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Warm inflation has been noted previously as a possible way to implement inflationary models
compatible with the dS swampland bounds. But often in these discussions, the heat bath dynamics are kept
largely unspecified. We point out that the recently introduced minimal warm inflation [K. V. Berghaus,
P. W. Graham, and D. E. Kaplan, J. Cosmol. Astropart. Phys. 03 (2020) 034], where an axionic coupling of
the inflaton leads to an explicit model for the thermal bath, yields models of inflation that can easily fit
cosmological observations while satisfying de Sitter swampland bounds, as well as the swampland distance
bound and trans-Planckian censorship.
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I. INTRODUCTION

Which low energy effective theories can arise from a UV
complete theory of quantum gravity (such as string theory)
is a question of both theoretical and phenomenological
interest [1–4]. In particular, inspired by the difficulty of
realizing inflation and/or de Sitter vacua in string theory, it
has recently been conjectured that scalar potentials, whose
potential slow roll parameters are small, cannot be realized
in (asymptotic regimes of) string theory [5–7]. Since
conventional models of cold inflation require small poten-
tial slow roll parameters, if one wants to have inflation in
such regimes, one must explore alternative models. One
simple way to achieve sufficient amounts of inflation, even
for steep potentials, is to employ the “warm inflation”
mechanism in the strongly dissipative regime (see [8,9] for
some early papers and [10,11] for review). In the warm
inflation paradigm, the inflaton loses its energy to a thermal
bath. Its utility for swampland purposes has been noted
previously [12–18].
On the other hand, while warm inflation has been studied

for a long time as a possibility, realizing it in concrete
models has been a challenge (see, e.g., the discussion in
[19,20] and references therein). In particular, any endeavor
to realize warm inflation in a strongly dissipative regime

has difficulties because the strong dissipation typically
destabilizes the inflationary potential.
Very recently however, a class of concrete models

(“minimal warm inflation”) that realize warm inflation in
the strongly dissipative regime have been put forward [21]
(see also [20]). Minimal warm inflation gives the inflaton
an axionic coupling to non-Abelian gauge fields (much like
the Abelian mechanism studied in [22,23]). This provides a
very simple and possibly viable model of the thermal bath.
Since the inflaton is an axion, its shift symmetry will
protect it from any perturbative backreaction and hence,
from acquiring a large thermal mass. On the other hand,
because it is coupled to the gauge field and since at
sufficiently high temperature there are sphaleron transitions
between gauge vacua, there is friction. The corresponding
axion friction coefficient, ϒ, turns out to be [21] (see, e.g.,
Sec. 9.5 of [24] and also [25–28])

ϒðTÞ ¼ ΓspðTÞ
2f2T

¼ κðαg; Nc; NfÞα5g
T3

f2
; ð1Þ

where, T is the temperature of the bath, ΓspðTÞ is the
sphaleron rate, f is the axion decay constant, αg ¼ g2=ð4πÞ,
g being the Yang-Mills gauge coupling, and κ is a dimen-
sionless quantity, which depends on the dimension of the
gauge group (Nc), the representation of fermions (Nf) if any,
and on the gauge coupling. In addition to this, the axion has a
UV potential that is responsible for inflation, which (it is
hoped) softly breaks the shift symmetry without causing too
much backreaction [21].
Since axions and gauge fields are ubiquitous in

string theory, the mechanism of [21] has ingredients which
may be realizable in string theory. But, for many stringy
solutions (near the boundary of the landscape), we also
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know that the scalar potential violates potential slow roll
[5–7] as was first noted in the example of [29]. This raises
the following question: could the ingredients used in [21],
which lead to inflation in the specific models studied there,
lead to inflation when one is dealing with potentials
compatible with the string landscape?
In this short paper, we would like to point out that a

simple model in which the inflaton is an axion and its UV
potential can be made compatible with the swampland
constraints, is a viable model to achieve warm inflation in
the strongly dissipative regime. We will show that
(a) Cosmic Microwave Background (CMB) observational
constraints are easily satisfied, (b) the dS swampland
bounds are satisfied, (c) the field excursion can be sub-
Planckian so that the requirement of swampland distance
conjecture [30,31] is satisfied, and (d) the energy scale of
inflation is low enough so that the recently proposed trans-
Planckian censorship conjecture [32,33] holds.1 In the
following, we will elaborate on these claims.
In this paper, our primary focus will be on showing that

enough inflation to simultaneously satisfy observational
data and swampland constraints is possible. In particular,
we will not concern ourselves with ending inflation and
will assume the existence of suitable mechanisms for
accomplishing it. In a concluding section, we will comment
on what it takes for our scenario to be turned into a full
cosmological model.

II. MINIMAL WARM INFLATION
AND THE SWAMPLAND

A. Equations and approximations

For warm inflation, at the background level, one is
interested in the dynamics of the homogeneous inflaton
field ϕðtÞ and temperature of the bath TðtÞ. The evolution
equations are

ϕ̈þ 3H _ϕþϒðTÞ _ϕþ V 0ðϕÞ ¼ 0; ð2Þ

H2 −
1

3M2
pl

�
ρR þ

_ϕ2

2
þ VðϕÞ

�
¼ 0; ð3Þ

_ρR þ 4HρR −ϒðTÞ _ϕ2 ¼ 0; ð4Þ

where ϒðTÞ is the axion friction coefficient, which, for
our purpose, is given by Eq. (1) and ρR ¼ g̃�T4, where

g̃� ¼ π2g�
30
, and all the other symbols have their usual

meaning. It is useful to work with the dimensionless
quantity Q defined by

Q ¼ ϒ
3H

: ð5Þ

In the following, we follow the convention of the literature
on cold inflation and define the potential slow roll
parameters in the usual following way:

ϵV ¼ ðM2
pl=2ÞðV 0=VÞ2; ηV ¼ M2

plðV 00=VÞ: ð6Þ

In the literature on warm inflation, it is usual to define
another set of slow roll parameters, for which we use the
following notation:

ϵw ¼ ϵV
ð1þQÞ ; ð7Þ

ηw ¼ ηV
ð1þQÞ ; ð8Þ

in addition, one can have the usual Hubble slow-roll
parameters. Before proceeding, let us note the following
important points:
(a) During warm inflation, friction due to the thermal

bath, ensures that the inflaton slow rolls even when the
potential is steep; this means that the ϕ̈ term in Eq. (2)
can be ignored.

(b) Wewant the Universe to inflate, so we need VðϕÞ to be
larger than _ϕ2=2 and ρR (energy density of radiation).
Thus, in Eq. (3), the only term in a bracket which is
relevant is VðϕÞ.

(c) We want to deal with warm inflation in strongly
dissipative regime, this corresponds to 3H ≪ ϒðTÞ
in Eq. (2), i.e., the condition,

Q ≫ 1: ð9Þ

(d) It can be shown that, when ϵw ≪ 1 and ηw ≪ 1, the first
term in Eq. (4), i.e., _ρR, can be ignored. Notice that in a
strongly dissipative regime with Q ≫ 1, one can have
ϵw and ηw too small even if ϵV and ηV are Oð1Þ.

(e) Finally, let us note that warm inflation requires that
T > H and when this does not hold good, we are
dealing with cold inflation.

With all the above approximations, Eqs. (2), (3), and (4)
take the form,

_ϕ ≈
−V 0ðϕÞ

3Hð1þQÞ ; ð10Þ

H2 ≈
VðϕÞ
3M2

pl

; ð11Þ

ρR ≈
3Q _ϕ2

4
; ð12Þ

notice that we are not assuming that ϵV and ηV are small.

1In this context, it is important to note some of the other recent
attempts to come up with inflation models consistent with dS
swampland conjecture [34,35] and trans-Planckian censorship
conjecture [36–40].
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B. Constraints on potential

1. de Sitter swampland constraint

The de Sitter swampland bounds [5–7] (see also [41,42])
dictate that at least one of the potential slow roll parameters
among ϵV or ηV must be an Oð1Þ number in Planck units.
More specifically,

either ϵV ≳Oð1Þ; or ηV ≲ −Oð1Þ: ð13Þ

2. Constraint from swampland distance conjecture

Swampland distance conjecture [30,31] states that as we
explore distances comparable to Mpl in scalar field space,
towers of states become exponentially light. Thus, a
potential obtained from low energy effective field theory
can only be trustworthy for sub-Planckian field excursions.

3. Trans-Planckian censorship

The Trans-Planckian censorship conjecture [32,33]
states that the cosmological evolution in effective theories
consistent with quantum gravity must be such that quantum
fluctuations at sub-Planckian length scales must never
become classical. This requirement imposes strong con-
straints on cosmic inflation. In particular, it is argued in [33]
that this will imply that the potential energy during
inflation, V, must satisfy the inequality (see also [18]),

V1=4 < 3 × 10−10Mpl: ð14Þ
4. Observational constraints

Finally, we have the observational constraints. According
to 2018 Planck [43] TT;TE;EEþ lowEþ lensing data,
the amplitude of scalar perturbations is known to be
As ¼ 2.0989þ0.0296

−0.0292 × 10−9, and the scalar spectral index
is measured to be ns ¼ 0.9649� 0.0042 at 68%C.L., while
the tensor to scalar ratio r0.002 < 0.10 at 95% C.L. (this
corresponds to the pivot scale of k� ¼ 0.002 Mpc−1). On
the other hand, when one combines 2018 Planck with
BICEP2/Keck Array 2014 B-mode polarization data, i.e.,
TT;TE;EEþ lowEþ lensingþ BK14, one finds r0.002 <
0.064 (95% C.L.).

C. General method of analysis

Before proceeding, we rewrite Eq. (1), in the form
ϒðTÞ ¼ c̃T3, where

M2
plc̃ ¼ κα5g

ðf=MplÞ2
: ð15Þ

At the most basic level, for background evolution, we are
dealing with the following basic quantities: ϕðtÞ; _ϕðtÞ, and
TðtÞ. In addition, we have equations which determine some
of the other quantities of interest in terms of these basic

quantities e.g., ϒðTÞ ¼ c̃T3, ρRðTÞ ¼ g̃�T4,H2ðϕ; _ϕ; TÞ ¼
1

3M2
pl
ðρR þ _ϕ2

2
þ VðϕÞÞ, andQ ¼ ϒðTÞ

3H . Furthermore, we have

Eqs. (2), (3), and (4), which determine the evolution of
these quantities.
The free parameters available are c̃, g̃�, parameters in

VðϕÞ, and Ncmb (the number of e-foldings of inflation after
the pivot scale crossed the Hubble radius during inflation),
and the initial conditions are ϕðtiÞ; _ϕðtiÞ; TðtiÞ. In addition,
we have quantities such as ϕend (the inflaton field value at
the end of inflation) and ϕ� (the inflaton field value when
the pivot scale crossed the Hubble radius during inflation).
We also have observational constraints, e.g., As, ns, r, and
theoretical constraints such as the refined de Sitter swamp-
land conjecture, trans-Planckian censorship conjecture, and
swampland distance conjecture.
Given all of this, the key question one might wish to

answer could be for a given potential, what should be the
initial conditions and values of parameters, such that we
satisfy all observational constraints and as many theoretical
constraints as possible?
In the rest of this paper, we shall answer this question

analytically as well as numerically. When we use analytical
arguments, we shall work with the approximate equations:
Eqs. (10), (11), and (12). For numerical work, we shall
work with Eqs. (2), (3), and (4).
For analytical arguments, we could define ϕend by the

requirement that

ϵw ¼ ϵV
ð1þQÞ ¼ 1; ð16Þ

while when doing numerical work, we could find the
exact field value at which the Universe starts decelerating.
In general, one expects ϵw to be dependent on ϕ; _ϕ; T, but
we have approximate expressions for QðϕÞ and TðϕÞ,
which can be derived by inserting the set of equations
given in Eqs. (10), (11), and (12) [with ρR ¼ ðπ2=30Þg�T4]
into the relation Q≡ϒ=3H ¼ c̃T3=3H. Then, using
Eqs. (10), (11), and (12), we get the forms of Q and T
as (see also [21])

Q7 ≈
1

576

ðM2
plc̃Þ4
g̃3�

M2
pl
V 0ðϕÞ6
VðϕÞ5 ≡ C̃

V 0ðϕÞ6
VðϕÞ5 ; ð17Þ

T7 ≈
ffiffiffi
3

p

4

1

ðM2
plc̃Þg̃�

M3
pl

V02ðϕÞ
V1=2ðϕÞ ; ð18Þ

these expressions are only applicable when Q ≫ 1. Notice
that in Eq. (17), we have introduced a variable named C̃
which should not be confused with c̃ defined by Eq. (15).
Now, one can find an analytical condition for ϕend by using
ϵV ¼ 1þQ, which yields
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V 08=7

V9=7

����
ϕend

¼ 2

M2
pl

C̃1=7: ð19Þ

Now, once we have ϕend, we can use

Ncmb ¼ −
Z

ϕend

ϕ�

dϕ
Mpl

1þQðϕÞ
Mpl

VðϕÞ
V0ðϕÞ ; ð20Þ

to find ϕ� for a chosen value of Ncmb. One can then
determine Q�, T� etc. At this stage, one can look for the
parameters which lead to the correct values of As and ns
and other requirements. In the approximation that Q ≫ 1,
one has (see, e.g., Eq. (75) of [44], the discussion around
Eq. (4.18) of [21,45])

As ¼
1

4π3=2
TQ5=2

M5
pl

�
Q
Q3

�
9 V5=2

ðV 0Þ2 ; ð21Þ

ns ¼ 1þ 3

7

27ϵV − 19ηV
1þQ

; ð22Þ

r ≈
1ffiffiffiffiffiffi
3π

p 16ϵV
Q3=2

H
T

�
Q3

Q

�
9

; ð23Þ

where Q3 ∼ 7.3.
Finally, let us also find how Q evolves with N. To

see that, we will derive a more accurate relation for Q.
Inserting ϒ ¼ c̃T3 and ρR ¼ g̃�T4 in Eq. (12), we get
T ¼ ðc̃=4g̃�Þð _ϕ2=HÞ. Inserting this into Q ¼ c̃T3=3H and
using the set of Eqs. (10), (11), and (12), we get

ð1þQÞ6Q ¼ C̃
V 06

V5
: ð24Þ

By taking the log of both sides and then taking a derivative
with respect to N yields

1

Q
dQ
dN

¼ 10ϵV − 6ηV
1þ 7Q

: ð25Þ

This gives the rate of change of Q as inflation proceeds.

III. WARM INFLATION WITH RUNAWAY
POTENTIALS

In this section, we will carefully analyze inflationary
predictions of scalar potentials consistent with de Sitter
swampland conjecture. By the end of this section, we shall
present a model of inflation which has the following
features: (a) its scalar potential is consistent with de
Sitter swampland conjecture (i.e., it has a steep potential),
(b) the inflaton field excursion required to achieve suffi-
cient number of e-foldings of inflation is sub-Planckian (as
expected from swampland distance conjecture), (c) the
energy scale of inflation (and the corresponding number of

e-folds) is consistent with the trans-Planckian censorship
conjecture, (d) it is based on warm inflation realized in a
strongly dissipative regime, (e) the model is a minimal
warm inflation model, and thus, there is a clear under-
standing of the thermal bath in terms of axionic couplings
of the inflaton, and, finally, (f) the model is consistent with
cosmological observations. Before proceeding, one must
note that in this model, there will be no graceful exit from
inflation, and we shall not address this issue in the
present paper.

A. Runaway potential of the form, V =V0e
−α ϕ

Mpl

Let us first begin to analyze potentials of the form,

V ¼ V0e
−α ϕ

Mpl ; ð26Þ

which are expected to be consistent with dS swampland
conjecture. This is because, for such a potential, one finds
that ϵV ¼ α2=2, while ηV ¼ α2 so that ηV ¼ 2ϵV , and one
can work with Oð1Þ value of α. If one tries to work with
cold inflationary models with this potential, one gets a
power law expansion a ∼ tq with q ¼ 2=α2.
In warm inflation, ηw ¼ 2ϵw. Note that while ϵV and ηV

are fixed quantities, since Q is in general temperature
and field dependent, ϵw and ηw will change as inflation
proceeds.
We will find that in this model, inflation automatically

ends, because (16) is guaranteed to happen. Wewill use this
to show that for reasonable values of Ncmb, the spectrum
has too much red tilt.

1. End of inflation

Note that as a model of cold inflation, the potential given
by Eq. (26) is incomplete in the sense that it does not have a
natural end point to its evolution. But for cold inflation,
even if one assumes that such a mechanism exists and does
not disrupt the predictions for cosmological perturbations,
this model leads to r ¼ 8ð1 − nsÞ which, for the measured
value of ns gives a value of r which is ruled out.
Thus, it is worth finding out whether there is graceful

exit for warm inflation in this model. For the potential of
interest, we see from Eq. (25) that

1

Q
dQ
dN

¼ −
2ϵV

1þ 7Q
; ð27Þ

which showsQ decreases withN. As ϵV is a constant in this
case, Q will eventually drop down to meet the condition
ϵV ¼ 1þQ ending inflation eventually. This is an approxi-
mate analytical argument for the end of inflation; we have
also numerically solved Eqs. (2), (3), and (4) simultane-
ously and verified that one does achieve end of inflation in
this model.
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2. Constraint on ns
Now that we know that warm inflation does end in this

scenario, let us find predictions for CMB observables.
From Eq. (22) and discussion in the beginning of Sec. III A,
ns (determined at ϕ�) is found to be

ns ¼ 1 −
33

14

α2

1þQ�
: ð28Þ

Let us determine the factor α2=ð1þQ�Þ. From Eq. (17), we
see that

1þQ� ∼Q� ¼ C̃1=7 α6=7

M6=7
pl

V1=7
0 e−αϕ�=7Mpl : ð29Þ

We can calculate Ncmb for this potential as

α2

7
Ncmb ¼ C̃1=7 α

6=7

M6=7
pl

V1=7
0 ðe−αϕ�=7Mpl −e−αϕend=7MplÞ: ð30Þ

Note that because of the very fast evolution ofQ, we cannot
approximate the integral for Ncmb as the integrand times the
field range. We will have more to say about it the next
section.
From the above two equations, we see that

1þQ� ¼
α2

7
Ncmb þ C̃1=7 α6=7

M6=7
pl

V1=7
0 e−αϕend=7Mpl : ð31Þ

One can calculated ϕend for this potential from Eq. (19) as

C̃1=7 α6=7

M6=7
pl

V1=7
0 e−αϕend=7Mpl ¼ α2

2
: ð32Þ

Thus, we get

α2

1þQ�
¼ 2

1þ 2
7
Ncmb

; ð33Þ

yielding

ns ¼ 1 −
33

7þ 2Ncmb
: ð34Þ

This gives ns¼ 0.74 (0.69) for Ncmb¼60 (50), respectively.
In the above argument, we assumed that the end of

inflation is realized via (16). This leaves open the sliver of a
possibility that if we could end warm inflation using some
other mechanism at some other point in field space, perhaps
we could bypass the problem of an overly red tilted
spectrum. While this is perhaps difficult to disprove, note
that in this kind of potential ϕ rolls from smaller values to
larger values. Thus, ϕ� < ϕend. In fact, it turns out in many

cases (see, e.g., next section) e−αϕ� ≫ e−αϕend , and there-
fore, we see that the dependence on ϕend is weak,

α2

7
Ncmb ∼ C̃1=7 α6=7

M6=7
pl

V1=7
0 e−αϕ�=7Mpl ¼ 1þQ�; ð35Þ

yielding

ns ∼ 1 −
33

2Ncmb
: ð36Þ

This gives ns ¼ 0.725 (0.67) for Ncmb ¼ 60 (50), respec-
tively. This again shows that the scenario yields way too
much red tilted spectrum than is observationally allowed,
irrespective of the details of how and where inflation ends.
Let us try to understand this from a different perspective.

In cold inflation, ns ¼ 1–6ϵV þ 2ηV . For this potential,
ηV ¼ 2ϵV . This gives ns ¼ 1–2ϵV , and thus, ns < 1 (red
tilted). In warm inflation, if ϒ is proportional to some
power of T then it makes the spectrum even more red tilted
than in the case of cold inflation for such potentials. That is
why, the potential chosen in Ref. [21], which gives blue
tilted spectrum (ns > 1) in cold inflation, leads to the
observed spectral index for this scenario in warm inflation.
Thus, we require a form of potential which, in general,

yields a blue tilted spectrum in cold inflationary scenario,
so that both the effects can nullify each other providing a
scenario compatible with observations. We will consider
such a scenario in the next section.

3. Field excursion

Before closing our discussion about the potential given
by Eq. (26), let us also note that, for Oð1Þ values of ϵV (as
required by refined dS swampland conjecture), the field
excursion required for achieving 40–60 e-foldings of
inflation is super-Planckian, which violates swampland
distance conjecture. This can be seen as follows: the field
excursion of the inflaton during inflation is given by

Δϕ
Mpl

¼
Z

ϕend

ϕ�
dN

�
−V 0

V

�
Mpl

1þQ
¼

Z
αdN
1þQ

; ð37Þ

now, we can use Eq. (27) and the fact that 2ϵV ¼ α2 to write

dN ¼ −1
α2

�
1þ 7Q

Q

�
dQ; ð38Þ

this implies that

Δϕ
Mpl

¼ −1
α

�
ln

�
Qend

Q�

�
þ 6 ln

�
1þQend

1þQ�

��
: ð39Þ

Now, one can use the fact that 1þQend ¼ α2=2 and
1þQ� ¼ ðα2=7ÞNcmb þ α2=2, to find that
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Δϕ
Mpl

¼ −1
α

�
ln

�
α2=2 − 1

ðα2=7ÞNcmb þ α2=2 − 1

�

þ 6 ln

�
1

1þ 2Ncmb
7

��
: ð40Þ

For α <
ffiffiffi
2

p
, the argument of the first log becomes

negative, so we consider values of α bigger than
ffiffiffi
2

p
, the

results are shown in Fig. 1. It is seen that the field excursion
is super-Planckian for α ∼Oð1Þ; thus, this potential will not
be consistent with the swampland distance conjecture.
We have thus found that, while the potential given by

Eq. (26) leads to warm inflation with graceful exit, the
corresponding value of scalar spectral index ns can not
match with observations and the inflaton field excursion is
trans-Planckian.
The fact that Q varies a lot during the evolution plays a

key role in the above discussion. In particular, approxi-
mating the integral by the integrand times the integration
range leads to incorrect results. Note that in this aspect, this
simplest swampland runaway potential is different both
from the examples in [21] as well as from our own example
in the next section.

B. Potential of the form, V =V0

h
1 + e

−α ϕ
Mpl

i
In this section, we work with a potential similar to the

one given by Eq. (26), but with a constant added to it: thus,
consider a potential of the form,

V ¼ V0

h
1þ e

−α ϕ
Mpl

i
: ð41Þ

Before we analyze the conditions under which this potential
is consistent with swampland conjecture and with obser-
vations, let us see what happens if we were considering a
more general potential,

V ¼ V0½γ þ βe
−α ϕ

Mpl �; ð42Þ

then, we could have written it as

V ¼ V0γ

�
1þ β

γ
e
−α ϕ

Mpl

�
¼ V0γ

h
1þ eln

β
γe

−α ϕ
Mpl

i
; ð43Þ

which is the same as

V ¼ Ṽ0

h
1þ e

−α ϕ̃
Mpl

i
; ð44Þ

for redefined field and parameter values: thus, Eq. (41)
captures a large class of possibilities.

1. The slow roll parameters and swampland conditions

We now wish to find the conditions under which the
potential given by Eq. (41) is consistent with swampland
constraint. For this potential, we have

ϵV ¼ α2

2

�
e−αϕ=MPl

1þ e−αϕ=MPl

�
2

; ð45Þ

ηV ¼ α2
�

e−αϕ=MPl

1þ e−αϕ=MPl

�
; ð46Þ

which implies that, for this potential, the following relation
must always hold good:

ϵV ¼ η2V
2α2

: ð47Þ

Furthermore, when ϕ → −∞ (i.e., when ϕ takes large
negative values), we shall have

ϵV ¼ α2

2
; ð48Þ

ηV ¼ α2: ð49Þ

On the other hand, when ϕ → þ∞, e−αϕ=MPl ≪ 1, and we
will be in the regime in which ϵV ≪ 1 and ηV ≪ 1 while
ηV ≫ ϵV . Notice that for all real values of ϕ, ηV > 0, so
even if we find a range of field values such that ϵV ≪ 1 and
ηV ∼Oð1Þ, we will not be in agreement with the refined
dS swampland bound, Eq. (13). This means that the
potential give by Eq. (41) will satisfy swampland con-
ditions only for some region in field space. For any chosen
value of ηV , one has

ϕ

Mpl
¼ 1

α
ln

�
α2

ηV
− 1

�
; ð50Þ

equivalently, for any chosen value of ϵV , we have

FIG. 1. This plot shows how the field excursion found from
Eq. (40) changes with α for Ncmb ¼ 40 (solid, red curve), Ncmb ¼
50 (dotted, green curve), and Ncmb ¼ 60 (dashed, blue curve).
The dashed grey horizontal line is field excursion of 1Mpl.
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ϕ

Mpl
¼ 1

α
ln

�
αffiffiffiffiffiffiffiffi
2ϵV

p − 1

�
: ð51Þ

Thus, if we require ϵV to be greater than some Oð1Þ
number, the above equation will provide a corresponding
maximum possible field value, say ϕmax (which depends
on α). For any choice of α, for the entire range of values
of ϕ such that −∞ < ϕ < ϕmax, refined dS swampland
conditions are satisfied.
The important question is, for this potential, in cold

inflation can one get a blue tilted spectrum such that it is
good potential to try in warm inflation model withϒ ∝ T3?
If this is true, then it may yield the correct red tilted
spectrum; this requires us to choose the parameters.

2. Limits on parameters

When dealing with a potential of this form, the free
parameters are V0, α as well as g̃�, Ncmb, and c̃.
Let us recall that the inflaton in this model has an axionic

coupling to a non-Abelian gauge theory, and the sphaleron
transitions between gauge vacua, existing at sufficiently
high temperatures, provide the friction necessary for warm
inflation. If the corresponding non-Abelian gauge theory
has gauge group SUð3Þ, there will be eight gauge bosons,
each of which will contribute two relativistic degrees of
freedom, and so, including the inflaton itself, there will be
17 relativistic degrees of freedom. In most of the rest of this
section, we shall present the results for the case for which
g� ¼ 17 and find what happens when we change the values
of the other variables.
Recall the definition of c̃, Eq. (15), which is

M2
plc̃ ¼ κα5g

ðf=MplÞ2
; ð52Þ

with αg ¼ g2=4π. We shall take κ ∼ 102 [see Eq. (1)], the
gauge coupling g ∼ 10−1 (this implies αg ∼ 10−3). Thus,

M2
plc̃ ¼ 10−13

ðf=MplÞ2
: ð53Þ

In addition, we would like to ensure that f < V1=4
� . To

understand this, recall that the potential that is responsible
for inflation is a potential generated by UV effects, which
softly breaks the shift symmetry without causing too much
backreaction [21]. The scale f determines the discrete
shift symmetry of the unbroken IR potential. We thus
expect the scale associated with IR potential to be below the
scale associated with the UV potential. In order to be
consistent with TCC, we shall be interested in the case in
which V1=4

� ≲ 10−10Mpl. Since f < V1=4
� , this will require

f=Mpl ≲ 10−11, and hence,

M2
plc̃≳ 109: ð54Þ

Assuming that V0 is of the same order of magnitude as V�,
we now choose

V0 ¼ 10−41M4
pl: ð55Þ

Similarly, one could let Ncmb ∈ f40; 50; 60g, we shall
mostly show results for the case Ncmb ¼ 60.

3. End of inflation

The condition for warm inflation is that the slow-roll
parameters appropriate for warm inflation, given by Eqs. (7)
and (8), should be small as compared to 1. This means that
Q ≫ ϵV and Q ≫ ηV , while at the end of inflation, Q must
fall below ϵV and ηV .Wewill showhere that for this potential
bothQ and ηV decrease withN. If inflation has to end in this
scenario,Q has to decrease with a faster rate than ηV to meet
the condition ηV ¼ 1þQ to end inflation.
From Eq. (25), we get the rate at which Q evolves,

d lnQ
dN

¼ 10ϵV − 6ηV
1þ 7Q

¼ 5ðηVα Þ2 − 6ηV
1þ 7Q

: ð56Þ

Thus, Q decreases when ηV < 1.2α2, which is always the
case, as ηV saturates to α2 at large negative field values.
Similarly, from the expression of ηV , we get

dηV
dN

¼ −
M4

pl

1þQ

�
V 000

V
V 0

V
−
V 00

V
V 02

V2

�
;

¼ −
M4

pl

1þQ

�
α4

M4
pl

e−2αϕ=Mpl

ð1þ e−αϕ=MplÞ2 −
V 00

V
V 02

V2

�
;

¼ −
1

1þQ
ðη2V − 2ηVϵVÞ;

¼ −
ηV

1þQ

�
ηV −

�
ηV
α

�
2
�
; ð57Þ

and ηV decreases when ηV < α2 (which, again, always
holds true) with a rate,

d ln ηV
dN

¼ −
1

1þQ

�
ηV −

�
ηV
α

�
2
�
: ð58Þ

Thus, in the regime Q ≫ 1, the ratio of rates at which Q
and ηV decrease in the strongly dissipative regime is then
given by

σ ≡ d lnQ
dN

=
d ln ηV
dN

¼ 6 − 5ðηV
α2
Þ

7ð1 − ðηV
α2
ÞÞ : ð59Þ

Figure 2 shows how the quantity σ depends on the ratio ηV
α2
.

From the above expression, we learn that if ηV < α2=2,
then σ < 1 while if α2 > ηV > α2=2, then σ > 1.
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For inflation to end, it is necessary that, as we increaseN,
the quantity Q, which starts off being large (for warm
inflation in strongly dissipative regime), must fall off faster
than η falls with increasing N. Thus, for inflation to end, it
is necessary that σ stays greater than 1 for a large range of
N, but this may not be sufficient. This has been illustrated
in Fig. 3 for a specific example about which we will have
more to say in the next section. One can see that, in the
beginning, 1þQ (the red curve) falls faster than η (the
blue curve), but eventually, the curves fall equally fast and
1þQ does not fall below η. Similarly, when ηV < α2=2 for
the entire range of ϕ values, then σ < 1 and Q decreases
with a slightly slower rate than ηV , and so, in this case, it is
guaranteed that there will be no end of inflation because
with a slower rate of decrease, Q will never catch up with
ηV to end inflation.

Thus, in this class of models, one might need an
additional mechanism to end inflation for such a scenario.
In the rest of this paper, we shall assume that such a
mechanism can be found and restrict our attention to the
swampland consistent predictions for inflation.

4. The parameters

The fact that inflation does not end in this scenario has
further implications, such as the background dynamics does
not setϕend and subsequently, thevalue ofϕ�. In otherwords,
we can have the liberty to choose ϕ�, which can yield the
observable parameters related to the inflationary perturba-
tions, as well as help us meet the swampland conjectures.
Thus, we will first choose ϕ� accordingly such that one

can have ϵV greater than unity at the beginning of inflation
and does not fallmuchbelow0.5 after 60 e-folds of inflation,
in order to meet the dS swampland conjecture. We would
like ϕ� to be less than Mpl (and also less than ϕmax), for a
generic value of α, we can find c̃ such that (a) these
requirements get satisfied, (b) As takes up the correct
observable value. We quote the results in Table I.

FIG. 2. This plot shows how the ratio σ depends on the ratio ηV
α2
.

Reality of ϕ in Eq. (50) tells us that this ratio is required to be less
than 1. For inflation to end, it is necessary that this ratio be greater
than 0.5 for most of the field range, but this condition is not
sufficient.

FIG. 3. This plot illustrates the fact that, as inflation proceeds,
briefly 1þQ can fall faster with respect to N (the number of e-
foldings of inflation), than ηV does, but if this condition is not
satisfied for sufficiently long duration, inflation will not end.

TABLE I. The first two and the fourth rows have freely chosen
values of the parameters (α, M2

plc̃, and ϕ�) (with g� chosen to be
17, V0 chosen to be 10−41M4

pl, and Ncmb chosen to be 60). The
rest of the rows contain values of the parameters derived from the
chosen values of α, V0, M2

plc̃, g�, and Ncmb.

Sr. No. Quantity Case 1 Case 2 Case 3

1 α 2 3 5
2 M2

plc̃ 9.70 × 1015 1.27 × 1016 1.41 × 1016

3 ϕmax
Mpl

−0.44 0.038 0.186

4 ϕ�
Mpl

−0.5 0.03 0.18

5 ηV� 2.92 4.29 7.23

6 ϵV� 1.07 1.03 1.04

7 Q� 611.5 637.4 651.4
8 V1=4

�
Mpl

7.8 × 10−11 6.6 × 10−11 6.1 × 10−11

9 T�
Mpl

8.73 × 10−12 7.24 × 10−12 6.7 × 10−12

10 H�
Mpl

3.52 × 10−21 2.52 × 10−21 2.16 × 10−21

11 As 2.09 × 10−9 2.09 × 10−9 2.08 × 10−9

12 ns 0.981 0.964 0.928
13 r 7.3 × 10−31 3.93 × 10−31 2.9 × 10−31

14 ϕf

Mpl

−0.35 0.16 0.31

15 Δϕ
Mpl

0.15 0.13 0.13

16 ηVf
2.68 3.41 4.38

17 ϵVf
0.90 0.65 0.38

18 Qf 551.57 510.29 414.84

19 ρR
V jf 7 × 10−4 6 × 10−4 4 × 10−4
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For the chosen value of g� and V0 and α (the entry in the
first row), we first set ϕ� (entries in row 4) close to ϕmax
such that ϵV� ∼ 1 is ensured. We then choose c̃ (entries in
row 2) accordingly, which will allow As (entries in row 11)
to be in the observed range. We employ Eq. (45) to find the
entries in row 5 and row 6, Eqs. (18) to find entries in row 7
and row 9. We then use Eqs. (22) and (23) to find the entries
in row 12 and 13, respectively.
Here, we note that (a) the values of H� in the table are

well above the value of H during big bang nucleosynthesis
as we want, (b) T� is greater than H� as required by warm
inflation, and (c) the tensor to scalar ratio, r is unobservably
small for the entire range of values. Most importantly, we
can observe that the ns matches best with the observation
around α ¼ 3. To explain this feature, we note that, for this
potential,

ns ¼ 1þ 3

7ð1þQ�Þ
ð27ϵV� − 19

ffiffiffiffiffiffiffiffiffi
2ϵV�

p
αÞ: ð60Þ

As ϵV� ∼ 1 for all the cases and we see from the table that
Q� ∼ 600 for almost all the cases, putting these values in
the above equation yields ns ∼ 0.964 when α ∼ 2.88.
However, to answer why Q turns out to be of the order
600 requires a closure look at how we have arrived at the
parameters furnished in the table. As we mentioned above,
we are varying c̃ in order to get correct observed values of
As. Inserting Eqs. (18) into the equation for As given in
Eq. (21), one can solve for c̃ for the observed value of As
and will get only one positive real root,

M2
plc̃ ∼ 6g̃71=90� M1=5

pl
V9=10

V 019=15 : ð61Þ

Putting this value back into the expression of Q given in
Eqs. (18), one gets

Q� ¼
�
3

2

�
2=7 g̃1=45�

V1=15
�

ð2ϵV�M
4
plÞ1=15

∼
�
3

2

�
2=7 g̃1=45�

V1=15
0

ð2ϵV�M
4
plÞ1=15: ð62Þ

Hence, for ϵV� ∼ 1, one obtains Q� ∼ 661.
Calculating ϕf: It is crucial to figure out at what ϕ value

we need to end inflation in order to get 50–60 e-foldings of
inflation, we call this value of field ϕf. It seems difficult to
analytically figure out what ϕf would be from the expres-
sion of e-foldings with this form of the potential. In that
case, one needs to numerically solve for it. We see that

_ϕ

H
¼ dϕ

dN
¼ −

M2
Pl

1þQ
V 0

V
;

¼ M2
Pl

C̃1=7

�
α

MplV0

�
1=7 e−αϕ=7MPl

ð1þ e−αϕ=MPlÞ2=7 : ð63Þ

One then can start with ϕ ¼ ϕ�, and increase ΔN ¼ 1 in
each step from N ¼ 0, and go up to N ¼ 60 to find ϕf

quoted in row 14. This value of ϕf has then been used to
find the values of the quantities in row 15, 16, 17, 18, and
19 of Table I. Here, we note that Q evolves very slowly
during the course of inflation in this scenario, as has been
pointed out at the end of previous subsection. We also note
that ρR by the end of 60 e-foldings is much less than ρðϕÞ,
which also carries a signature that warm inflation does not
end in such a scenario.

5. Comparison with exact numerical evolution

For numerical solution of Eqs. (2), (3), and (4), one
could choose the values of the free parameters: e.g., we
choose α ¼ 3, V0 ¼ 10−41M4

pl, M2
plc̃ ¼ 1.2703 × 1016,

g� ¼ 17. We can then begin with some initial field value
ϕini < ϕ�. Note that when ϕini is chosen to be sufficiently
smaller than ϕ�, the exact chosen initial values of _ϕ and T
are unimportant. Under such conditions, one could simply
choose initial values of _ϕ and T to be zero.
With such a choice of the initial conditions (and the

free parameters), one can evolve Eqs. (2), (3), and (4)
numerically and obtain the values of all the quantities in
Table I. The values of the quantities found from this more
accurate procedure are found to be very close to the values
presented in the table. For example, we found that
η�¼4.297, ϵ�¼1.026, Q�¼636.643, V1=4

� ¼ 6.459×
10−11Mpl, T� ¼ 7.243 × 10−12, H� ¼ 2.527 × 10−21, and

ηf ¼ 3.413, ϵf ¼ 0.647, Qf ¼ 509.732, V1=4
f ¼ 5.877×

10−11Mpl, Tf ¼ 6.535 × 10−12,Hf ¼ 2.318 × 10−21: these
values should be compared with the entries in case 2 of
Table I.
This verifies the results of the previous section.

Furthermore, one finds that, even if one starts with zero
temperature of the thermal bath, very soon, conditions for
warm inflation get established (as was argued in [21]).

IV. DISCUSSION

In this work, we studied the warm inflationary predic-
tions of the simple scalar potential given by Eq. (41). From
the second column of Table (I), it is clear that one can
choose the parameters α and V0 in the potential, as well as
c̃, such that

(i) CMB observables (ns and As) take up their observed
values,

(ii) Q� ≫ 1 so that warm inflation in the strongly
dissipative regime gets realized,

(iii) the corresponding value of V� is consistent with the
trans-Planckian censorship conjecture,

(iv) the field excursion is sub-Planckian as required by
swampland distance conjecture, and,

(v) for the relevant range of fields, the potential is
consistent with the dS swampland conjectures.
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This demonstrates that minimal warm inflation [21] pro-
vides a viable realization of inflation that can simulta-
neously meet observational data while satisfying all of the
relevant swampland constraints in an extremely sim-
ple model.
There are a few observations here that are worth making.

As we discussed in the text, the simplest runaway potentials
that satisfy the dS swampland conjectures produce too
much red tilt in the spectrum and also marginally violate the
swampland distance bound. We have therefore looked for
and found a “next-to-simplest” model (41) that is swamp-
land viable.2 Remarkably, we find that now the observa-
tional and swampland constraints are very comfortably
satisfied. We have also checked our semi-analytic estimates
against explicit numerical evolution and found an excel-
lent match.
While the fact that all the constraints could be satisfied in

a very simple model is encouraging, to conclude we will
point out various features of this approach that needs to be
sorted out before it can qualify as a fully satisfactory model
of inflation.

(i) We have not discussed mechanisms for ending
inflation or for ensuring reheating. These are
necessary steps for transitioning to the big-bang
nucleosynthesis phase and to have a complete
cosmological model. We have kept our discussion
limited to a very basic and simple model: it
seems likely that with a more specific model with
more dynamical ingredients, these things can be
arranged.

(ii) In some of our discussions of the temperature
dependence of the ϒ parameter for various gauge
groups, we have extrapolated results known only for
small gauge group ranks [27] to higher rank gauge
groups. But this is a minor issue, which does not
seriously affect our punch lines.

(iii) One of the features of the construction of [21] is that
their UV potential breaks the shift symmetry of the
axion completely. Since the axion arises as an angle
field, even after symmetry breaking and nonperturba-
tive effects, we expect it to have a discrete shift
symmetry of 2π in suitable units. So the breaking
here is an explicit breaking of the 2π periodicity, but it
is claimed [21] that it is soft. Questions regarding the
breaking of what can be viewed as a discrete gauge
symmetry have been discussed previously in a related
setup in [46]; see also related very recent discussions
in [47]. It will also be interesting to consider thermal
backreaction questions from this perspective. We will
not have much to add to these discussions. A closely
related question is that of realizing these in string
theory, where a lot has been discussed about (the
difficulty with) large axion field ranges [3].

(iv) A related point is that following [21], we have
demanded that the scale of the UV potential be
hierarchically above the axion decay constant. It will
be good to have a better understanding of the two
scales.
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