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Blockspin transformation of topological defects is applied to the violation of the non-Abelian Bianchi
identity (VNABI) on lattice defined as Abelian monopoles. To get rid of lattice artifacts, we introduce (1)
smooth gauge fixings such as the maximal center gauge (MCG), (2) blockspin transformations and (3) the
tadpole-improved gauge action. The effective action can be determined by adopting the inverse
Monte Carlo method. The coupling constants FðiÞ of the effective action depend on the coupling of
the lattice action β and the number of the blocking step n. But it is found that FðiÞ satisfies a beautiful
scaling; that is, they are a function of the product b ¼ naðβÞ alone for lattice coupling constants 3.0 ≤
β ≤ 3.9 and the steps of blocking 1 ≤ n ≤ 12. The effective action showing the scaling behavior can be
regarded as an almost perfect action corresponding to the continuum limit, since a → 0 as n → ∞ for fixed
b. The infrared effective monopole action keeps the global color invariance when smooth gauges such as
MCG keeping the invariance are adopted. The almost perfect action showing the scaling is found to be
independent of the smooth gauges adopted here as naturally expected from the gauge invariance of the
continuum theory. Then we compare the results with those obtained by the analytic blocking method of
topological defects from the continuum, assuming local two-point interactions are dominant as the infrared
effective action. The action is formulated in the continuum limit while the couplings of these actions can be
derived from simple observables calculated numerically on lattices with a finite lattice spacing. When use is
made of Berezinskii-Kosterlitz-Thouless (BKT) transformation, the infrared monopole action can be
transformed into that of the string model. Since large b ¼ naðβÞ corresponds to the strong-coupling region
in the string model, the physical string tension and the lowest glueball mass can be evaluated analytically
with the use of the strong-coupling expansion of the string model. The almost perfect action gives usffiffiffi
σ

p
≃ 1.3 ffiffiffiffiffiffiffiffiffiffi

σphys
p for b ≥ 1.0ðσ−1=2phys Þ, whereas the scalar glueball mass is kept to be near Mð0þþÞ∼

3.7 ffiffiffiffiffiffiffiffiffiffi
σphys

p . In addition, using the effective action composed of 10 simple quadratic interactions alone, we

can almost explain analytically the scaling function of the squared monopole density determined

numerically for a large b region when b > 1.2ðσ−1=2phys Þ.

DOI: 10.1103/PhysRevD.97.034509

I. INTRODUCTION

It is shown in the continuum limit that the violation of the
non-Abelian Bianchi identities (VNABI) Jμ is equal to
Abelian-like monopole currents kμ defined by the violation
of the Abelian-like Bianchi identities [1,2]. Although
VNABI is an adjoint operator satisfying the covariant
conservation rule DμJμ ¼ 0, it gives us, at the same time,
the Abelian-like conservation rule ∂μJμ ¼ 0. There areN2 −
1 conserved magnetic charges in the case of color SUðNÞ.

The charge of each component of VNABI is quantized à la
Dirac. The color invariant eigenvalue λμ of VNABI also
satisfies the Abelian conservation rule ∂μλμ ¼ 0 and the
magnetic charge of the eigenvalue is also quantized à la
Dirac. If the color invariant eigenvalue make condensation in
the QCD vacuum, each color component of the non-Abelian
electric field Ea is squeezed by the corresponding color
component of the sorenoidal current Jaμ. Then only the color
singlets alone can survive as a physical state and non-
Abelian color confinement is realized.
To prove if such a new confinement scheme is realized in

nature, studies in the framework of pure SUð2Þ lattice gauge
theories have been done as a simple model of QCD [2]. An
Abelian-like definition of a monopole following DeGrand-
Toussaint [3] is adopted as a lattice version of VNABI, since
the Dirac quantization condition of the magnetic charge is
taken into account on lattice. In Ref [2], the continuum limit
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of the lattice VNABI density is studied by introducing
various techniques of smoothing the thermalized vacuum
which is contaminated by lattice artifacts originally.
With these improvements, beautiful and convincing
scaling behaviors are seen when we plot the density
ρðaðβÞ; nÞ versus b ¼ naðβÞ, where ρðaðβÞ; nÞ ¼P

s;μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
3
a¼1ðKa

μðsÞÞ2
q

=ð4 ffiffiffi
3

p
Vb3Þ, Ka

μðsÞ is an n blocked

monopole in the color direction a, n is the number of
blocking steps, V is the four-dimensional lattice volume,
and b ¼ naðβÞ is the lattice spacing of the blocked lattice.
A single universal curve ρðbÞ is found from n ¼ 1 up
to n ¼ 12, which suggests that ρðaðβÞ; nÞ is a function
of b ¼ naðβÞ alone. The scaling means that the lattice
definition of VNABI has the continuum limit.
The monopole dominance and the dual Meissner effect

of the new scheme were studied already several years ago
without any gauge fixing [4] by making use of huge
number of thermalized vacua produced by random gauge
transformations. The monopole dominance of the string
tension was shown beautifully. The dual Meissner effect
with respect to each color electric field was shown also
beautifully by the Abelian monopole in the corresponding
color direction.
Now in this paper we perform the blockspin renormal-

ization-group study of lattice SUð2Þ gauge theory and try to
get the infrared effective VNABI action by introducing a
blockspin transformation of lattice VNABI (Abelian
monopoles). Since lattice VNABI is defined as Abelian
monopoles following Degrand-Toussaint [3], the renorm-
alization-group study is similar to the previous works done
in maximally Abelian (MA) gauge [5–8]. However here we
mainly adopt global color-invariant maximal center gauge
(MCG) [9,10] as a gauge smoothing the lattice vacuum,
although comparison of the results in other smooth gauges
is discussed. Beautiful scaling and gauge-independent
behaviors are found to exist, not only with respect to the
monopole density done in Ref. [2], but also with respect to
the effective monopole action.
After numerically deriving the infrared effective action

with the simple assumption of two-point monopole inter-
actions alone, we try to get the monopole action in the
continuum limit by applying the method called blocking
from the continuum [11]. When use is made of Berezinskii-
Kosterlitz-Thouless (BKT) transformation, the infrared
monopole action can be transformed into the string model
action. Since large b ¼ naðβÞ corresponds to the strong-
coupling region in the string model, the string tension and
the lowest glueball mass can be evaluated analytically with
the use of the strong-coupling expansion. The almost perfect
action gives us

ffiffiffi
σ

p
≃ 1.3 ffiffiffiffiffiffiffiffiffiffi

σphys
p for b ≥ 1.0ðσ−1=2phys Þ, whereas

the lowest scalar glueball mass is kept to be nearMð0þþÞ ∼
3.7

ffiffiffi
σ

p
[12]. Finally, we try to explain the scaling behavior of

the monopole density observed in Ref. [2] starting from the
obtained effective monopole action composed of 10

quadratic interactions alone. Since the square-root operator
is difficult to evaluate, we adopt the squared monopole
density RðbÞ ¼ P

s;μð
P

3
a¼1ðKa

μðsÞÞ2Þ=ð4Vb3Þ. RðbÞ is
found numerically to be a function of b ¼ naðβÞ alone. It
is interesting to see the numerically determined scaling
behavior of RðbÞ can almost be reproduced analytically by
the simple monopole action for b > 1.2ðσ−1=2phys Þ, although
there remains around 30% discrepancy due mainly to the
choice of simplest 10 quadratic monopole interactions
alone.

II. THE EFFECTIVE MONOPOLE ACTION
AND THE BLOCKSPIN TRANSFORMATION

OF LATTICE MONOPOLES

The method to derive the monopole action is the
following:
(1) We generate SUð2Þ link fields fUðs; μÞg using the

tadpole-improved action [13] for SU(2) gluo-
dynamics:

SðUÞ ¼ β
X
pl

Spl −
β

20u20

X
rt

Srt; ð1Þ

where Spl and Srt denote plaquette and 1 × 2

rectangular loop terms in the action,

Spl;rt ¼
1

2
Trð1 −Upl;rtÞ; ð2Þ

the parameter u0 is the input tadpole improvement
factor taken here equal to the fourth root of the
average plaquette P ¼ h1

2
trUpli. We consider 484

(244) hyper-cubic lattice for β ¼ 3.0–3.9 (for
β ¼ 3.0–3.7). For details of the vacuum generation
using the tadpole-improved action, see Ref. [2].

(2) Monopole loops in the thermalized vacuum pro-
duced from the above improved action (1) still
contain large amount of lattice artifacts. Hence we
adopt a gauge-fixing technique smoothing the vac-
uum, although any gauge-fixing is not necessary for
smooth continuum configurations. The first smooth
gauge is the maximal center gauge [9,10] which is
usually discussed in the framework of the center
vortex idea. We adopt the so-called direct maximal
center gauge which requires maximization of the
quantity

R ¼
X
s;μ

ðTrUðs; μÞÞ2; ð3Þ

with respect to local gauge transformations. Here
Uðs; μÞ is a lattice gauge field. The above condition
fixes the gauge up to Zð2Þ gauge transformation and
can be considered as the Landau gauge for the
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adjoint representation. In our simulations, we choose
a simulated annealing algorithm as the gauge-fixing
method which is known to be powerful for finding
the global maximum. For details, see Ref. [14].
For comparison, we also consider the direct

Laplacian center gauge(DLCG) [15], Maximal Abe-
lian Wilson loop (AWL) gauge [2] and Maximally
Abelian (MA) plus U1 Landau gauge(MAU1)
[2,16–18].

(3) Next we perform an Abelian projection in the above
smooth gauges to separate Abelian link variables.
We explain how to extract the Abelian fields and the
color-magnetic monopoles from the thermalized
non-Abelian SU(2) link variables [4],

Uðs; μÞ ¼ U0ðs; μÞ þ iσ⃗ · U⃗ðs; μÞ; ð4Þ
where σ⃗ ¼ ðσ1; σ2; σ3Þ is the Pauli matrix. Abelian
link variables in one of the color directions, for
example, in the σ1 direction are defined as

uμðsÞ ¼ cos θμðsÞ þ iσ1 sin θμðsÞ; ð5Þ
where

θ1μðsÞ ¼ arctan

�
U1ðs; μÞ
U0ðs; μÞ

�
ð6Þ

corresponds to the Abelian field.
(4) Monopole currents can be defined from Abelian

plaquette variables θaμνðsÞ following DeGrand and
Toussaint [3]. The Abelian plaquette variables are
written by

θaμνðsÞ≡ θaμðsÞ þ θaνðsþ μ̂Þ − θaμðsþ ν̂Þ − θaνðsÞ;
ð−4π < θaμνðsÞ < 4πÞ:

It is decomposed into two terms:

θaμνðsÞ≡ θ̄aμνðsÞ þ 2πnaμνðsÞ;
ð−π ≤ θ̄aμνðsÞ < πÞ:

Here, θ̄aμνðsÞ is interpreted as the electromagnetic
flux with color a through the plaquette and the
integer naμνðsÞ corresponds to the number of Dirac
string penetrating the plaquette. One can define
quantized conserved monopole currents

kaμðsÞ ¼
1

2
ϵμνρσ∂νnaρσðsþ μ̂Þ; ð7Þ

where ∂ denotes the forward difference on the
lattice. The monopole currents satisfy a conservation
law ∂ 0

μkaμðsÞ ¼ 0 by definition, where ∂ 0 denotes the
backward difference on the lattice.

(5) We consider a set of independent and local monop-
ole interactions which are summed up over the

whole lattice. We denote each operator as Si½k�.
Then the monopole action can be written as a linear
combination of these operators:

S½k� ¼
X
i

FðiÞSi½k�; ð8Þ

where FðiÞ are coupling constants.
The effective monopole action is defined as

follows:

e−S½k� ¼
Z

DUðs; μÞe−SðUÞ

×
Y
a

δ

�
kaμðsÞ −

1

2
ϵμνρσ∂νnaρσðsþ μ̂Þ

�
;

where SðUÞ is the gauge-field action (1).
We determine the monopole action (8), that is, the

set of couplings FðiÞ from the monopole current
ensemble fkaμðsÞg with the aid of an inverse
Monte Carlo method first developed by Swendsen
[19] and extended to closed monopole currents by
Shiba and Suzuki [6]. The details of the inverse
Monte Carlo method are reviewed in Appendix A.
See also the previous paper [7].
Practically, we have to restrict the number of

interaction terms. It is natural to assume that
monopoles which are far apart do not interact
strongly and to consider only short-ranged local
interactions of monopoles. The form of actions
adopted here are shown in Appendices B and C.
Some comments are in order:
(a) Contrary to previous studies in MA gauge, there

are three colored Abelian monopoles here. Due
to the possible interactions between gauge fields
and monopoles, there may appear interactions
between different colored monopoles. When we
consider here only effective actions of Abelian
monopoles, such induced interactions between
monopoles of different colors become inevitably
nonlocal. Also no two-point color-mixed inter-
actions appear.

(b) We adopt only monopole interactions which are
local and have no color mixing, since stable
convergence could not be obtained with the
introduction of color-mixed four- and six-point
local interactions.

(c) Actually, we study here in details assuming two-
point monopole interactions alone, although
some four and six point interactions without
any color mixing are studied for comparison. For
the discussions concerning the set of monopole
interactions, see Appendix C.

(d) All possible types of interactions are not inde-
pendent due to the conservation law of the
monopole current. So we get rid of almost all
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perpendicular interactions by the use of the
conservation rule [6,8].

(6) We perform a blockspin transformation in terms
of the monopole currents on the dual lattice to
investigate the renormalization flow in the IR
region. We adopt n ¼ 1, 2, 3, 4, 6, 8, 12 extended
conserved monopole currents as an n blocked
operator [5]:

KμðsðnÞÞ ¼
Xn−1
i;j;l¼0

kμðsðn; i; j; lÞÞ

≡ BkμðsðnÞÞ; ð9Þ

where sðn; i; j; lÞ≡ nsðnÞ þ ðn− 1Þμ̂þ iν̂þ jρ̂þ lσ̂.
Here sðnÞ is the site number on the blocked lattice
and ν̂, ρ̂, σ̂ denote the direction perpendicular to μ̂.
The renormalized lattice spacing is b ¼ naðβÞ, and
the continuum limit is taken as the limit n → ∞ for a
fixed physical length b.
We determine the effective monopole action from

the blocked monopole current ensemble fKμðsðnÞÞg.
Then one can obtain the renormalization-group flow
in the coupling constant space.

(7) The physical length b ¼ naðβÞ is taken in unit of the
physical string tension σ−1=2phys . We evaluate the string
tension σlat from the monopole part of the Abelian
Wilson loops for each β since the error bars are small
in this case. The lattice spacing aðβÞ is given by the
relation aðβÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σlat=σphys
p

. Note that b ¼ 1.0σ−1=2phys

FIG. 1. The coupling constants of the self and the two nearest-
neighbor interactions in the effective monopole action versus
b ¼ naðβÞ in MCG on 484.

FIG. 2. The coupling constants of the two next to the nearest-
neighbor interactions in the effective monopole action versus
b ¼ naðβÞ in MCG on 484.
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corresponds to 0.45 fm, when we assume
σphys ≅ ð440 MeVÞ2.

III. NUMERICAL RESULTS

As discussed in Appendices B and C, in the main part of
this work, we adopt 10 short-ranged quadratic interactions
alone as the form of the effective monopole action for
simplicity and also for the comparison with the analytic
blocking from the continuum limit.

A. Results in MCG gauge on 484 lattice

The 10 coupling constants FðiÞði ¼ 1–10Þ of quadratic
interactions are fixed very beautifully for lattice coupling
constants 3.0 ≤ β ≤ 3.9 and the steps of blocking
1 ≤ n ≤ 12. Remarkably they are all expressed by a
function of b ¼ naðβÞ alone, although they originally
depend on two parameters β and n. Namely, the scaling
is satisfied and the continuum limit is obtained when
n → ∞ for fixed b ¼ naðβÞ. The obtained action can be
considered as the projection of the perfect action onto the
plane composed of 10 quadratic coupling constants. These
behaviors are shown for the first five dominant couplings in
Figs. 1 and 2. These data are actually much more beautiful
than those obtained in previous works in MA gauge
considering the third color component alone [8].

B. Renormalization-group flow diagrams

The perfect monopole action draws a unique trajectory in
the multidimensional coupling-constant space. To see if
such a behavior is realized in our case, we plot the
renormalization-group flow line of our data projected onto
some two-dimensional coupling-constant planes in Figs. 3
and 4. Except the case for small b ¼ naðβÞ regions,

FIG. 3. The renormalization-group flow projected onto the two-
dimensional coupling constant planes in MCG on 484.

FIG. 4. The renormalization-group flow projected onto the two-
dimensional coupling constant planes in MCG on 484.
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especially with n ¼ 1 case, the unique trajectory is seen
clearly. The behaviors are again much more beautiful than
those obtained previously in MA gauge [8].

C. Volume dependence in MCG gauge

Volume dependence is checked in comparison with the
data on 244 and 484 lattices in MCG gauge. Figure 5 shows
examples of the most dominant self-coupling coupling
Fð1Þ and the coupling of the next nearest-neighbor inter-
action Fð5Þ. Volume dependence is seen to be small,
although the error bars of the data on 244 become naturally
larger due to the boundary effect when the couplings at
larger distances are considered.

D. Smooth gauge dependence

The above results are all obtained in MCG gauge. Before
studying other smooth gauges, we show the result without
any gauge-fixing. In this case, the vacuum is contaminated

by dirty artifacts. Nevertheless, the infrared effective
monopole action is determined. Figure 6 shows an example
of the coupling of the self-interaction Fð1Þ in comparison
with that in MCG gauge. One can see that scaling is not
seen at all in no gauge-fixing (NGF) case.

FIG. 5. Volume dependence of the infrared effective monopole
action in MCG on 244 and 484. The coupling constants of the self
Fð1Þ and the next nearest-neighbor interactions Fð5Þ are shown
as examples.

FIG. 6. The self coupling of the infrared effectivemonopole action
in NGF case for 3.3≤β≤3.9 in comparison with that in MCG case.

FIG. 7. The infrared effective monopole action in DLCG and
MCG on 244. The coupling constants of the self Fð1Þ and the
next nearest-neighbor interactions Fð5Þ are shown as an example.
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1. DLCG gauge

The direct Laplacian center gauge (DLCG) is a gauge
used to study the center vortex [15] as MCG. Since DLCG
gauge-fixing needs more machine time, we take data on
smaller 244 lattice only. The results are shown in com-
parison with those in MCG in Fig. 7 with respect to the self-
coupling Fð1Þ and the next nearest-neighbor coupling
Fð5Þ as an example. Both data are almost equal for the
b ¼ naðβÞ regions considered, although small deviations

are seen in the Fð5Þ case having the finite-size effects on
small 244 lattice.

2. AWL gauge

The third smooth gauge is the maximally AbelianWilson
loop (AWL) gauge [2,20], where Abelian 1 × 1 Wilson
loop is maximized as much as possible. The data in AWL is
shown in Fig. 8 along with those in MCG with respect to
the self-coupling Fð1Þ and the next next nearest-neighbor
coupling Fð6Þ as an example. The scaling is found very
clearly and the both data are almost the same even with
respect to Fð6Þ on 484 lattice.

3. MAU1 gauge

Now let us compare MCG and MAU1 gauges, the latter
of which is the combination of the maximally Abelian
(MA) gauge-fixing [17] and Landau gauge-fixing with
respect to the remaining Uð1Þ [18]. In MAU1, the global
isospin invariance is broken and the effective action Sðk3Þ
is different from those of the off-diagonal monopole
currents Sðk1Þ and Sðk2Þ. See Fig. 9 as an example.
With respect to Fð1Þ and Fð2Þ, the isospin breaking is
not so big, but large deviation is observed with respect
to Fð3Þ.
However, if the effective actions in both MAU1 and

MCG are on the renormalized trajectory corresponding to
the continuum limit, the total sum of the monopole actions
in three color directions in MAU1 should be equivalent to
the sum of three monopole actions in MCG gauge. It is very
interesting to see from Figs. 10 and 11 that the expectation
is realized. Actually, except for small b ¼ naðβÞ regions,
the gauge-invariance is seen clearly.

E. Summary of studies in smooth gauges

From the above data in various gauges, one can conclude
that if scaling behaviors are obtained and the effective
monopole action is on the renormalized trajectory with the
introduction of some smooth gauge-fixing, the trajectory
obtained becomes universal naturally. In fact, the renor-
malized trajectory represents the effective action in the
continuum limit and gauge dependence should not exist in

FIG. 8. The infrared effective monopole action in AWL and
MCG on 484. The coupling constants of the self Fð1Þ and the next
next nearest-neighbor interactions Fð6Þ are shown as an example.

TABLE I. Best parameters fitted.

b ¼ naðβÞ 0.5 1 1.5 2 2.5 3 3.5 4 4.5

κ 0.117504 0.470017 1.057538 1.880067 2.937605 4.230151 5.757705 7.520268 9.51784

m1 9 18 27 36 45 54 63 72 81

m2 0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2 8.1

ᾱ 8.682261 2.170565 0.964696 0.542641 0.34729 0.241174 0.177189 0.13566 0.107188

β̄ 6.963001 6.963001 6.963001 6.963001 6.963001 6.963001 6.963001 6.963001 6.963001

γ̄ 1.06e-01 6.63e-03 1.31e-03 4.15e-04 1.70e-04 8.19e-05 4.42e-05 2.59e-05 1.62e-05
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the continuum. It is exciting to see that this natural
expectation is realized actually, at least for larger b regions
b ≥ 0.5ðσ−1=2phys Þ.

IV. BLOCKING FROM THE
CONTINUUM LIMIT

The infrared effective action determined above numeri-
cally shows a clear scaling, that is, a function of b ¼ naðβÞ

alone, and it can be regarded as an action in the continuum
limit. But it is an action still formulated on a lattice with the
finite lattice spacing b ¼ naðβÞ. Hence various symmetries
such as rotational invariance of physical quantities in the
continuum limit are difficult to observe, since the action
itself does not satisfy, say, the rotational invariance. One
has to consider a perfect operator in addition to a perfect
action on b lattice in order to reproduce a symmetry such as

FIG. 9. The coupling constants of the self and the two nearest-
neighbor interactions in the effective monopole action versus b ¼
naðβÞ in MAU1 on 484.

FIG. 10. The coupling constants of the self and the nearest-
neighbor interactions in the effective monopole action versus
b ¼ naðβÞ in MAU1 and MCG on 484. The sum of each coupling
constant with respect to three color components is shown.

TSUNEO SUZUKI PHYS. REV. D 97, 034509 (2018)

034509-8



rotational invariance in the continuum limit [8,21]. For
example, a simple Wilson loop on a plane does not
reproduce the rotational-invariant static potential on the
b lattice.
It is highly desirable to get a perfect action formulated in

the space-time continuum which reproduces the same

physics at the scale b as those obtained by the above
perfect action formulated on the b lattice. If such a perfect
action in the space-time continuum is given, the rotational
invariance of physical quantities is naturally reproduced
with simple operators such as a simple Wilson loop, since
the action also respects the invariance.
If the infrared effective monopole action is quadratic, it is

possible to perform analytically the blocking from the
continuum and to get the infrared monopole action for-
mulated on a coarse b ¼ naðβÞ lattice [8,21]. Perfect
operators are also obtained. This is similar to the method
developed by Bietenholz and Wiese [11].
We review the above old works [8,21] shortly. Let us

start from the following action composed of quadratic
interactions between magnetic monopole currents. It is
formulated on an infinite lattice with very small lattice
spacing a:

S½k� ¼
X
s;s0;μ

kμðsÞD0ðs − s0Þkμðs0Þ: ð10Þ

Here we omit the color index. Since we are starting from the
region very near to the continuum limit, it is natural to
assume the direction independence of D0ðs − s0Þ. Also we
adopt only parallel interactions, since we can avoid
perpendicular interactions from short-distant terms using
the current conservation. Moreover, for simplicity, we
adopt only the first three Laurent expansions, i.e.,
Coulomb, self, and nearest-neighbor interactions. Ex-
plicitly, D0ðs − s0Þ is expressed as ᾱδs;s0 þ β̄Δ−1

L ðs − s0Þþ
γ̄ΔLðs − s0Þ, where ᾱ; β̄, and γ̄ are free parameters. Here
ΔLðs − s0Þ ¼ −

P
μ∂μ∂ 0

μδs;s0 . Including more complicated
quadratic interactions is not difficult.
When we define an operator on the fine a lattice, we can

find a perfect operator along the projected flow in the
a → 0 limit for fixed b. We assume the perfect operator on
the projected space as an approximation of the correct
operator for the action S½k� on the coarse b lattice.
Let us start from

hWmðCÞi ¼
X∞

kμðsÞ¼−∞
∂0μkμðsÞ¼0

exp

�
−
X
s;s0;μ

kμðsÞD0ðs − s0Þkμðs0Þ þ 2πi
X
s;μ

NμðsÞkμðsÞ
�Y

sðnÞ;μ

δðKμðsðnÞÞ − BkμðsðnÞÞÞ=Z½k�; ð11Þ

where BkμðsðnÞÞ≡
P

n−1
i;j;l¼0 kμðsðn; i; j; lÞÞ (9). Note that the monopole contribution to the static potential is given by the

term in Eq. (11):

WmðCÞ ¼ exp

�
2πi

X
s;μ

NμðsÞkμðsÞ
�
; NμðsÞ ¼

X
s0
Δ−1

L ðs − s0Þ 1
2
ϵμαβγ∂αSJβγðs0 þ μ̂Þ; ð12Þ

where SJβγðs0 þ μ̂Þ is a plaquette variable satisfying ∂ 0
βS

J
βγðsÞ ¼ JγðsÞ, and the coordinate displacement μ̂ is due to the

interaction between dual variables. Here JμðsÞ is an Abelian integer-charged electric current corresponding to
an Abelian Wilson loop. See Ref. [8].

FIG. 11. The coupling constants of the two next nearest-
neighbor interactions in the effective monopole action versus
b ¼ naðβÞ in MAU1 and MCG on 484. The sum of each coupling
constant with respect to three color components is shown.
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The cutoff effect of the operator (11) isOðaÞ by definition. This δ-function renormalization-group transformation can be
done analytically. Taking the continuum limit a → 0, n → ∞ (with b ¼ na is fixed), finally, we obtain the expectation value
of the operator on the coarse lattice with spacing b ¼ naðβÞ [21]:

hWmðCÞi¼ exp

�
−π2

Z
∞

−∞
d4xd4y

X
μ

NμðxÞD−1
0 ðx−yÞNμðyÞþπ2b8

X
sðnÞ ;sðnÞ0

μ;ν

BμðbsðnÞÞDμνðbsðnÞ−bsðnÞ0 ÞBνðbsðnÞ0 Þ
�

×
X∞

b3KμðbsÞ¼−∞
∂0μKμ¼0

exp
�
−S½KμðsðnÞÞ�þ2πib8

X
sðnÞ ;sðnÞ0

μ;ν

BμðbsðnÞÞDμνðbsðnÞ−bsðnÞ0 ÞKνðbsðnÞ0 Þ
�, X∞

b3KμðbsÞ¼−∞
∂0μKμ¼0

Z½K;0�; ð13Þ

where

BμðbsðnÞÞ≡ lim
a→0
n→∞

a8
X
s;s0;ν

Π¬μðbsðnÞ − asÞ
�
δμν −

∂μ∂ 0
νP

ρ∂ρ∂ 0
ρ

�
D−1

0 ðas − as0ÞNνðas0Þ;

Π¬μðbsn − asÞ≡ 1

n3
δðnasðnÞμ þ ðn − 1Þa − asμÞ

Y
ið≠μÞ

�Xn−1
I¼0

δðnasðnÞi þ Ia − asiÞ
�
: ð14Þ

S½KμðsðnÞÞ� denotes the effective action defined on the coarse lattice:

S½KμðsðnÞÞ� ¼ b8
X

sðnÞ;sðnÞ0

X
μ;ν

KμðbsðnÞÞDμνðbsðnÞ − bsðnÞ0 ÞKνðbsðnÞ0 Þ: ð15Þ

Since we take the continuum limit analytically, the operator in (13) does not have no cutoff effect. For clarity, we have
recovered the scale factor a and b in (13), (14), and (15).
The momentum representation of DμνðbsðnÞ − bsðnÞ0 Þ takes the form

DμνðpÞ ¼ AGF−1
μν ðpÞ − 1

λ

p̂μ p̂ν

ðp̂2Þ2 e
iðpμ−pνÞ=2; ð16Þ

where p̂μ ¼ 2 sinðpμ=2Þ and AGF−1
μν ðpÞ is the gauge-fixed inverse of the following operator

A0
μνðpÞ≡

�Y4
i¼1

X∞
li¼−∞

��
D−1

0 ðpþ 2πlÞ
�
δμν −

ðpþ 2πlÞμðpþ 2πlÞνP
iðpþ 2πlÞ2i

� ðpþ 2πlÞμðpþ 2πlÞνQ
iðpþ 2πlÞ2i

� ðQ4
i¼1 p̂iÞ2
p̂μp̂ν

: ð17Þ

The explicit form ofDμνðpÞ is written in Ref. [21]. Performing the BKT transformation explained in Appendix B of Ref. [8]
on the coarse lattice, we can get the loop operator for the static potential in the framework of the string model [22]:

hWmðCÞi ¼ hWmðCÞicl
1

Z

X∞
σμνðsÞ¼−∞
∂½ασμν�ðsÞ¼0

exp

�
−π2

X
s;s0
μ≠α
ν≠β

σμαðsÞ∂α∂ 0
βD

−1
μν ðs − s1ÞΔ−2

L ðs1 − s0Þσνβðs0Þ

− 2π2
X
s;s0
μ;ν

σμνðsÞ∂μΔ−1
L ðs − s0ÞBνðs0Þ

�
; ð18Þ

σμν is the closed string variable satisfying the conservation rule
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∂ ½ασμν� ¼ ∂ασμν þ ∂μσνα þ ∂νσαμ ¼ 0: ð19Þ

The classical part hWmðCÞicl is defined by

hWmðCÞicl ¼ exp

�
−π2

Z
∞

−∞
d4xd4y

X
μ

NμðxÞ

×D−1
0 ðx − yÞNμðyÞ

�
: ð20Þ

V. ANALYTIC EVALUATION OF
NONPERTURBATIVE QUANTITIES

A. Parameter fitting

To derive nonperturbative physical quantities analyti-
cally, we have to fix first the propagatorD0ðsÞ in (11) of the
continuum limit. It can be done by comparing Dμνðs − s0Þ
in Eq. (15) with the set of coupling constants FðiÞði ¼
1–10Þ of the monopole action determined numerically
in Eq. (8).
D0ðs − s0Þ in the monopole action (11) is assumed to be

ᾱδs;s0 þ β̄Δ−1
L ðs − s0Þ þ γ̄ΔLðs − s0Þ. We can consider more

general quadratic interactions, but, as we see later, this
choice is almost sufficient to derive the IR region of SU(2)
gluodynamics.
The inverse operator of D0ðpÞ ¼ ᾱþ β̄=p2 þ γ̄p2 takes

the form:

D−1
0 ðpÞ ¼ κ

�
m2

1

p2 þm2
1

−
m2

2

p2 þm2
2

�
; ð21Þ

where the new parameters κ, m1, and m2 satisfy
κðm2

1−m2
2Þ¼ γ̄−1;m2

1þm2
2¼ ᾱ=γ̄;m2

1m
2
2¼ β̄=γ̄.

Substituting Eq. (21) into Eq. (17) and performing the
First Fourier transform (FFT) on a momentum lattice for
the several input values κ, m1, and m2 we calculate
DμνðpÞ [23].
To be noted, the three parameters as a function of b ¼

naðβÞ can not be uniquely determined. Changing
ðm1=m2Þ2 from 10 up to 500 with the fixed value of the
string tension, we found the coupling constants determined
for three typical values of b (at b ¼ 1, 5, 3.0, 4.5) do not
strongly (at most 5%) depend on the ratio of ðm1=m2Þ2.
Moreover m2=b is found to correspond to the mass of the
lowest scalar glueball. Hence we assume

(i) ðm1=m2Þ2 ¼ 100 for all b ¼ naðβÞ regions.
(ii) m2=b ∼ 1.8 corresponding to M0þþ ∼ 3.7 ffiffiffiffiffiffiffiffiffiffi

σphys
p .

(iii) The string tension calculated analytically is as near
as possible to the physical string tension σphys and
shows scaling, namely σ=σphys is constant for all
b ¼ naðβÞ regions considered.

Table I shows the results of the best fit.

B. Comparison of the couplings from numerical
analyses and theoretical calculations

Now let us show the coupling constants determined by
the analytical blocking method using the above best-fit
parameters in Figs. 12 and 13. As seen from these figures,
the fit is nice for b ¼ naðβÞ ≥ 1.0, although the deviation
becomes larger at smaller b regions, especially for the

FIG. 12. Comparison of the coupling constants of the self and
the nearest-neighbor interactions in the effective monopole action
between numerical MCG data and theoretical values derived from
the almost perfect action.
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couplings at larger distance. Note that the log scale is
adopted in the y axis.

C. The string tension (1)

Let us evaluate the string tension using the perfect
operator (18) [21]. The plaquette variable SJαβ in
Eq. (12) for the static potential VðIb; 0; 0Þ is expressed by

SJαβðzÞ ¼ δα1δβ4δðz2Þδðz3Þθðz1Þ
× θðIb − z1Þθðz4ÞθðTb − z4Þ: ð22Þ

We have seen that the monopole action on the dual lattice is
in the weak coupling region for large b. Then the string
model on the original lattice is in the strong coupling
region. Therefore, we evaluate Eq. (18) by the strong
coupling expansion. The method can be shown diagram-
matically in Fig. 14.
As explicitly evaluated in Ref. [21], the dominant

classical part of the string tension coming from Eq. (20) is

σcl ¼
πκ

2b2
ln
m1

m2

: ð23Þ

This is consistent with the analytical results [24] in type-2
superconductor. The two constants m1 and m2 may be
regarded as the coherence and the penetration lengths.
The ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σcl=σphys

p
using the optimal values κ,m1, and

m2 given in Table I becomes a bit higher, namely about 1.3
for all b regions considered. As shown previously [21],
quantum fluctuations are too small to recover the differ-
ence. This is due mainly to the assumption that 10 quadratic
monopole couplings alone is too simple.
Note that the rotational invariance of the static potential

is maintained by the calculation using the classical part as
naturally expected from the perfect action. For example,
the variable Sαβ for the static potential VðIb; Ib; 0Þ is
given by

SαβðzÞ ¼ ðδα1δβ4 þ δα2δβ4Þδðz3Þθðz4ÞθðTb − z4Þ
× θðz1ÞθðIb − z1Þθðz2ÞθðIb − z2Þδðz1 − z2Þ:

The static potential VðIb; Ib; 0Þ can be written as

VðIb; Ib; 0Þ ¼
ffiffiffi
2

p
πκIb
2

ln
m1

m2

: ð24Þ

The potentials from the classical part take only the linear
form and the rotational invariance is recovered completely
even for the nearest I ¼ 1 sites.

D. The string tension (2)

In the above calculation of the string tension, we have
started from the source term corresponding to the loop
operator (22) for the static potential of the fine a lattice and
have constructed the operator on the coarse b lattice by
making the blockspin transformation. But as shown in
Ref. [8], the same string tension for the flat on-axis Wilson
loop can be obtained for I; T → ∞ when we consider a
naive Wilson loop operator on the coarse b lattice. In this
method, we can evaluate the string tension directly by the
numerical data of the coupling constants of the effective
monopole action.
Consider the source term on the 1–4 plane of the coarse b

lattice:

S̄14ðsÞ ¼ δðs2Þδðs3Þθðs1ÞθðI − s1Þθðs4ÞθðT − s4Þ: ð25Þ

FIG. 13. Comparison of the coupling constants of the next
nearest-neighbor interactions in the effective monopole action
between numerical MCG data and theoretical values derived from
the almost perfect action.

FIG. 14. Strong-coupling calculations of the Wilson loops.
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Define

N̄μðs; S̄Þ ¼
X
s0
Δ−1

L ðs − s0Þ 1
2
ϵμαβγ∂αS̄βγðs0 þ μ̂Þ:

Then the classical part of the static potential is written as

hWmðCÞicl ¼ e
−π2

P
s;s0
μ;ν

N̄μðsÞD−1
μν ðs−s0ÞN̄νðs0Þ

; ð26Þ
where D−1

μν ðs − s0Þ is the inverse of the propagator of the
effective action on the coarse lattice. Since only the parallel
interactions are considered here, the momentum represen-
tation of the inverse propagator becomes D−1

μν ðkÞ ¼
δμνD−1ðkÞ. Then the exponent XðCÞ of (26) is written in
the momentum representation as

XðCÞ ¼ −4π2
Z

π

−π

d4k
ð2πÞ4Δ

−2
L ðkÞ

�
sin2

�
k1
2

�
D−1

22 ðkÞ

þ sin2
�
k2
2

�
D−1

11 ðkÞ
�
S̄14ðkÞS̄14ð−kÞ: ð27Þ

This can be calculated easily when we take the limit
I; T → ∞ as

XðCÞ ¼ −
ITπ2

4

Z
π

−π

d2k
ð2πÞ2

1

ðsin2ðk1
2
Þ þ sin2ðk2

2
Þ

×

�
sin2

�
k1
2

�
D−1

22 ðkÞ þ sin2
�
k2
2

�
D−1

11 ðkÞ
�
: ð28Þ

Using the 10 quadratic coupling constant, we get for
example

D11ðk1;k2;0⃗Þ¼4½f1þf2cosðk1Þþf3ð2þcosðk2ÞÞ
þf4cosðk1Þð2þcosðk2ÞÞþf5ð1þ2cosðk2ÞÞ
þf6cosðk1Þð1þ2cosðk2ÞÞþf7cosðk2Þ
þf8cosð2k2Þþf9cosðk1þk2Þ
þf10ð2þcosð2k2Þ�:

Then (28) can be evaluated using FFT calculations in the
momentum space when use is made of 10 numerical
coupling constants. The results are shown for typical three
b values in Table II. Again, the ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σcl=σphys

p
is around

30% larger at these b values. Hence we see that better
agreement can not be gotten with the 10 simple quadratic
monopole interactions alone.

E. The lowest scalar glueball mass

We consider here the following U(1) singlet and Weyl
invariant operator:

ΨðtÞ ¼ L−3=2
X
x⃗

ReðΨ12 þΨ23 þ Ψ31Þðx⃗; tÞ ð29Þ

on the a-lattice at timeslice t. Here Ψijðx⃗; tÞ is an na × na
Abelian Wilson loop and L stands for the linear size of the
lattice. One can check easily that this operator carries 0þþ
quantum number [25]. Then we evaluate the connected
two-point correlation function of Ψ by using the string
model just as done in the case of the calculations of the
string tension. It turns out that the quantum correction is
also negligibly small for large b. Refer to the paper [8] for
details. Assuming the lowest mass gap obtained by the Ψ
operator (29) for finite b is the scalar glueball mass, we get
the lowest scalar glueball mass asM0þþ ¼ 2m2. In the best-
fit parameters listed in Table I, we have fixed m2 so to
reproduce M0þþ=σphys ∼ 3.7 which is consistent with the
direct calculations done in Ref. [12].

F. Monopole density distribution

As shown in our previous work [2], the monopole
density

rðbÞ≡ ρ

b3
¼ 1

4
ffiffiffi
3

p
Vb3

X
s;μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
a

ðKa
μðsÞÞ2

r
ð30Þ

shows beautiful scaling behaviors in smooth gauges such as
MCG, where V is the lattice volume. Namely the monopole
density (30) can be written in terms of a unique function
rðbÞ of b ¼ naðβÞ. But in the paper [2], the meaning of
rðbÞ has not been clarified.
Now we have derived the infrared effective monopole

action showing also beautiful scaling. It is interesting to
evaluate the monopole density from the effective action
analytically. Since the square-root operator is rather diffi-
cult to evaluate analytically, we consider the squared
monopole density defined as

RðbÞ≡ 1

4Vb3
X
s;μ

�X
a

ðKa
μðsÞÞ2

�
: ð31Þ

The effective monopole action on the coarse lattice is
written as (15). Then the squared monopole density (31)
can be expressed by evaluating the partition function

TABLE II.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σcl=σphys

p
evaluated from the effective action on

the b lattice at three typical b values. Error bars of at most a few
percent order exist but are not shown explicitly.

b β n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σcl=σphys

p
1.4912 3.0 4 1.25
2.9824 3.0 8 1.25
4.4736 3.0 12 1.31
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ZðηÞ ¼
X∞
Kμ¼−∞
∂0μKμ¼0

exp

�
−
X
s;s0
μ;ν

KμðsÞDμνðs − s0ÞKνðs0Þ þ i
X

s
μ

ημðsÞKμðsÞ
�

¼
Z þ∞

−∞
DFμðsÞ

Z þπ

−π
DϕðsÞ

X∞
KμðsÞ¼−∞

δðFμðsÞ − KμðsÞÞ exp
�
−
X
s;s0
μ;ν

FμðsÞDμνðs − s0ÞFνðs0Þ

þ i
X
s;μ

FμðsÞ½∂μϕðsÞ þ ημðsÞ�
�
;

¼
Z þπ

−π
DϕðsÞ

X∞
lμðsÞ¼−∞

exp

�
−
1

4

X
s;s0
μ;ν

½∂μϕðsÞ þ 2πlμðsÞ þ ημðsÞ�D−1
μν ðs − s0Þ½∂νϕðs0Þ þ 2πlνðs0Þ þ ηνðs0Þ�

�
: ð32Þ

Performing BKT transformation and Hodge decomposition, we obtain

lμðsÞ ¼ sμðsÞ þ ∂μrðsÞ ¼ ∂μ

�
−
X
s0
Δ−1

Ls;s0∂ 0
νsνðs0Þ þ rμðs0Þ

�
þ
X
s0
∂ 0
νΔ−1

Ls;s0σνμðs0Þ; ð33Þ

where σνμðsÞ≡ ∂ ½μsν� is the closed string variable satisfying the conservation rule (19). The compact field ϕðsÞ is absorbed
into a noncompact field ϕNCðsÞ. Integrating out the auxiliary noncompact field, we see

ZðηÞ ¼
X∞

σμνðsÞ¼−∞
∂½ασμν�ðsÞ¼0

exp

�
−SðσÞ −

X
μ;s

XμðsÞημðsÞ −
1

4

X
s;s0
μ;ν

ημðsÞD−1
μν ðs − s0Þηνðs0Þ

�
;

SðσÞ ¼ π2
X
s;s0
μ≠α
ν≠β

σμαðsÞ∂α∂β
0D−1

μν ðs − s1ÞΔ−2
L ðs1 − s0Þσνβðs0Þ

XμðsÞ ¼ π
X
s0 ;s00
ν;α

σναðsÞ∂νΔ−1
L ðs0 − s00ÞD−1

αμ ðs00 − sÞ: ð34Þ

Then the squared monopole density (31) is evaluated as

RðbÞ ¼ −
1

4Vb3Zð0Þ
δ2

δη2μðsÞ
ZðηÞjη¼0 ¼

3

2b3
D−1

ii ð0Þ −QðbÞ

ð35Þ

QðbÞ ¼ 1

4Vb3Zð0Þ
X∞

σμνðsÞ¼−∞
∂½ασμν�ðsÞ¼0

expð−SðσÞÞ
X
μ;s

XμðsÞ2; ð36Þ

where D−1
ii ð0Þ denotes the term of the inverse of the

propagator Dμνðs − s0Þ in (15).
The quantum part QðbÞ (36) is expected to be small for

large b strong-coupling regions and hence we evaluate the

first part in (35) alone. The self-coupling termDð−1Þ
ii ð0;0;0;0Þ

is calculated explicitly in Eq. (D2) of Appendix D.
The squared density RðbÞ is plotted in Fig. 15 in

comparison with that calculated numerically with the help
FIG. 15. Comparison of monopole density in unit of σ−3=2phys from
MCG numerical data and that from the perfect action.
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of the MCG data obtained in Ref. [2]. One can see from
Fig. 15 a rough agreement for b ¼ naðβÞ > 1.2ðσ−1=2phys Þ.
The difference may come again from the simple
assumption of 10 quadratic interactions alone adopted
here. Anyway, the features are new, found in the global
color-invariant smooth gauge like in MCG.

G. Discussions about the disagreement between
analytical calculations and numerical data

As shown above, we have obtained around 30%
larger theoretical values with respect to both the string
tension and the monopole density. Let us discuss the
disagreement, comparing the forms of the effective
monopole action. First of all, the assumption of adopting
quadratic interactions alone leads us to the type-2
dual superconductor as seen from (23). But as found
numerically in the previous paper [4], the dual Meissner
effect shows that the confined vacuum is near the
border between the type-1 and the type-2 dual super-
conductor. Hence only from this fact, the assumption that
the action form composed of simple quadratic inter-
actions alone is insufficient. To be noted that both the
string tension and the monopole density depend on the
inverse of the propagator of the effective monopole
action on the coarse b lattice as seen from (28) and
(35). The self-coupling term is dominant in the propa-
gator and so let us compare the self-coupling term
starting from (1) the simplest 10 quadratic case and
(2) the 27 quadratic plus higher four- and six-point
interactions case. See an example shown in Table V of
Appendix C for β ¼ 3.2; n ¼ 4ðb ¼ 1.054ðσphysÞ−1=2Þ.
Since analytic calculations including four- and

six-point interactions are too difficult to perform exactly
as discussed in Ref. [26], we adopt a simple mean-field
assumption using the averaged monopole density RQ
evaluated from the numerical squared monopole density
RðbÞ, i.e., RQ ¼ hðKa

μÞ2i≡ RðbÞ=3. Then using the
form of four- and six-point interactions defined in
Table IV, we get the effective self-coupling term of the
case (2) as

Fð1Þeffective ¼ Fð1Þ þ 32RQ
3

Fð28Þ þ 128RQ2

3
Fð29Þ:

In the typical example shown in Table V where
Rðb ¼ 1.052Þ ¼ 1.04ðσ−3=2phys Þ, we get Fð1Þ ¼ 0.902 in the
case (1), whereas in the case (2)

Fð1Þeffective ¼ 1.56 − 0.0455 � 32 � 1.04=3
þ 0.00123 � 128 � 1.042=3 ¼ 1.112:

This is 23% larger than that of Fð1Þ of the simple 10
quadratic case (1). Hence the above 30% discrepancies are
mostly due to the too-simple assumption of 10 quadratic
monopole actions alone.
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APPENDIX A: THE INVERSE MONTE
CARLO METHOD

The effective monopole action SðkÞ is derived following
the Swendsen’s method [6,19]. The effective monopole
action SðkÞ is assumed to be a sum of independent Lorentz
invariant monopole current interactions summed over all
space-time links. Define these operators adopted as Si½k�.
Then S½k� ¼ P

iFðiÞSi½k�, where FðiÞ are coupling con-
stants which should be determined by the Swendsen
method.
Let us consider the expectation value of an opera-

tor Oa½k�:

hOa½k�i ¼
ðQs;μ

P∞
kμðsÞ¼−∞Þð

Q
sδ∂ 0μkμðsÞ;0ÞOa½k� expð−

P
iFðiÞSi½k�ÞQ

s;μ

P∞
kμðsÞ¼−∞ expð−PiFðiÞSi½k�Þ

: ðA1Þ

Now notice one plaquette ðs0; μ̂0; ν̂0Þ on the dual lattice and the monopole currents around the plaquette:

fkμ0 ðs0Þ; kν0 ðs0 þ μ̂0Þ; kμ0 ðs0 þ ν̂0Þ; kν0 ðs0Þg: ðA2Þ

Define a part of the monopole action containing the currents (A2) as S̃½k�. Then we get:
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�Y
s;μ

X∞
kμðsÞ¼−∞

��Y
s

δ∂ 0μkμðsÞ;0
�
Oa½k� exp

�
−
X
i

FðiÞSi½k�
�

¼
�Y

s;μ
0 X∞
kμðsÞ¼−∞

��Y
s
0δ∂ 0μkμðsÞ;0

�
exp

�
−
X
i

FðiÞðSi½k� − S̃i½k�Þ
�

×

� X∞
kμ0 ðs0Þ¼−∞

X∞
kν0 ðs0þμ̂0Þ¼−∞

X∞
kμ0 ðs0þν̂0Þ¼−∞

X∞
kν0 ðs0Þ¼−∞

δ∂μ 0kμðs0Þ;0δ∂ 0μkμðs0þμ̂0Þ;0δ∂ 0μkμðs0þν̂0Þ;0δ∂ 0
μkμðs0þμ̂0þν̂0Þ;0Oa½k�

× exp

�
−
X
i

FðiÞS̃i½k�
��

; ðA3Þ

where
Q0 means the product excluding the sites and the links in the plaquette considered. Using the current conservation

rule, we can rewrite one δ function among four δ functions around the plaquette as

δ∂ 0μkμðs0Þþ∂ 0μkμðs0þμ̂0Þþ∂ 0μkμðs0þν̂0Þþ∂ 0μkμðs0þμ̂0þν̂0Þ;0: ðA4Þ

Now let us note that the δ function does not contain any monopole currents (A2). Then we get

ðA3Þ ¼
� Y 0

s;μ

X∞
kμðsÞ¼−∞

�� Y 0

s

δ∂ 0
μkμðsÞ;0

�
δ∂ 0μkμðs0Þþ∂ 0μkμðs0þμ̂0Þþ∂ 0μkμðs0þν̂0Þþ∂ 0μkμðs0þμ̂0þν̂0Þ;0

×

��X
δ

�
k̂
Oa½k̂; fkg0� exp

�
−
X
i

FðiÞS̃i½k̂; fkg0�
��

exp

�
−
X
i

FðiÞðSi½k� − S̃i½k�Þ
�
; ðA5Þ

where fkg0 denotes the monopole currents excluding those on the plaquette (A2), and ðP δÞk̂ is given by

�X
δ

�
k̂
≡ X∞

k̂μ0 ðs0Þ¼−∞

X∞
k̂ν0 ðs0þμ̂0Þ¼−∞

X∞
k̂μ0 ðs0þν̂0Þ¼−∞

X∞
k̂ν0 ðs0Þ¼−∞

δ∂ 0
μk̂μðs0Þ;0δ∂ 0μk̂μðs0þμ̂0Þ;0δ∂ 0

μk̂μðs0þν̂0Þ;0: ðA6Þ

Now define a new operator Ôa½fkg0� as

Ôa½fkg0� ¼
ðP δÞk̂Oa½k̂; fkg0� expf−

P
iFðiÞS̃i½k̂; fkg0�g

ðP δÞk̂ expf−
P

iFðiÞS̃i½k̂; fkg0�g
; ðA7Þ

we get

�Y
s;μ

X∞
kμðsÞ¼−∞

��Y
s

δ∂ 0μkμðsÞ;0
�
Oa½k�exp

�
−
X
i

FðiÞSi½k�
�
¼
�Y

s;μ

X∞
kμðsÞ¼−∞

��Y
s

δ∂ 0μkμðsÞ;0
�
Ôa½fkg0�exp

�
−
X
i

FðiÞSi½k�
�
:

ðA8Þ

Now consider further Ôa½fkg0�. Noting that the monopole current conservation holds good on every site in Eq. (A5), we
see

∂ 0
μk̂μðs0Þ ¼ ∂ 0

μkμðs0Þ þ k̂μ0 ðs0Þ þ k̂ν0 ðs0Þ − kμ0 ðs0Þ − kν0 ðs0Þ ¼ k̂μ0 ðs0Þ þ k̂ν0 ðs0Þ − kμ0 ðs0Þ − kν0 ðs0Þ; ðA9Þ

and

∂ 0
μk̂μðs0 þ μ̂0Þ ¼ k̂ν0 ðs0 þ μ̂0Þ − k̂μ0 ðs0Þ − kν0 ðs0 þ μ̂0Þ þ kμ0 ðs0Þ; ðA10Þ

∂ 0
μk̂μðs0Þ þ ∂ 0

μk̂μðs0 þ ν̂0Þ ¼ k̂μ0 ðs0 þ ν̂0Þ þ k̂μ0 ðs0Þ − kμ0 ðs0 þ ν̂0Þ − kμ0 ðs0Þ: ðA11Þ
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Also using a relation

X∞
M¼−∞

δk̂μ0 ðs0Þ;kμ0 ðs0ÞþM ¼ 1; ðA12Þ

where M is an integer, we get�X
δ

�
k̂
F½k̂; fkg0� ¼

X∞
M¼−∞

X∞
k̂μ0 ðs0Þ¼−∞

X∞
k̂ν0 ðs0þμ̂0Þ¼−∞

X∞
k̂μ0 ðs0þν̂0Þ¼−∞

X∞
k̂ν0 ðs0Þ¼−∞

δk̂μ0 ðs0Þ;kμ0 ðs0ÞþMδk̂ν0 ðs0þμ̂0Þ;kν0 ðs0þμ̂0ÞþM

× δk̂μ0 ðs0þν̂0Þ;kμ0 ðs0þν̂0Þ−Mδk̂ν0 ðs0Þ;kν0 ðs0Þ−M

F½k̂μ0 ðs0Þ; k̂ν0 ðs0 þ μ̂0Þ; k̂μ0 ðs0 þ ν̂0Þ; k̂ν0 ðs0Þ; fkg0�

¼
X∞

M¼−∞
F½kμ0 ðs0Þ þM; kν0 ðs0 þ μ̂0Þ þM; kμ0 ðs0 þ ν̂0Þ −M; kν0 ðs0Þ −M; fkg0�; ðA13Þ

where F½k̂; fkg0� is any function of k.
The value of the lattice monopole current defined by DeGrand and Toussaint [3] is restricted to the region ½−2;þ2�, so

that the type-2 n extended monopole defined by [5] can take the value in the region ½−ð3n2 − 1Þ; 3n2 − 1�. Hence the sum
with respect to M is restricted to the region between m1 and m2 defined below:

m1 ¼ −ð3n2 − 1Þ −minfkμ0 ðs0Þ; kν0 ðs0 þ μ̂0Þ;−kμ0 ðs0 þ ν̂0Þ;−kν0 ðs0Þg;
m2 ¼ ð3n2 − 1Þ −maxfkμ0 ðs0Þ; kν0 ðs0 þ μ̂0Þ;−kμ0 ðs0 þ ν̂0Þ;−kν0 ðs0Þg: ðA14Þ

Finally we find Ôa½k� is rewritten by

Ôa½k� ¼
Pm2

M¼m1
Oa½k̄� expf−

P
iFðiÞS̃i½k̄�gPm2

M¼m1
expf−PiFðiÞS̃i½k̄�g

: ðA15Þ

Here

k̄μ ≡ kμðsÞ þMðδs;s0δμ;μ0 þ δs;s0þμ̂0δμ;ν0 − δs;s0þν̂0δμ;μ0 − δs;s0δμ;ν0 Þ: ðA16Þ
Then�Y

s;μ

X∞
kμðsÞ¼−∞

��Y
s

δ∂ 0μkμðsÞ;0
�
Oa½k�exp

�
−
X
i

FðiÞSi½k�
�
¼
�Y

s;μ

X∞
kμðsÞ¼−∞

��Y
s

δ∂ 0μkμðsÞ;0
�
Ôa½k�exp

�
−
X
i

FðiÞSi½k�
�
:

ðA17Þ
The final expression is the following:

hOa½k�i ¼ hÔa½k�i: ðA18Þ

As an arbitrary operatorOaðkÞ, we adopt SaðkÞ in the monopole action. When we consider here only quadratic monopole
interactions, we can get

Siðk̂; fkg0Þ ¼ að2Þi M2 þ að1Þi M þ SiðkÞ: ðA19Þ
Then Eq. (A18) is reduced to

	P
Mðað2Þi M2 þ að1Þi MÞ exp½−ðPjFðjÞað2Þj ÞM2 − ðPjFðjÞað1Þj ÞM�

exp½−ðPjFðjÞað2Þj ÞM2 − ðPjFðjÞað1Þj ÞM�



¼ 0: ðA20Þ
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Using this identity (A20), we can estimate the monopole
action S½k� iteratively. For that purpose, we define an
operator Ōa½k� where the coupling constants are replaced
by a trial set fF̃ig in Eq. (A15):

Ōa½k�≡
Pm2

M¼m1
Oa½k̄� expf−

P
iF̃iS̃i½k̄�gPm2

M¼m1
expf−PiF̃iS̃i½k̄�g

: ðA21Þ

If FðiÞ are not equal to F̃i for all i, we expand hOa − Ōai
up to the first order of fFðiÞ − F̃ig and get

hOa − Ōai ¼
X
b

hŌaS̄b −OaSbiðFðbÞ − F̃bÞ: ðA22Þ

Practically, we take a set of trial coupling constants fF̃ag
and evaluate the expectation value hOa − Ōai using the
thermalized monopole vacua. If hOa − Ōai become zero
for all a, then fF̃ag can be regarded as the real coupling
constants Otherwise, we solve the Eq. (A22) numerically
and adopt the solution fFðaÞg as a new trial set of coupling
constants. This is the way to get the effective monopole
action iteratively.
Eq. (A22) can be expressed as	
að2Þi M2það1Þi Mi

¼
X
j

fhðað2Þi M2það1Þi MÞðað2Þj M2það1Þj MÞi

−hðað2Þi M2það1Þi MÞðað2Þj M2það1Þj MÞigðFðjÞ− F̃jÞ


:

ðA23Þ

APPENDIX B: THE FORM OF THE EFFECTIVE
MONOPOLE ACTION

As the form of the effective monopole action, we assume
that only local and short-ranged interactions are dominant.
The quadratic interactions for each color a used for the

modified Swendsen method are shown in Table III. Only
the partners of the current multiplied by kaμðsÞ are listed. All
terms in which the relation of the two currents is equivalent
should be added to satisfy translation and rotation
invariances.
To check the dominance of quadratic interactions, we

include the following four-point and six-point interactions
among monopoles of the same color component listed in
Table IV. The six-point interaction is included, since the
coefficient of the four-point interaction is found to be
negative numerically.
In the case of four and six-point interactions, there may

exist color-mixing interactions via interactions with the
gauge fields. We discuss the following color-mixed inter-
actions as a simple example:

Sð4Þdc ðkÞ ¼
X
s

�X4
μ¼−4

X
a≠b

ðkaμðsÞÞ2ðkbμðsÞÞ2
�

Sð6Þdc ðkÞ ¼
X
s

�X4
μ¼−4

ðk1μðsÞÞ2
X4
μ¼−4

ðk2μðsÞÞ2
X4
μ¼−4

ðk3μðsÞÞ2
�
:

FIG. 16. Comparison of the coupling constants of the self and
two nearest-neighbor interactions between the actions composed
of 27 (NF2 ¼ 27) and 10 (NF2 ¼ 10) quadratic interactions
alone. The data are taken on 484 in MCG.

TSUNEO SUZUKI PHYS. REV. D 97, 034509 (2018)

034509-18



APPENDIX C: COMPARISON OF THE
EFFECTIVE MONOPOLE ACTIONS FROM

NUMERICAL ANALYSES

Various combinations of monopole interactions are
tested numerically.
(1) Color mixing effects are checked first by adopting

S ¼
X10
i¼1

FðiÞSð2Þi ðkÞ þ Fð11ÞSð4ÞðkÞ þ Fð12ÞSð4Þdc ðkÞ

þ Fð13ÞSð6ÞðkÞ þ Fð14ÞSð6Þdc ðkÞ;

where the first 10 quadratic interactions Sð2ÞðkÞ
alone in Table III are used for simplicity.
Unfortunately we have not obtained convergent

results in this case. This may be due to necessity of
introducing nonlocal color-mixed interactions. Since
considering nonlocal interactions is complicated and
difficult, we have neglected any color-mixing effect
in the extensive studies done in this paper.

(2) Under the condition of no color-mixing, we study
four cases of effective monopole actions:
(a) Twenty-seven quadratic interactions in Table III

plus higher interactions in Table IV.
(b) First 10 quadratic interactions with lattice dis-

tance R ≤ 2 plus higher interactions in Table IV.
(c) Twenty-seven quadratic interactions in Table III

alone.
(d) First 10 quadratic interactions with lattice dis-

tance R ≤ 2 in Table III alone.
An example for β ¼ 3.2 and n ¼ 4 blocking is shown in
Table V. The comparison can be done only for n < 8 due to
boundary effects, since the reduced lattice volume in n ¼ 8

is 64 and 44 in n ¼ 12 blocking. Similar behaviors are
found for all n < 8 and all β.

FIG. 17. Comparison of the coupling constants of the two
next nearest-neighbor interactions between the actions composed
of 27 (NF2 ¼ 27) and 10 (NF2 ¼ 10) quadratic interactions
alone.

TABLE III. The quadratic interactions used for the modified Swendsen method. Color index a of the monopole current
kaμ is omitted.

Coupling fFðiÞg Distance Type Coupling fFðiÞg Distance Type

Fð1Þ (0,0,0,0) kμðsÞ Fð15Þ (2,1,1,0) kμðsþ 2μ̂þ ν̂þ ρ̂Þ
Fð2Þ (1,0,0,0) kμðsþ μ̂Þ Fð16Þ (1,2,1,0) kμðsþ μ̂þ 2ν̂þ ρ̂Þ
Fð3Þ (0,1,0,0) kμðsþ ν̂Þ Fð17Þ (0,2,1,1) kμðsþ 2ν̂þ ρ̂þ σ̂Þ
Fð4Þ (1,1,0,0) kμðsþ μ̂þ ν̂Þ Fð18Þ (2,1,1,1) kμðsþ 2μ̂þ ν̂þ ρ̂þ σ̂Þ
Fð5Þ (0,1,1,0) kμðsþ ν̂þ ρ̂Þ Fð19Þ (1,2,1,1) kμðsþ μ̂þ 2ν̂þ ρ̂þ σ̂Þ
Fð6Þ (1,1,1,0) kμðsþ μ̂þ ν̂þ ρ̂Þ Fð20Þ (2,2,0,0) kμðsþ 2μ̂þ 2ν̂Þ
Fð7Þ (0,1,1,1) kμðsþ ν̂þ ρ̂þ σ̂Þ Fð21Þ (0,2,2,0) kμðsþ 2ν̂þ 2ρ̂Þ
Fð8Þ (2,0,0,0) kμðsþ 2μ̂Þ Fð22Þ (3,0,0,0) kμðsþ 3μ̂Þ
Fð9Þ (1,1,1,1) kμðsþ μ̂þ ν̂þ ρ̂þ σ̂Þ Fð23Þ (0,3,0,0) kμðsþ 3ν̂Þ
Fð10Þ (0,2,0,0) kμðsþ 2ν̂Þ Fð24Þ (2,2,1,0) kμðsþ 2μ̂þ 2ν̂þ ρ̂Þ
Fð11Þ (2,1,0,0) kμðsþ 2μ̂þ ν̂Þ Fð25Þ (1,2,2,0) kμðsþ μ̂þ 2ν̂þ 2ρ̂Þ
Fð12Þ (1,2,0,0) kμðsþ μ̂þ 2ν̂Þ Fð26Þ (0,2,2,1) kμðsþ 2ν̂þ 2ρ̂þ σ̂Þ
Fð13Þ (0,2,1,0) kμðsþ 2ν̂þ ρ̂Þ Fð27Þ (2,1,1,0) kρðsþ 2μ̂þ 2ν̂þ ρ̂Þ
Fð14Þ (2,1,0,0) kνðsþ 2μ̂þ ν̂Þ

BLOCKSPIN RENORMALIZATION-GROUP STUDY OF … PHYS. REV. D 97, 034509 (2018)

034509-19



(a) The coupling constants of four- and six-point
interactions are very small, but they have non-
negligible large effects on the most important
quadratic self interaction Fð1Þ as seen from
the data in the second and the fourth rows in
Table V.

(b) The coupling constant Fð28Þ of the four-point
interaction is negative,whereas that of the six-point

interaction Fð29Þ is positive. This is similar to the
results observed previously in MA gauge [8].

(c) The first and the second rows in Table V show
the comparison of both quadratic actions in (3)
and (4). The most important self and the nearest-
neighbor interactions are much the same. The
couplings of the first five quadratic interactions
are compared in Figs. 16 and 17.

(d) The differences of the cases (2) and (4) with and
without higher interactions are shown in Figs. 18
and 19. All data satisfy the scaling, but the
differences are not negligible, especially in the
self-coupling case. The coupling constants of
higher interactions in the case (2) are plotted in
Fig. 20. Also scaling is seen beautifully.

(e) In the main part of this paper, we focus on the
most simple case (4), i.e., the action composed of
first 10 quadratic interactions alone, since then
even n ¼ 12 could be studied in the renormali-
zation-group flow and the comparison between
numerical data and analytic results from the
blocking from the continuum is easy. Namely
we will study the projection on to the coupling
constant plane composed of the 10 quadratic
interactions of the renormalized action.

APPENDIX D: EVALUATION OF THE
SELF-COUPLING TERM D− 1

ii ð0Þ
The 10 quadratic interactions of Dμνðs; s0Þ are explicitly

written from Table III for each color component as

Dμνðs; s0Þ ¼
X
i

FðiÞðSiÞμνðs; s0Þ; ðD1Þ

where FðiÞ are coupling constants, and the operators Si are
shown as follows:

S1 ¼ δs0;sδμ;ν

S2 ¼
1

2
½δs0;sþμ þ δs0;s−μ�δμ;ν

S3 ¼
1

2

X
αð≠μÞ

½δs0;sþα þ δs0;s−α�δμ;ν

S4 ¼
1

4

X
αð≠μÞ

½δs0;sþμþα þ δs0;sþμ−α

þ δs0;s−μþα þ δs0;s−μ−α�δμ;ν

FIG. 18. Comparison of the coupling constants of the self and
two nearest-neighbor interactions versus b ¼ naðβÞ between the
actions of 10 two-point interactions with and without higher
interactions on 484 in MCG.

TABLE IV. The higher order interactions used for the modified
Swendsen method.

Coupling Distance Type

4-point (0,0,0,0) Sð4Þ ¼ P
s

P
a ð
P

4
μ¼−4ðkaμÞ2ðsÞÞ2

6-point (0,0,0,0) Sð6Þ ¼ P
s

P
a ð
P

4
μ¼−4ðkaμÞ2ðsÞÞ3
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S5 ¼
1

4

X
α≠βð≠μÞ

½δs0;sþαþβ þ δs0;sþα−β

þ δs0;s−αþβ þ δs0;s−α−β�δμ;ν
S8 ¼

1

2
½δs0;sþ2μ þ δs0;s−2μ�δμ;ν

S10 ¼
1

2

X
αð≠μÞ

½δs0;sþ2α þ δs0;s−2α�δμ;ν:

Here irrelevant terms S6, S7, S9 are not written explicitly.
As shown in Table V, the self-coupling Fð1Þ is much larger
than other coupling constants. Hence the inverse propaga-
tor D−1

μν ðs; s0Þ can be evaluated by the expansion with
respect to Fð1Þ. It is easy to see the self-coupling term
contribution to the inverse propagator comes only from the
quadratic terms of Si in the expansion. Considering the
numerical data showing Fð1Þ ≫ Fð2Þ ∼ Fð3Þ ≫ Fð4Þ∼
Fð5Þ ≫ higher terms, the relevant non-negligible operators
are S22; S

2
3; S

2
4; S

2
5; S

4
2; S

2
2S

2
3; S

4
3. These operators are evalu-

ated explicitly as

S22 ¼
1

2
S1 þ

1

2
S8;

S23 ¼
3

2
S1 þ S8 þ

1

2
S10;

S24 ¼
3

4
S1 þ

1

2
S5 þ

3

4
S8 þ � � � ;

S25 ¼
3

4
S1 þ

3

4
S10 þ � � � ;

S42 ¼
3

8
S1 þ � � � ;

S22S
2
3 ¼

3

4
S1 þ � � � ;

S43 ¼
25

8
S1 þ � � � :

Hence we get

D−1
ii ð0Þ¼

1

Fð1Þþ
Fð2Þ2
2Fð1Þ3þ

3Fð3Þ2
2Fð1Þ3þ

3Fð4Þ2
4Fð1Þ3þ

3Fð5Þ2
4Fð1Þ3

þ3Fð2Þ4
8Fð1Þ5þ

9Fð2Þ2Fð3Þ2
2Fð1Þ5 þ25Fð3Þ4

8Fð1Þ5 þ���: ðD2Þ

FIG. 19. Comparison of the coupling constants of two next
nearest-neighbor interactions versus b ¼ naðβÞ between the
actions of 10 two-point interactions with and without higher
interactions on 484 in MCG.

FIG. 20. The coupling constants of four- and six-point inter-
actions versus b ¼ naðβÞ in the action of 10 two-point inter-
actions with higher interactions on 484 in MCG.
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TABLE V. Comparison of the monopole actions: an example of n ¼ 4 and β ¼ 3.2 (b ¼ 1.052ðσ−1=2phys Þ) on 484 lattice in MCG gauge.

S210 Error S227 Error S210 þ S4 þ S6 Error S227 þ S4 þ S6 Error

F(1) 9.02E-01 4.13E-04 9.22E-01 8.45E-05 1.49Eþ 00 1.16E-02 1.56Eþ 00 7.06E-03
F(2) 2.96E-01 2.41E-03 3.20E-01 9.50E-05 2.47E-01 5.99E-04 2.74E-01 1.10E-04
F(3) 2.11E-01 1.37E-03 2.50E-01 1.05E-05 1.91E-01 1.25E-03 2.32E-01 7.58E-04
F(4) 7.75E-02 1.15E-03 9.96E-02 1.23E-04 6.74E-02 8.83E-04 9.30E-02 1.73E-03
F(5) 5.79E-02 1.24E-03 9.11E-02 1.22E-04 5.01E-02 1.26E-03 8.59E-02 1.60E-03
F(6) 2.85E-02 2.85E-04 5.18E-02 1.12E-04 1.65E-02 5.70E-04 4.76E-02 9.68E-04
F(7) 2.02E-02 8.86E-04 4.01E-02 9.13E-07 1.32E-02 2.94E-04 3.81E-02 3.17E-04
F(8) 1.64E-02 2.05E-03 2.54E-02 1.99E-06 1.01E-02 7.24E-05 2.33E-02 1.28E-04
F(9) 1.13E-02 4.67E-04 4.70E-02 2.02E-06 2.52E-02 1.87E-04 4.35E-02 3.61E-04
F(10) 1.49E-02 1.02E-03 4.71E-02 1.75E-05 1.76E-02 4.74E-04 4.42E-02 4.73E-04
F(11) 2.34E-02 1.42E-04 −4.29E-02 6.27E-04 2.28E-02 1.28E-03
F(12) 2.34E-02 2.91E-05 1.15E-03 1.75E-05 2.15E-02 2.29E-04
F(13) 2.13E-02 1.52E-05 2.01E-02 1.48E-06
F(14) 3.18E-05 4.21E-05 −5.07E-04 4.50E-04
F(15) 1.17E-02 1.69E-04 1.21E-02 1.57E-03
F(16) 1.19E-02 9.78E-06 1.08E-02 4.79E-05
F(17) 1.28E-02 2.80E-05 1.23E-02 3.23E-04
F(18) 6.18E-03 1.47E-04 6.95E-03 1.32E-03
F(19) 6.34E-03 2.25E-05 5.94E-03 2.45E-04
F(20) 6.84E-03 3.77E-05 6.83E-03 4.15E-04
F(21) 4.63E-03 1.15E-05 4.44E-03 2.86E-04
F(22) 5.71E-03 1.22E-04 4.66E-03 9.76E-04
F(23) 1.08E-03 4.76E-06 1.10E-03 3.54E-05
F(24) 1.91E-03 7.34E-05 2.31E-03 6.97E-04
F(25) 2.98E-03 8.67E-05 2.08E-03 7.48E-04
F(26) 2.88E-03 7.03E-06 2.75E-03 2.71E-05
F(27) 1.16E-03 9.94E-05 5.12E-04 8.02E-04
F(28) −4.55E-02 4.38E-04
F(29) 1.23E-03 1.22E-05
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