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Abstract In this paper, we show a comparison of different
definitions of the topological charge on the lattice. We con-
centrate on one small-volume ensemble with 2 flavours of
dynamical, maximally twisted mass fermions and use three
more ensembles to analyze the approach to the continuum
limit. We investigate several fermionic and gluonic defini-
tions. The former include the index of the overlap Dirac
operator, the spectral flow of the Wilson–Dirac operator and
the spectral projectors. For the latter, we take into account
different discretizations of the topological charge operator
and various smoothing schemes to filter out ultraviolet fluc-
tuations: the gradient flow, stout smearing, APE smearing,
HYP smearing and cooling. We show that it is possible to
perturbatively match different smoothing schemes and pro-
vide a well-defined smoothing scale. We relate the smoothing
parameters for cooling, stout and APE smearing to the gra-
dient flow time τ . In the case of hypercubic smearing the
matching is performed numerically. We investigate which
conditions have to be met to obtain a valid definition of the
topological charge and susceptibility and we argue that all
valid definitions are highly correlated and allow good con-
trol over topology on the lattice.

1 Introduction

QCD gauge fields can have non-trivial topological proper-
ties, manifested in non-zero and integer values of the so-
called topological charge. Such topological properties are
believed to have important phenomenological implications,

a e-mail: andreas.athinodorou@pi.infn.it
b e-mail: kcichy@amu.edu.pl (corresponding author)

e.g. the fluctuations of the topological charge are related to
the mass of the flavour-singlet pseudoscalar η′ meson [1,2].
The topology of QCD gauge fields is a fully non-perturbative
issue, hence lattice methods are well-suited to investigate it.
Naively, lattice gauge fields are topologically trivial, since
they can always be continuously deformed to the unit gauge
field. However, it can be shown that for smooth enough gauge
fields (sufficiently close to the continuum limit), the notion of
topology of lattice gauge fields is still meaningful [3]. Histor-
ically, the first investigation aimed at studying the topologi-
cal properties of a non-Abelian gauge theory was reported in
Refs. [4,5] for the SU(2) gauge group case and then extended
to SU(3) in Ref. [6].

Over the years, many definitions of the topological charge
of a lattice gauge field were proposed [7,8]. It is clear that
the definitions differ in terms of their computational cost and
convenience, but also theoretical appeal. These definitions
can be characterized either as fermionic or gluonic. During
the last decade, a number of efforts have revealed impor-
tant aspects of the topological susceptibility, which reflects
the fluctuations of the topological charge. Universality of the
topological susceptibility in fermionic definitions has been
demonstrated [9], giving an insight in the basic properties a
definition has to obey so that the topological susceptibility
is free of short-distance singularities, which have plagued
some of the earlier attempts at a proper and computation-
ally affordable fermionic definition [10,11]. On the other
hand, considering the gluonic definition, a theoretically clean
understanding on how the topological sectors emerge in the
continuum limit has been attained through the gradient flow
[12–16]. Further projects have also divulged the numerical
equivalence of the gradient flow with the smoothing tech-
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nique of cooling at finite lattice spacing. Previous investi-
gations, on the other hand, have shown numerically that the
field theoretic topological susceptibility extracted with sev-
eral smoothing techniques such as cooling, APE and HYP
smearing give the same continuum limit. Although no solid
theoretical argument suggests so, it is believed that all differ-
ent definitions of the topological charge agree in the contin-
uum limit. Good agreement has also been found between the
gluonic definiton and a fermionic one in finite-temperature
studies [17]. For an overview of topology-related issues on
the lattice, we refer to the review paper by Müller-Preussker
[8].

This aim of the paper is two-fold. The first purpose is to
investigate the perturbative equivalence between the smooth-
ing schemes of the gradient flow, cooling as well as APE,
stout and HYP smearing. In Refs. [18,19] it was demon-
strated that gradient flow and cooling are equivalent if the
gradient flow time τ and the number of cooling steps nc are
appropriately matched. By expanding the gauge links pertur-
batively in the lattice spacing a, at subleading order, the two
methods become equivalent if one sets τ = nc/(3 − 15b1)

where b1 is the Symanzik coefficient multiplying the rect-
angular term of the smoothing action. It is, thus, interesting
to extend the study of Ref. [18] and explore whether similar
matching can also be derived for APE, stout and HYP smear-
ings. Hence, we carry out such investigation and support it
with the appropriate numerical results.

The second motivation of this paper is to attempt a system-
atic investigation of different topological charge definitions.
We have computed them on selected ensembles generated
by the European Twisted Mass Collaboration (ETMC)1. The
included definitions are:2

– index of the overlap Dirac operator on HYP-smeared and
non-HYP-smeared configurations,

– Wilson-Dirac operator spectral flow (SF),
– spectral projector definition,
– field theoretic (gluonic) definition, with gauge fields

smoothed using:

– gradient flow (GF) with different smoothing actions
and at different flow times. Namely, we smooth the
gauge fields using the Wilson plaquette, Symanzik
tree-level and Iwasaki actions at flow times t0, 2t0
and 3t0; t0 is defined in Sect. 3.5.1.

– cooling (cool) with the three different smoothing
actions and cooling steps matched to GF time for
t0, 2t0 and 3t0,

1 In 2019, the name of the collaboration has been changed to Extended
Twisted Mass Collaboration.
2 For references on each of the following definitions, we refer to
Sect. 3.4.

– stout smearing with three different values of the stout
parameter ρst and smearing steps matched to GF time
at flow times t0, 2t0 and 3t0,

– APE smearing with three different values of the
parameter αAPE and smearing steps matched to GF
time for t0, 2t0 and 3t0,

– HYP smearing for a given set of parameters αHYP1,
αHYP2,αHYP3, and smearing steps numerically matched
to GF time at flow times t0, 2t0 and 3t0.

The outline of the paper is as follows: Sect. 2 describes
our lattice setup as well as the relevant details regarding the
production of the N f = 2 configurations. Section 3 intro-
duces the topological charge definitions that we are using
and includes the derivation of matching conditions between
different smoothing schemes. In Sect. 4, we discuss and com-
pare different definitions of the topological charge, we ana-
lyze the approach to the continuum limit and we show results
for the topological susceptibility. Finally, in Sect. 5 we sum-
marize and conclude.

2 Lattice setup

Motivated by the desire to cover as many definitions of the
topological charge as possible, including the costly overlap
definition, we performed our comparison of different topo-
logical charge definitions on small volume ensembles (to
keep the computational cost affordable and at the same time
incorporate all definitions) generated by ETMC with N f = 2
[20–22] dynamical twisted mass fermions. The action in the
gauge sector is

SG[U ] = β

3

∑

x

(
b0

4∑

μ,ν=1
1≤μ<ν

Re Tr
(
1 − P1×1

x;μ,ν

)

+b1

4∑

μ,ν=1
μ�=ν

Re Tr
(
1 − P1×2

x;μ,ν

))
, (1)

with β = 6/g2
0, g0 being the bare coupling and P1×1, P1×2

the plaquette and rectangular Wilson loops respectively. The
configurations were generated with the tree-level Symanzik
improved action [23], i.e. b1 = − 1

12 , b0 = 1 − 8b1. Note
that for smoothing the gauge fields using the gradient flow
and cooling, in addition to the tree-level Symanzik improved
action, we use the Wilson plaquette action which corresponds
to b1 = 0 and b0 = 1 as well as the Iwasaki improved action
with b1 = −0.331 and b0 = 3.648.

The fermionic action for the light quarks is the Wilson
twisted mass action [24–27], given in the so-called twisted
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Table 1 Parameters of the employed ETMC N f = 2 gauge field con-
figuration ensembles [20–22]. The columns contain: the inverse bare
coupling β, the approximate values of the lattice spacing a [28–30],
r0/a [28,30], the scheme- and scale-independent renormalization con-

stants ratio ZP/ZS [31–33], the lattice size (L/a)3 × (T/a), the bare
twisted light quark mass aμl , the critical value of the hopping parameter
(where the PCAC mass vanishes), physical extent L of the lattice in fm
and the product mπ L

Ensemble β a [fm] r0/a ZP/ZS lattice aμl κc L [fm] mπ L

b40.16 3.90 0.085 5.35(4) 0.639(3) 163 × 32 0.004 0.160856 1.4 2.5

c30.20 4.05 0.067 6.71(4) 0.682(2) 203 × 40 0.003 0.157010 1.3 2.4

d20.24 4.20 0.054 8.36(6) 0.713(3) 243 × 48 0.002 0.154073 1.3 2.4

e17.32 4.35 0.046 9.81(13) 0.740(3) 323 × 64 0.00175 0.151740 1.5 2.4

basis by

Sl [ψ, ψ̄,U ] = a4
∑

x

χ̄l(x)
(
DW+m0+iμlγ5τ3

)
χl(x) , (2)

where τ 3 acts in flavour space and χl = (χu, χd) is
a two-component vector in flavour space, related to the
one in the physical basis (ψ) by a chiral rotation, ψ =
exp(iωγ5τ3/2)χ , with ω being the twist angle (ω = π/2 at
maximal twist). The bare untwisted and twisted quark masses
are, respectively,m0 and μl , while the multiplicatively renor-
malized light quark mass is μR = Z−1

P μl . DW is given by:

DW = 1

2

(
γμ(∇μ + ∇∗

μ) − a∇∗
μ∇μ

)
, (3)

where ∇μ and ∇∗
μ represent the forward and backward covari-

ant derivatives, respectively.
Twisted mass fermions are providing an automatically

O(a)-improvement if the twist angle is set to π/2 (maximal
twist). This can be achieved by non-perturbative tuning of the
hopping parameter κ = (8 + 2am0)

−1 to its critical value,
i.e. such that the PCAC quark mass vanishes [25,34–38].

The details of the gauge field configuration ensembles
that were used in this work are shown in Table 1. Most
of our investigations are performed using the ensemble
b40.16. However, we also investigate how the correlation
between different topological charge definitions changes
when approaching the continuum limit, thus using also
ensembles c30.20, d20.24 and e17.32. For all of these ensem-
bles the pion mass is close to 340 MeV

3 Definitions of the topological charge

In this section, we introduce the definitions of the topological
charge that we use below for numerical studies. We attempted
to include the most commonly used, theoretically sound defi-
nitions of the topological charge. The relevant characteristics
of each definition are summarized in Table 2.

3.1 Index of the overlap Dirac operator

For many years, it was considered impossible that chiral
symmetry can be realized on the lattice without violating
certain essential properties, like locality, translational invari-
ance and the absence of doublers. This feature of lattice Dirac
operators was formulated in terms of a no-go theorem, the
Nielsen-Ninomiya theorem [39]. Only after several years, it
was realized that this theorem can be overcome by allowing
a modified definition of chiral symmetry on the lattice. It was
shown by Lüscher [40] that if the lattice Dirac operator sat-
isfies the so-called Ginsparg-Wilson relation [41], there is a
corresponding exact symmetry and this symmetry becomes
just the standard chiral symmetry in the continuum limit.
Thus, any Dirac operator that satisfies the Ginsparg-Wilson
relation is chirally symmetric. One of such operators is the
overlap Dirac operator, introduced by Neuberger [42,43].

The overlap operator, as a chirally symmetric Dirac oper-
ator, can have exact zero modes [44]. The famous Atiyah-
Singer index theorem [45] relates in a simple way the number
of these zero modes to the topological charge Q of a given
gauge field configuration:

Q = n− − n+, (4)

where n± denotes the number of zero modes with posi-
tive/negative chirality. This remarkable result, thus, links a
property of gauge fields to a fermionic observable. By con-
struction, it gives integer values of Q. Note, however, that the
definition of the overlap operator is not unique – it depends
on the details of the construction of the operator. In common
notation, the massless overlap operator is

D = 1

a

(
1 − A√

A†A

)
, A = 1 + s − aDW , (5)

with DW being the standard Wilson-Dirac operator, given by
Eq. (3). The s parameter, appearing in the kernel operator
A, can be tuned to optimize locality properties of the overlap
operator D [46–48]. It effectively introduces a dependence of
the index obtained on a given configuration on the used value
of s. This dependence vanishes towards the continuum limit,
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Table 2 The relevant characteristics of each topological charge defini-
tion. For each definition, we give a number, full name, type of smear-
ing of gauge fields (– = no smearing, HYPn = n iterations of HYP
smearing, GF (action,t) = gradient flow with a given smoothing action
(Wplaq = Wilson plaquette, tlSym = tree-level Symanzik improved,
Iwa = Iwasaki) and at flow time t , cool (action,t) = cooling (smoothing
action as for GF) and a number of steps corresponding to GF at flow

time t , stout (ρst ,t) = stout smearing with a given ρst parameter and
a number of steps corresponding to GF at flow time t , APE (αAPE,t)
= APE smearing with a given αAPE parameter and a number of steps
corresponding to GF at flow time t , HYP (t) = HYP smearing with a
number of steps corresponding to GF at flow time t), short name (used
in plots) and definition type (G=gluonic, F=fermionic)

Nr Full name Smearing type Short name Type

1 index of overlap Dirac operator s = 0.4 – index nonSmear s = 0.4 F

2 index of overlap Dirac operator s = 0.0 – index nonSmear s = 0 F

3 index of overlap Dirac operator s = 0.0 HYP1 index HYP1 s = 0 F

4 Wilson-Dirac op. spectral flow s = 0.0 HYP1 SF HYP1 s = 0.0 F

5 Wilson-Dirac op. spectral flow s = 0.75 HYP1 SF HYP1 s = 0.75 F

6 Wilson-Dirac op. spectral flow s = 0.0 HYP5 SF HYP5 s = 0.0 F

7 Wilson-Dirac op. spectral flow s = 0.5 HYP5 SF HYP5 s = 0.5 F

8 spectral projectors M2 = 0.00003555 – spec. proj. M2 = 0.0000355 F

9 spectral projectors M2 = 0.0004 – spec. proj. M2 = 0.0004 F

10 spectral projectors M2 = 0.0010 – spec. proj. M2 = 0.0010 F

11 spectral projectors M2 = 0.0015 – spec. proj. M2 = 0.0015 F

12 field theoretic (clover) – cFT nonSmear G

13 field theoretic (plaquette) GF (Wplaq,t0) pFT GF Wplaq t0 G

14 field theoretic (plaquette) GF (Wplaq,2t0) pFT GF Wplaq 2t0 G

15 field theoretic (plaquette) GF (Wplaq,3t0) pFT GF Wplaq 3t0 G

16 field theoretic (clover) GF (Wplaq,t0) cFT GF Wplaq t0 G

17 field theoretic (clover) GF (Wplaq,2t0) cFT GF Wplaq 2t0 G

18 field theoretic (clover) GF (Wplaq,3t0) cFT GF Wplaq 3t0 G

19 field theoretic (improved) GF (Wplaq,t0) iFT GF Wplaq t0 G

20 field theoretic (improved) GF (Wplaq,2t0) iFT GF Wplaq 2t0 G

21 field theoretic (improved) GF (Wplaq,3t0) iFT GF Wplaq 3t0 G

22 field theoretic (clover) GF (tlSym,t0) cFT GF tlSym t0 G

23 field theoretic (clover) GF (tlSym,2t0) cFT GF tlSym 2t0 G

24 field theoretic (clover) GF (tlSym,3t0) cFT GF tlSym 3t0 G

25 field theoretic (clover) GF (Iwa,t0) cFT GF Iwa t0 G

26 field theoretic (clover) GF (Iwa,2t0) cFT GF Iwa 2t0 G

27 field theoretic (clover) GF (Iwa,3t0) cFT GF Iwa 3t0 G

28 field theoretic (clover) cool (Wplaq,t0) cFT cool (GF Wplaq t0) G

29 field theoretic (clover) cool (Wplaq,3t0) cFT cool (GF Wplaq 3t0) G

30 field theoretic (clover) cool (tlSym,t0) cFT cool (GF tlSym t0) G

31 field theoretic (clover) cool (tlSym,3t0) cFT cool (GF tlSym 3t0) G

32 field theoretic (clover) cool (Iwa,t0) cFT cool (GF Iwa t0) G

33 field theoretic (clover) cool (Iwa,3t0) cFT cool (GF Iwa 3t0) G

34 field theoretic (clover) stout (0.01,t0) cFT stout 0.01 (GF Wplaq t0) G

35 field theoretic (clover) stout (0.01,3t0) cFT stout 0.01 (GF Wplaq 3t0) G

36 field theoretic (clover) stout (0.1,t0) cFT stout 0.1 (GF Wplaq t0) G

37 field theoretic (clover) stout (0.1,3t0) cFT stout 0.1 (GF Wplaq 3t0) G

38 field theoretic (clover) APE (0.4,t0) cFT APE 0.4 (GF Wplaq t0) G

39 field theoretic (clover) APE (0.4,3t0) cFT APE 0.4 (GF Wplaq 3t0) G

40 field theoretic (clover) APE (0.5,t0) cFT APE 0.5 (GF Wplaq t0) G
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Table 2 continued

Nr Full name Smearing type Short name Type

41 field theoretic (clover) APE (0.5,3t0) cFT APE 0.5 (GF Wplaq 3t0) G

42 field theoretic (clover) APE (0.6,t0) cFT APE 0.6 (GF Wplaq t0) G

43 field theoretic (clover) APE (0.6,3t0) cFT APE 0.6 (GF Wplaq 3t0) G

44 field theoretic (clover) HYP (t0) cFT HYP (GF Wplaq t0) G

45 field theoretic (clover) HYP (3t0) cFT HYP (GF Wplaq 3t0) G

but at practically used lattice spacings, Q evaluated from
the zero modes of the overlap operator shows a dependence
on the value of the parameter s. In a sense, this reflects the
general property that topology is uniquely defined only for
continuum gauge fields. In Sect. 4, we will comment more
on the dependence of Q on s by explicitly comparing results
obtained for different values of the latter.

The overlap index definition of the topological charge is
theoretically clean and very appealing, because it provides
integer values of Q, while for most other definitions dis-
cussed in this paper, the Q values at non-zero lattice spacing
are driven away from integers by cut-off effects, ultraviolet
fluctuations and/or stochastic noise. However, it has a severe
practical drawback – the cost of using the overlap operator
is around one to two orders of magnitude larger than the one
of e.g. variants of Wilson fermions [49].

3.2 Wilson-Dirac operator spectral flow

Closely related to the overlap index is the index derived
from the spectral flow of the hermitian Wilson-Dirac operator
[50,51]. Its definition is derived from the fact that the contin-
uum hermitian Euclidean Dirac operator H(m0) = γ5D(m0)

with bare mass m0 �= 0 has a gap, i.e. it has no eigenvalues
in the region (− |m0|, |m0|). As a consequence, eigenvalues
crossing zero in the spectral flow of H(m0) can only occur
at m0 = 0, i.e. they correspond to the zero modes of D, and,
hence, the net number of crossings is related to the topolog-
ical charge of the background gauge field [45].

On the lattice, zero crossings in the spectral flow of the
hermitian Wilson-Dirac operator HW (m0) = γ5(DW + m0)

can occur for any value of m0 in the region −8 ≤ m0 ≤
0 [52,53] and counting the net number of crossings in the
region −(1 + s) ≤ m0 ≤ 0 enables one to associate an
index to the Wilson-Dirac operator as a function of s. The
interpretation from the overlap formalism is essential to make
this connection [51]. In fact, the correspondence between the
index of the overlap operator and the index from the spectral
flow is exact, so the parameter s in Eq. (5) is the same as
the one used here, and all the good properties of the overlap
index carry over to the index from the spectral flow.

To be more specific, we consider the hermitian Wilson-
Dirac operator

HW (m0) = γ5(DW + m0), (6)

and its eigenvalues λ
HW
k (m0). Their dependence on m0

defines the spectral flow. Since the Wilson-Dirac opera-
tor DW is non-normal, the eigensystems of HW (m0) and
DW + m0 are related in a non-trivial way, except for the
modes of HW (m0) which are zero for a particular value of
m0,

HW (m0)ψ = 0 ⇐⇒ DWψ = −m0ψ. (7)

It follows from this equation that the real modes λW
k ∈ R of

DW correspond to zero modes of HW (m0 = −λW
k ), while

the chirality of the modes is given through first order per-
turbation theory by the derivative of the spectral flow at
m0 = −λW

k [50],

dλ
HW
k

dm0

∣∣∣∣∣
m0=−λWk

= 〈k|γ5|k〉. (8)

Finally, summing up the chiralities of the real modes λW
k ∈

R of DW up to 1 + s yields an index of the Wilson-Dirac
operator, and hence the topological charge from the spectral
flow,

Q =
∑

λWk ∈R
sign(〈k|γ5|k〉), (9)

where the sum is over λW
k < 1 + s only, i.e. it excludes the

real doubler modes.
Smoothing the gauge fields in the covariant derivatives of

DW reduces the non-normality of DW , and hence improves
the chirality of the real modes [47]. In addition, it also
improves the separation of the physical modes from the dou-
bler modes and in this way reduces the ambiguity of the
charge definition due to the choice of the parameter s. Inter-
estingly, this ambiguity can be quantified in the context of
Wilson Random Matrix Theory [54–58].
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3.3 Spectral projectors

Another fermionic definition of the topological charge was
introduced by Giusti and Lüscher [9,59]. One introduces the
projector PM to the subspace of eigenmodes of the squared
Hermitian Dirac operator D†D with eigenvalues below M2.
The projectors PM can be evaluated stochastically and for
chirally symmetric fermions, the topological charge can be
defined in terms of it as Q = Tr {γ5PM }. This definition is
then equivalent to the index definition, apart from the fact
that the counting of modes proceeds stochastically, instead
of determining it from zero modes. For non-chirally symmet-
ric fermions, the chirality of modes is no longer ±1, but it
can be schematically written as ±1 +O(a). Thus, the above
definition of Q still holds, but it gives in general non-integer
values, contaminated by cut-off effects and by noise from the
stochastic evaluation. In practice, the spectral projector com-
putation of the topological charge proceeds in the following
way for Wilson-type fermions [9]. One introduces in the the-
ory a set η1, . . ., ηNsrc of Nsrc pseudofermion fields with
the action Sη = ∑Nsrc

j=1 (η j , η j ), where the bracket denotes
the scalar product. The fields are generated randomly, thus
their gauge ensemble average is distributed according to the
introduced action. Then, one defines the observable

C = 1

Nsrc

Nsrc∑

j=1

(
PMη j , γ5PMη j

)
. (10)

which plays the role of the topological charge. To compute
the topological susceptibility from this definition, one needs
a correction to account for a finite number of stochastic
noise samples Nsrc and the ratio of renormalization constants
ZP/ZS . This is done using other observables

B = 1

Nsrc

Nsrc∑

j=1

(
PMγ5PMη j ,PMγ5PMη j

)
, (11)

A = 1

Nsrc

Nsrc∑

j=1

(
P

2
Mη j ,P

2
Mη j

)
. (12)

Then, the topological susceptibility, χ , is defined as

χ = 1

V

〈A〉2

〈B〉2

(
〈C2〉 − 〈B〉

Nsrc

)
. (13)

If the ratio ZP/ZS is known from another computation, one
can replace 〈A〉2/〈B〉2 in the above equation with Z2

S/Z
2
P .

We can, therefore, define as a proxy of the topological charge
the quantity

Qeff = ZS

ZP
C, (14)

with Q = limNsrc→∞ Qeff . It can be shown that the spectral
projector definition is manifestly ultraviolet finite [11,59–
61] and hence theoretically very appealing, especially for
the computations of the topological susceptibility, as done
in Refs. [9,60,62–65]. However, if the aim is to e.g. sepa-
rate topological sectors, i.e. to choose configurations from a
given sector, then the stochastic noise present in the spectral
projector evaluated observables strongly contaminates the
results, if using a relatively small Nsrc ≈ 6, while for large
Nsrc → ∞, the method becomes expensive. As we show
in the results section, the stochastic ingredient also makes
the correlation with respect to other definitions only moder-
ate and much smaller than e.g. the correlation between the
field theoretic definitions (evaluated with different kinds of
smearing).

The obtained result also depends on the spectral threshold
M chosen for the projector PM . As stated in Ref. [59], M can
be chosen arbitrarily, but it is wise to avoid its large values
in lattice units (that enhance cut-off effects) and also values
close to the quark mass. We will check a few values of M
and investigate the implications of choosing different values.

Recently, the spectral projector formalism was extended
to staggered fermions [66]. In this case, the bare topological
charge is also multiplicatively renormalizable, but the renor-
malization constants are different, which is due to a different
pattern of chiral symmetry breaking.

3.4 Field theoretic definition

The topological charge of a gauge field can be naturally
defined as the four-dimensional integral over space-time of
the topological charge density. In the continuum, this reads

Q =
∫

d4x q(x), (15)

where q(x) denotes the topological charge density defined
as

q(x) = 1

32π2 εμνρσ Tr
{
FμνFρσ

}
. (16)

On the lattice, one has to choose a valid discretization qL(x)
of q(x) in order to evaluate Eq. (15), which now takes the
form of the sum

Q = a4
∑

x

qL(x). (17)

In practice, any discretization which gives the right contin-
uum limit can be used for the evaluation of Eq. (17), but
depending on the discretization qL(x), lattice artifacts affect-
ing the total topological charge Q can vary. This means that
using such an operator, on smoothed configurations as we
explain in Sect. 3.5, we do not expect to obtain an exact inte-
ger value for the total topological charge Q, but rather that
the obtained value of Q would be approaching an integer as
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we tend to the continuum limit i.e. Q = integer ± O(a2). In
addition, we expect that the total topological charge for some
definitions of qL(x) converges faster and closer to an integer
than that obtained by others. One can build such operators
from closed path-ordered products of links which lead to the
field strength tensor Fμν if we perturbatively expand them
in a. Namely, by using a number of different Wilson loop
shapes and sizes, we cancel, step by step, the leading lat-
tice artifacts contributions. Examples of such operators are
demonstrated in the next paragraph.

The simplest lattice discretization of qL is based on the
simple plaquette and can be noted as

qplaq
L (x) = 1

32π2 εμνρσ Tr
(
Cplaq

μν Cplaq
ρσ

)
, (18)

with

Cplaq
μν (x) = Im

(
μ̂

ν̂

)
,

(19)

where the square pictorializes the path ordered product of
the links lying along plaquette sides in the directions μ̂ and
ν̂. This definition of qL(x) has a low computational cost
and leads to lattice artifacts of order O(a2). Furthermore,
it has been used in several determinations of the topologi-
cal susceptibility and investigations of the instanton proper-
ties [67,68].

Without question, the most commonly used definition of
qL is the symmetrized clover leaf noted as

qclov
L (x) = 1

32π2 εμνρσ Tr
(
Cclov

μν Cclov
ρσ

)
, (20)

with

Cclov
μν (x) =

1
4
Im

⎛
⎜⎝ μ̂

ν̂

⎞
⎟⎠ .

(21)

Like in the plaquette definition, clover includes lattice arti-
facts of order O (

a2
)
. This can be viewed easily by per-

turbatively expanding Cplaq
μν (x) and Cclov

μν (x) and obtaining
1 +a4Fμν(x)+O(a6). Nevertheless, one can also construct
improved definitions of topological charge density operators
by including additional Wilson loop shapes in the definition
of qL (x) and then perturbatively canceling the terms which
contribute to higher powers of a. Such a definition is the
Symanzik tree-level improved expressed as

q imp
L (x) = b0q

clov
L (x) + b1q

rect
L (x), (22)

with

qrect
L (x) = 2

32π2 εμνρσ Tr
(
C rect

μν C rect
ρσ

)
, (23)

and

Crect
μν (x) =

1
8
Im

⎛
⎜⎜⎜⎜⎜⎝

μ̂
ν̂

+ μ̂

ν̂

⎞
⎟⎟⎟⎟⎟⎠

.

(24)

qrect
L (x) is the clover-like operator where instead of squares

we make use of horizontally and vertically oriented rectangu-
lar Wilson loops of size 2 × 1. We remove the discretization
errors at tree-level using the Symanzik tree-level coefficients
b1 and b0 as these were previously used in Eq. (1). Thus, this
definition of the topological charge density, by a semiclassi-
cal inspection, converges as O(a4) in the continuum limit3.
Hence, a way to obtain topological quantities with small lat-
tice artifact contributions is by using improved topological
density operators.4

Ultraviolet fluctuations of the gauge fields entering in the
definition of the topological charge density lead to contami-
nation of the topological charge. Hence, we employ methods
to suppress these UV fluctuations. Such techniques include
the gradient flow, the extensively used cooling and several
smearing schemes such as APE, HYP and stout. We exam-
ine all the above smoothers and investigate their analytic as
well as numerical relations.

It is worth mentioning that one can recover the correct
definition of topological quantities from unsmoothed con-
figurations by subtracting additive and multiplicative renor-
malization constants at zero smoothing step. However, the
extraction of these renormalization constants may be sub-
ject to more systematic effects. Of course, this method is
proven useful for particular studies such as the investigation
of the θ -dependence of quantities extracted on configurations
produced with the topological density weighted by an imag-
inary theta term iθ being included in the QCD action [70].
Although this method of defining the topological charge is
out of the scope of this work, the reader can find more infor-
mation in Refs. [71] and [72].

3.5 Smoothing procedures

Smoothing a gauge link Uμ(x) can be accomplished by its
replacement by some other link that minimizes a local gauge
action. To this purpose, it makes more sense to rewrite the

3 Other improved discretizations also exist, see e.g. Ref. [69].
4 An approach to reduce further the lattice artifacts and improve the
convergence in the continuum limit is to shift the spikes of the topolog-
ical charge distribution obtained with a given definition of qL around
exact integers. This has been introduced in Ref. [73] and used exten-
sively since then. However, since this is a rather arbitrary redefinition
of the topological charge, we omit its discussion in this manuscript.
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lattice gauge action as

SG = β

3
ReTr{X†

μ(x)Uμ(x)}
+{terms independent of Uμ(x)}, (25)

where Xμ(x) is the sum of all the path ordered products
of link matrices, called the “staples”, which interact with the
linkUμ(x). If we consider the Wilson gauge action, the main
components in Xμ(x) are the staples extending over 1 × 1
squares (in lattice units). We can, therefore, write Xμ(x) as

Xμ(x) =
∑

ν≥0,ν �=μ

[
Uν(x)Uμ(x + aν̂)U †

ν (x + aμ̂)

+U †
ν (x − aν̂)Uμ(x − aν̂)Uν(x − aν̂ + aμ̂)

]
.

(26)

According to the above equation, for a given link Uμ(x),
the total number of plaquette staples interacting with it is
6. There are several ways to iteratively minimize the local
action. These include procedures such as the gradient flow,
cooling, APE and stout smearing, which make use of the
original staples Xμ(x) to minimize the local action; this pro-
vides the opportunity to perturbatively relate these smoothers
and obtain a more concrete understanding on the numerical
equivalence among them. Furthermore, other more sophis-
ticated smearing procedures such as HYP smearing, which
makes use of a more complicated construction of staples,
also exist. However, the latter, although it leads to numer-
ical equivalence with the other smoothing techniques, pro-
hibits us from relating it perturbatively at tree-level order with
other smoothing techniques. In the next subsections, we give
a brief overview of these most commonly used smoothing
techniques used for the calculation of the topological charge.

3.5.1 Gradient flow

Modern non-perturbative studies of QCD have been employ-
ing the gradient flow, which has been proven to be a pertur-
batively and numerically well-defined smoothing procedure.
It has good, perturbatively proven renormalization proper-
ties and the fields which have been smoothed via gradient
flow do not need to be renormalized. From a historic point
of view, the gradient flow is related to the streamline idea
of Refs. [74–76] and its lattice counterpart was previously
introduced in the context of Morse theory [77].

The gradient flow is defined as the solution of the evolution
equations [12–16]

V̇μ (x, τ ) = −g2
0

[
∂x,μSG(V (τ ))

]
Vμ (x, τ ) ,

Vμ (x, 0) = Uμ (x) , (27)

where τ is the dimensionless gradient flow time. In the above
equation, the link derivative is defined as

∂x,μSG(U ) = i
∑

a

T a d

ds
SG

(
eisY

a
U

) ∣∣∣∣
s=0

≡ i
∑

a

T a∂(a)
x,μSG(U ), (28)

with

Ya(y, ν) =
{
T a if (y, ν) = (x, μ),

0 if (y, ν) �= (x, μ),
(29)

and T a (a = 1, · · · , 8) the Hermitian generators of the
SU (3) group. If we now set Ωμ(x) = Uμ(x)X†

μ(x), we
obtain

g2
0∂x,μSG(U )(x) = 1

2

(
Ωμ(x) − Ω†

μ(x)
)

−1

6
Tr

(
Ωμ(x) − Ω†

μ(x)
)

. (30)

The last equation provides all we need in order to smooth the
gauge fields according to the Eqs. (27). Evolving the gauge
fields via the gradient flow requires the numerical integra-
tion of Eqs. (27) manifested by an integration step ε. This
is performed using the third order Runge-Kutta scheme, as
explained in Ref. [16]. We set ε = 0.01 for the integration
step, since this has been shown to be a safe option [18]. For
the exponentiation of the Lie-algebra fields required for the
integration, we apply the algorithm described in Ref. [78].

An important use of the gradient flow is the determination
of a reference scale t0, defined as the gradient flow time t =
a2τ in physical units for which

t2〈E(t)〉|t=t0 = 0.3, (31)

where E(t) is the action density

E(t) = − 1

2V

∑

x

Tr
{
Fμν(x, t)Fμν(x, t)

}
. (32)

To evaluate numerically E(t), we use the clover discretiza-
tion similarly to Eq. (20).

Having defined the reference scale t0, a question is raised:
for what value of t shall we read an observable? It has been
argued that cut-off effects in some observables can be reduced
by chosing larger flow times as reference length scales [79,
80]. We therefore chose to commit a numerical comparison
of the topological charge obtained with gradient flow with
that extracted using different smoothers for three different
gradient flow times, namely, t0, 2t0 and 3t0.

3.5.2 Cooling

The smoothing technique of cooling [81–84] was one of the
first methods used to remove ultraviolet fluctuations from
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gauge fields. Cooling is applied to a link variable Uμ(x) ∈
SU (3) by updating it, from an old valueU old

μ (x) toU new
μ (x),

according to the probability density

P(U ) ∝ exp

{
− lim

β→∞ β
1

3
ReTrXμ

†(x)Uμ(x)

}
. (33)

The basic step of the cooling algorithm is to replace the given
link U old

μ (x) by an SU (3) group element, which minimizes
locally the action, while all the other links remain untouched.
This is done by choosing a matrix U new

μ (x) ∈ SU (3) that
maximizes

ReTr{Unew
μ (x)X†

μ(x)}. (34)

In the case of an SU (2) gauge theory, the maximization is
achieved by

U new
μ (x) = Xμ(x)√

detXμ(x)
. (35)

For SU (3), the maximization can be implemented using the
Cabibbo-Marinari algorithm [85] according to which one has
to iterate the maximization over all the SU (2) subgroups
embedded into SU (3).

We iterate this procedure so that all the links on all sites
are updated. Such a sweep over the whole lattice is called one
cooling step nc = 1. Traditionally, during such a sweep the
link variables, which have already been updated, are subse-
quently used for the update of the links still retaining their old
value. Nevertheless, one can also consider to use the updated
links only after the whole lattice is covered, increasing the
CPU time by a factor of two.

3.5.3 APE (Array Processor Experiment) smearing

An alternative way to smooth the gauge fields is to apply
APE smearing [86] on the gauge configurations. According
to this smoothing procedure, we create fat links by adding to
the original links the neighbouring staples weighted by a rel-
ative strength αAPE, which represents the smearing fraction
and can be tuned according to its use. This operation breaks
unitarity of the resulting “fat” links and shifts them away
from detU = 1, thus, we should project back to SU (3). The
above operation is noted as

U (nAPE+1)
μ (x) = Proj SU (3)

[
(1 − αAPE)U (nAPE)

μ (x)

+αAPE

6
X (nAPE)

μ (x)
]

. (36)

The APE smearing scheme can be iterated nAPE times to
produce smeared links. In addition to the simple APE smear-
ing, variations which make use of “chair” and “diagonal”
staples have been proposed from time to time. For the pur-
poses of this investigation, we have considered just the simple

APE smearing for different values of the αAPE parameter:

αAPE = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6. (37)

One can project back to SU (3) by maximizing the expres-
sion ReTr{Ũ (nAPE+1)

μ (x)X†
μ(x)} with Ũ (nAPE+1)

μ (x) being the
unprojected smeared link. Nonetheless, one can project onto
SU (3) using other iterative procedures which suggest that
there is not a unique way to do so. This subtlety, however,
becomes irrelevant in analytic smearing schemes such as the
stout.

3.5.4 Stout smearing

A method which allows analytical derivation of smoothed
configurations in SU (3) is the so–called stout smearing pro-
posed in Ref. [78]. This smoothing scheme works in the fol-
lowing way. Once again, let Xμ(x) denote the weighted sum
of the perpendicular staples which begin at lattice site x and
terminate at neighboring site x +aμ̂. Now, we give a weight
ρst to the staples according to

Cμ(x) = ρstXμ(x). (38)

The weight ρst is a tunable real parameter. Then, the matrix
Qμ(x), defined in SU (3) by

Qμ(x) = i

2

(
Ξ†

μ(x) − Ξμ(x)
)

− i

6
Tr

(
Ξ†

μ(x) − Ξμ(x)
)

(39)

is Hermitian and traceless, where

Ξμ(x) = Cμ(x)U †
μ(x). (40)

Thus, we define an iterative, analytic link smearing algorithm
in which the links U (nst)

μ (x) at stout smearing step nst are

mapped into links U (nst+1)
μ (x) at stout smearing step nst + 1

using

U (nst+1)
μ (x) = exp

(
i Qnst

μ (x)
)
U (nst)

μ (x). (41)

This step can be iterated nst times to finally produce link vari-
ables in SU (3) which we call stout links. The structure of the
stout smearing procedure resembles the exponentiation steps
of the gradient flow and, as a matter of fact, the gradient flow
using the Wilson gauge action can be considered as a con-
tinuous generalization of stout smearing [87], using gauge
paths more complicated than just staples. Hence, for a small
enough lattice spacing, one would expect the two smoothing
schemes to provide extremely similar results. The level of
this similarity is investigated in this work.

3.5.5 HYP (Hypercubic) smearing

We turn now to the discussion of the HYP (Hypercubic)
smearing which has been introduced in Ref. [88]. The
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smeared links of the HYP smoothing procedure are con-
structed in three steps. These steps are described in the next
bullet points.

3. The final step of the HYP smearing consists of applying
an APE smearing routine in which the staples are con-
structed by decorated links which have undergone HYP
smearing levels 1 and 2:

U (nHYP+1)
μ (x) = Proj SU (3) [(1 − α3)U

(nHYP)
μ (x)

+α3
6 X̃μ(x)], (42)

with

X̃μ(x) =
∑

ν≥0,ν �=μ

[
Ũν;μ(x)Ũμ;ν(x + aν̂)Ũ †

ν;μ(x + aμ̂)

+Ũ †
ν;μ(x − aν̂)Ũμ;ν

(x − aν̂)Ũν;μ(x − aν̂ + aμ̂)
]
. (43)

The link U (nHYP)
μ (x) is the original link in μ̂ direction

which has been smoothed nHYP times. Ũμ;ν(x) are fat
links along the direction μ̂ resulting from the second step
of the HYP smearing procedure with the staples extend-
ing over direction ν̂ being not smeared. The parameter
α3 is tunable and real.

2. The second step of HYP smearing creates the decorated
links Ũμ;ν(x) by applying a modified APE smearing pro-
cedure according to

Ũμ;ν (x) = Proj SU (3)[(1 − α2)U
(nHYP)
μ (x)

+α2

4
Xμ;ν(x)], (44)

with

Xμ;ν(x)

=
∑

ρ≥0,ρ �=ν,μ

[
Uρ;ν,μ(x)Uμ;ρ,ν(x + aρ̂)U

†
ρ;ν,μ(x + aμ̂)

+U
†
ρ;ν,μ(x − aρ̂)

Uμ;ρ,ν(x − aρ̂)Uρ;μ,ν(x − aρ̂ + aμ̂)
]
.

(45)

Once more, the link U (nHYP)
μ (x) is the link in μ̂ direction

which has been smoothed nHYP times. Now, Uμ;ρ,ν(x)
are fat links along direction μ̂ resulting from the first step
of the HYP smearing procedure with staples extending
in the directions ρ̂, ν̂ being non smeared. The parameter
α2 is again tunable and real.

1. The decorated links Uρ;ν,μ(x) are built from the links
which have been smeared nHYP using the modified APE
smearing step:

Uμ;ν,ρ (x) = Proj SU (3)

[
(1 − α1)U

(nHYP)
μ (x)

+α2

2
X̆μ;νρ(x)

]
, (46)

with

X̆μ;ν,ρ(x)

=
∑

σ≥0,σ �=ρ,ν,μ

[
U (nHYP)

σ ;ρ,ν,μ
(x)U (nHYP)

μ;σ,ρ,ν
(x + aσ̂ )

U †(nHYP)

σ ;ρ,ν,μ(x + aμ̂)

+U †(nHYP)

σ ;ρ,ν,μ(x − aσ̂ )U (nHYP)
μ;σ,ρ,ν

(x − aσ̂ )

U (nHYP)
σ ;ρ,μ,ν

(x − aσ̂ + aμ̂)
]
. (47)

In the above expression, only the two staples orthogonal
to directions μ̂, ν̂, ρ̂ are included in the smearing proce-
dure.

For the purpose of our work, we choose the values [88]

α1 = 0.75, α2 = 0.6, α3 = 0.3. (48)

3.5.6 Perturbative relation between smoothing techniques

The gradient flow, cooling as well as APE, stout and HYP
smearing schemes can be used to remove the ultraviolet fluc-
tuations and should lead to the same topological properties,
provided that we are close enough to the continuum limit.
Assuming that a is small enough so that we are in the per-
turbative regime, we can carry out a comparison between the
different smoothing procedures in order to obtain an analytic
relation among the associated smoothing scales involved, fol-
lowing Refs. [18,19]. Since the gradient flow has the advan-
tage of being the only smoothing scheme with good, pertur-
batively proven, renormalizability properties, we first relate
all other smoothing schemes with the gradient flow and, sub-
sequently, with each other.
Gradient flow. The perturbative investigation of the relation
between the gradient flow using the Wilson action and cool-
ing has been studied in Ref. [18]. The authors demonstrated
that the two smoothing schemes alter the links of a gauge
configuration by the same amount if one rescales the flow
time and the number of cooling steps according to

τ � nc
3

. (49)
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In the following few lines, we sketch the extraction of the
derivative evolution of a gauge link in order to compare it to
other smoothing schemes.

In the perturbative regime, a link variable which has been
smoothed via the Wilson flow5 for a finite flow time τ can
be expanded as

Uμ(x, τ ) � 11 + i
∑

a

uaμ(x, τ )T a, (50)

with uaμ(x, τ ) ∈ R assumed to be infinitesimal. Using
Eq. (26), the plaquette staples are written as

Xμ(x, τ ) � 6 · 11 + i
∑

a

wa
μ(x, τ )T a, (51)

wherewa
μ(x, τ ) is an infinitesimal quantity. The leading coef-

ficient with the value 6 appearing in the above equation is just
the number of plaquettes interacting with the link on which
the Wilson flow evolution is applied. We can, therefore, write
Ωμ(x, τ ) as

Ωμ(x, τ ) � 6 · 11 +
∑

a

[
6uaμ(x, τ ) − wa

μ(x, τ )
]
T a . (52)

Hence, Eq. (30) becomes

g2
0∂x,μSG(U ) � i

∑

a

[
6uaμ(x, τ ) − wa

μ(x, τ )
]
T a . (53)

Using the above expression, the evolution of the gradient flow
by an infinitesimally small flow time ε can be approximated
as

uaμ(x, τ + ε) � uaμ(x, τ ) − ε
[
6uaμ(x, τ )−wa

μ(x, τ )
]
. (54)

Since the gradient flow is the only smoothing scheme with a
concrete theoretical foundation and good renormalizability
properties, we will attempt to relate it to other smoothing
schemes. Hence, through the resulting matching formulae of
any smoothing technique with the gradient flow, we will be
able to relate all the different smoothing schemes with each
other.

Cooling In the cooling procedure, the link Uμ(x, nc) is sub-
stituted with the projection of Xμ(x, nc) over the gauge
group. Namely, for the case of the SU (2) gauge theory, this
projection is manifested by Eq. (35) where we substitute
Xμ(x, nc) by Eq. (51). In the perturbative approximation,
this leads to

U (nc+1)
μ (x) � 11 + i

∑

a

wa
μ(x, nc)

6
T a . (55)

5 For convenience, here and in the following we refer to the gradient
flow using the Wilson gauge action in short as the ’Wilson flow’. This is
not to be confused with the spectral flow of the Hermitian Wilson Dirac
operator which in the past sometimes has also been called ’Wilson flow’.

The above update corresponds to the substitution

uaμ(x, nc + 1) = wa
μ(x, nc)

6
. (56)

Comparing Eqs. (54) and (56), one sees that the flow would
evolve the same as cooling if one chooses a step of ε = 1/6.
In addition, during a whole cooling step, the link variables
which have already been updated are subsequently used for
the update of the remaining links that await update; this cor-
responds to a speed-up of a factor of two. Therefore, the
predicted perturbative relation between the flow time τ and
the number of cooling steps nc so that both smoothers have
the same effect on the gauge field is given by Eq. (49). This
has been shown analytically and demonstrated numerically
in Ref. [18]. Moreover, the authors in Ref. [19] have gener-
alized this equivalence for the case of the gradient flow and
cooling employing smoothing actions which in addition to
the square term multiplied by a factor of b0, also included a
rectangular term multiplied by b1 = (1 − b0)/8. This equiv-
alence in manifested by the formula

τ � nc
3 − 15b1

. (57)

In Sect. 4.1, we investigate and confirm that the equivalence
for the Wilson smoothing action is manifested by Eq. (49).

APE smearing. We now move to the case of the APE smear-
ing and relate it perturbatively to the Wilson flow and con-
sequently to cooling and stout smearing. Once more, we
express the gauge link Uμ(x, nAPE) in terms of elements
of its Lie algebra

U (nAPE)
μ (x) � 11 + i

∑

a

uaμ(x, nAPE)T a . (58)

Subsequently, we apply this expansion to Eq. (36) and obtain
the evolution equation

uaμ(x, nAPE + 1) � uaμ(x, nAPE)

−αAPE

6

[
6uaμ(x, nAPE) − wa

μ(x, nAPE)
]
. (59)

Comparing Eqs. (54) and (59), we observe that the Wilson
flow would evolve the gauge links the same as APE smear-
ing if one chooses a flow step of ε = αAPE/6. Hence, the
perturbative relation between the Wilson flow time τ and the
number of APE smearing steps nAPE so that both smoothers
have the same effect on the gauge field is

τ = αAPE

6
nAPE. (60)

The above perturbative matching relation is investigated
numerically in Sect. 4.1.

Stout smearing.Let us now turn to the stout smearing smooth-
ing procedure and check whether we could demonstrate ana-
lytic equivalence with the Wilson flow and consequently with
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cooling. According to equation Eq. (38) Cμ(x, nst) can be
written as

Cμ(x, nst) � 6ρst · 11 + i
∑

a

ρstw
a
μ(x, nst)T

a . (61)

Hence, Ξμ(x, nst) is written as

Ξμ(x, nst) � 6ρst · 11

−iρst

∑

a

[
6uaμ(x, nst) − wa

μ(x, nst)
]
T a (62)

The above leads to

Qμ(x, nst)�−ρst

∑

a

[
6uaμ(x, nst)−wa

μ(x, nst)
]
T a . (63)

If we now apply the exponantiation and multiplication
according to Eq. (41), we obtain that

U (nst+1)
μ (x) � 11 + i

∑

a

[uaμ(x, nst)

−ρst
[
6uaμ(x, nst) − wa

μ(x, nst)]
]
T a, (64)

and in terms of uaμ(x, nst) that

uaμ(x, nst + 1) � uaμ(x, nst)

−ρst
[
6uaμ(x, nst) − wa

μ(x, nst)
]
. (65)

Comparing Eqs. (54) and (65), we observe that the Wilson
flow would evolve the same as stout smearing if one chooses a
step of ε = ρst. Therefore, the predicted perturbative relation
between the flow time τ and the number of stout smearing
steps nst so that both smoothers have the same effect on the
gauge field is

τ = ρstnst. (66)

The above perturbative correspondence is also studied
numerically in Section 4.1. The result that we found is in
accordance with previous investigations on the matching
between stout and APE smearing [89].

HYP smearing Let us now consider the HYP smearing pro-
cedure. We have already mentioned that the construction of
the decorated staples in the case of HYP smearing prohibits
the extraction of a tree-level perturbative relation with the
other four smearing procedures. Indubitably, HYP smear-
ing is a valid numerical scheme for smoothing gauge links
and removing the ultraviolet fluctuations. Hence, the average
action density decreases as we iterate the smoothing pro-
cedure. We can, therefore, obtain a numerical equivalence
between HYP and another smoother. We attempt to relate the
Wilson flow with HYP smearing by calculating the function
τ(nHYP) and interpolating it with an ansatz. The function
τ(nHYP), once more, is defined as the Wilson flow time τ

for which the average action density changes by the same
amount as when nHYP smearing steps are performed. The
perturbative nature of the equivalence and the fact that we

need at least three full cooling sweeps to relate the ordinary
staple of Eq. (26) with all the components of the HYP staple
in Eq. (43), as well as the dependence on three HYP param-
eters, suggests that the ansatz could be a polynomial such
as

τ(nHYP) = AnHYP + Bn2
HYP + Cn3

HYP. (67)

Since the above equation involves the numerical determina-
tion of the associated coefficients, we proceed with this in
Sect. 4.1.

Fixing the smoothing scale As the continuum limit is
approached, one has to tune the smoothing scale, i.e. gra-
dient flow time, cooling and smearing steps, so that the
physics under investigation does not change. When applying
a smoothing procedure, the ultraviolet properties of the the-
ory are modified up to some length scale λS because the ultra-
violet fluctuations at smaller length scales are suppressed. In
order to have a well defined smoothing procedure towards
the continuum limit, one has to make sure that changing the
ultraviolet part of the theory leaves the continuum results
unaltered, thus, the underlying physics should not depend on
λS . This can be successfully applied by fixing the length scale
λS , which depends on the smoothing parameters. For APE,
HYP and stout smearing schemes as well as for cooling, this
scale was chosen in the past using different kind of argu-
ments. Nevertheless, for the case of gradient flow, this length
scale is quantified. Namely, it has been demonstrated that we
can renormalize composite operators at fixed physical length
scale related to the flow time by

λS = √
8t = a

√
8τ . (68)

The above equation enables us to translate the length scale
λS to the number of smearing and cooling steps. For cooling,
as was shown in Refs. [18,19], we can define the length scale
as a function of nc according to the formula

λS = a

√
8nc
3

. (69)

For APE smearing, we can write λS as a function of nAPE as

λS = a

√
4αAPEnAPE

3
. (70)

In the case of stout smearing, λS takes the form

λS = a
√

8ρstnst. (71)

Finally, for HYP smearing, we can use the numerically
extracted τHYP(nHYP) in Eq. (67) to define λS as a function
of nHYP according to

λS = a
√

8τHYP(nHYP). (72)
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Table 3 The matching prefactors between the smoothing schemes of
the Wilson flow with time τ , cooling at level nc, APE smearing with
level nAPE and finally stout smearing with level nst . The leftmost column
corresponds to the left hand side of the matching equation while the
uppermost row to the scale of the right hand side i.e. nAPE � 2

αAPE
nc

τ nc nAPE nst

τ 1 1
3

αAPE
6 ρst

nc 3 1 αAPE
2 3ρst

nAPE
6

αAPE

2
αAPE

1 6ρst
αAPE

nst
1

ρst

1
3ρst

αAPE
6ρst

1

Using the above four equations, we can extract a matching
relation between two different smoothing schemes with the
corresponding matching coefficients given in Table 3.

To explain how we can use the length scale in order to
obtain a continuum observable, let us consider the calcula-
tion of the continuum limit of the topological susceptibility in
quenched QCD. One calculates the topological charge using
a given smoothing scheme at a fixed value (in physical units)
of λS = √

8t = O(0.1fm). The value of λS should be chosen
such that it is not too small so that ultraviolet contamination
is adequately suppressed, as well as not too large so that the
underlying topological structure of the gauge fields is pre-
served. In most cases, λS corresponds to a plateau for the
topological susceptibility reflecting the scale invariance of
the observable. We, therefore, extract the topological sus-
ceptibility at fixed λS for a sequence of lattice spacings and
then extrapolate it to the continuum limit.

Of course, the above scenario cannot hold if we con-
sider unquenched QCD, where the physical reference scale
depends on the pion mass. In such case, one needs to keep
fixed a reference scale such as t0 using Eq. (31). We can
generalize the above procedure for any different smoothing
scheme with an effective smoothing flow time defined as
a2τ(n) where τ(n) corresponds to the matching condition
between gradient flow and a given smoothing scheme with
smooting scale n.

In our investigation, we evaluated t0 for the ensemble
b40.16 and found that it is equal to t0 = a2τ0 = a2 × 2.5; in
other words the dimensionless flow time τ0 = 2.5. For each
individual smoother, we can extract a smoothing scale which
matches this flow time.

4 Results

4.1 Numerical equivalence between different smoothers

We start the presentation of our results by investigating
the perturbative matching between the different smoothing
schemes which can be used to remove the ultraviolet diver-

gences. We do so by exploring the relation between the aver-
age action extracted via both smoothers, looking at the corre-
lation coefficient as well as comparing the topological charge
and topological susceptibilities obtained using the two dif-
ferent smoothing schemes. In this section we investigate how
the average action density reduces as a function of the two
smoothing scales and in the next sections of this paper we
investigate the correlation coefficient, the topological charge
as well as the topological susceptibility.

Cooling vs. Wilson flow First, we consider the numerical
results which have been shown in Refs. [18,19]. We con-
firm the equivalence realized by Eq. (49) by investigating
how the average action density reduces as a function of the
two smoothing scales τ and nc. In the left panel of Fig. 1 we
show the function τ(nc) defined as the Wilson flow time τ

for which the average action density

〈
S̄G

〉 = 1 −
〈∑

x
∑4

μ,ν=1
1≤μ<ν

ReTrU 1×1
x,μ,ν(τ )

6Va−4N

〉
(73)

changes by the same amount as when nc cooling steps are
performed. After a few cooling steps, the data appear to lie
on the line τ = nc/3. Furthermore, in the right panel of
Fig. 1, we present the average action density as a function
of τ or the perturbatively determined values of cooling step
nc/3. We observe that after approximately 20 cooling steps,
the two sets of data coincide. This confirms that the relation
τ = nc/3 leads to equivalent results for the average action
density between the Wilson flow and cooling for small values
of τ and nc.

APE smearing vs. Wilson flow We move now to the investiga-
tion of the numerical equivalence between the APE smear-
ing and the Wilson flow. To test the formula of Eq. (60),
we smoothed the gauge configurations via APE smearing for
three different values of αAPE, namely αAPE = 0.4, 0.5 and
0.6. Subsequently, we calculated the function τ(αAPE, nAPE)

defined as the Wilson flow time τ for which the average action
density reduces by the same amount as when nAPE smearing
steps, for a fixed value of αAPE, are performed. In the left
panel of Fig. 2, we demonstrate τ(αAPE, nAPE) for the three
different values of αAPE. The data points for the three values
of αAPE appear to agree with the lines τ = (αAPE/6)×nAPE

providing strong evidence that Eq. (60) provides the right
rescaling for which Wilson flow and APE smearing become
numerically equivalent. Furthermore, in the right panel of
Fig. 2, we provide the average action density as a function of
τ and (αAPE/6) × nAPE demonstrating that the four sets of
data perfectly agree with each other.

Stout smearing vs. Wilson flow We now move to the numer-
ical correspondence between the two smoothing schemes of
stout smearing and the Wilson flow. In order to test this
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Fig. 1 Left Panel: The
behavior of τ(nc) as a function
of nc for the Wilson smoothing
action. The line corresponds to
τ = nc/3. Right Panel: The
average action density as a
function of the Wilson flow time
τ or the corresponding cooling
step nc/3
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Fig. 2 Left Panel: The
behavior of τ(αAPE, nAPE) as a
function of nAPE for
αAPE = 0.4, 0.5, 0.6. The red,
blue and black lines correspond
to τ = (0.4/6)nAPE,
(0.5/6)nAPE and (0.6/6)nAPE
respectively. Right Panel: The
average action density as a
function of the Wilson flow time
τ or the corresponding rescaled
APE smearing step αAPE
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equivalence, we smoothed the gauge configurations using
stout smearing and three different values of the ρst, namely
ρst = 0.01, 0.05 and 0.1. Now we define the function
τ(ρst, nst), like in the previous cases, as the Wilson flow
time τ for which the average action density alters by the
same amount as when nst stout smearing steps with a given
ρst are performed. In the left panel of Fig. 3, we present the
function τ(ρst, nst) for the three different values of the param-
eter ρst. The data points for the three values of ρst appear to
agree with the lines τ = ρst × nst providing strong evidence
that Eq. (66) provides the right rescaling for which Wilson
flow and stout smearing become numerically equivalent. This
agreement sets in for τ � 5, 2, 1 for ρst = 0.1, 0.05, 0.01,
respectively, demonstrating that the smaller the value of ρst

the closer we approach the Wilson flow. Furthermore, in the
right panel of Fig. 3, we provide the average action density
as a function of τ or ρst × nst for the Wilson flow or stout
smearing, respectively, demonstrating that the four sets of
data perfectly agree with each other. Similar comparisons
of the topological charge and susceptibility are provided in
Section 4.2.

HYP smearing vs. Wilson flow As we have already men-
tioned in Section 3.5.6, the peculiar construction of the HYP
smearing staples prohibits the extraction of a linear pertur-

bative rescaling between the Wilson flow time τ and the
number of HYP smearing steps nHYP. Thus, instead, we
attempted a numerical fit using a parametrization of τ(nHYP)

in nHYP according to Eq. (67). In the left panel of Fig. 4,
we provide the function τ(nHYP). Obviously, the sketched
behaviour deviates from a linear response (green line) such
as those observed for cooling, stout and APE smearing. This
suggests that it is impossible to extract a tree-level pertur-
bative expression which relates this smoother with the oth-
ers. We fit the data using Eq. (67) and extract the coeffi-
cients A = 0.25447(32), B = −0.001312(90) as well as
C = 1.217(91) × 10−5. Of course, these numbers depend
on the parameters αHYP1, 2, 3. In the right panel of Fig. 4, we
show the average action density for the HYP smearing as a
function of the rescaling equation of Eq. (67) as well as the
average action density for the Wilson flow. Clearly, the two
lines coincide, demonstrating the realization of a numerical
equivalence through Eq. (67).

4.2 Field theoretic topological charges on a single
configuration

The behaviour of the topological charge Q for single con-
figurations as a function of the gradient flow time τ and for
matched smoothing scales for cooling, APE, stout as well as
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Fig. 3 Left Panel: The behavior
of τ(ρst , nst) as a function of nst
for ρ = 0.01, 0.05, 0.1. The red,
blue and black lines corresponds
to τ = 0.01nst , 0.05nst and
0.1nst , respectively. Right Panel:
The average action density as a
function of the Wilson flow time
τ or the corresponding rescaled
stout smearing step ρst × nst
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Fig. 4 Left Panel: The
behavior of τ(nHYP) as a
function of nHYP. The green line
corresponds to a linear
approximation which is valid up
t0 while the blue line
corresponds to the numerical fit
τ(nHYP). Right Panel: The
average action density as a
function of the Wilson flow time
τ and the corresponding
numerical matching τ(nHYP)
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HYP smearing has been investigated. In Fig. 5, we present
the clover definition of the topological charge as a function of
τ , nc/3, αAPEnAPE/6 for αAPE = 0.5, ρstnst for ρst = 0.05
and τHYP(nHYP), for four randomly chosen configurations in
the ensemble b40.16; each panel corresponds to each config-
uration.

Strikingly, the topological charge obtained with APE
smearing as well as stout smearing appears to exhibit signifi-
cant agreement with that extracted via the Wilson flow. This,
of course, occurs if nAPE and nst are rescaled according to
Eq. (60) and Eq. (66), respectively. Namely, the approximate
plateaus observed in Fig. 5 for the three smoothing schemes
appear to coincide. An interesting phenomenon is the fine
structure occuring when a small instanton or anti-instanton
(dislocations) start to drop off the lattice (in case one con-
siders the semiclasical instanton picture). For instance, in
the uppermost panel of Fig. 5, and between τ = 6 − 8, the
approximate plateau shifts from Q � 2 to Q � 3. Dur-
ing this transition, we observe that the topological charge Q
between the two smoothing schemes and the Wilson flow
diverge. Nonetheless, this disagreement appears to vanish
as we choose smaller values of ρst and αAPE. In addition,
we observe that Q obtained via stout smearing is closer to
Wilson flow than APE. The above suggest that the effect of
APE and stout smearing on the gauge fields resemble, to a

high extent, the Wilson flow. In fact, one does not expect two
smoothing procedures to provide equal topological charges
since different smoothers carry different lattice artifacts and
do not need to agree at non-zero values of the lattice spac-
ing. Indubitably, the topological charges will become closer
as the lattice spacing decreases. Thus, as one approaches
the continuum limit, any two different procedures converge.
Nevertheless, for APE and more strikingly for stout smearing
and at finite lattice spacing, the topological charge is, in good
approximation, equal to the value extracted via the Wilson
flow. We note that the topological charge itself is not the main
quantity of interest – the physically relevant observable is the
topological susceptibility, which measures the fluctuations of
the topological charge.

Turning now to cooling, we demonstrate that the topolog-
ical charge for a given configuration yields not necessarily
the same values as the gradient flow even if we rescale nc
according to Eq. (49). Of course, this is not a new observation.
Similar comparison which reveals such a possible difference
has been published in [19]. Once again, we emphasize that
the topological charge for both smoothing procedures will
become equivalent if one decreases enough the lattice spac-
ing. As we already know from Ref. [19], both smoothers yield
approximately the same topological susceptibility although
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Fig. 5 For four different gauge field configurations, we show the
clover definition of the topological charge as a function of the gra-
dient flow time τ for Wilson flow (line in red), nc/3 for cooling (◦),
0.5×nAPE/6 for APE smearing (�), 0.05×nstout for stout smearing (�)
and τHYP(nHYP)) for HYP smearing (�). For this ensemble t0 � 2.5a2

the topological charge is not necessarily the same; this is
demonstrated also in Section 4.6 of this manuscript.

Finally, we discuss the comparison of the results on Q
obtained with HYP smearing and the Wilson flow. Simi-
larly with cooling, if we rescale nHYP with the numerically-
extracted formula of Eq. (67), the topological charge Q
exhibits approximate equivalence with Q resulted by the Wil-
son flow for some short range of low values of τ ; however, for
this range of τ the value of Q we get is highly dominated by
the UV noise. The structure of HYP smearing includes staples
which extend beyond the nearest neighbouring links to the
original link. This may lead to a supposition that the topolog-
ical charge obtained via HYP would differ enough from that
obtained by the other four smoothers. Interestingly, this does
not occur in a noteworthy manner. Of course, once more, the
fluctuations of the topological charge are just a measure of
the topological susceptibility. Hence, it would be interesting
to investigate the response of HYP in this physical quantity;
we discuss this topic in Sect. 4.6.

4.3 Monte Carlo histories and distribution histograms

In this subsection, we show some typical features of the topo-
logical charge evaluated with one representative fermionic
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Fig. 6 Monte Carlo histories for one representative fermionic defini-
tion (index of the overlap operator evaluated on configurations with 1
step of HYP smearing applied) and one representative gluonic definition
(Wilson flow at flow time t0)

definition6 (index of the overlap operator evaluated on con-
figurations with 1 step of HYP smearing applied) and one
representative gluonic definition (with the Wilson flow at
flow time t0). This serves two purposes. First, we show that
correlations between the two classes of definitions are appar-
ent even from a visual inspection of Monte Carlo histories.
Second, we want to investigate whether the distribution of
the topological charge is approximately Gaussian and, for
the gluonic case, whether clustering of the values around
integers occurs.

The Monte Carlo histories are shown in Fig. 6. All rel-
evant topological sectors seem to be scanned correctly and
there are no excessive autocorrelations. For the latter, we used
the bootstrap procedure with blocking and we find that for
different definitions, measurements with a step of 5 config-
urations (10 Monte Carlo trajectories, i.e. after each saved
trajectory, one was unsaved in the generation) yield an inte-
grated autocorrelation time τint ∈ [0.5, 2] for the topolog-
ical charge in units of measured configurations. The low-
est autocorrelation is obtained obviously for the field theo-
retic definition without smearing, since one then basically
observes uncorrelated ultraviolet fluctuations. All meaning-
ful definitions yield compatible autocorrelation times with
τint ≈ 1.7(3). The correlation between the values of Q from
the two definitions in Fig. 6 is obvious even without com-

6 Mind that here we do not match the smoothing scales, but choose typ-
ical smoothing levels applied for the overlap definition and the gluonic
definition. The smoothing in both cases serves very different purposes.
For the gluonic definition, smoothing is mandatory, since the topolog-
ical charge from unsmeared configurations is dominated by ultraviolet
noise and a meaningful extraction of the charge is not possible. In the
case of the overlap index definition, the topological charge can be mean-
ingfully extracted even without any smoothing and the latter is applied
only to reduce the computational time.
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Fig. 7 Scatterplot of the topological charge for one representative
fermionic definition (index of the overlap operator evaluated on config-
urations with 1 step of HYP smearing applied) and one representative
gluonic definition (Wilson flow at flow time t0). For better visibility, the
integer values of the index were randomly shifted by a small non-integer
value

puting the correlation coefficient (which is 88%; see the next
subsection for a systematic analysis of correlations between
different definitions). This is also illustrated in a scatterplot
(Fig. 7). Although the correlation is evident in this plot, it
demonstrates that the value of the topological susceptibility
is larger for the index definition, indicating that cut-off effects
affect the two definitions in a somewhat different manner.

Next, we show typical histograms (Fig. 8) obtained with a
fermionic definition (again, index HYP1 s = 0) and a gluonic
one (Wilson flow at flow times t0, 2t0 and 3t0). For the index
definition, we obtain a distribution that is compatible with
a Gaussian7. For the field theoretic definition, we used an
interval width of 0.1 to detect clustering around values close
to an integer.

When the flow time is relatively small, of the order of t0,
basically no clustering is observed. However, when increas-
ing the flow time, at 2t0 and 3t0, the filtering out of the ultra-
violet noise is enough to discern peaks at positions close to
0.9, 1.8, 2.7 etc. (for the ensemble b40.16; for other lattice
setups or other discretizations of the field stength tensor, the
values can be different, but they will also be multiples of
some number relatively close to 1). These non-integer posi-
tions of the peaks are sometimes “corrected” as mentioned in
footnote 4, but this procedure is artificial. In particular, it is
not needed to obtain the correct value of the topological sus-
ceptibility in the continuum limit. What is, however, relevant
for a correct continuum limit is that the smearing procedure

7 It is worth to mention that the distribution is not expected to be ideally
Gaussian. For an investigation of non-Gaussianities in the quenched
case, see Ref. [70,71,90,91]. However, the detection of such non-
Gaussianities requires very large statistics, at least an order of magnitude
larger than in our present work.
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Fig. 8 Histograms of the topological charge for ensemble b40.16. The
employed definitions are: index of the overlap operator evaluated on
configurations with 1 step of HYP smearing applied (top left) and the
Wilson flow at flow times t0 (top right), 2t0 (bottom left) and 3t0 (bottom
right)

defines a proper smoothing scale, as discussed in the previ-
ous section. Such a scale is naturally defined in the gradient
flow procedure and in the other smoothing schemes via the
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matching to gradient flow. If one applies e.g. APE smearing
without proper matching to GF, one can not define a consis-
tent procedure of extrapolating to the continuum limit. The
traditional method of looking for a plateau in the smearing
history is not enough, as it does not define a valid smoothing
scale. However, if APE smearing (or any other non-GF type
of smoothing) is matched to GF, such a smoothing scale is
well-defined and one expects the proper continuum limit for
the topological susceptibility.

4.4 Correlations between different definitions

For a complete comparison of as many definitions of the topo-
logical charge as possible, we concentrated on our ensemble
b40.16, i.e. one with the smallest lattice volume and hence
the smallest cost of the computations. For this ensemble,
we took into account all of the definitions listed in Table 2.
We focus on the correlations between different definitions,
expressed by the standard correlation coefficient, normalized
to be in the interval [− 1, 1]. We used the bootstrap proce-
dure (with blocking) to compute the error and the influence
of autocorrelations.

To understand better the relations between all definitions,
we discuss below correlations between different groups of
definitions. We start with a general comparison, including
the typical representatives of each family from Table 2. Then,
we concentrate on the fermionic definitions. The comparison
between the most abundant family of field theoretic defini-
tions with several types of smearing that can be applied to
the gauge fields to filter out the ultraviolet noise as well as
different smoothing actions for the gradient flow is provided
in the two sections in the Appendix.

4.4.1 Main comparison

In this subsection, we choose the following definitions as
typical representatives:

– index of the overlap Dirac operator applied to non-
smeared and smeared gauge fields (with one iteration of
HYP smearing) (definitions 1, 3 from Table 2),

– spectral flow of the Wilson-Dirac operator computed on
gauge fields with one or five iterations of HYP smearing
(4, 6),

– spectral projectors with two values of the threshold
parameter M (9, 10),

– field theoretic without smearing (12),
– field theoretic with GF at flow time t0, three types of

smoothing action (16, 22, 25),
– field theoretic with cooling matched to GF at flow time
t0, three types of smoothing action (28, 30, 32),

– field theoretic with stout smearing matched to GF at flow
time t0 (34),
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Fig. 9 Main comparison of selected definitions of the topological
charge. The correlation between different definitions is colour-coded
(note the scale is different than in Figs. 10, 15, 16, 14)

– field theoretic with APE smearing matched to GF at flow
time t0 (40),

– field theoretic with HYP smearing matched to GF at flow
time t0 (44).

For the field theoretic definitions, we always use the clover
discretization of the topological charge operator for this com-
parison. The effects of using other discretizations will be
considered in one of the further subsections.

Our results are summarized in Fig. 9 and Table 4. In gen-
eral, we observe very high correlations among different defi-
nitions of the topological charge, typically between 85% and
100% (the latter for equivalent definitions).

There are two exceptions to this feature. As expected, the
field theoretic definition applied to non-smeared configura-
tion measures basically only ultraviolet noise. The correla-
tion coefficient with respect to other definitions is very small,
although non-zero, which suggests that even on non-smeared
configurations, some residual signal of the topological charge
remains (the correlation coefficient as well as the topologi-
cal susceptibility are non-zero with statistical significance;
nevertheless, reliably extracting the susceptibility from non-
smeared gluonic definition is not possible). Nevertheless,
smoothing of gauge fields is mandatory in the field theoretic
definition to obtain a meaningful result. The second excep-
tion is the spectral projector method, which yields a 55–65%
correlation with respect to other cases. One reason for this
is obviously the stochastic ingredient in the estimation of Q
with this method. However, with 12 stochastic sources that
were used, this stochastic ingredient is largely, although not
completely, eliminated. Apparently, there are other effects
which result in the rather moderate correlation – it is very
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Table 4 Main comparison of selected definitions of the topological charge. The numbers correspond to the numbering given in Fig. 9. We give the
correlation coefficient between different definitions and its error (0 means that the error is smaller than 0.005)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 0.96(0) 0.95(0) 0.92(1) 0.58(4) 0.60(3) 0.18(6) 0.86(1) 0.90(1) 0.93(0) 0.86(1) 0.89(1) 0.91(0) 0.86(1) 0.86(1) 0.91(1)

2 0.96(0) 1 0.99(0) 0.93(0) 0.54(4) 0.62(3) 0.17(4) 0.88(1) 0.92(0) 0.95(0) 0.87(1) 0.91(1) 0.94(0) 0.88(1) 0.88(1) 0.92(0)

3 0.95(0) 0.99(0) 1 0.93(0) 0.54(4) 0.62(3) 0.17(4) 0.88(1) 0.91(0) 0.95(0) 0.86(1) 0.90(0) 0.93(0) 0.88(1) 0.88(1) 0.92(0)

4 0.92(1) 0.93(0) 0.93(0) 1 0.56(4) 0.61(3) 0.15(4) 0.92(0) 0.96(0) 0.91(0) 0.90(1) 0.93(0) 0.91(0) 0.92(0) 0.92(0) 0.97(0)

5 0.58(4) 0.54(4) 0.54(4) 0.56(4) 1 0.62(4) 0.10(3) 0.66(3) 0.63(3) 0.56(4) 0.66(3) 0.62(3) 0.56(4) 0.65(3) 0.65(3) 0.62(3)

6 0.60(3) 0.62(3) 0.62(3) 0.61(3) 0.62(4) 1 0.09(4) 0.67(3) 0.65(3) 0.60(4) 0.68(3) 0.66(3) 0.61(4) 0.66(3) 0.66(3) 0.65(3)

7 0.18(6) 0.17(4) 0.17(4) 0.15(4) 0.10(3) 0.09(4) 1 0.16(4) 0.18(4) 0.17(4) 0.15(4) 0.18(4) 0.18(4) 0.16(4) 0.16(4) 0.17(4)

8 0.86(1) 0.88(1) 0.88(1) 0.92(0) 0.66(3) 0.67(3) 0.16(4) 1 0.97(0) 0.88(1) 0.97(0) 0.96(0) 0.88(1) 1.00(0) 1.00(0) 0.97(0)

9 0.90(1) 0.92(0) 0.91(0) 0.96(0) 0.63(3) 0.65(3) 0.18(4) 0.97(0) 1 0.92(0) 0.94(0) 0.96(0) 0.92(0) 0.97(0) 0.97(0) 0.99(0)

10 0.93(0) 0.95(0) 0.95(0) 0.91(0) 0.56(4) 0.60(4) 0.17(4) 0.88(1) 0.92(0) 1 0.86(1) 0.90(1) 0.95(0) 0.88(1) 0.88(1) 0.91(0)

11 0.86(1) 0.87(1) 0.86(1) 0.90(1) 0.66(3) 0.68(3) 0.15(4) 0.97(0) 0.94(0) 0.86(1) 1 0.97(0) 0.88(1) 0.97(0) 0.97(0) 0.94(0)

12 0.89(1) 0.91(1) 0.90(0) 0.93(0) 0.62(3) 0.66(3) 0.18(4) 0.96(0) 0.96(0) 0.90(1) 0.97(0) 1 0.92(0) 0.96(0) 0.96(0) 0.96(0)

13 0.91(0) 0.94(0) 0.93(0) 0.91(0) 0.56(4) 0.61(4) 0.18(4) 0.88(1) 0.92(0) 0.95(0) 0.88(1) 0.92(0) 1 0.88(1) 0.88(1) 0.91(0)

14 0.86(1) 0.88(1) 0.88(1) 0.92(0) 0.65(3) 0.66(3) 0.16(4) 1.00(0) 0.97(0) 0.88(1) 0.97(0) 0.96(0) 0.88(1) 1 1.00(0) 0.97(0)

15 0.86(1) 0.88(1) 0.88(1) 0.92(0) 0.65(3) 0.66(3) 0.16(4) 1.00(0) 0.97(0) 0.88(1) 0.97(0) 0.96(0) 0.88(1) 1.00(0) 1 0.97(0)

16 0.91(1) 0.92(0) 0.92(0) 0.97(0) 0.62(3) 0.65(3) 0.17(4) 0.97(0) 0.99(0) 0.91(0) 0.94(0) 0.96(0) 0.91(0) 0.97(0) 0.97(0) 1

likely that these are cut-off effects at the considered, rela-
tively coarse, lattice spacing. Also, one should keep in mind
that the spectral projector observable C was never intended
to be used as a topological charge observable – it was rather
introduced for computations of the topological susceptibil-
ity, for which the gauge ensemble average and the stochastic
correction play an important role.

Within the group of highly correlated definitions, we
observe that the fermionic definitions are slightly more cor-
related with themselves than with the gluonic ones. Concern-
ing the correlation of fermionic and gluonic definitions, it is
interesting to note that the former are visibly better correlated
with field theoretic ones with improved smoothing actions –
while the correlation with GF/cooling with the Wilson pla-
quette smoother is around 86–88%, the one with the Iwasaki
smoothing action is up to 95%. If, however, one considers
the spectral flow (or index) computed on configurations with
5 steps of HYP smearing applied, this effect is alleviated
and actually the Iwasaki smoother gives a consistent result
with the Wilson plaquette one, while tree-level Symanzik
improved is slightly more correlated. We also observe that
the correlation between fermionic definitions and GF (Wilson
plaquette smoother), stout smearing and APE smearing (both
matched to GF at flow time t0) is basically the same. Inter-
esting is the case of the correlation of the index/SF with the
gluonic definition on HYP-smeared configurations (matched
to GF at flow time t0, which for this ensemble implies 10 steps
of HYP smearing). It is systematically higher than the one to
stout/APE and follows the pattern of the correlation between
fermionic and gluonic with GF and the tree-level Symanzik

improved smoothing action. In particular, it yields a 97%
correlation with SF HYP5. This suggests that HYP smear-
ing has a somewhat similar effect both for fermionic and
gluonic definitions. We have also checked the correlation of
SF HYP5 and field theoretic with different numbers of HYP
iterations and indeed the best correlation is achieved when
this number is between 5 and 10 (no statistically significant
difference between the latter). This suggests also that some
matching between fermionic and gluonic definitions could
be achieved.

In the next subsections, we analyze in detail the correla-
tions between definitions inside some selected groups, with
specific questions in mind, e.g. about the role of the used
discretization of the topological charge operator or about the
role of the used smoothing action.

4.4.2 Comparison of fermionic definitions

In this subsection, we make a comprehensive comparison of
all fermionic definitions (1–11 from Table 2), see Fig. 10 and
Table 5 for a summary. With respect to the main comparison
of Sect. 4.4.1, we are able to conclude more about different
parameter values that can be used in the definition of Q, i.e.
the kernel parameter s for overlap and spectral flow, the num-
ber of HYP smearing steps applied before the calculation of
Q and different values of the threshold parameter for spectral
projectors.

We start by investigating the role of the s parameter of
the Wilson-Dirac kernel operator (see Sect. 3.1). It is, in par-
ticular, responsible for the locality properties of the overlap
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spec. proj. M2=0.0015 | 11

spec. proj. M2=0.0010 | 10

spec. proj. M2=0.0004 |  9

spec. proj. M2=0.0000355 |  8

SF HYP5 s=0.5 |  7

SF HYP5 s=0.0 |  6

SF HYP1 s=0.75 |  5

SF HYP1 s=0.0 |  4

index HYP1 s=0 |  3

index nonSmear s=0 |  2
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Fig. 10 Comparison of fermionic definitions of the topological charge.
The correlation between different definitions is colour-coded (note the
scale is different than in Figs. 9, 15, 16, 14)

Dirac operator [46–48] and thus is expected to be important
for measurements of Q. For example, if the overlap operator
is not local enough, then small topological objects may not
be visible (they “fall through the lattice”). Indeed, one can
notice sizable effects when s is changed from 0.4 (value that
guarantees optimal locality for the non-smeared gauge fields
case [48]) to 0 (very bad locality) – the correlation is only
around 70%, which is much lower than the correlation with
index/SF definitions with good locality properties (in partic-
ular, s = 0 for the case of 1 iteration of HYP smearing with
96% correlation). Similarly, the violation of locality in the
HYP1 case (change from the optimal value s = 0 to s = 0.75
(more than twice smaller value of the decay rate of the norm
of the overlap Dirac operator)) also leads to decreasing cor-
relations. For the case HYP5, locality was not investigated

in Ref. [48]. However, from the practically identical results
at s = 0 and s = 0.5, one can infer that locality is similar for
both of them and guarantees high correlation with respect to
the index extracted with the optimally local s = 0 (HYP1)
or s = 0.4 (no smearing) values.

As stated in Sect. 3.2, the index and spectral flow defi-
nitions (with the same value of the s parameter) are exactly
equivalent, i.e. should yield a 100% correlation. However,
with the spectral flow at a coarse lattice spacing, it may
be difficult to disentangle all the zero crossings that deter-
mine the value of Q. Similarly, with the index of the overlap
operator, numerical precision issues may appear when using
too relaxed (to decrease the cost) tolerance criterion for the
solver in the procedure of finding zero modes. As a result, the
obtained correlation was very close to, but not ideally 1, due
to the occurrence of few cases where the value from overlap
and from SF differed by ±1.

We now move on to discuss the role of the M parameter
for spectral projectors. In Refs. [9,63], the renormalized M
parameter (MR) was set to around 100 MeV (MS scheme at
the renormalization scale of 2 GeV). This is expected to be
a reasonable choice, since it avoids both the region close to
the renormalized quark mass and the region where aM ≈ 1.
However, the above references considered relatively large lat-
tices, while the small-volume lattice that we consider for this
comparison can suffer from another effect that we discuss
below. Namely, with a value of MR ≈ 100 MeV, the number
of eigenmodes of the operator D†D is relatively small (typ-
ically 5–10), while the number of zero modes can be as high
as 15. Hence, one can expect that the projector PM may not
include (“count”) all the zero modes in some cases, leading to
a too small value of the topological susceptibility. To inves-
tigate how this feature can affect correlations, we performed
the spectral projector calculations for four values of M . Inter-
estingly, we found that the correlations between topological

Table 5 Comparison of fermionic definitions of the topological charge. The numbers correspond to the numbering given in Fig. 10. We give the
correlation coefficient between different definitions and its error (0 means that the error is smaller than 0.005)

1 2 3 4 5 6 7 8 9 10 11

1 1 0.70(3) 0.96(0) 0.95(0) 0.88(1) 0.92(1) 0.93(0) 0.58(3) 0.58(4) 0.60(3) 0.47(4)

2 0.70(3) 1 0.68(3) 0.68(3) 0.60(4) 0.71(2) 0.71(3) 0.37(5) 0.75(3) 0.63(4) 0.57(3)

3 0.96(0) 0.68(3) 1 1.00(0) 0.90(0) 0.93(0) 0.94(0) 0.63(2) 0.54(4) 0.62(3) 0.47(3)

4 0.95(0) 0.68(3) 1.00(0) 1 0.91(0) 0.93(0) 0.93(0) 0.63(2) 0.54(4) 0.62(3) 0.47(3)

5 0.88(1) 0.60(4) 0.90(0) 0.91(0) 1 0.85(1) 0.85(1) 0.64(2) 0.49(4) 0.55(4) 0.42(3)

6 0.92(1) 0.71(2) 0.93(0) 0.93(0) 0.85(1) 1 0.99(0) 0.61(3) 0.56(4) 0.61(3) 0.48(3)

7 0.93(0) 0.71(3) 0.94(0) 0.93(0) 0.85(1) 0.99(0) 1 0.61(3) 0.56(4) 0.61(3) 0.48(3)

8 0.58(3) 0.37(5) 0.63(2) 0.63(2) 0.64(2) 0.61(3) 0.61(3) 1 0.28(4) 0.31(4) 0.24(4)

9 0.58(4) 0.75(3) 0.54(4) 0.54(4) 0.49(4) 0.56(4) 0.56(4) 0.28(4) 1 0.62(4) 0.44(4)

10 0.60(3) 0.63(4) 0.62(3) 0.62(3) 0.55(4) 0.61(3) 0.61(3) 0.31(4) 0.62(4) 1 0.45(3)

11 0.47(4) 0.57(3) 0.47(3) 0.47(3) 0.42(3) 0.48(3) 0.48(3) 0.24(4) 0.44(4) 0.45(3) 1
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charges extracted from different M values are very small –
the ones with the smallest M are only 25%-30% correlated
with the ones at higher values of M . The correlations among
higher values of M (M2 ≥ 0.0004) are somewhat higher
(45–60%), but still only moderate. This suggests that the
stochastic noise is not entirely suppressed and that cut-off
effects are possibly very different for different values of M .

Concerning correlations between spectral projectors and
index-type definitions, they are typically between 50% and
60%. However, there is no obvious tendency, like an improv-
ing correlation when increasing or decreasing M .

In the end, these results provide some warning about inter-
preting the spectral projector observable C as the topologi-
cal charge. Although the topological susceptibility is well-
defined with spectral projectors, it requires to correct 〈C2〉
with 〈B〉/N when the number of stochastic sources is finite.
Together with the presented results for correlations (in par-
ticular the ones for index-type definitions, which a priori
could be expected to be highly correlated with C), this makes
the interpretation of C on a single gauge field configuration
difficult. It is, moreover, likely that the values of C extracted
with different values of M are affected by different cut-off
effects.

4.5 Correlation towards the continuum limit

Our next aim is to investigate how the correlations behave
towards the continuum limit. The expectation is that very
close to the continuum, all definitions agree – hence an
increase of correlation coefficients should be observed when
decreasing the lattice spacing. We chose one representative
fermionic definition (index of the overlap operator evalu-
ated on configurations with 1 step of HYP smearing applied)
and one representative gluonic definition (with gradient flow,
Wilson plaquette smoothing action at flow time t0). In Fig. 11,
we show that the correlation coefficient indeed increases
towards the continuum limit, from around 84–88% for the
two coarser lattice spacings to 92–93% for the two finer. It is
therefore plausible that, as expected, the differences between
results at a finite lattice spacing are cut-off effects.

4.6 Topological susceptibility

We also compared the topological susceptibility computed
with different methods. We defined the topological suscepti-
bility as

χ = 〈Q2〉
V

, (74)

for all cases, except spectral projectors, where one needs
a correction for a finite number of stochastic sources and
renormalization with (ZS/ZP )2, see Eq. (13).
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Fig. 11 Increase of correlation towards the continuum limit between
one representative fermionic definition (index of the overlap operator
evaluated on configurations with 1 step of HYP smearing applied) and
one representative gluonic definition (with gradient flow, Wilson pla-
quette smoothing action at flow time t0). The dashed red line is a guide
to the eye, showing that it is plausible that the correlation will become
1 in the continuum limit
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Fig. 12 Topological susceptibility for ensemble b40.16 (with pion
mass around 340 MeV), using representatives of different kinds of def-
initions. The definition numbers corresponds to the ones in Table 2

The comparison is shown in Fig. 12. We find rather nice
agreement between different definitions, with most of them
giving a value in the range r0χ

1/4 ∈ [0.4, 0.5]. It is inter-
esting to observe that the outlying values concern definitions
for which certain theoretical doubts appear about their valid-
ity. In particular, the index definition for the non-smeared
case and s = 0 gives a 20% smaller result than other index
definitions. This may be due to the fact that with decreased
locality, some topological structures are not counted properly
and hence |Q| is too small on some configurations. Similarly,
the lowest value of M2 for spectral projectors might be too
small to count all zero modes. However, these effects should
go away in the continuum limit – for the index definition,
strict locality is then recovered and for spectral projectors,
all relevant modes become actual zero modes and hence are

123



  424 Page 22 of 30 Eur. Phys. J. C           (2020) 80:424 

counted with any value of M2. The situation is somewhat
different with the third outlier, the value of χ from the field
theoretic definition without any smearing, since by using it
one is basically averaging over ultraviolet noise and it is not
clear whether any physical signal for the topological suscep-
tibility is left.

The remaining differences between valid definitions, e.g.
field theoretic ones with different kinds of smearing, are
most likely due to cut-off effects. In particular, changing the
smoothing action has a rather strong effect on the computed
value of χ . It would certainly be desirable to perform the
continuum limit extrapolation for the topological suscepti-
bility from several definitions, but this is inconclusive with
the current precision of our data (with typical error of χ at the
level of 10%). Nevertheless, with current theoretical under-
standing, one can be rather certain that the continuum limit is
correct for all the cases, excluding the ones for which obvious
reservations can be made.

An interesting question regarding the field theoretic def-
inition of Q is how the resulting topological susceptibility
behaves as a function of the smoothing scale. Furthermore,
we would like to test how the matching between the different
smoothers affects χ . To this purpose, in Fig. 13, we present
the topological susceptibility extracted using the clover defi-
nition of the corresponding charge density for the Wilson flow
as a function of the flow time and compare it to other smooth-
ing procedures with smoothing scales adjusted according to
Table 3.

In the upper left panel of Fig. 13, we provide a compar-
ison of r0χ

1/4 extracted via the Wilson flow and cooling.
By rescaling nc → nc/3 according to Eq. (49) we observe
that both smoothers give results which agree for the whole
range of τ . The above picture resembles similar comparisons
demonstrated in Ref. [19]. This suggests that cooling, which
is much faster compared to the Wilson flow, provides very
similar topological susceptibility as long as the number of
cooling steps is rescaled appropriately.

The upper rightmost panel of Fig. 13 reveals an interesting
feature of the HYP smoothing technique. Namely, a compar-
ison between HYP smearing with the number of smearing
steps rescaled according to Eq. (67) with the Wilson flow
shows an approximate agreement (within the statistical accu-
racy). However, the topological susceptibility via the Wilson
flow appears to manifest a plateau, and thus scale invari-
ance, starting at small values of τ ∼ 3. On the contrary,
when smoothing with HYP smearing, the plateau sets in at
larger values of τ suggesting that this picture could be the
outcome of larger cut-off effects in the topological charge.
Without question, the non-local character of the HYP smear-
ing introduces different instantonic properties, which could
potentially explain this behaviour; this should be investigated
in more detail.

In the lower left panel of Fig. 13, we demonstrate a com-
parison of r0χ

1/4 obtained via the Wilson flow as a function
of the flow time with r0χ

1/4 calculated via stout smearing as a
function of the rescaled smearing steps of ρstnst. We consider
three values of ρst = 0.1, 0.05 and 0.01. Amazingly, the four
sketched bands appear to fall on top of each other, yielding
a message that the level of similarity between stout smear-
ing and Wilson flow is indeed very high. In fact, the perfect
matching of topological susceptibilities in addition to the cor-
relation coefficient of 1.00 flags the exact numerical equiva-
lence between the two smoothers. Once more, this result sug-
gests that we could safely use stout smearing instead of the
Wilson flow to measure topological observables and define
physical reference scales according to Eq. (71).

Finally, in the lower right panel of Fig. 13, we provide a
comparison of r0χ

1/4 measured with the Wilson flow as a
function of τ with the value of r0χ

1/4 extracted with APE
smearing vs. the rescaled smearing step αAPEnAPE/6. We
did so for six different values of αAPE, namely αAPE =
0.6, 0.5, 0.4, 0.3, 0.2 and 0.1. Similarly to the stout smear-
ing presented in the previous paragraph, the topological sus-
ceptibility for all six values of αAPE appears to match exactly
the result of the Wilson flow. Again, this is expected for APE
by considering the high similarity of the topological charge
revealed in Fig. 5 as well as the correlation coefficient of
1.00 noted in Table 15. Like for stout smearing, one can use
APE smearing instead of the Wilson flow with a well defined
physical reference scale given by Eq. (70).

5 Conclusions

In this paper, we have investigated several definitions of the
topological charge. Our main conclusion is that all valid8

definitions lead to a consistent behaviour and are highly cor-
related, meaning to give –to a large extent– the same topo-
logical charge for a given configuration. The progress in
recent years, in particular the introduction of the gradient flow
smoothing scheme, enabled good control over the topological
charge extraction and made it possible to have a well-defined
field theoretic definition of the renormalized topological sus-
ceptibility and hence a comparatively cheap way to compute
the topological susceptibility, including its extrapolation to
the continuum limit. This is possible, because the gradient
flow provides a valid definition of a smoothing scale, which
needs to be kept constant when approaching the continuum

8 We remind that by valid definitions we mean ones which are finite after
renormalization, avoiding short-distance singularities. From a more
practical point of view, also definitions should be dismissed that show
large contamination by UV noise, as in the non-smeared gluonic defini-
tion, or too small value of the spectral threshold in the spectral projector
method, preventing one from counting all zero modes or would-be zero
modes.
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Fig. 13 A comparison of the topological suscpeptibility r0χ
1/4 as a

function of the gradient flow time τ for the Wilson flow, or, in the
upper left panel, the rescaled cooling step nc/3 for cooling, or, in the
upper right panel, the rescaled HYP smearing τHYP(nHYP), or, in the

lower left panel, the rescaled nstout smearing ρst ×nstout for three values
of ρst , or, finally in the lower right panel, the rescaled APE smearing
αAPE × nAPE/6 for six different values of the αAPE parameter. For this
ensemble t0 � 2.5a2
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limit. The gradient flow also makes it possible to define such
a smoothing scale for other kinds of smearing methods, via
a well-defined matching procedure. Moreover, one can show
that there are no short-distance singularities when the topo-
logical charge is defined at a finite flow time. This property,
in conjunction with its computational efficiency, makes the
gradient flow an excellent choice for computing the topolog-
ical charge and the corresponding topological susceptibility.
We see, however, no obstacle to also use other methods, such
as cooling and smearing, for which the number of cooling
or smearing steps can be related analytically to the gradi-
ent flow time. In this way, one can define a smoothing scale
also for the other smoothing schemes and perform the con-
tinuum limit by keeping it constant in physical units, which
is a prerequisite for a correct continuum limit.

A warning about the usage of field theoretic definitions is
provided by our follow-up analysis [92], where we compared
the GF definition with the spectral projector one on a wide
range of ETMC’s N f = 2 + 1 + 1 large-volume ensembles.
We found that cut-off effects in the topological susceptibility
from the GF are much larger than in the susceptibility from
spectral projectors and can be up to 500% at the coarsest
lattice spacing of around 0.09 fm. Nevertheless, the contin-
uum limit is always compatible between GF and spectral
projectors, and also independent of the flow time (GF) or the
renormalized spectral threshold (spectral projectors), as long
as these scales are fixed in physical units [93]. We refer the
reader to this paper for more details.

In fact, the numerical equivalence introduced by the
matching procedure between the gradient flow and other
smoothing schemes suggests that in cases where high statis-
tics are needed such as, for example, for the evaluation of
higher moments of the topological charge in pure gauge
theory, instead of using the gradient flow, one can opt for
employing either cooling or APE or stout smearing. From
our experience, we find that cooling, APE smearing or stout
smearing are, respectively, 120, 20 and 30 times faster9 than
the gradient flow for typical parameter values.

Defining the topological charge and susceptibility using
the spectral projectors is another relatively new method. They
constitute another theoretically clean way of defining these
quantities. However, the cost of this method is significantly
larger than the one of the gradient flow. Nevertheless, it might
be the method of choice for some applications, since it yields
much smaller cut-off effects than the GF, at least in the setup
of our follow-up work [92]. Concerning other fermionic defi-
nitions, such as the index of the overlap Dirac operator or the
spectral flow of the Wilson-Dirac operator, they are theoreti-
cally very clean and provide integer values of the topological
charge, but their cost is prohibitive for large-scale analyses.

9 Of course these numbers are not exact since they depend on the code
details such as the level of optimization etc.

In summary, we have shown in this paper that all valid
definitions of the topological charge are highly correlated
and, in principle, all of them can be used to analyze topolog-
ical issues. Thus, the choice for using a certain definition of
the topological charge will depend on the particular problem
under consideration.

Acknowledgements We thank the ETM Collaboration for generating
ensembles of gauge field configurations that we have used in this work
and for a very enjoyable collaboration. We are grateful to Giancarlo
Rossi for careful reading of the manuscript and useful suggestions. AA
has been supported by an internal program of the University of Cyprus
under the name of BARYONS. KC was supported in part by the National
Science Centre (Poland) grant SONATA BIS 2016/22/E/ST2/00013.
AD acknowledges support by the Emmy Noether Programme of the
DFG (German Research Foundation), grant WA 3000/1-1. This work
was supported in part by the Helmholtz International Center for FAIR
within the framework of the LOEWE program launched by the State of
Hesse. Numerical simulations were carried out at different machines of
the Leibniz Rechenzentrum (Garching), at the Poznań Supercomputing
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Appendix A: Comparison of gluonic definitions

In this section of the Appendix, we present a comprehen-
sive comparison of the correlation of the topological charge
between different field theoretic definitions. We always use
the clover discretization, but we vary the type of smooth-
ing procedure, smoothing action (where applicable) and/or
other parameters entering the definition of smoothing and
flow times:

– GF at flow times t0, 3t0, three types of smoothing action
(16, 18, 22, 24, 25, 27),
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Fig. 14 Comparison of field theoretic definitions with different kinds
of smoothing of UV fluctuations. The correlation between differ-
ent definitions is colour-coded (note the scale is different than in
Figs. 9, 10, 15, 16)

– cooling matched to GF at flow times t0, 3t0, three types
of smoothing action (28-34),

– stout smearing matched to GF at flow times t0, 3t0, two
values of the stout parameter ρst (34-37),

– APE smearing matched to GF at flow times t0, 3t0, three
values of the αAPE parameter (38-43),

– HYP smearing matched to GF at flow times t0, 3t0 (44-
45).

A summary of our results in shown in Fig. 14 and table 6.
We have already discussed the correlations within the class

of gradient flow definitions. We now concentrate on compar-
isons for different groups of definitions and also between the
groups.

If one uses cooling as the smoothing procedure, the rela-
tion between different cooling times (matched to different
flow times) and different smoothing actions for the cool-
ing procedure is very similar to the one for corresponding
cases for GF (i.e. with the same smoothing actions). Using
stout smearing, one observes that the smoothing parameter
ρst ∈ {0.01, 0.1} has no effect on the correlations. This is nat-
ural, since the stout smearing procedure is basically equiva-
lent to the gradient flow with an appropriate step. If this step
is small enough, one expects that the results are exact, i.e. the
gauge fields evolve according to the continuous gradient flow
equations, without any flow time discretization effects. For
APE smearing, we also note that the APE parameter αAPE

has practically no effect on the resulting correlations (we also
checked other values than the ones listed in table 2). However,
if the number of APE steps is varied, keeping the α param-
eter fixed, the correlation decreases from 1 to around 0.95.
This is qualitatively and quantitatively similar to the GF case

and further demonstrates that the matching between GF and
APE (or other kinds of smoothing procedure) is very robust.
The slight decrease of correlation when going from flow time
t0 to 3t0 demonstrates that at flow time t0, one still has not
reached the plateau of Q, i.e. the values of Q, at least for
some gauge field configurations, still change when increas-
ing the flow time. However, this effect is much smaller for
HYP smearing, where the correlation between the values of
Q corresponding to numbers of HYP smearing steps matched
to flow times t0 and 3t0 is 99%, as compared to typically 95%
when using other kinds of smoothing.

Finally, we discuss correlations between different kinds
of smoothers. We already argued that GF and stout smearing
are equivalent, hence the correlation is perfect if the num-
ber of stout smearing steps is matched to the flow time. The
correlation between GF and APE smearing is also close to
100% (for matched smoothing scales), while the one between
GF/cooling (with the same smoothing action) and GF/HYP
smearing is 97%. If one compares definitions at unmatched
smoothing scales (e.g. GF at flow time t0 with APE at a num-
ber of steps corresponding to 3t0), one obviously observes a
significant decrease of correlation. It is also worth to men-
tion that while for stout, APE or HYP smearing, the notion
of a smoothing action does not make sense, still taking into
account the way they are constructed, they correspond more
to GF with the Wilson plaquette smoother, rather than to GF
with more complicated smoothing actions. This implies that
the correlation between the values of Q for these smearing
types is high with respect to GF with the Wilson plaque-
tte smoothing action (97%-100%), but decreases to a large
extent when comparing to GF (or cooling) with the tree-level
Symanzik or Iwasaki smoother, to around 90% and 80%,
respectively. The very lowest correlation (77%) is observed
when comparing GF with the Iwasaki smoother to cool-
ing with the tree-level Symanzik improved action, both at
flow time 3t0. This correlation is actually even significantly
smaller than the correlation of both these cases alone to index-
type (fermionic) definitions.

Appendix B: Comparison of different smoothing actions
and flow times for gradient flow

The aim of this section is to provide a comparison of the cor-
relation of the topological charge extracted using, different
smoothing actions for the gradient flow, as well as different
flow times. The included cases are:

– Wilson plaquette smoothing action, flow times t0, 2t0 and
3t0 (16, 17, 18),

– tree-level Symanzik improved smoothing action, flow
times t0, 2t0 and 3t0 (22, 23, 24),
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Fig. 15 Comparison of field theoretic definitions with GF smoothing
and different smoothing actions and flow times. The correlation between
different definitions is colour-coded (note the scale is different than in
Figs. 9, 10, 16, 14)

– Iwasaki smoothing action, flow times t0, 2t0 and 3t0 (25,
26, 27).

A summary of our findings is given in Fig. 15 and Table 7.
As expected, when the smoothing action is fixed, corre-

lations decrease with increasing difference between corre-
sponding flow times. However, the decrease is very slight
and practically invisible in the case of the Iwasaki smoother.
This suggests that increasing the flow time has very small
effect on the values of Q and the effect is almost absent
for the Iwasaki case. When comparing different smoothing
actions, one notices that while Wilson plaquette is still very
much correlated with tree-level Symanzik improved (92%-
97%), the correlation with respect to the Iwasaki smoothing
action drops down significantly (to 80%-88%). The corre-
lation of tree-level Symanzik improved to Iwasaki is larger
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Fig. 16 Comparison of field theoretic definitions with GF smoothing
and different discretizations of the topological charge operator. The
correlation between different definitions is colour-coded (note the scale
is different than in Figs. 9, 10, 15, 14)

than Wilson plaquette vs. Iwasaki, but still smaller than the
one with respect to Wilson plaquette.
Comparison of different discretizations of the topological
charge operator In this subsection, we make another com-
parison of field theoretic definitions, using in all cases the
gradient flow with the Wilson plaquette smoothing action,
but different discretizations of the topological charge opera-
tor and different flow times:

– plaquette discretization, flow times t0, 2t0 and 3t0 (13,
14, 15),

– clover discretization, flow times t0, 2t0 and 3t0 (16, 17,
18),

– improved discretization (clover + rectangles), flow times
t0, 2t0 and 3t0 (19, 20, 21).

A summary of our findings is given in Fig. 16 and Table 8.

Table 7 Comparison of field theoretic definitions with GF smoothing
and different smoothing actions and flow times. The numbers corre-
spond to the numbering given in Fig. 15. We give the correlation coeffi-

cient between different definitions and its error (0 means that the error
is smaller than 0.005)

1 2 3 4 5 6 7 8 9

1 1 0.98(0) 0.96(0) 0.97(0) 0.97(0) 0.97(0) 0.88(1) 0.87(1) 0.86(1)

2 0.98(0) 1 0.99(0) 0.93(0) 0.94(0) 0.94(0) 0.83(1) 0.82(1) 0.82(2)

3 0.96(0) 0.99(0) 1 0.92(1) 0.93(0) 0.92(0) 0.81(2) 0.80(2) 0.80(2)

4 0.97(0) 0.93(0) 0.92(1) 1 0.99(0) 0.98(0) 0.92(0) 0.91(0) 0.91(0)

5 0.97(0) 0.94(0) 0.93(0) 0.99(0) 1 1.00(0) 0.89(1) 0.88(1) 0.88(1)

6 0.97(0) 0.94(0) 0.92(0) 0.98(0) 1.00(0) 1 0.88(1) 0.88(1) 0.87(1)

7 0.88(1) 0.83(1) 0.81(2) 0.92(0) 0.89(1) 0.88(1) 1 1.00(0) 1.00(0)

8 0.87(1) 0.82(1) 0.80(2) 0.91(0) 0.88(1) 0.88(1) 1.00(0) 1 1.00(0)

9 0.86(1) 0.82(2) 0.80(2) 0.91(0) 0.88(1) 0.87(1) 1.00(0) 1.00(0) 1

123



  424 Page 28 of 30 Eur. Phys. J. C           (2020) 80:424 

Table 8 Comparison of field theoretic definitions with GF smooth-
ing and different discretizations of the topological charge operator. The
numbers correspond to the numbering given in Fig. 16. We give the cor-

relation coefficient between different definitions and its error (0 means
that the error is smaller than 0.005)

1 2 3 4 5 6 7 8 9

1 1 0.97(0) 0.96(0) 0.99(0) 0.97(0) 0.95(0) 0.99(0) 0.97(0) 0.95(0)

2 0.97(0) 1 0.99(0) 0.98(0) 1.00(0) 0.99(0) 0.97(0) 1.00(0) 0.99(0)

3 0.96(0) 0.99(0) 1 0.96(0) 0.99(0) 1.00(0) 0.95(0) 0.98(0) 1.00(0)

4 0.99(0) 0.98(0) 0.96(0) 1 0.98(0) 0.96(0) 1.00(0) 0.98(0) 0.96(0)

5 0.97(0) 1.00(0) 0.99(0) 0.98(0) 1 0.99(0) 0.97(0) 1.00(0) 0.99(0)

6 0.95(0) 0.99(0) 1.00(0) 0.96(0) 0.99(0) 1 0.95(0) 0.99(0) 1.00(0)

7 0.99(0) 0.97(0) 0.95(0) 1.00(0) 0.97(0) 0.95(0) 1 0.97(0) 0.95(0)

8 0.97(0) 1.00(0) 0.98(0) 0.98(0) 1.00(0) 0.99(0) 0.97(0) 1 0.99(0)

9 0.95(0) 0.99(0) 1.00(0) 0.96(0) 0.99(0) 1.00(0) 0.95(0) 0.99(0) 1

The correlations between different discretizations at a
fixed flow time are almost perfect (99%-100%) and decrease
with an increase of the flow time difference. However, even
the largest difference, the one between the simple plaquette
discretization at flow time t0 and the improved one (clover
and rectangle terms) at flow time 3t0 yields a very high corre-
lation (95%). This behaviour is totally consistent with expec-
tations.
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