ(1)(−1 + ip

m)− ψ(1)(−1 + iq
m)
)}

. (A.32)

where ψ(1)(z) = d
dzψ(z) with ψ(z) the digamma function. Note that G̃(p, q) = G̃(q, p).

The regular piece G̃reg is smooth and bounded on all of R2. The pole from the csch
pre-factor along the diagonal is canceled by a zero from the quantity in curly brackets.
For fixed p, the large |q| behavior of the quantity in curly brackets is linear and therefore
Greg(p, q) = O(|q|e−π|q|) as |q| → ∞. Furthermore, along the diagonal, one can show that
Greg(p, p) falls off like |p|−4 for large p.

We use these facts to argue that the restriction of G̃(∞)(p, q) to p, q ∈ [−Λ,Λ] can be
taken as the approximate inverse G̃ in (A.26):

G̃(p, q) = G̃(∞)(p, q)
∣∣∣∣
[−Λ,Λ]2

. (A.33)

There are two sources of error in this approximation. First there is the error in replacing
the inverse of ∆̃(Λ) by the inverse of ∆̃(∞)|[−Λ,Λ]2 . Then there is the error in approximating
the inverse of the latter operator, which we will think of as a restriction of ∆̃(∞) to an
upper-left block, with the upper-left block of its inverse.9 We discuss each in turn.

9There is no issue regarding the fact that G̃(∞) is only an inverse to ∆̃(∞) on the orthogonal complement
to the zero-mode g̃B . The reason is that we can restrict interest to G̃ acting on functions Fn(q) that are
odd on q ∈ [−Λ,Λ] and so are orthogonal to g̃B, which is an even function of q.
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To simplify notation, let T = ∆̃(Λ) be the integral operator we have, and let T0 =
∆̃(∞)|[−Λ,Λ]2 . Let the difference be δT with kernel

δT (p, q) = 3(p− q)
sinh(π(p− q)/m) −

3m
πsinh

(
π|p−q|
m

) ln

 sinh
(
πΛ
m

)
sinh

(
π|Λ−|p−q||

m

)
 , (A.34)

which vanishes along the diagonal and is exponentially small in m/Λ in a neighborhood of
the diagonal. Again, we note the logarithmic singularity at |p − q| = Λ is integrable and
has a coefficient that is exponentially small in m/Λ. Thus we expect the corrections in
approximating T−1 by T−1

0 from the Neemann series,

T−1 = (T0 + δT )−1 = T−1
0 − T−1

0 δTT−1
0 + T−1

0 δTT−1
0 δTT−1

0 −+ · · ·
≈ T−1

0 , (A.35)

to be exponentially small in m/Λ.
Now, T0 is the restriction of T = ∆̃(∞) to functions with support on [−Λ,Λ], while we

define G̃ as the analogous restriction of G̃(∞), and what we know is that T G̃(∞) = 1. A
finite-dimensional matrix analog of our problem is that we have that

T =
(
T0 T12
T21 T22

)
, G̃(∞) =

(
G̃ G̃12
G̃21 G̃22

)
(A.36)

are inverses of each other and we would like an expression for T−1
0 . Assuming G22 is

invertible, then the finite-dimensional formula from block inversion is

T−1
0 = G̃− G̃12G̃

−1
22 G̃21 . (A.37)

We assume the same formula holds in our setting, and we expect G̃22 to be invertible
since it has the form of a diagonal matrix plus a small correction. Then the above remarks
on the properties of G̃(∞) imply that G̃12(p, q), with |p| < Λ and |q| > Λ, is generally expo-
nentially suppressed, except in neighborhoods of the corners where |p| ∼ Λ ∼ |q|. In these
neighborhoods we still have that G̃12(p, q) is bounded by a quantity of O(|q|−4). Analogous
remarks apply to G̃21 = (G̃12)T . Therefore we expect that G̃12G̃

−1
22 G̃21 is suppressed10 by at

least O(m2/Λ2) relative to G̃ for any p, q ∈ [−Λ,Λ]. Therefore combining (A.35) and (A.37)
we write

G̃(Λ)(p, q) ≡ T−1(p, q) = G̃(p, q)
(
1 +O(m2/Λ2)

)
, (A.38)

which gives (A.26).
It follows that the solution to (A.13) for the first correction is

f̃1(p) =
∫ Λ

−Λ
dqG̃(p, q)F1(q)× (1 +O(m2/Λ2)) . (A.39)

10In more detail, when p, q are away from the diagonal G̃12G̃
−1
22 G̃21 has double the exponential suppression

in the distance from the diagonal as G̃. Along the diagonal, assuming the dominant behavior of (G̃22)−1(p, q)
is ∼ p2δ(p−q), the contribution of G̃12G̃

−1
22 G̃21 is estimated by an integral of the form

∫∞
0 dx(x+ Λ

m
)−6e−x,

which is O(1/Λ6).
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Note that for fixed p the exponential damping in |p − q| from the csch pre-factor of G̃reg
balances the exponential growth from the sinh pre-factor of F1. Since the integrand then
grows linearly in q at large q and the explicit leading Λ dependence of F1 is O(Λ ·e−2πΛ/m),
one sees that the leading behavior of f̃1 will be O(Λ3 ·e−2πΛ/m). Since the Λ dependence of
the integrand of (A.39) is simple, the leading Λ behavior of the integral can be computed
by applying the fundamental theorem of calculus. The result is

f̃
(Λ)
1 (p,Λ) =

= −4πi
√

2
g

sinh(πp/m)
{

(6p4 −m2p2 + 5m4)
(p2 +m2)2 + 3p

2m Im
[
ψ(1)

(
− 1 + i pm

)]} Λ3

m3 e
−2πΛ/m+

+O
(

Λ2

m2 e
−2πΛ/m

)
. (A.40)

Thus for fixed p we have f̃ (Λ)
1 = O(Λ3 · e−2πΛ/m), and for all p ∈ [−Λ,Λ] we have that f̃ (Λ)

1
is bounded by a quantity of O(Λ3 · e−πΛ/m).

Since f̃ (Λ)
1 has the same exponentially suppressed form as the source F1, it follows from

the above analysis that the linearized equation for the nth correction, f̃ (Λ)
n , will be of the

form ∆̃(Λ) · f̃ (Λ)
n = F ′n, where F ′n has the same suppression as Fn. Hence f̃ (Λ)

n will also have
the same exponential suppression as Fn, and will generally involve a polynomial in Λ/m
whose degree grows with n.

B IR divergences

At two or three loops, depending on the theory in general the energy of the kink ground
state is IR divergent. More specifically, the Sine-Gordon kink has a divergence at three
loops, the φ4 kink at two, and if the potential expanded around a minimum corresponding
to each end of the kink begins its polynomial expansion at φn, the first IR divergence will
occur at n−1 loops. These IR divergences do not affect the kink mass as they also appear,
at one less loop, in the vacuum energy and the kink mass is the difference between the two
energies.

Here at one loop we found the energy

Q1 = −
∫
dk

2π

∫ Λ

−Λ

dp

2π g̃k(p)g̃
∗
k(p)

(ωp − ωk)2

4ωp
. (B.1)

In the cases of the Sine-Gordon and φ4 modes, g̃k(p) contains a δ(k−p) term. One of these
δ functions may be eliminated by the integration over k, but the other potentially leaves a
divergence already at one loop. In coordinate space, it is easily seen that the origin of this
divergence is a constant energy density, and so it is an IR divergence.

Such IR divergences have been noted since the first papers [1] on kink mass calculations,
and are usually regularized by compactifying the space using periodic boundary conditions.
This is quite a high price to pay,11 as the kink itself does not satisfy periodic boundary

11While the price is high, the cut-off compactified theory has a finite number of modes and so can be
treated nonperturbatively using Monte Carlo [30–32] and variational [33] techniques.
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conditions. One may instead impose boundary conditions that are satisfied by the kink,
but then they will not be satisfied by the vacuum.

We will now argue that, at least in the present case, the constant energy density is
exactly zero and so this messy issue may be avoided. First, let us return to position space

Q1 = −
∫ Λ

−Λ

dp

2π

∫
dk

2π

∫
dx

∫
dyg−k(x)gk(y)eip(y−x) (ωp − ωk)2

4ωp
. (B.2)

The potential divergence now arises from the plane wave terms

gk(x) ⊃ |k|
ωk
e−ikx. (B.3)

Thus the potentially divergent term in Q1 is

Q̂1 = −
∫ Λ

−Λ

dp

2π

∫
dk

2π

∫
dx

∫
dyei(p−k)(y−x) k

2

ω2
k

(ωp − ωk)2

4ωp
. (B.4)

The potential divergence arises from p ∼ k so let us expand in 1/ε where ε = p − k. At
leading order

ωp − ωk = ε

ωp
(B.5)

and so at leading order, at p ∼ k, we have

Q̂1 = −
∫
dp

2π
p2

4ω5
p

∫
dε

2π

∫
dx

∫
dyeiε(y−x)ε2. (B.6)

Notice that the exponential is periodic in both x and y with period 2π/ε. It is also
bounded by 1, as is its norm. Therefore integrating eiε(y−x) over any rectangle on the
x − y plane, the integral will never exceed 4π2/ε2. Thus the integral of ε2eiε(y−x) never
exceeds 4π2 and in particular is bounded. When ε 6= 0 the integral vanishes in the sense
of a distribution as it is periodic. Therefore, after integrating over x and y one arrives at
a function of ε which is bounded and vanishes except on the measure zero set ε = 0. The
integral over ε is therefore equal to zero. Thus, at leading order in 1/ε, this integral vanishes.
We conclude that there is no small ε divergence, and so the potential IR divergence is not
present.

Note that the above derivation did not use the p integral, it was performed indepen-
dently at each value of p. Therefore it is not affected by the cutoff at Λ.
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