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Abstract It has been well established that quantum mechan-
ics (QM) violates Bell inequalities (BI), which are conse-
quences of local realism (LR). Remarkably QM also vio-
lates Leggett inequalities (LI), which are consequences of
a class of nonlocal realism called crypto-nonlocal realism
(CNR). Both LR and CNR assume that measurement out-
comes are determined by preexisting objective properties, as
well as hidden variables (HV) not considered in QM. We
extend CNR and LI to include the case that the measurement
settings are not externally fixed, but determined by HV. We
derive a new version of LI, which is then shown to be vio-
lated by entangled Bd mesons, if charge–conjugation–parity
(CP) symmetry is indirectly violated, as indeed established.
The experimental result is quantitatively estimated by using
the indirect CP violation parameters, and the maximum of a
suitably defined relative violation is about 2.7%. Our work
implies that particle physics violates CNR. Our LI can also
be tested in other systems such as photon polarizations.

1 Introduction

In 1935, Einstein, Podolsky and Rosen (EPR) questioned
the completeness of QM, by applying a criterion of LR to
a pair of particles in a quantum state which Schrödinger
subsequently referred to as entangled [1,2]. Locality means
that two events cannot have any mutual physical influence
if they are spacelike separated, that is, their spatial separa-
tion is larger than the distance the fastest physical signal,
i.e. the light, can travel within the time difference between
the two events. In 1964, Bell proposed the first BI satisfied
by any local realistic theory while violated by QM [3]. A
more experimentally suitable version of BI, called Clauser–
Horne–Shimony–Holt inequality [4], was demonstrated to
be violated in many experiments, including the ones closing
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the locality loophole [5,6], the detection loophole [7,8], and
both [9–11]. To close yet another loophole called measur-
ing setting or freedom of choice loophole, observations of
Milky Way stars [12,13] and human choices [14] have been
employed. Great progress has been made in making use of
quantum entanglement in quantum information science.

With the conflict between LR and QM well established, it
is important to identify which aspects of LR are the sources
of the conflict. For this purpose, Leggett in 2003 proposed
the LI, which is satisfied by CNR and is violated by QM [15].
This means that even nonlocal realism, at least a subset, can-
not avoid the conflict with QM, so the source of conflict
seems to be more likely realism. In 2007, a version of LI was
experimentally demonstrated to be violated by using polar-
izations of entangled photons generated in spontaneous para-
metric down conversion, first under an additional assumption
of rotational invariance [16], then without this assumption
[17,18]. LI violation was also demonstrated by using polar-
izations of photons from fibre-based source [19], as well as
the orbital angular momenta of photons [20]. Similar phe-
nomena were observed in different degrees of freedom of
single particles [21,22]. Various extended discussions have
also been made [23–26].

It is highly interesting to extend the investigations on BI
and LI to particle physics, of which standard model (SM)
is based on quantum field theory combining QM with spe-
cial relativity, emphasizing causality and using local gauge
principle to describe fundamental interactions. Massive and
possibly unstable particles governed by strong and weak
interactions and flying in relativistic velocities represent a
new class beyond both photons and nonrelativistic particles
governed merely by electromagnetism, and can still easily
achieve spacelike separation. Besides, one might also won-
der whether high energy particles, as excitations of quantum
fields, may display nonlocal effects.

In particle physics, entanglement, more often called EPR
correlation, has been noted in pseudoscalar meson pairs since
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1960s [27–30]. Various discussions were made on its rigor-
ous verification [31,33–37], which was experimentally done
in K 0 K̄ 0 pairs produced in proton–antiproton annihilation
[38], in φ resonance [39–41], as well as in B0

d B̄
0
d pairs pro-

duced in ϒ(4S) resonance [42–44]. Entanglement is rou-
tinely used to tag mesons by identifying their entangled
partners [41,44–49]. Moreover, entangled meson pairs are
used in measuring various parameters [48–53], and study-
ing violations of discrete symmetries [54–60], including CP
[54,55,61–66], time reversal (T) [67–71], and CPT [72,73].
A possible scheme of teleporting mesons was also proposed
[74–76]. There exists similar entanglement in hyperon pairs
generated from electron-positron annihilation, which was
used recently to measure the phase between the amplitudes
of the decays to different helicity states [77].

Many proposals had been made on BI test in entangled
mesons [78,80–86], and in the analogous spin-entangled par-
ticles [87–92]. There had been an early experiment using
entangled protons to test BI under a few additional assump-
tions [93]. There was an experiment using entangled B0

d B̄
0
d

pairs to test BI, in which meson decay acts as effective mea-
surement settings [42]. However, it was not regarded as a
genuine Bell test, because of the lack of active measurement
[44,87,94–96]. Basically this is a manifestation of the loop-
hole of measurement settings, for the following reason. One
can envisage a local HV (LHV) theory in which HVs in the
source of the particle pairs determine the times, modes and
even products of the decays, and the information is carried by
the particles, consequently the two particles are secretely cor-
related no matter how far away they are separated, rendering
the violation of BI. Other approaches to BI using entangled
high energy particles are difficult to realize, as the alternative
bases of measurement are physically limited.

In this paper, we extend CNR and LI to include the case
that the measurement settings are not externally fixed, but
determined by HV, therefore the above situation jeopardizing
BI test in entangled mesons is allowed in CNR, and we pro-
pose LI test using entangled neutral Bd mesons. From QM
calculation of single particle decays, we identify the time-
dependent effective measuring directions due to the decays,
as counterparts of the directions of the polarizers measur-
ing the photon polarizations. For different decay times, they
all lie on a plane and a cone, respectively. For such effective
measuring directions, whether it is externally fixed or emerge
from averages of measurement outcomes over HV, we derive
a new version of LI, which is violated by QM and entangled
Bd mesons. We calculate the measurable quantities charac-
terizing the relative magnitude of the LI violation, and find
their maxima to be about 2.7%. It turns out that the LI can
only be violated when CP symmetry is violated indirectly,
i.e. in the mass matrix. Our work establish the true random-
ness of particle decay, including its time, mode, and product.

On the other hand, our new LI can also be tested in other
systems such as photon polarizations.

2 Pseudoscalar neutral mesons

In QM, a neutral pseudoscalar meson M can be regarded as
living in a two-dimensional Hilbert space, with basis states
|M0〉 and |M̄0〉, which are flavor eigenstates and mutual CP
conjugates, i.e. CP|M0〉 = |M̄0〉, CP|M̄0〉 = |M0〉. In this
basis, the mass matrix is

H ≡ M − i

2
� =

(
H00 H00̄
H0̄0 H0̄0̄

)
, (1)

where H00 ≡ 〈M0|H |M0〉, H00̄ ≡ 〈M0|H |M̄0〉, and so on.
The eigenstates of H are
∣∣M1

〉 = 1√
|p|2+|q|2

[
p
∣∣M0

〉 + q
∣∣M̄0

〉]
,

∣∣M2
〉 = 1√

|p|2+|q|2
[
p
∣∣M0

〉 − q|M̄0
〉]

, (2)

with p/q ≡ √
H0̄0/H00̄. The corresponding eigenvalues are

λ1 = m1 − i
2�1 = H00 + √

H00̄H0̄0,

λ2 = m2 − i
2�2 = H00 − √

H00̄H0̄0. (3)

H governs the evolution of the meson state
∣∣ψ(t)

〉 = a(t)
∣∣M0〉 + b(t)

∣∣M̄0〉, (4)

with(
a(t)
b(t)

)
= U (t)

(
a(0)

b(0)

)
, (5)

where

U (t) = exp(−i Ht) = g+(t) + g−(t)

(
0 p/q

q/p 0

)
, (6)

with g±(t) ≡ e−iλ2 t±e−iλ1t

2 . This leads to the mixing phenom-
ena. Especially, M0 and M̄0 at t = 0 evolve respectively to
∣∣M0(t)

〉 = g+(t)
∣∣M0

〉 + q
p g−(t)

∣∣M̄0
〉
,∣∣M̄0(t)

〉 = p
q g−(t)

∣∣M0
〉 + g+(t)

∣∣M̄0
〉
. (7)

For a meson in an arbitrary state, its decay to some final state
f indicates that there has been a projection or filtering to
some basis state |φ〉, which decays to f , |φ〉 being [56,57]

∣∣φ〉 = 1√∣∣A f
∣∣2 + ∣∣ Ā f

∣∣2

(
Ā∗

f

∣∣M0
〉
+ A∗

f

∣∣M̄0〉) , (8)

where A f = 〈 f |W |M0〉 and Ā f = 〈 f |W |M̄0〉 are, respec-
tively, the amplitudes of the decays from M0 and M̄0 to
the final state f . W = UHw, where Hw being the weak
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decay Hamiltonian while U being the strong evolution oper-
ator and reducing to the identity if final state interactions are
neglected.

A pair of neutral mesons can be produced as C = −1
antisymmetric entangled state

∣∣�−
〉 = 1√

2

(∣∣M0〉∣∣M̄0〉 − ∣∣M̄0〉∣∣M0〉) , (9)

where in each term, the first and second basis states are those
of mesons a and b respectively.

Suppose this two-particle state evolves up to ta , when
meson a decays to some final state fa , indicating that
there is a projection or filtering of a to some basis state
|φ〉a , which decays to fa . |φ〉a is |φ〉 as given in (8) for
meson a. The meson b continues to evolve till it decays
to some final state fb at tb, indicating that there is a pro-
jection or filtering of b to some basis state |φ〉b, which
decays to fb. |φ〉b is |φ〉 as given in (8) for meson b. The
time evolution of the entangled state up to the projections
can be described as PbUb(tb − ta)PaUb(ta)Ua(ta)|�−〉 =
PbPaU (tb)U (ta)|�−〉 = PbPa |�−(ta, tb)〉, where Pa =
|φ〉aa〈φ| and Pb = |φ〉bb〈φ| are projection operators, and
the commutativity between operators on a and those on b
have been used. This justifies the usual use of a state vector
with two time variables

∣∣�−(ta, tb)
〉 ≡ U (tb)U (ta)

∣∣�−
〉

= 1√
2

(∣∣M0(ta)
〉∣∣M̄0(tb)

〉

−∣∣M̄0(ta)
〉∣∣M0(tb)

〉)
, (10)

which means that the two mesons decay at ta and tb, respec-
tively.

Specifically, we use neutral Bd mesons, because of the
advantage that �2 ≈ �1, q/p ≈ e2iβ , where 2β is a phase
factor, β is given as sin(2β) = 0.695 [97]. Then M0 = B0,
M̄0 = B̄0, M1 = BL , M2 = BH , and U (t) is simplified to

U (t) = e−iMt− �
2 t

×
(

cos
x�t

2
+ i sin

x�t

2

[
cos(2β)σ x + sin(2β)σ y

])
, (11)

where σ i , (i = x, y, z), are Pauli operators, x ≡ (mH −
mL)/�, M ≡ (mH + mL)/2 and � ≡ (�L + �H )/2, the
subscripts following those of BH and BL .

In Bloch representation, |B0〉, like the horizontally polar-
ized state of a photon or the spin-up state of an electron, is
represented as the vector (0, 0, 1), while |B̄0

d 〉, like the verti-
cally polarized state of a photon or the spin-down state of an
electron, is represented as the vector (0, 0,−1). They can be
chosen as the “measuring directions” or bases of measure-
ment.

However, for a measurement following time evolution,
it is more convenient to define an effective time-dependent
basis or “measuring direction”. A state of a two-state system
can be parameterized as

∣∣u〉 = eiζ
(

cos
θu

2

∣∣0〉 + eiρu sin
θu

2

∣∣1〉)
, (12)

where |0〉 and |1〉 represent the basis states. We consider its
time evolution that can be parameterized as

U (θa, ρa) =
(

cos
θa

2
− i sin

θa

2

(
cos(ρa)σ

x + sin(ρa)σ
y)) , (13)

of which (11) is an example, multiplied by an additional

decay factor e−iMt− �
2 t .

Suppose that following the evolution U (θa, ρa), a signal
is recorded as A = +1 if |0〉 is detected, while A = −1 if
|1〉 is detected. The QM expectation value of A is

Ā(u) = |〈0|U |u〉
∣∣2−

∣∣〈1∣∣U∣∣u〉∣∣2

∣∣〈0∣∣U∣∣u〉∣∣2+
∣∣〈1∣∣U∣∣u〉∣∣2 = u · a, (14)

where

u = (sin θu cos ρu, sin θu sin ρu, cos θu) (15)

is the Bloch vector of |u〉, while

a = (− sin θa sin ρa, sin θa cos ρa, cos θa) (16)

is the Bloch vector ofU †(θa, ρa)|0〉. This can be easily under-
stood by regarding Ā(u) as expectation value of the signal
obtained by measuring the initial state |u〉 in the rotated basis
{U †|0〉,U †|1〉}. The rotation U † of the basis is realized by
evolution.

For a Bd meson, the measurement in the flavor basis {|B0〉,
|B̄0〉}, corresponding to Al = ±1, can be made through the
semileptonic decay channel, as the direct CP violation or
wrong sign decay is negligible [97]. Thus |φ〉 in (8) reduces
to |B0〉 or |B̄0〉, and one can define

Āl(u) =
∣∣〈B0

∣∣U (t)
∣∣u〉∣∣2 − ∣∣〈B̄0

∣∣U (t)
∣∣u〉∣∣2

∣∣〈B0
∣∣U (t)

∣∣u〉∣∣2 + ∣∣〈B̄0
∣∣U (t)

∣∣u〉∣∣2 = u · al(t),
(17)

where

al(t) = (sin(2β) sin(x�t),− cos(2β) sin(x�t), cos(x�t)) .

Likewise, as the direct CP violation is negligible [97],
if the decay products are CP eigenstates S±, they signals
the projection of the meson to CP basis states |B±〉 ≡(|B0〉 ± |B̄0〉) /

√
2. In this case, |φ〉 in (8) reduces to |B±〉.
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With B± corresponding to As = ±1, one can define

Ās(u) =
∣∣〈B+|U (t)|u

〉∣∣2 − ∣∣〈B−
∣∣U (t)

∣∣u〉∣∣2

∣∣〈B+
∣∣U (t)

∣∣u〉∣∣2 + ∣∣〈B−
∣∣U (t)

∣∣u〉∣∣2
= u · as(t),

(18)

where

as(t) =
(

sin2(2β) cos(x�t) + cos2(2β),

sin(4β) sin2 (x�t/2) ,− sin(2β) sin(x�t)
)

.

Equations (17) and (18) are of the same form as the standard
QM result (14) because the factor e−�t exists in all terms in
both denominator and the numerator, and thus cancels.

Note that |〈B0|U (t)|u〉|2, |〈B̄0|U (t)|u〉|2 and |〈B±|U (t)|
u〉|2 do not depend on the specific decay channels signalling
the projection, hence is not directly observed. In contrast CP
asymmetries usually defined depend on which channels are
observed.

However, under the assumption of no wrong sign decays
and no direct CP violation, |〈B0|U (t)|u〉|2, |〈B̄0|U (t)|u〉|2
and |〈B±|U (t)|u〉|2 and thus the asymmetries we define
above are related to the rates of decays in specific channels.
For flavor eigenstates l±, as the final states of semileptonic
decays,
〈
l+

∣∣WU (t)
∣∣u〉 = 〈

l+
∣∣W ∣∣B0〉〈B0

∣∣U (t)
∣∣u〉 = Al+

〈
B0

∣∣U (t)
∣∣u〉

,〈
l−

∣∣WU (t)
∣∣u〉 = 〈

l−
∣∣W ∣∣B̄0〉〈B̄0

∣∣U (t)
∣∣u〉 = Āl−

〈
B̄0

∣∣U (t)
∣∣u〉

.

For |l−〉 = CP|l+〉, we have Al+ = Āl− = Al . For CP
eigenstates S± as the final states,
〈
S+

∣∣WU (t)
∣∣u〉 = 〈

S+
∣∣W ∣∣B+

〉〈
B+

∣∣U (t)
∣∣u〉

,〈
S−

∣∣WU (t)
∣∣u〉 = 〈

S−
∣∣W ∣∣B−

〉〈
B−

∣∣U (t)
∣∣u〉

.

Note that here there is no special relation between l+ and
l−, or between S+ and S−, as different decay channels may
signal a same projection in the meson Hilbert space. The
examples of flavor eigenstates l± as the final states include
M−e+ν, M+e−ν̄, M−μ+ν, M+μ−ν̄, etc. The examples
of CP eigenstates S± as the final states include J/ψKS ,
J/ψKL , KK , KKK , ππ , πππ , DD, etc.

Therefore, the asymmetries Āl and Ās , defined above in
the meson Hilbert space, can be obtained from experimen-
tally measurable quantities,

Āl(u) =

∣∣〈l+∣∣WU (t)
∣∣u〉∣∣2

∣∣〈l+∣∣W∣∣B0
〉∣∣2 −

∣∣〈l−∣∣WU (t)
∣∣u〉∣∣2

∣∣〈l−∣∣W∣∣B̄0
∣∣2

∣∣〈l+∣∣WU (t)
∣∣u〉∣∣2

∣∣〈l+∣∣W∣∣B0
〉∣∣2 +

∣∣〈l−∣∣WU (t)
∣∣u〉∣∣2

∣∣〈l−∣∣W∣∣B̄0
∣∣2

,

Fig. 1 The effective measuring directions al and as . In a certain coor-
dinate system, al (φl) is on xy plane, as(θs , φs) is on a cone. For Bd
mesons, φl = x�t , (φs , θs) = (x�t + π/2, 2β), corresponding to fla-
vor and CP measurements following evolution of time t , respectively.
For photon polarizations, al and as are polarizer directions in Bloch
representation, and can be adjusted directly

Ās(u) =

∣∣〈S+
∣∣WU (t)

∣∣u〉∣∣2

∣∣〈S+
∣∣W∣∣B+

〉∣∣2 −
∣∣〈S−

∣∣WU (t)
∣∣u〉∣∣2

∣∣〈S−
∣∣W∣∣B−

〉∣∣2

∣∣〈S+
∣∣WU (t)

∣∣u〉∣∣2

∣∣〈S+
∣∣W∣∣B+

〉∣∣2 +
∣∣〈S−

∣∣WU (t)
∣∣u〉∣∣2

∣∣〈S−
∣∣W∣∣B−

〉∣∣2

.

As shown in Fig. 1, with the time passing, al(t) rotates on a
plane, while as(t) rotates on a cone whose axis is perpendic-
ular to al plane. For convenience, we adopt a new coordinate
system in which al plane is the xy plane, then

al(φl) = (cos φl , sin φl , 0) ,

as(θs, φs) = (sin θs cos φs, sin θs sin φs, cos θs) , (19)

where φl = x�t and φs = x�t + π/2 are the azimuthal
angles of al and as , respectively, θs = 2β is the polar angle
of as , and it suffices to consider 0 < θs ≤ π/2.

al(φl) and as(θs, φs) are two effective measurement set-
tings or “measuring directions”. For Bd mesons, they are
time-dependent. The rotation of basis or measuring direction
realized by evolution explains the similarity between decay
time and polarizer angle. But al(φl) and as(θs, φs) can also
be used, say, for photon polarization, by directly adjusting φl

and (θs, φs) in experiments.
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3 CNHV theories

|u〉 is an eigenstate of the Pauli operator σ ·u in the direction
of u. A particle in this state has a definite u. For a single
particle, QM result can be reproduced by a realistic or HV
theory, in which the measurement outcomes are determined
by preexisting properties independent of the measurement, or
“elements of reality” in the words of EPR. Thusu is identified
as such an element of reality.

Consider a HV theory. Suppose a particle with property u
is measured along direction a, then the dichotomic measure-
ment outcome A = ±1 is determined by the hidden variables
λ in addition to the property u and the local parameter a. This
is also called a local realistic theory, in which the parameter
a is local. In a nonlocal realistic theory, A also depends on a
non-local parameters, collectively denoted as η. In a crypto-
nonlocal HV (CNHV) theory, the individual properties of
each particle, after averaging over distribution ρu(λ) of the
hidden variables λ, become local, as indicated in countless
phenomena,∫

dλρu (λ) A (u, a, η, λ) = Ā(u, a). (20)

A concrete example of Ā(u, a) is the Malus’ law [16]

Ā (u, a) = u · a, (21)

which is consistent with QM results of photon polarizations.
In the last section, we have just shown that it is also consistent
with QM result of the meson decay following its evolution.

For a pair of particles from a common source, with
respective properties u and v, the measuring direction of
the other particle can serve as the nonlocal parameter, and
one can also assume nonlocal parameters ηa and ηa , which
are nonlocal with respect to a and b, respectively. The mea-
surement outcomes along respective directions a and b are
A(u, v, a,b, ηa, ηb, λ) = ±1 and B(v,u,b, a, ηb, ηa, λ) =
±1. The local measurement of each particle cannot detect its
correlation with the other particle, hence the nonlocal depen-
dence disappears after averaging over the hidden variables,∫

dλρu,v(λ)A(u, v, a,b, ηa, ηb, λ) = Ā(u, a), (22)
∫

dλρu,v(λ)B(v,u,b, a, ηb, ηa, λ) = B̄(v,b). (23)

A general physical state is a statistical mixture of subensem-
bles with definite u and v. Hence the final expectation values,
which is experimentally measured, are [15,16]
〈
A
〉 = ∫

duF(u) Ā(u),〈
B

〉 = ∫
dvF(v)B̄(u), (24)

where F(u) and F(v) are probability distribution of polar-
izations u and v, respectively. In case of correlated particles,

they are the reduced ones

F(u) = ∫
dvF(u, v),

F(v) = ∫
duF(u, v).

(25)

The two-body quantities may indicate correlations. For
definite u and v,

AB (u, v, a,b) =
∫

dλρu,v(λ)A (u, v, a,b, λ)

B(v,u,b, a, λ). (26)

For a general state,

E (a,b) =
∫

dudvF (u, v) AB (u, v, a,b) , (27)

which is the main quantity to be investigated, as it may
differ with the corresponding QM result when entangle-
ment is present, in which case a probability distribution over
subensembles with definite polarizations leads to inequalities
violated by the entangled state in QM.

Here we extend CNHV theories to include the case that
a and b are not externally fixed. In each measurement, the
measurement settings ã(λ) and b̃(λ) are determined by HV
λ, thus the measurement outcomes are like A(u, ã(λ), η, λ).
Nevertheless, for those measurements with ã(λ) = a, we can
obtain the average of the outcomes. In the case of a single
particle, the average is

∫
dλρ′

u,a(λ)A(u, ã(λ), η, λ) = Ā(u, a) = u · a, (28)

where ρ′
u,a(λ) ≡ ρu(λ)δ(ã(λ) − a) is a shorthand.

Likewise, for two correlated particles, the outcomes of
those measurements with ã(λ) = a and b̃(λ) = b give rise
to∫

dλρu,v(λ)δ(ã(λ) − a)δ(b̃(λ) − b)

×A(u, v, ã(λ), b̃(λ), ηa, ηb, λ)

= Ā(u, a) = u · a, (29)∫
dλρu,v(λ)δ(ã(λ) − a)δ(b̃(λ) − b)

×B(v,u, b̃(λ), ã(λ), ηb, ηa, λ)

= B̄(v,b) = v · b. (30)

AB(u, v, a,b) =
∫

dλρu,v(λ)δ(ã(λ) − a)δ(b̃(λ) − b)

× A(u, v, ã(λ), b̃(λ), ηa, ηb, λ)

B(v,u, b̃(λ), ã(λ), ηb, ηa, λ). (31)

Clearly the original formalism is a special case of this
extension, by externally fixing ã(λ) to be always a and b̃(λ)

to be always b, independent of λ.
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4 LI for measuring directions on a plane and a cone

We now consider a pair of particles a and b, with the mea-
surement outcomes A = ±1 and B = ±1, respectively.
The average of those outcomes A with a same measurement
setting a satisfy the Malus’ Law (29). The average of those
outcomes B with a same measurement setting b satisfy the
Malus’ Law (30). The correlation function is defined in the
way of (31). a and b are each given as al(φi ) or as(θs, φi ),
(i = a, b), as in (19).

We first consider correlation functions of various combi-
nations ofal andas . Define Ê±(a,b) ≡ E(a,b)+E(b,±b),
and rewrite Ê±(as(θs, φa), al(φb)) as Ê±

sl (θs, ξ, ϕ), where

ξ ≡ (φa + φb)/2, ϕ ≡ φa − φb. Ê±
ll (θs, ξ, ϕ) and

Ê+
ss(θs, ξ, ϕ) are similarly defined. Furthermore, we consider

the averages over ξ , Ê−
sl (θs, ϕ) ≡ ∫ dξ

2π
Ê−
sl (θs, ξ, ϕ) and so

on.
In the Appendix, we prove the following LI. The upper

bound is given by

Ê−
sl (θs, ϕ1) + π cos(θ1(θs, ϕ1))L1(θs, ϕ1)

4 cos
(

ϕ2
2

) Ê−
ll (θs, ϕ2)

≤ 2

(
1 + π cos (θ1(θs, ϕ1)) L1(θs, ϕ1)

4 cos
(

ϕ2
2

)
)

− cos(θ1(θs, ϕ1))L1(θs, ϕ1), (32)

where

L1 (θs, ϕ) ≡ |as + al | = √
2 + 2 cos (ϕ) sin (θs),

θ1 (θs, ϕ) = cos−1 cos (θs)√
2 + 2 cos (ϕ) sin (θs)

.

With 0 < θs < π/2, we have sin(θ1) > 0, cos(θ1) > 0.
We find two lower bounds. The first is given as

Ê+
sl (θs, ϕ1) + π cos(θ2(θs, ϕ1))L2(θs, ϕ1)

4
∣∣sin

(
ϕ2
2

)∣∣ Ê+
ll (θs, ϕ2)

≥ −2

(
1 + π cos(θ2(θs, ϕ1))L2(θs, ϕ1)

4
∣∣sin

(
ϕ2
2

)∣∣
)

+ cos(θ2(θs, ϕ1))L2(θs, ϕ1). (33)

where

L2(θs, ϕ) ≡ |as − al | = √
2 − 2 cos(ϕ) sin(θs),

θ2(θs, ϕ) = cos−1 cos(θs)√
2 − 2 cos(ϕ) sin(θs)

.

The second lower bound is given as

Ê+
sl (θs, ϕ1) + π cos(θ2(θs, ϕ1))L2(θs, ϕ1)

4 sin(θs)
∣∣sin

(
ϕ2
2

)∣∣ Ê+
ss(ϕ2)

≥ −2

(
1 + π cos (θ2(θs, ϕ1)) L2(θs, ϕ1)

4 sin(θs)
∣∣sin

(
ϕ2
2

)∣∣
)

+ cos(θ2)L2(θs, ϕ1). (34)

Equations (32), (33) and (34) comprise our LI.
The correlation functions averaged over ξ are not directly

observable, therefore rotational invariance or fair sampling of
the averages needs to be assumed for measurements, in order
that LI in terms of these average correlation functions can
be experimentally examined [17,18]. In the case of meson
decays, the rotational invariance in Bloch representation is
actually time translational invariance.

To drop this additional assumption, we can redefine each
average in a discrete way,

Ê±
sl (θs, ϕ) ≡ 1

N

N∑
n=1

Ê±
sl

(
θs, ξn = 2nπ

N
, ϕ

)
, (35)

and Ê±
ll (θs, ϕ) and Ê+

ss(θs, ϕ) similarly. As derived in the
Appendix, for these discrete average correlation functions,
our LI can be obtained from Eqs. (32), (33) and (34) by
simply replacing π/4 as 1/2uN , where uN ≡ 1

N cot
(

π
2N

)
.

N ≥ 2 is required. As N → ∞, uN → 2/π , then the discrete
version approaches the continuous version.

Our LI can be tested using various systems, in which
measurement directions al(φl) and as(θs, φs) can be directly
adjusted.

For meson decays, θs = 2β is fixed, while φl = φl(t) =
x�t , φs = φs(t) = x�t+ π

2 are given by the decay time t . We
mention that for the two particles a and b to be separated in
spacelike distance, there is a constraint on the decay times ta
and tb. Suppose the particle pairs are generated from a particle
at rest and each flies in velocity v to opposite directions. Then
spacelike separation means (1 + w)ta > (1 − w)tb, where
w = (v/c)/

√
1 − v2/c2. Consequently there is a constraint

on possible values of ξ , but it does not affect the averages
over ξ , which is an angle mathematically, hence its functions
are periodic.

5 Testing LI in entangled Bd mesons

We now come back to the C = −1 B0 B̄0 entangled meson
pairs, and we can write the correlation functions as

E(aX (ta), aY (tb)), (X,Y = l, s).

By definition,

E
(
aX (ta), aY (tb)

)

= [(
P(X+,Y+, ta, tb

) + P
(
X−,Y−, ta, tb

)
− P

(
X+,Y−, ta, tb

) − P
(
X−,Y+, ta, tb

)]
/
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[
P

(
X+,Y+, ta, tb

) + P
(
X−,Y−, ta, tb

)
+ P

(
X+,Y−, ta, tb

) + P
(
X−,Y+, ta, tb

)]
, (36)

where for convenience, we have invented the shorthand

l+ ≡ B0, l− ≡ B̄0, s± ≡ B±, (37)

which should not be confused with l± and S±, with ± as the
superscript or subscript, denoting the final states of decays.

P(X±,Y±, ta, tb) is the probability that the measurement
results of a and b are X± and Y± at ta and tb, respectively,
indicated by the final states of their respective decays. The
measurement or filtering or projection in the flavor basis
{B0, B̄0} is made through a semileptonic decay to a fla-
vor eigenstate |l±〉. The measurement or filtering or projec-
tion in CP basis {B+, B−} is made through a decay into CP
eigenstate |S±〉. With direct CP violation negligible, we have
Al− = Āl+ = 0, AS± = ± ĀS± . Only if |l−〉 = CP|l+〉, we
have Al+ = Āl− . Note that the decay products of a and b may
be different even though their flavor or CP eigenvalues are
the same, and may not be CP conjugates even though their
flavor eigenvalues are opposites.

The basis of measurement, namely flavor or CP basis, is
not actively chosen by experiments, but is signalled by the
decay products. Our extension of CNHV and LI addresses
this issue, as the main achievement of this paper.

A key quantity is the joint decay rate for particle a
decaying to fa at ta while particle b decaying to fb at tb,
R( fa, fb, ta, tb) ∝ |〈 fa, fb|WaWb|�(ta, tb)〉|2. The follow-
ing joint decay amplitudes will be needed.

There are four amplitudes in the form of
〈
l±a , l±b

∣∣WaWb
∣∣�(ta, tb)

〉 = Al±a Al±b
〈
l±, l ± ∣∣�(ta, tb)

〉
, (38)

where, ± in l±a corresponds to the first l± on RHS, ± in l±b
corresponds to the second l± on RHS.

There are four amplitudes of the form of

〈
Sa±, Sb±

∣∣WaWb
∣∣�(ta, tb)

〉 = 2ASa± ASb±
〈
s±, s ± ∣∣�(ta, tb)

〉
,

(39)

where we have used 〈S±|W |B±〉 = (AS± ± ĀS±)/
√

2 =√
2AS± .
There are four other amplitudes of the form of

〈
Sa±, l±b

∣∣WaWb
∣∣�(ta, tb)

〉 = √
2ASa± Al±b

〈
s±, l ± ∣∣WaWb

∣∣�(ta, tb)
〉
.

(40)

The experimentally measured quantity is the number of
the joint events N ( fa, fb, ta, tb) ∝ ε fa , fb R( fa, fb, ta, tb),
where ε fa , fb is the detection efficiency for that channel [49],
R( fa, fb, ta, tb) is proportional to the modulo square of the
joint decay amplitude, as given in Eqs. (38–40).

Therefore the correlation function (36) can be obtained
from event numbers as

E
(
al(ta), al(tb)

)
=⎛

⎝ N (l+a , l+b , ta, tb)

εl+a ,l+b

∣∣Al+a
∣∣2∣∣Al+b

∣∣2 + N (l−a , l−b , ta, tb)

εl−a ,l−b

∣∣ Āl−a
∣∣2∣∣ Āl−b

∣∣2

− N (l+a , l−b , ta, tb)

εl+a ,l−b

∣∣Al+a
∣∣2∣∣ Āl−b

∣∣2 − N (l−a , l+b , ta, tb)

εl−a ,l+b

∣∣ Āl−a
∣∣2∣∣Al+b

∣∣2

⎞
⎠

/ ⎛
⎝ N (l+a , l+b , ta, tb)

εl+a ,l+b

∣∣Al+a
∣∣2∣∣Al+b

∣∣2 + N (l−a , l−b , ta, tb)

εl−a ,l−b

∣∣ Āl−a
∣∣2∣∣ Āl−b

∣∣2

+ N (l+a , l−b , ta, tb)

εl+a ,l−b

∣∣Al+a
∣∣2∣∣ Āl−b

∣∣2 + N (l−a , l+b , ta, tb)

εl−a ,l+b

∣∣ Āl−a
∣∣2∣∣Al+b

∣∣2

⎞
⎠ , (41)

E
(
as(ta), al(tb)

)
=⎛

⎝ N (S+
a , l+b , ta, tb)

εS+
a ,l+b

∣∣AS+
a

∣∣2∣∣Al+b

∣∣2 + N (S−
a , l−b , ta, tb)

εS−
a ,l−b

∣∣AS−
a

∣∣2∣∣ Āl−b

∣∣2

− N (S+
a , l−b , ta, tb)

εS+
a ,l−b

∣∣AS+
a

∣∣2∣∣ Āl−b

∣∣2 − N (S−
a , l+b , ta, tb)

εS−
a ,l+b

∣∣AS−
a

∣∣2∣∣Al+b

∣∣2

⎞
⎠

/ ⎛
⎝ N (S+

a , l+b , ta, tb)

εS+
a ,l+b

∣∣AS+
a

∣∣2∣∣Al+b

∣∣2 + N (S−
a , l−b , ta, tb)

εS−
a ,l−b

∣∣AS−
a

∣∣2∣∣ Āl−b

∣∣2

+ N (S+
a , l−b , ta, tb)

εS+
a ,l−b

∣∣AS+
a

∣∣2∣∣ Āl−b

∣∣2 + N (S−
a , l+b , ta, tb)

εS−
a ,l+b

∣∣AS−
a

∣∣2∣∣Al+b

∣∣2

⎞
⎠ , (42)

E
(
as(ta), as(tb)

) =⎛
⎝ N (S+

a , S+
b , ta, tb)

εS+
a ,S+

b

∣∣AS+
a

∣∣2∣∣AS+
b

∣∣2 + N (S−
a , S−

b , ta, tb)

εS−
a ,S−

b

∣∣AS−
a

∣∣2∣∣AS−
b

∣∣2

− N (S+
a , S−

b , ta, tb)

εS+
a ,S−

b

∣∣AS+
a

∣∣2∣∣AS−
b

∣∣2 − N (S−
a , S+

b , ta, tb)

εS−
a ,S+

b

∣∣AS+
a

∣∣2∣∣AS+
b

∣∣2

⎞
⎠

/ ⎛
⎝ N (S+

a , S+
b , ta, tb)

εS+
a ,S+

b

∣∣AS+
a

∣∣2∣∣AS+
b

∣∣2 + N (S−
a , S−

b , ta, tb)

εS−
a ,S−

b

∣∣AS−
a

∣∣2∣∣AS−
b

∣∣2

+ N (S+
a , S−

b , ta, tb)

εS+
a ,S−

b

∣∣AS+
a

∣∣2∣∣AS−
b

∣∣2 + N (S−
a , S+

b , ta, tb)

εS−
a ,S+

b

∣∣AS+
a

∣∣2∣∣AS+
b

∣∣2

⎞
⎠ , (43)

where ε’s are the detection efficiencies. In experiments,
|Al±i

|2 and |AS±
i
|2, (i = a, b), can be absorbed to the redefi-

nitions of detection efficiencies.
Furthermore, one obtains

Êll±(φa, φb) ≡ E
(
al(x�ta), al(x�tb)

)
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+ E
(
al(x�tb),±al(x�tb)

)
,

Êsl±(φa, φb) ≡ E
(
as

(
x�ta + π

2

)
, al(x�tb)

)

+ E
(
al(x�tb),±al(x�tb)

)
,

Ê+
ss(φa, φb) ≡ E

(
as

(
x�ta + π

2

)
, al(x�tb)

)

+ E
(
as

(
x�tb + π

2

)
, as

(
x�tb + π

2

))
,

(44)

from which the averages Êll±(ϕ), Êsl±(ϕ), Êss+(ϕ) can be
obtained. Note that we did not define Êss−, which would not
have physical meaning, as −as is not on the cone, where all
possible as’s lie. In SM, with �� = 0, R( fb, fb, ta, tb) can
be obtained as

R
(
fa, fb, ta, tb

) = e−�
(
ta+tb

)
4

×
{(∣∣ξ−

∣∣2 + ∣∣ζ−
∣∣2)

−(∣∣ξ−
∣∣2 − ∣∣ζ−

∣∣2) cos
(
x�

(
ta − tb

))
−2Im

(
ζ ∗−ξ−

)
sin

(
x�

(
ta − tb

))}
, (45)

where ξ− ≡ −
(
p
q A fa A fb − q

p Ā fa Ā fb

)
, ζ− ≡ (

A fa Ā fb

Ā fa A fb

)
.

In experiments, it is more convenient to use the time-
integrated joint decay rate

R ( fa, fb,�t) =
∫ ∞

0
dta R− ( fa, fb, ta, ta + �t) , (46)

which is obtained as

R
(
fa, fb,�t

) = e−�|�t |

8�
×

{(|ξ−|2 + |ζ−|2)
− (|ξ−|2 − |ζ−|2) cos

(
x��t

)
+ 2Im

(
ζ ∗−ξ−

)
sin

(
x��t

)}
, (47)

It is more rigorous to test LI of the discrete version of the
average correlation functions, rather than that of the con-
tinuous version. However, it is experimentally much eas-
ier to measure N ( fa, fb,�t) ∝ ε fa , fb R( fa, fb,�t) than
N fa , fb (ta, tb), consequently it is much easier to test LI in
terms of the continuous version of the average correlation
functions.

From (45) and (47), it can be seen that in SM, R( fa, fb, tb+
�t, tb) = 2�e−�(ta+tb)e�|�t |R( fa, fb,�t). Consequently,
Ê(ϕ), as an average of E(φa, φb) over ξ ≡ x�(ta + tb)/2 +
π/2, can be directly related to N ( fa, fb,�t) as

Êll(ϕ = x��t) =(
N (l+a , l+b ,�t)

εl+a ,l+b
|Al+a |2|Al+b

|2 + N (l−a , l−b ,�t)

εl−a ,l−b
| Āl−a |2| Āl−b

|2

− N (l+a , l−b ,�t)

εl+a ,l−b
|Al+a |2| Āl−b

|2 − N (l−a , l+b ,�t)

εl−a ,l+b
| Āl−a |2|Al+b

|2
)

/ (
N (l+a , l+b ,�t)

εl+a ,l+b
|Al+a |2|Al+b

|2 + N (l−a , l−b ,�t)

εl−a ,l−b
| Āl−a |2| Āl−b

|2

+ N (l+a , l−b ,�t)

εl+a ,l−b
|Al+a |2| Āl−b

|2 + N (l−a , l+b ,�t)

εl−a ,l+b
| Āl−a |2|Al+b

|2
)

, (48)

Êsl(ϕ = x��t + π

2
) =(

N (S+
a , l+b ,�t)

εS+
a ,l+b

|AS+
a
|2|Al+b

|2 − N (S−
a , l−b ,�t)

εS−
a ,l−b

|AS−
a
|2| Āl−b

|2

+ N (S+
a , l−b ,�t)

εS+
a ,l−b

|AS+
a
|2| Āl−b

|2 − N (S−
a , l+b ,�t)

εS−
a ,l+b

|AS−
a
|2|Al+b

|2
)

/ (
N (S+

a , l+b ,�t)

εS+
a ,l+b

|AS+
a
|2|Al+b

|2 + N (S−
a , l−b ,�t)

εS−
a ,l−b

|AS−
a
|2| Āl−b

|2

+ N (S+
a , l−b ,�t)

εS+
a ,l−b

|AS+
a
|2| Āl−b

|2 + N (S−
a , l+b ,�t)

εS−
a ,l+b

|AS−
a
|2|Al+b

|2
)

, (49)

Êss(ϕ = x��t) =(
N (S+

a , S+
b ,�t)

εS+
a ,S+

b
|AS+

a
|2|AS+

b
|2 + N (S−

a , S−
b ,�t)

εS−
a ,S−

b
|AS−

a
|2|AS−

b
|2

− N (S+
a , S−

b ,�t)

εS+
a ,S−

b
|AS+

a
|2|AS−

b
|2 − N (S−

a , S+
b ,�t)

εS−
a ,S+

b
|AS+

a
|2|AS+

b
|2

)

/ (
N (S+

a , S+
b ,�t)

εS+
a ,S+

b
|AS+

a
|2|AS+

b
|2 + N (S−

a , S−
b ,�t)

εS−
a ,S−

b
|AS−

a
|2|AS−

b
|2

+ N (S+
a , S−

b ,�t)

εS+
a ,S−

b
|AS+

a
|2|AS−

b
|2 + N (S−

a , S+
b ,�t)

εS−
a ,S+

b
|AS+

a
|2|AS+

b
|2

)
. (50)

Moreover, the integration over ξ of Ê±(a,b) = E(a,b)+
E(b,±b) can be performed independently for the two terms
on RHS, consequently,

Ê+
ll (ϕ) = Êll(ϕ) + Êll(0), Ê−

ll (ϕ) = Êll(ϕ) + Êll(π)

Ê+
sl (ϕ) = Êsl(ϕ) + Êll(0), Ê−

sl (ϕ) = Êsl(ϕ) + Ēll(π)

Ê+
ss(ϕ) = Êss(ϕ) + Êss(0). (51)

Note that Eqs. (41–43) and (48–50) are mainly for the use
in analyzing experimental data. QM result can be obtained
simply from

〈
aX , aY |�−

〉 = −aX · aY , therefore

Êsl(ϕ) = − sin(2β) cos(ϕ), Êll(ϕ) = − cos(ϕ),

Êss(ϕ) = − cos2(2β) − sin2(2β) cos(ϕ). (52)

It is interesting to test our LI using various systems, in which
ϕa and ϕb are directly adjusted.
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For Bd mesons, QM result (52) can also be obtained from
the definition (36) of correlation functions, with

P(X±,Y±, ta, tb) ∝
∣∣〈X±,Y ± |WaWb|�(ta, tb)

〉∣∣2 obtained by substituting LHS

of R( fa, fb, ta, tb) ∝ ∣∣〈 fa, fb|WaWb|�(ta, tb)
〉∣∣2 with the

result (45) of R( fa, fb, ta, tb), and RHS with the joint ampli-
tudes (38–40), and then having A f and Ā f cancelled. For Bd

mesons, the values of β and x are given by sin(2β) = 0.695,
x = 0.769 [97].

The upper bound of a our LI violation can be quantified
as

gu(ϕ1, ϕ2) ≡ huL(ϕ1, ϕ2) − huR(ϕ1, ϕ2)∣∣huL(ϕ1, ϕ2)
∣∣ , (53)

where huR and huL(ϕ1, ϕ2) are RHS and LHS of (32), respec-
tively. The first lower bound can be quantified as

gd1(ϕ1, ϕ2) = hd1
R (ϕ1, ϕ2) − hd1

L (ϕ1, ϕ2)∣∣hd1
L (ϕ1, ϕ2)

∣∣ , (54)

where hd1
R and hd1

L are RHS and LHS of (33), respectively.
The second lower bound can be quantified as

gd2(ϕ1, ϕ2) = hd2
R (ϕ1, ϕ2) − hd2

L (ϕ1, ϕ2)∣∣hd2
L (ϕ1, ϕ2)

∣∣ , (55)

where hd2
R and gh2

L are RHS and LHS of (34), respectively.
Each of these three quantities larger than 0 represents the
violation of the corresponding bound of LI.

From ∂ϕ1g
u(ϕ1, ϕ2) = ∂ϕ1g

d1(ϕ1, ϕ2) = ∂ϕ1g
d2(ϕ1, ϕ2) =

0, it is determined that the maximum of gu is on ϕ1 = π ,
while the maxima of gd1 and gd1 are both on ϕ1 = 0.
L1(ϕ1 = π) = L2(ϕ1 = 0) ≈ 0.781, θ1(ϕ1 = π) =
θ2(ϕ1 = 0) ≈ 0.401.

Furthermore, solving ∂ϕ2g
u(π, ϕ2) = 0 numerically, we

find that gu(π, ϕ2) reaches its maximum at ϕ2 ≈ ±2.81.
We also find numerically that gu(π, ϕ2) > 0 when 2.39 <

|ϕ2| < π . Similarly, solving ∂ϕ2g
d1(0, ϕ2) = 0 numer-

ically, we find that gd1(0, ϕ2) reaches the maximum at
ϕ2 ≈ ±0.336. We also find numerically that gd1(0, ϕ2) > 0
when 0 < |ϕ2| < 0.75.

Solving ∂ϕ2g
d2(0, ϕ2) = 0 numerically, we find that

gd2(0, ϕ2) reaches its maximum at ϕ2 ≈ ±0.486, and we
find numerically that gd2(0, ϕ2) > 0 when 0 < |ϕ2| < 1.11.
The ϕ2 range of gd2 > 0 is larger than that of gd1 > 0. The
maxima of gu , gd1 and gd2 are all about 2.7%. The results
are depicted in Fig. 2.

A Bd meson is unstable, and the time interval between
the two decays is of the order of the lifetime τB [71]. So it
is better to study the case in which �t is of the order of τB ,
so that the number of events is large. Thus it is easier to test
gd2, because in its violation region, �t is closer to τB .

We now focus on how to make measurements to confirm
the violation of the second lower bound. gd2(ϕ1, ϕ2) > 0 can
be found in the regime (ϕ1 = 0, 0 < |ϕ2| < 1.11), as cal-
culated above. The function gd2(ϕ1, ϕ2) contains Ê+

sl (ϕ1) =
Êsl(ϕ1) + Êll(0) and Ê+

ss(ϕ2) = Êss(ϕ) + Êss(0). Hence
one first measures Êll(�t1 = 0) and Êsl(ϕ1 = 0) =
Êsl(�t1 = −π/2x� ≈ −2.04τB), as shown in Fig. 3.
Thus Ê+

sl (ϕ1 = 0) = Êsl(ϕ1 = 0) + Ēll(ϕ1 = 0) is

obtained. One also needs to measure Êss(�t2 = 0) and
Êss(�t2) with 0 < |�t2| < 1.11/x� ≈ 1.44τB , such
that Ê+

ss(ϕ2) with 0 < |ϕ2| < 1.11 is obtained. Thus
one obtains gd2(ϕ1, ϕ2) > 0 in this regime. The viola-
tion is maximal when �t2 ≈ 0.486/x� ≈ 0.633τB , then
gd2(ϕ1, ϕ2) ≈ 2.7%, as shown in Fig. 3. Typically, the res-
olution of the signal is proportional to the inverse of square
of event numbers [71]. Therefore it can be estimated that the
expected signal of LI violation can be observed when the
event number is about 104–105, which can be achieved in
current experiments [64].

It is also possible to test LI in polarization-entangled
baryon-antibaryon pairs produced in, say, J/� → ��̄

decays, where the polarizations of � and �̄ can be mea-
sured through the angular distribution of the momenta of
their decay products pions. However, the effective measur-
ing directions satisfying the Malus’ law are yet to be found
out.

If using other systems such as photon polarizations to
test our LI, θs may become a variable. The results of
∂ϕ1g

u(ϕ1, ϕ2) = ∂ϕ1g
d1(ϕ1, ϕ2) = ∂ϕ1g

d2(ϕ1, ϕ2) = 0 do
not depend on θs , hence their maxima are still at ϕ1 = π, 0, 0,
respectively. gu(θs, π, ϕ2), gd1(θs, 0, ϕ2) and gd2(θs, 0, ϕ2)

as functions of θs and ϕ2 are shown in Fig. 4. Interestingly,
in a certain range of ϕ2, for any value of θs except 0 and π/2,
we always have gd2 > 0, that is, the second lower bound is
always violated.

Furthermore, we numerically found the maximal viola-
tions of the three bounds are all 3.87482% when θs =
1.18208, i.e.

gu(1.18208,±π,±2.7373) = gd1(1.18208, 0,±0.404296)

= gd2(1.18208, 0,±0.437399)

= 3.87482%. (56)

It is also found that

gd1(1.18208, 0, ϕ2) > 0, when 0 < |ϕ2| < 1.0734, (57)

gd2(1.18208, 0, ϕ2) > 0, when 0 < |ϕ2| < 1.17078. (58)

The latter is wider, as shown in Fig 5.
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(a) (b) (c)

(d) (e) (f)

Fig. 2 LI violation of entangled Bd mesons. θs is fixed to be
sin−1 0.695. Our LI is violated when gu(ϕ1, ϕ2) > 0 or gd1(ϕ1, ϕ2) > 0
or gd2(ϕ1, ϕ2) > 0. gu > 0 when ϕ1 = π , 2.39 < |ϕ2| < π , and
the maximum is at ϕ1 = ±π, ϕ2 ≈ ±2.81. gd1 > 0 when ϕ1 = 0,

0 < |ϕ2| < 0.75, and the maximum is at ϕ1 = 0, ϕ2 ≈ ±0.336.
gd2 > 0 when ϕ1 = 0, 0 < |ϕ2| < 1.11, and the maximum is at
ϕ1 = 0, ϕ2 ≈ ±0.486. The maxima are all about 2.7%

Fig. 3 The correlation functions to be measured. The left picture represents Êsl (�t = π/2x� ≈ 2.04τB) = Êsl (ϕ1 = 0). The right picture
represents Êss(�t = 0.486/x� ≈ 0.633τB) = Êss(ϕ2 ≈ 0.486). They give rise to gd1(ϕ1 = 0, ϕ2 ≈ 0.486), which maximally violates the
second lower bound of our LI

123
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Fig. 4 LI violation in case θs is a variable. The maxima of gu , gd1 and gd2 are still at ϕ1 = π, 0, 0, respectively. gu(θs , π, ϕ2), gd1(θs , 0, ϕ2) and
gd2(θs , 0, ϕ2) are functions of θs and ϕ2

Fig. 5 The two lower bounds are maximally violated on θs = 1.18208,
ϕ1 = 0. Shown here are the dependence of gd1(θs = 1.18208, ϕ1 =
0, ϕ2) and gd2(θs = 1.18208, ϕ1 = 0, ϕ2) on ϕ2. gd1 > 0 when
0 < |ϕ2| < 1.0734, while gd2 > 0 when 0 < |ϕ2| < 1.17078

6 Summary and discussions

To summarize, we have extended the CNHV theories to
include the case that the measuring settings, together with the
measurement outcomes, are not externally fixed, but deter-
mined by HVs. The outcomes of those measurements with
the same settings give averages satisfying Malus’ Law and
make up correlation functions. We show that such is the case
of meson decays, which could be determined by HVs at the
source of the meson pairs. This extension does not change
the validity of LI. Therefore, entangled meson pairs can be
used to test LI.

We find that for a Bd meson, the effective measuring direc-
tions appearing in Malus’ Law are on a cone and a plane, cor-
responding to semileptonic decays and decays to CP eigen-
states, respectively. For such effective measuring directions,
we present a new LI. This can be tested in C = −1 entan-
gled state of B0 − B̄0 pairs, within the present experimental
capability. The expected violation is estimated quantitatively,
using the indirect CP violation and other parameters. Our LI

is violated if there is indirect CP violation. There may be pro-
found reason for this surprising connection. Besides, our new
LI can also be tested in other systems such as photon polariza-
tions, where the measuring directions are simply directions
externally fixed.
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A Two inequalities

We derive a new LI, for al(φl) on a plane and as(θs, φs) on
a cone.

For each particle, each measurement yields an outcome
A = A(u, v, ã(λ), b̃(λ), λ) = ±1 or B = B(v,u, b̃(λ)

, ã(λ), λ) = ±1. Using −1 + ∫
dλρ′

u,v,a,b(λ) |A + B| =∫
dλρ′

u,v,a,b(λ)AB = 1 − ∫
dλρ′

u,v,a,b(λ) |A − B|, where

ρ′
u,v,a,b(λ) ≡ ρu,v,v(λ)δ(ã(λ) − a)δ(b̃(λ) − b), and Ā =∫
dλρ′

u,v,a,b(λ)A(u, v, ã(λ), b̃(λ), λ) = u·a, B̄ = ρ′
u,v,a,b(λ)

B(v,u, b̃(λ), ã(λ), λ) = v·b, one finds 1−∫
dudvF(u, v)|u·
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a − v · b| ≥ E(a,b) ≥ −1 + ∫
dudvF(u, v)|u · a + v · b|

[15,16].
Furthermore [23], considering |u · a + v · b| + |u · b +

v · b| ≥ |u · a + v · b − (u · b + v · b)| = |u · (a − b)|, and
|u · a − v · b| + |u · b + v · b| ≥ |u · (a + b)|, one obtains

Ê+(a,b) ≥ −2 +
∫

duF(u)|u · (a − b) |, (59a)

Ê−(a,b) ≤ 2 −
∫

duF(u)|u · (a + b) |. (59b)

with Ê+(a,b) ≡ E(a,b) + E(b,b) and Ê−(a,b) ≡
E(a,b) + E(b,−b).

All the results remain valid in the special case that ã(λ)

and b̃(λ) are externally set to be always a and b respectively.

B Upper bound

Suppose a = as(θs, φa), b = al(φb). Then Eqs. (59b) reads

Ê−(as(θs, φa), al(φb)) ≤ 2 −
∫ π

0
sin θudθu

×
∫ 2π

0
dφu F(θu, φu)∣∣∣u(θu, φu) · (as(φa) + al(φb))

∣∣∣ .
(60)

As shown in Fig. 6,

as(θs, φa) + al(φb) = L1(θs, ϕ) (sin(θ1) cos(ξ + α1),

sin(θ1) sin(ξ1), cos(θ1)) , (61)

where

L1(θs, ϕ) ≡ ∣∣as + al
∣∣ = √

2 + 2 cos(ϕ) sin(θs),

θ1(θs, ϕ) = cos−1 cos(θs)√
2 + 2 cos(ϕ) sin(θs)

,

ϕ = φa − φb, ξ = φa+φb
2 , α1 is an angle depending on

ϕ and θs while independent of ξ , as shown in Fig. 6. With
0 < θs < π/2, we have sin(θ1) > 0, cos(θ1) > 0.

Rewriting Ê−(as(θs, φa), al(φb)) as Ê−
sl (θs, ξ, ϕ), then

Ê−
sl (θs , ϕ) ≡

∫
dξ

2π
Ê−
sl (θs , ξ, ϕ)

≤ 2 − L1 (θs , ϕ)

∫ 2π

0

dξ

2π

∫ π

0
sin θudθu

∫ 2π

0
dφu F (θu , φu)

× |sin (θu) sin (θ1) cos (φu − ξ − α1) + cos (θu) cos (θ1)|
≤ 2 − L1 (θs , ϕ)

∫ π

0
sin θudθu F(θu) cos (θ1) |cos(θu)| ,

(62)

where F(θu) ≡ ∫ 2π

0 dφu F(θu, φu). In obtaining the second
inequality, we have used

∫ 2π

0

dξ

2π
|sin (θ1) cos (φu − ξ − α1) sin (θu)

+ cos (θ1) cos (θu)|

=
∫ 2π

0

dξ

2π
|sin (θ1) cos (ξ) sin (θu) + cos (θ1) cos (θu)|

≥ cos (θ1) |cos (θu)| , (63)

as

∫ 2π

0
dξ |cos (ξ + β) + a| =

∫ 2π

0
dξ |cos (ξ) + a|

= 4Re
(√

1 − a2 + a sin−1(a)
)

≥ 2π |a| ,

where a and β are arbitrary real numbers.
The case that the two vectors are on a same plane is a

special case of above with θs = π/2. In this special case,
L1 = 2 cos (ϕ/2), θ1 = π/2. Hence

Ê−
ll (θs, ϕ) ≡

∫
dξ

2π
E

(
al

(
ξ + ϕ

2

)
, al

(
ξ − ϕ

2

))

≤ 2 − 2 cos
(ϕ

2

) ∫ 2π

0

dξ

2π

∫ π

0
sin θudθu F (θu)

|cos(ξ) sin (θu)|
= 2− 4

π
cos

(
ϕ′

2

)∫ π

0
sin θudθu F (θu) |sin (θu)| ,

(64)

where
∫ 2π

0 dξ | cos(ξ)| = 4 is used.
Therefore one obtains

Ê−
sl (θs, ϕ1) + π cos (θ1 (θs, ϕ1)) L1 (θs, ϕ1)

4 cos
(

ϕ2
2

) Êll− (θs, ϕ2)

≤ 2

(
1 + π cos (θ1 (θs, ϕ1)) L1 (θs, ϕ1)

4 cos
(

ϕ2
2

)
)

− cos (θ1 (θs, ϕ1)) L1 (θs, ϕ1)

×
∫ π

0
sin θudθu F (θu)

(∣∣ cos (θu)
∣∣ + ∣∣ sin (θu)

∣∣) . (65)

Using
∫ π

0 dθu sin(θu)F(θu) = 1 and | cos(θu)|+| sin(θu)|
≥ 1, one obtains

Ê−
sl (θs, ϕ1) + π cos(θ1(θs, ϕ1))L1(θs, ϕ1)

4 cos( ϕ2
2 )

Ê−
ll (θs, ϕ2)

≤ 2

(
1 + π cos(θ1(θs, ϕ1))L1(θs, ϕ1)

4 cos( ϕ2
2 )

)

123



Eur. Phys. J. C (2020) 80 :861 Page 13 of 17 861

Fig. 6 Geometric relations
among as , al , as + al and
as − al

− cos(θ1(θs, ϕ1))L1(θs, ϕ1). (66)

C Lower bounds

From Eq. (59a), one obtains

Ê+ (
as (θs, φa) , al (φb)

)
≥ −2 +

∫ π

0
sin θudθu

∫ 2π

0
dφu

× F (θu, φu)

∣∣∣u (θu, φu) ·
(
as (θs, φa) − al (φb)

)∣∣∣ .
(67)

As shown in Fig. 6,

as (θs, φa) − al (φb) = L2 (θs, ϕ) (sin (θ2) cos (ξ + α2) ,

sin (θ2) sin (ξ2) , cos (θ2)) , (68)

where

L2(θs, ϕ) ≡ ∣∣as − al
∣∣ = √

2 − 2 cos(ϕ) sin(θs)

θ2 = cos−1 cos(θs)√
2 − 2 cos(ϕ) sin(θs)

,

α2 is an angle depending on θs and ϕ while independent of
ξ .

Rewriting Ê+(as(θs, φa), al(φb)) as Ê+
sl (θs, ξ, ϕ),

Ê+
sl (θs, ϕ) ≡

∫
dξ

2π
Ê+
sl (θs, ξ, ϕ)

≥ −2 + L2 (θs, ϕ)

∫ 2π

0

dξ

2π

∫ π

0
sin θudθu

×
∫ 2π

0
dφu F (θu, φu)

× |sin (θu) sin (θ2) cos (φu − ξ − α2)

+ cos (θu) cos (θ2)| . (69)

Considering the special case of θs = π/2, one obtains

Ê+
ll (ϕ) ≥ −2 + 2

∣∣∣sin
(ϕ

2

)∣∣∣
∫ 2π

0

dξ

2π

∫ π

0
sin θudθu

× F (θu) |cos(ξ) sin (θu)| . (70)

Therefore

Ê+
sl (θs, ϕ1) + π cos (θ2 (θs, ϕ1)) L2 (θs, ϕ1)

4
∣∣sin

(
ϕ2
2

)∣∣ Ê+
ll (θs, ϕ2)

≥ −2

(
1 + π cos (θ2 (θs, ϕ1)) L2 (θs, ϕ1)

4
∣∣sin

(
ϕ2
2

)∣∣
)

+ cos (θ2 (θs, ϕ1)) L2 (θs, ϕ1) . (71)

We find the second lower bound, in terms of correlation
function Êss+(θs, φa, φb) between as(θs, φa) and as(θs, φb),
which are on a same plane, with |as(θs, φa) − as(θs, φb)| =
2 sin(θs) sin(ϕ/2), as shown in Fig. 7. We find

Ê+
ss (θs, ϕ) ≥ −2 + 2 sin (θs)

∣∣∣sin
(ϕ

2

)∣∣∣
×

∫ 2π

0

dξ

2π

∫ π

0
sin θudθu F (θu) |cos(ξ) sin(θu)| .

(72)
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Fig. 7 Geometric relations of
as(φa), as(φb) and
as(φa) − as(φb)

Therefore,

Ê+
sl (θs, ϕ1) + π cos (θ2 (θs, ϕ1)) L2 (θs, ϕ1)

4 sin (θs)
∣∣sin

(
ϕ2
2

)∣∣ Ê+
ss(ϕ2)

≥ −2

(
1 + π cos (θ2 (θs, ϕ1)) L2 (θs, ϕ1)

4 sin (θs)
∣∣sin

(
ϕ2
2

)∣∣
)

+ cos (θ2) L2 (θs, ϕ1) . (73)

Equations (66), (71) and (73) comprise our LI.

D LI in terms of discrete versions of average correlation
functions

In the discrete version, Eq. (64) is changed to

Ê−
sl (θs, ϕ) ≡ 1

N

N∑
n=1

Ê−
sl

(
θs,

2nπ

N
, ϕ

)

≤2−L1 (θs,ϕ)

∫ π

0
sin θudθu

∫ 2π

0
dφu F (θu,φu)

× 1

N

N∑
n=1

|sin (θu) sin (θ1 (θs, ϕ)) cos (φu

−α1 − 2nπ

N

)

+ cos (θu) cos (θ1 (θs, ϕ))| . (74)

Noting

1

N

N∑
n=1

∣∣∣∣cos(
2nπ

N
+ β) + a

∣∣∣∣ ≥ |a| (75)

for arbitrary real numbers β and a, we can change Eq. (63)
to

1

N

N∑
n=1

∣∣∣∣sin(θ1(θs, ϕ)) cos

(
φu − 2nπ

N
− α1

)
sin(θu)

+ cos(θ1) cos(θu)| ≥ cos(θ1(θs, ϕ)) |cos(θu)| . (76)

which is then used in Eq. (74). One finds

Ê−
sl (θs , ϕ) ≤ 2 − L1(θs , ϕ)

∫ π

0
sin θudθu F(θu) cos(θ1) |cos(θu)| .

(77)

Similarly, one has

Ê+
sl (θs, ϕ) ≥ −2 + L2 (θs, ϕ)

∫ π

0
sin θudθu F (θu)

cos
(
θn2

) |cos(θu)| . (78)

On the other hand, Eq. (64) can be changed to

Ê−
ll (ϕ

′) ≡ 1

N

N∑
n=1

E

(
al

(
2nπ

N
+ ϕ′

2

)
, al

(
2nπ

N
− ϕ′

2

))

≤ 2 − 2 cos

(
ϕ′

2

)
1

N

N∑
n=1

∫ π

0
sin θudθu

123



Eur. Phys. J. C (2020) 80 :861 Page 15 of 17 861

× F (θu)

∣∣∣∣cos

(
2nπ

N

)
sin(θu)

∣∣∣∣ . (79)

Using 1
N

∑N
n=1

∣∣cos( 2nπ
N + β)

∣∣ ≥ 1
N cot

(
π

2N

) ≡ uN [18],
one obtains

Ê−
ll (ϕ) ≤ 2 − 2uN cos

(ϕ

2

) ∫ π

0
sin θudθu F(θu) |sin(θu)| .

(80)

Similarly, we have

Ê+
ll (ϕ) ≤ −2 + 2uN cos(

ϕ

2
)

∫ π

0
sin θudθu F(θu) |sin(θu)| .

Ê+
ss(ϕ) ≥ −2 + 2uN sin(θs)

∣∣∣sin(
ϕ

2
)

∣∣∣
×

∫ π

0
sin θudθu F(θu) |sin(θu)| . (81)

With Eqs. (77), (78), (80) and (81), we establish LI in terms
of the discrete version of average correlation functions,

Ê−
sl (ϕ1) + cos(θ1)L1(θs, ϕ1)

2uN cos( ϕ2
2 )

Ê−
ll (ϕ2)

≤ 2

(
1 + cos(θ1)L1(θs, ϕ1)

2uN cos( ϕ2
2 )

)
− cos(θ1)L1(θs, ϕ1),

Ê+
sl (ϕ1) + cos(θ2)L2(θs, ϕ1)

2uN
∣∣sin(

ϕ2
2 )

∣∣ Ê+
llN (ϕ2)

≥ −2

(
1 + cos(θ2)L2(θs, ϕ1)

2uN
∣∣sin(

ϕ2
2 )

∣∣
)

+ cos(θ2)L2(θs, ϕ1).

Ê+
sl (ϕ1) + cos(θ2)L2(θs, ϕ1)

2uN sin(θs)
∣∣sin(

ϕ2
2 )

∣∣ Ê+
ssN (ϕ2)

≥ −2

(
1 + cos(θ2)L2(θs, ϕ1)

2uN sin(θs)
∣∣sin(

ϕ2
2 )

∣∣
)

+ cos(θ2)L2(θs, ϕ1).

(82)
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